PROFILE OF THE LEAST ENERGY SOLUTION OF A
SINGULAR PERTURBED NEUMANN PROBLEM WITH MIXED
POWERS

SANJIBAN SANTRA AND JUNCHENG WEI

ABSTRACT. We consider the problem £2Au — 4% + uP = 0 in Q, v > 0 in Q,
% = 0 on 9N where  is a smooth bounded domain in RY, 1 < g < p < %i‘g

if N > 2 and ¢ is a small positive parameter. We determine the location and
shape of the least energy solution when ¢ — 0.

1. INTRODUCTION

There has been considerable interest in understanding the behavoir of positive

solutions of the elliptic problem
e?Au+ f(u)=0 in Q
(L) u>0inQ,6—u=0 on 9
ov

where € > 0 is a parameter, f is a changing sign superlinear nonlinearity and
Q is a smooth bounded domain in RY. Let F(u) = [ f(t)dt. We consider the
problems in the zero mass case i.e. when f(0) = 0 and f’(0) = 0. It is easy to check
that the problem (1.1) admits solutions on € if f/(0) < 0, while there may be no
nontrivial solutions for small € > 0 if f'(0) > 0. Thus problem (1.1) can be viewed
as borderline problems. Berestycki and Lions in [2] proved the existence of ground
state solutions if f(u) behaves like |ul? for large u and |u|? for small v where p
and ¢ are respectively supercritical and subcritical. This type of equations arises
in the Yang-Mills theory, in various mathematical models derived from population
theory, chemical reactor theory and are much harder to handle; see Gidas [10] and
Gidas-Ni-Nirenberg [11]. In this paper we consider the following singular perturbed
problem,

EAu—ui+uP =0 inQ

0
5 =0 ondQ,
where  is a bounded domain in RV with a smooth boundary 9 and ¢ > 0 is a
small number and v denotes the unit normal to Q2. Here 1 < ¢ < p < % and
N > 2.
This problem with the Dirichlet boundary condition was first studied by Dancer-
Santra [6] and they have proved that there exists ¢, = 25 called the zero mass
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exponent such that when g € (%, %), the least energy solution concentrates
at a harmonic center of 2. Moreover, g, is critical to (1.2) in the determination
of concentration of the least energy solution. Furthermore, Dancer-Santra-Wei
[7] proved that ¢ € (1, ;55), the least energy solution concentrates at the global

minimum of R, (re-normalized energy) where
(1.3)

— T 1 2 1 +1 _ (¢-1) —2-2a, g+1
Ral8) := Jimg { /Q\BJ(O Vo O+ 0 e ) e v aa -

and G,(+,€) is the unique positive weakly singular solution to the problem
BeGq(x,6) = Gg(x,6)* =0 in 2\ {¢},

(1.4) Gy(2,8) ~ mfi"ﬂa

Gy(z,6) =0 on 9N

and when g = ¢y, u. concentrates at the global minima of ¥, , where ¥, is defined
by

forz ~ ¢

.0 = [ VM. (@P
. 1
+ (N=2 2/ dz
=2 e T — €70 Tlogle — €1 7
1 1
—(N—2)?
o ) /RN\Q Iw—€|2(N‘1)|10g|$—€||N’1dx
(N-1)(N-2) / 1
+ -— 7 - dx
2 r\Q & — €PN D] log |z — €|V
where H,, (-, €) is the solution to the problem
AgHy, (2,6) =0 in Q,
(15 My (0,6) = L om0
|z — £V 2| log & — &]| =2
and
2 -w-2) ifg<a
(1.6) wi™! = N-2
<H> if ¢ = qx.
\/5 *

In this paper, we consider the analogue Neumann problem (1.2). As in the
Dirichlet problem, there are zero mass exponents for the Neumann problem. We
now derive the zero mass exponent, which will be crucial in determining the points
of concentration.

As in [16], we first define the least energy solution. Let the associated functional
to the problem (1.2) be

g2 1 1
I — i} v/ 2 _ _—  (,F\PH1 - +q+1)d_
= [ (SI96P - s )i

Easy to check that I, (u) satisfies Palais-Smale condition and all the conditions of
the mountain pass theorem and hence there exists a mountain pass solution u. > 0



and a mountain pass critical value characterized by

0<ec = vlglfs tren[aaﬁ] I (v(t))

where

. = {y € C([0,1], H'(9)) : 7(0) = 0,7(1) = e},
where I.(e) < 0 and e(z) = k is a constant function on €2, k chosen sufficiently
large. Note that as 0 is a strict local minima of I, ¢. > 0, Ve > 0. Let

N(Q) = {u € H(N): 52/9 |Vu|* + /Q(qu)qul = /Q(qu)p“}.

The problem is now to obtain the asymptotic behavior of ¢, as € — 0. To this
end, we start with the entire problem

AU -U'+UP =0 in RV,

U>0 in RY,
(1.7)

U—=0 as |z| = oo,

UeC?(RY).

By Li-Ni [15] and Kwong—Zhang [14], (1.7) has a unique radial solution U such
that U € D12 (RV) N La+! (RY) where DV2(RY) = {u: |Vu| € L2(RY) and u €
L¥ (RV)} when N > 3. Moreover, U behaves at infinity as

( 1 f
1
/r-qzl ! <q<N_2,
1 N N +2
. ~<{ s if —— —_—.
(1.8) U(r) <T.N—2 ! N—2<Q<N—2
; if _L
| rN-2(logr) T 1=V

When ¢ = 1, Ni-Takagi [16] showed that for sufficiently small ¢, the least energy
solution is a single boundary spike and has only one local maximum P. € 9f).
Moreover, in [17], they prove that H(P.) — maxpecaq H(P) as € — 0 where H(P)
is the mean curvature of 02 at P. A simplified proof was given by Del Pino—Felmer
in [8], for a wide class of nonlinearities.

We first point out a useful lemma whose proof follows from the computations in
Ni-Takagi [16].

Lemma 1.1. Let A(z) be a radial function with A(x) ~ % as |z| = 400 and
v > N + 1. Then for P € 090, we have the following asymptotic expansion

- P
(1.9) / A(x )dw =N [E — eKH(P)+ o(e)
Q 3 2
where H(P) is the mean curvature of the boundary at the point P
c= A(x)dz
RN

and
1

K= 5/ ly|*A(y, 0)dy.
oRY
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Now we take

— 1 2 L q+1 _ L p+1

(1.10) G(x)_2|VU| +q+1U p+1U
We claim that K > 0. Note that from algebraic decay of U we obtain

1 N -1

K= [ @V -FOlly = S [ (@) - FOuwdy
RY RY
N-—-1

1.11 = — U'(ly)*yndy.
(111) N1 oy © D s

This proves the claim.

Observe that the restriction v > N + 1 is necessary otherwise K is not defined.

Then the lowest decay rate in (1.10) is given by the gradient term since 2(a+1) <
a(g + 1). Note that the equality holds for a = (13_1-

So if 2(a + 1) > N + 1, we obtain an estimate depending only on the mean
curvature. As a result if 2(a + 1) > N + 1, we obtain an estimate on the least

energy (as in [16]) depending only on the mean curvature. So if a > &=t we have
(1.12) c. =€V % —eKH(F:)+ o(e)

where P. is the unique local maximum point of u. and H(PF:) is the boundary mean
curvature function at P, € 01).

Following the same argument in Ni-Takagi [16], we can then prove that H(P.) —
maxpcoQ H(P) as e — 0.

Observe that o > % is satisfied if and only if either N > 4, or N = 3,¢ < 3,
or N =2,9<5.

The most interesting cases are
1) N =3,q > 3,(a =1). Note that when N = 3 and ¢ = 3, we are in the situation
of a zero mass exponent.

2) N =2,¢>5,(a= ).

The main objective of this paper is to locate the maximum point P. in the
remaining cases. It turns out that as in the Dirichlet problem, the location of the
spikes is determined in a nonlocal way.

Let P € 0. We define a diffeomorphism straightening of the boundary in a
neighborhood of P. After rotation and translation of the coordinate system we may
assume that the inward normal to 99 at P points in the direction of the positive
zn axis and that P = 0.

Let ¢’ = (1,22, ,zn—1) and B = {2’ € RV"! : |2'| < §o} and Q; =
QN B(P,d), where B(P,dy) = {z € RY : |z — P| < §o}. Since 9 is smooth, we
can choose a dp > 0 such that 9Q N B(P,dy) can be represented by the graph of a
smooth function f = fp : B(§)) — R where

fP(O) = O,VfP(O) =0and aQﬂB(P, (50) = {(Z‘I,ZL’N) (S B(P, (5) rxny—Pn > fp(.Z'I—PI)}

DN | =

N-1
fe(@ —P') =53 ki(wi — P)> + O(|2' - P']°)
i=1

where k;(i = 1,--- ,N — 1) are the principal curvatures at P. Note that the first
condition implies that {xx = 0} is a tangent plane of 9Q at P.



We deform the boundary near P. For x € Q; = QN B(P,d), set
(1.13) ey' =1’ — P eyny = oy — Py — f(z' — P').

This transformation we denote by y = T.(z). Note that the Jacobian of T, equals

elV. Its inverse is called z = T,!(y). Moreover,

(1.14) ' =P +ey,ony = Py +eyn + f(e(y' — P)).
The Laplace operator and the boundary operator reduces to
1
(1.15) v(z) = ———==(Va f,-1)

V14|V fI?

116) 2_;{N_1f.i_i}
' o 1+ |V P & 70z dan

and the Laplace operator becomes

zN —Pn=f(a'—P')

(1.17) A, = A, + |V :f|26—2 —QNZ_lf-i —eA /fi.
¢ v ’ 62yN im1 ’ay,-ayN ¢ 6yN

Throughout this paper, we use the following notation:
y= (" yn),y" = (W1,2, - ,yn—1) and RY ! = {y e RY : yn > 0}.
When N = 2, we define a space

o C
D ={ue WL (R?) : [Vu| < |$|T+1; lu(z)] < 2" whenever |z| > 1},

where C' > 0 is independent of u. Then

_ Lovp - L prir o L gon
(1.18) IOO(U)_/RN (2|VU| U+ U )dw
is well defined on D. Note that when N > 3, I,(U) is well defined in DV2(RV) N
LoH(RN). In this paper, we show that when a < } and N = 2, the asymptotic
behavior of the least energy solution of the Neumann problem (1.2) is not deter-
mined by the mean curvature of 92, instead it is determined by a nonlinear singular
problem. For any P € 02, we define the renormalized energy in R? by

1 1
3,(P): = lim [_/ VGy(z, P)|*de + —— Gq(z, P)|"dx
! 6—0 | 2 Q\QOBJ(P)| ! | g+1 Q\QOB(;(P)| ! |
g-—1 —(2a+2), ,g+1
119) — )
(1.19) 4(q+1)a6 “a

where G, is the unique (up to a modulo constant) positive solution

AeGy(,P) —Gy(x,P)"=0  in 0\ {P},

0G,(x, P
(1.20) 7"8(V ) o on 80\ {P}
Gq(fL’,P)NmijiqPP When .Z'NP

Now we state the main results of the paper
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Theorem 1.1. There exists g > 0 such that for every e € (0,&¢), the least energy
positive solution of (1.2) u. € H(Q) has a unique point of mazimum P. € 0.
(a) When N = 2 and q¢ > 5, u. concentrates at the global minimum of ®,, where
®, satisfies (1.3) and
2
€ .
I (ue) = EIOO + 62+2aq>‘1(P6) + 0(52+Za)

where ®, satisfies (1.19).
(b)When N = 2 and ¢ = 5, u. concentrates at a local mazima of H, where H is the
boundary curvature function and

L (ue) = %IOO - @53 (log %) H(P.) + 0(53 (log %))

for some oy < 1.

Theorem 1.2. There exists g > 0 such that for every e € (0,&¢), the least energy
positive solution of (1.2) ue € H(Q) has a unique point of mazimum P. € 0N.
(a)When N = 3 and q > 3, u. concentrates at a local mazimum of H, where H is
the boundary curvature function and

g3 1 1
L(u.) = EIOO —yaet <log g> H(P.) + 0(54 (log E)) )

where 3 = lim ;| 4o |2|U (2).
(b) When N = 3 and q = 3,(corresponds to the zero mass exponent) u. concentrates
at a local mazimum of H, where H is the boundary curvature function

I(u.) = %Iw —E4<log (log %))@ +0(.€4(log (log£)>>.

By concentration, we mean u. converge uniformly to zero in compact subsets of
2\ {P} while there exists a ¢ > 0 such that u.(P.) >case — 0.

Renormalized energy is a well-known concept in theoretical physics for instance
see Bethuel-Brezis-Hélein [1] is independent of the core radius and is a function
of the singularity position which characterizes the energy content of a dislocated
body. They established that a family of global minimizers of

1 1
(1.21) Kefw) = [ GIVuP + 550~ )% u e H'(0,0)
Q2 4e?

with Dirichlet constraint u = g on 92 where g is a smooth function with values
in S'. When n := deg(g; 0Q) > 0, it was found that u. has exactly n zeros (called
vortices) of local degree one, which approach, up to subsequence, n distinct points
&; for which

ue () — e ﬁ z-¢ w(z, §).
i=1

ER
Besides, & globally minimizes a re-normalized energy, W (&), characterized as the
limit

1
(1.22) W(€) = lim [/ |V,w* — nrlog = |.
Q\Uj=1"B, (§;) p

for which explicit expression in terms of Greens functions can be found in Bethuel-
Brezis-Hélein [1]. The asymptotic expansion of W(£), of (1.22) shows that the
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renormalized energy is is the remaining energy after the removal of the singular
core energy nmw log% has been removed, see Kleman [13].

2. PRELIMINARIES

We recall some well-known results to (1.2).
Lemma 2.1. (a) For alle >0

. = inf I = inf I, = inf I .

ce = inf max (v(1)) vt (u) e o TREX (tu)

Proof. For the sake of completeness we prove this well known lemma. Let € > 0 be
fixed. First note that

. i < inf I
(2.1) inf e L(y(®) < in (T = (tu)

We first claim that inf I.(u)= inf maxI.(tu). Define 8(t) = I.(tu). Due
ueN: () u€H1(Q) t>0
to the nature of the nonlinearity we have 8(0) = 0,3(t) > 0 for small ¢ > 0 and

B(t) < 0 for ¢ > 0 sufficiently large. Hence fnax )ﬁ(t) is achieved. Also note that
te[0,+c0

B'(t) = 0 implies &?||ul[31 o) = g(t) where

g(t) = tP—1 /Q(u-i-)p-i-l — a1 /Q(u+)q+1_

It is easy to see that g is an increasing function of ¢ whenever g(t) > 0. Thus there
exists a unique ¢ such that |[ul|z1(q) = g(t). Hence there exist a unique point 6(u)
such that 8'(0(u)u) = 0 and O(u)u € N:(Q). This implies that N.(Q) is radially
homeomorphic to H1(Q)\ {0} if we prove that 6 : H1(Q)\ {0} — R* is continuous.
In order to do so let u, — u in H'(Q) \ {0}. Then u,, = v in H(Q) and u,, = u
in L"(Q) for all r < ££2 and

@2 [ EVul =0 ) [ @t - e ) [ @
Q Q Q
which proves there exist constants m > 0 and M > 0 independent of n such that
m < 6(un) < M. By passing to the limit in (2.2) the whole sequence {6(u,)}
converges as u,, is convergent and hence 8(u) = 8y where fgu € N, which proves
our claim.
Next we claim that ’Yiéllfa tren[galc] IL.(v(®) = Z\I}f(ﬂ) I.(u). It is easy to see that

3 u e

inf max I.(y(t)) > inf I.(u) by (2.1). It is enough to prove that any v € T,
YEL . ¢€[0,1] weN (Q)

intersects V.. Note that I.(u) > 0 for |lu||g1(q) sufficiently small and I (v(1)) < 0
which implies the required result. O

Lemma 2.2. When N = 2, then I, satisfies the Palais Smale condition on D and
hence the functional I, satisfies all the conditions of mountain pass theorem on D.

Proof. Define a norm on D as

1/2 1/q+1
nwpz(/|wm) +(/'MMQ vueD.
R2 R2
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Note that (D, ||u||p) is a Banach space. We claim that D < LPT1(R?) is a contin-
uous embedding provided 1 < p < 0. Define I, : D — R as

1 1 1
Io(u) = —Vuz——u”+1+—uq+1>.
ww) = [ (G170l = gt

Now we need to show that I, satisfies Palais Smale condition on D. Let u,, be a
sequence in D such that I (u,) < C and I (upn)un, = o(1)||un||p. Then we obtain
that u,, satisfies

1 1 1 1
e Vit ? ———/ a1 = O + 0(1)|un
(5-551) LI+ (o1 - 551) [l + o(1) unllp

Hence there exists C; > 0 such that

O ([, Funl+ [ Junl) = €+ o0 funlo
R2 R2

which implies that
( /. |Vun|2) < C + o(1) Junllo
R

([ tual) < €+ o0lunle

llun|lp < min{(C + o(1)||un||p)*/2, (C + o(1)||un||p)*/9+*}
which implies that u,, is bounded in D.

This implies
/ Vunl? < C
R2

/ lun|" < C.
R2

Hence by reflexivity, we obtain Vu,, — Vu in L? and u, — u in L9*'. Also by
Rellich Lemma, u,, converges strongly in compact subset of L? and L¢t!. Hence
there exists a subsequence of u, such that u, — v a.e. But |u,| < and

Hence

and

c
|z
|[Vu,| < le%“ for |z| > 1. By using the decay estimates we can show that u,
converges strongly u in D.

Let D, be the subspace of D consisting of radially symmetric functions. Then
D, — LPT1(R?) is a compact embedding provided 2 < p+ 1 < oc.
Suppose T is a bounded set in D,.. Then |u(r)| < eif u € T and r > R. Hence

[ wpr = [ e e

o0
< et < dullon
R

Now we know that bounded sets in D, will converge strongly in LP™!(R?) on com-
pact subsets and hence we can use the usual diagonalization argument to obtain
a strongly convergent subsequence in LP*!(R2?) from a sequence in 7. As a matter
of fact I, satisfies all the conditions of the mountain pass theorem in D,. Hence
there exists a ¢ > 0 such that

°= Ry 00 = g gy Tt



where

['={y € C([0,1];D,); 7(0) = 0, 1c(7(1)) < 0}
Hence there exists a positive radial solution of (1.7) obtained by the mountain pass
theorem. Hence by Lemma 2.1, U is a mountain pass solution of (1.7). d

Since

e = inf I, = I (ue
o= Jof (u) = I (ue)

we have

@3 a=tw)=2(5- 7)) [P+ (G- o) [

which implies that 2 [, [Vuc|?, [;uf™ and [, ud*! are uniformly bounded. Let
P. be a local maxima of (1.2), then u.(P:) > 1. By Gidas-Spruck [12], we obtain
lluell e @y < C. Hence ||UE||012;§(§) < C for some 0 < # < 1, as a result u(P: +
ex) = U(z) uniformly in Q. p = {2/ P. + ex € Q} where U satisfies (1.7).
Moreover, if o := max{ 2, N — 2}, by Dancer-Santra [6],

(2.4) lim |z|°U(z) =wq >0, if ¢ # gu.
|| — o0

It is easy to check that if

(2.5) q < gx

then « > N — 2 and

w 1
2. =72 -
(26) U() M“+OQﬂWﬂHa

_ /(N—2)2+4w2
where a = —¥ + Y——=——". Moreover,

rlgrolo rlat 2 () = wg+1‘

> as |z| — oo,

3. LINEAR THEORY IN R?
Consider the operator L = A + f'(U).
Lemma 3.1. Let ¢ be a bounded solution of
L($) =0.

oU 38U
Ox1’ Bz

Then ¢ € span{

Proof. Let us write

=" ¢r(r)Si(6)
k=1

where r = [z, 6 = 37 € S'; and —Ag1Sk = ASk where A, = k% k € Z* U {0} and
whose multiplicity is given by My — M}y_» where M, = (k+1)' for k£ > 2. Note that
Ao = 0 has algebraic multiplicity one and A; = 1 has algebralc multiplicity 2. Then
¢, satisfy an infinite system of ODE given by,

1
(3.1) Z+;¢§c+(pU”_1—qu 1—&>¢k—0 r € (0,00).
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Also note that (3.1) has two linearly independent solutions z; ; and 2o ;. Let
1 A
An() = ¢" +~¢' + (pUP—l — Ut - T—§)¢

Also recall that if one solution z; ; to (3.1) is known, a second linearly independent
solution can be found in any interval where 2; ; does not vanish as

zo k(1) = zl,k(r)/zf’,%r*ldr

where [ denotes antiderivatives. One can obtain the asymptotic behavior of any so-
lution z as r — oo by examining the indicial roots of the associated Euler equation.
The limiting equation becomes

(3.2) ¢ ¢ — (q0® + Me)d =0

whose indicial roots are given by

£ (g2 + ) ifk#0
M= Ve if k=0

In this way we see that the asymptotic behavior is ruled by z(r) ~ r=* asr — +o0;
where p satisfies the problem

2
2 -1 —N; _

O

Claim 1 If k = 0, equation (3.1) has no nontrivial solution in D.
Since (3.1) is a second order differential equation it has two solutions g; and gs.
The other solution g; satisfies

(3.4) (rg1,e)r = —f'(U@)rgu(r).

Note that we can choose R > 0 such that for » > R we obtain f'(U(r)) < 0. If
we choose g1 (R) = 1 and ¢{(R) > 0 we obtain (3.4) that rg; , is increasing for
all » > R and hence there exist a constant ¢ > 0 such that rg;, > c. Hence by
integration we can show g¢;(r) — +00 as r — o0o. As a result, g; does not belong
to D. We consider the solution g2(0) = 1 we can show exactly as in [14] that go
satisfies lim, o g2(r) = K # 0. Hence, g2(r) € D. Furthermore, note that the
operator is not non-degenerate in the space of bounded functions.

Claim 2 If k£ = 1, then all solutions of equation (3.1) are constant multiples of
U'.

In this case Ay = 1 and hence we have z1,1(r) = —U’'(r) is a solution to the
problem (3.1) and is positive (0, +00). Hence we define

21,2(r) = 21,1(7’)/ 211(8) %57 'ds
1

Let us check how 21 2(r) behaves at infinity.

Again when o = q_il, then |U,| ~ r~®*! as r — oo and hence z12(r) ~ r®?-1
and as ag =2+ a > 2, 212 ¢ D. Hence any family of solutions of (3.1) is given by
¢1 = cU'(r) for some ¢ € R.
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Claim 3 If k£ > 2, equation (3.1) admits only trivial solution in D. We will show
that if Agx(¢x) = 0, then ¢ = 0. Note that —U’ is a positive solution of A;. Let us
study the first eigenvalue of the problem

{ A1(¢) =X inR?

(3.5) & =1
R2

We know U,., ~ T}Tq as 7 — o0o. Note that if A; > 0, then fR2 ¢1U' = 0 and hence
there exists a point in R? such that ¢; changes sign. But ¢, is the first eigenfunction
corresponding to A\; and hence it has a definite sign. Hence A; < 0. Thus A4; is an
operator having no positive eigenvalues. Hence for k > 2, ¢, = k> — 1 > 0. Now

k-1

Ap= A - =T

where I is the identity. Hence 0 = — [5, Ax(dr)dr > ¢k [on ‘f—z“ and as ¢y, € C(R?),
we have ¢y = 0.

Remark 3.1. Hence deduce that for any ¢ € Ker(—A — pUP~1 + qU971), then
¢ =U'(r)S1 where S satisfies

—Aglsl =\ 5.
Now Ker(—Ag1—MI) is 2 dimensional and hence Ker(—Agi—AI) = span{Si,1,S1,2} ~

span R2. Hence

Ker(A + ['(U)) = span{U'(r)$1,1,U"(r)S1,2} = span{ oU oU }

9z’ O

This implies that Ker(A + f/(U)) = {2Y, 29U jn D.

8z1 ’ 3:02

Corollary 3.1. If we restrict Ker(A+ f'(U)) to D(R3) = DN {g—;‘z =0 on OR% }
then Ker(A + f'(U))ND(RY) = {gTUl}'

Remark 3.2. When N > 3, Ker(A+ f'(U))NDY2(RY) = {gTUl, . aff_l where
DY*(RY) = {u e D" (RY), o = 0 on RY }.

For any P € RV and for any £ > 0 set

Uep(z) :=U (:c ; P) z €RN.

It is clear that U, p solves

(3.6) AU, p—U! b+ U, =0in RV,

4. PROFILE OF SPIKE N = 2 AND q > 5.

Lemma 4.1. Then (1.20) admits o solution. Furthermore,

1
(41) Gq(.fll',P) = m + O(m>
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Proof. In order to prove existence of solution of (1.20) we consider
A¢g — o =01in

(4.2) { 8o _|0Us

ov ov
where Uy = wy|z — P|_q—i1 and P € 0. Note that this problem has L* solution
since it is easy to check that |2X2| < a—pr= and the solution |¢o| < Ci|z — P|'~* +
C5. Secondly, we use Uy = C'¢g as sub-super solution to the problem

AG. —G1=0in Q. =Q\ B.(P)

(4.3) 0,G. =0 on 90NN,

Ge =wyee™® in 8B.(P)

n o2

Then we can show that
Uo—Cpo <G <Up+ Coo
for C large independent of €. Taking ¢ — 0 we obtain
Up — Coo <Gy < Uy + Ceo.

This proves the existence of G4, as well as the asymptotic behavior. Note that this

solution is unique up to a constant. a
We define

Wq

fo(2, P) = Gy(z, P) - |z — Pl

Lemma 4.2. Then close to P € 09 the following happens

(4.4) |V fq(z, P)| = O(|z — P|7%)
and

(4.5) |Afy(2, P)| = O(jz — P|~(o+1)
near P.

Proof. Without loss of generality, we consider P = (. Then
2
qo —(a
(4.6) Af = af = Ollal=*h).
It is easy to check that there exists a R > 0 such that
|f(z)| < C|z]” in BR(0)N Q.
Let z € B(£) and r = |§—‘ For any y € B; we define f(y) = f(z + ry). Then from
(4.6) we have
Af =12Af = qa’f + Ol +1y|'=®).

Hence by elliptic estimates

IVF(0)] CIfllp= (B0 + 1AL (51 (0)))
CllfllLe= (B, (0))
Cllf Lo (Bi(z))-
As aresult, |V f(z)| < Clz|~“. Similarly

IAF(0)] < Cllfllze=(By (o))

ININ A



and hence we have
|Af(z)| < Cla| >+,

5. CONSTRUCTION OF THE PROJECTION

Consider the problem
2

Ay — %cp =0 in Rﬁ_,
(5.1) 5 |”“"|1
14 2
— =— on OR 0}.
Let ¢ = #yz + ¢ be a solution of (5.1). Then ¢ satisfies
2 1 2 . .
Ap— T o A (o) -2 g iR,
62 o7 T R T o o
ST(P =0 on 61&3_.
2
Consider ¢ = r?Q(#) with 3 =1 — a and Q(#) = Q(—6). Then we have
2
! _
(5.3) AGQ6) — T-17Q(0) = [(8” - 40”)Q(6) + Qo).
As a result we have
Qoo+ (8° — q2*)Q() = —[(sinB)gp + (8 — ga)sinf]
(5.4) = (ga* — B* +1)siné.

Now we need to solve
Qoo + (8% — qo®)Q(6) = [sinb|(ge” — 7 +1) in (0, 7),
{ Q'(0) = Q'(w) =0 .
This problem can be uniquely solved as long as
82— ga® #n?

(5.5)

that is
(1—-a)? —qa® #1.
We denote this solution as go(#). Thus we can write

(5.6) o1 =7 "%[sin @ + qo(6)]-
Next we solve
Ao — qU* oo + pUP o = 0 in RY,
(5.7) 0o 1
= on ORZ \ {0}.
6y2 |x|a -+ \ { }

Let o = 1 + Po be a solution of (5.7). Then @q satisfies

. 1. 1. 1 .
Apo — qUI @o + pU? 1¢0+0(W) =0 inRj,
(5.8) .
9o

=0 on ORZ .
Oy +

13
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which can be uniquely solved if ¢y is even in y; and by super-solution method we
obtain for |z| > 1

Choose ap=mns € C°(R?) such that 0 <np <1

50 1 inl|z—P| <54,
(59) m5(®) = 0 in|z— P|>20.

We define a nonlinear projection in the following way: PU. p € H' () is defined as
(5.10) PU. p =n(Ue,p +epo(T:(x))) + (1 —n)e®Gy(z, P).
Then we have

PU.p = (Ue,p +epo(Te(2))) + (1 — n)[e*Gy(z, P) — (Ue,p + €p0)]-
Lemma 5.1. For any P € 09, the following expansion holds

2

(5.11) L (PU.p) = %IOO(U) + 20728 (P) + 0 (5(20‘+2))
where
(5.12) Lo(U) = / [ Pl ppvigy_ 471 Uq+1(x)] dz.
r2 [2(p+1) 2(q+1)
Proof. Set F(s) := Iﬁ(sﬂp“ - qﬁ(sﬂq“. Here a = q_% We compute the

energy as follows.

52 2 1 1 1 1
= — I3 — P £ ot - / P £ a -
1 (PUR) = 5 [ 9 (PUpl@) Plot— [ (P o)™ dom s [ (PUL p(a))? da

Using the definition of

/ (PU.p(z))™* dr = / (Ue.p + 0(T=(2))) 0+ + e2(a+D) / Gt (z, P)
Q Bs(P)NQ Q\(B25(P)NQ)

/ (e%Gy + (U..p + epo — 2Gy)n) Tt
Qn{é<|z—P|<26}

/ U, p(z)tt 4 golat) G+ (z, P)
QNB;(P) Q\(Bs(P)NQ)

+ / [(e“Gq + (Ue,p + £ — Ean)n)"“ _ (Ean)q+1]d.z'
6<|z—P|<26

L+L+1Is
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We have

b= / (UE,P+5¢0(TE($)))q+1
B (P)NQ

= [ ueeo( [ vte(ria)
Bs(P)nQ Bs(P)nQ
[ oo [ v o)
B (P) B (P)\Q
= & / Uttlds — / Uittde - / Usth + 0(e®)
R RI\BF (P) BX PN\
q+1

w
g2 Uttlde — —2" glatly—2a-2 _ / Ug}l +0(e?)
RZ « B (P)\Q

2
+

witt
52/ Uitlde — L g2at25-2a-2 _ 62/ U™+ O(e?).
R2 2a B} (P)\Q.

Now we estimate

s fleya)
52/ Uittt = 52/ / UT (y1, y2)dyady,
B} (P)\Q. o Jo
s fleyy)

— 2 € e q+1 q+1 .

- / / U7+ (51, 0) + O|ya| U (3, 0))]dydyn

(5.13) = M#/E[Uq-i-l(yl’o)yfdyl +O(E2)] — 0(52a+2)
0

by choosing § sufficiently close to e.
Using the fact that a(¢g + 1) = a + 2, we have

= (%G + (Uep +£00 = £*G)m) ™™ = (€2G,) " da

/Qm{6<|ac—P|<26}

owe [ G2, €)(Ue p + 0 — °G,)da
QN{é<|z—£|<26}

ga(P_Q)

Gg(%&){m + |z - §|l_a}d$

owe |
QN{é<|z—¢€|<26}
= o(e??).

First note that

VU, p+eVyy in|z—P|<54,

14 PU, =
(5 ) VPU, ,P(m) {Eaqu in |a;' — Pl > 26.

and in the annulus § < |z — P| < 26 we have

VPUE,P(m) = 60ZVGQ(%P)"'vn(gaaq(xaP)_UE,P_“SCPO)'+‘77V(5O‘Gq(5’3aP)_UE,P_E‘PO)-
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Hence we obtain

/ VPUL pf? = / VU. p +eVigol? + &2 / VG, (z, P)P
Q QNBs(P) Q\QNB;s(P)

/ Va?|e*Gy(x, P) = Us,p = eol?
QN{é<|z—P|<28}

vz IPIV Gy, P) = Ui = o)
QN{s<|z—P|<26}
+ o2 | VGV (%G, (w, P) = Us, p — £00)
QN{d<|z—P|<26}
+ 260‘/ VnVG,(e*Gy(x,P) — U p —€pq)
Qn{é<|z—P|<26}
+ 2/ nvﬂv(fan - UE,P - 5900)(5an - UE,P - 6900)'
QN{d<|z—P|<26}

Thus we obtain

52/ |V (PU. p()) Pdz = 52/ |VU|2+52+2°‘[/ IVG,(z, P)? —witts 222
Q R2 Q\QNB; (P)

+  o(e?*t?)

and similarly we have

/ (PU.p(2))" de = eV [ UPH 4 o(e242).
Q

2
RY

Hence we have

2

(5.15) L (PU.,p) = S 1o + 27420, (P) + o(1)+".

Let
E.[u] = e Au + f(u).
Now we estimate the error due to PU. p(z).

Lemma 5.2. For § > 0, sufficiently small, there exists o' > 0 such that

e20(f" (Ue,p) 93 (Te(2))) in |z — P| <9,

(5.16) E.[PU. p(x)] =< O(e*tagt— 1 ind<|r—P|<20
|z — P|?

e*PGY in |z — P| > 24.

Proof. First it is easy check that

(5.17) E.[PU. p(z)] =e**GY in |z — P|> 26§



17

First we estimate the error in the |z — P| < . As ¢ > 5 we have

E.[PU.p()] = {52AUE,P+ f(UE,P)}
+ 5{52A900+fl(U5,P)900}

n {ﬂuf+ew)—ﬂuy)—w%mfmm}
SO (Ve p) AT (2))).

So we need to calculate the error when § < |z — P| < 24. We write
PU.,p(z) = Ue,p(x) + (L = n)(e*G,(2, P) = Ue,p(x) — e0)-
Hence we have

APU.p(z) = AU.p(z)+ Al -n)(e*Gy(z,P) — Ue,p(z) — £90)
= AU, p(z)+ (1 —n)A(E*Gy(z, P) — U, p(x) — o)
2VnV(e*Gy(z, P) — U. p(x) — o) + An(e*Gy(z, P) — U p(x) — €90).

As a result, we have

ca(p—a)+a+2
|z — P|op—a)+at2

e2APU. p(z) = e>AU. p(z)+ (9(52+0‘|$ — p|(at1) 4

ca(p—a)+a+2
|z — P|o(p—a)+atl
gx(P—g)+a+2
ﬁt?$53ﬁz)

+ etz —P|7* +

+ 62+a|x_P|17a+

(PU:p(2)" = (Uep(2)+ O(Usq,}'l (e*Gy — Ue,p — €90))
Ea(p—q)+a+2 o —(a
= Ulp +O(W +ete e — P “));
and
(PU. p(z))? = (Uep(@)? +OULE (%G — U..p —e0))

P Ea(pfq)+a+2 2+a —(a+1)
= UE,P+O<7|x_P|ap +e 1tz — P| )
Summing up all the terms and using the fact (3.6) we obtain
galpP—a)+at2
|.Z' — P|06(P*11)+06+2
eo(p—a)+a+2
|$ — P|a(pfq)+a+l
go(p—a)+a+2 ca(p—q)+a+2
i)+ =
As a result, we can choose ¢’ € (0,1) sufficiently small such that
62—}-0461—04
=

E.[PU.,p(z)]

o(a2+a|z — p|lett) 4

+ E2+a|$—P|_a+

+ 62+a|1, _ P|17a + +62+Q|SL' _ Plal)'

(5.18) E.[PU.p(z)] = 0(
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6. REFINEMENT OF THE PROJECTION
Now we refine the projection PU. p. We define a projection of the form
(6.1) V.p = PU. p + %' v,
where
Avy +qU% oy =0 in Q,
(6.2)
on ___ L1 OPUsr. gq
ov gxfl-a  Ju
Note that v; is bounded and is chosen in such a way that mg;f =0 on 99.
Lemma 6.1. For any P € 01, the following expansion holds
(6.3) I (Vep) = I (PU.,p) + 0 (£?2+2)).
Proof. By definition we have
£2+2a52(1-a) A
I.(V.p) = L (PU.p)+ —y / |V 2
Q
+ g2tag-a) / VPU. pVu,
Q
— /{F(PUE,p +e%6' %) — F(PU. p)}
Q
£2+2a52(1-a)
= L. (PU.p)+ f/ |V |?
Q
T / {EVPU. pVor + f(PU. p)o:}
Q
- / (F(PU..p +£%6"v1) — F(PU..p) — 6" f(PU..p)un }
Q
£2+2a52(1-a)
~ L(PUp)+ g [ [Tuf
Q

- e / (2APU. p + f(PU. p)}us +62+"“5(1_a)/
Q 519]

_ / {(F(PU..p +£5'%,) — F(PU.p) — £*5'=% f(PU..p)v1 }
Q

2420 52(1- )
= I.(PU.p)+ Ef/ |V |?
Q

dPU. p

- &0 [ B(PUL e + g0 |
Q s OV

(%
- / {F(PU. p+e%6"“v;) — F(PU. p) —e*§'*f(PU. p)v: }
Q

It is easy to check that

2+2a §2(1—a) o
£ ’ /Q|Vvl|2 — o(e22%)

dPU. p
—FU

ov

1
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dPU. p

E2+a6(1—a) v = 0(82+2a).
a0 61/
Now we estimate
/ E.(PU.p)vide = / E.(PU. p)vi + / E.(PU.,p)u1
Q QNB;(P) QN(B2s(P)\Bs(P))

+ / E.(PU.,p)ndx
Q\Bas (P)

= L + I+ Is.
Now we estimate I;. Then we have
/ E.(PU.p)o, = / E.(PU..p)or + / E.(PU..p)vy = O(Y)
QNB;(P) QNBer(P) QN(Bs\Bcr(P))

+ O(E2+a62—a)

(From I, we have
I, = O(e***6 % log 6).
Furthermore, we obtain
I3 = o(e*T®).

As g > 5, we obtain

/ {F(PU. p +¢e%'"%v;) — F(PU. p) —e*§'~*f(PU. p)v1}
Q

— 62(16272(10(/ fI(PUs,P)'U%) — 0(624—2(16272(1).
Q

Using the above facts, we obtain

I, (VE,P) =1 (PUE,P) + O(E2+2a)_

Lemma 6.2. The error due to the refined projection is given by
(6.4) B[V p(z)] = E.[PU. p(x)] + 2T ~*Av; +*6'*O(f'(PU.,p)v1).
Proof. We have

E.[V.p(z)] = E.[PU.p(2)]+e* 5 *An

+ {f(PU.,p(z) +£%6' “v1) = f(PU.,p(z))}.
When |z — P| < § we have
EVop(x)] = 0(f"(Ue,p +epo)ps) +e2795 %Ay,
+ e O(f'(Us,p + epo)vr).

In the neck region, § < |z — P| < 26 we have

1
|z — P|?
+ e*O(f'(Ue,p + epo)vr)-

EVp(a)] = eod'-00(———) +eagi-any,
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Lemma 6.3. Moreover, if P € 010, then

2

e < %Iw + 20728 (P) + o(e2F?).

Proof. For t > 0 let 5(t) = I.(tV;,p), then by Lemma 2.1 we have
<
ce < max ()
and hence there exists a unique t. > 0 such that

B(te) = r?fbxﬂ(t) and f'(t:) = 0.

We claim that t. = 1 + O(e*t7") for some o’ > 0 sufficiently small. We have
O Vr) = [ (29l = L2+ ()
Q

(65) — / EE [‘/F;‘,P]‘/;‘,P — 0(62044-2-‘1-0-/).
Q

Since (IL(t:V:,p),Ve,p) = 0 and (IL(V..p), Vi, p) = O(1)e®>T2* we have
(LL(teVe,p) = IL(Ve,p), Ve,p) = O(1)2HDT

which implies

(tg_l)/ E2|V‘/'5,P|2—(t§+1—1)/ (V?:-,P)’frl+(t§+1—1)/(Vs,P)iJrl = O(1)e* >+
Q Q Q

and letting V. p(x) = Vi p(ex + P) in Q. we have
@-1) [ VTP n) [ Tt et -1 [ (ot = opete
Qe Q. e

which implies that ¢, — 1 = O(1)e*+° . Furthermore,

S (Ve p)(Vep,Vep) = / (52|VV;,P
Qe

2 _ (V) 4 q<v;,P)i+1)

= eN/ (— (p—1)UP + (¢ — 1)U‘1+1) + O(1)ex(a+Y)
RN

#(- -0 [ v [ V0P +o)
R? R?2

(6.6) = 0.

As a result, we obtain

Ia(ua) < r?f'gc-[s(tve,P) = JE(tE‘/E,P)

L(Ve,p) + (t- = V(IL(Vz,p), Ve, p) + (t- — 1)*O(e?)
Je(Ve,p) + o(1)e?t2e

IA

2
%IOO + 52+2°‘<I>q (P)+o (62+2a) .

Lemma 6.4. For sufficiently small € > 0, u. has a unique maximum P. € 0f).
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Proof. First note by an application of mountain pass theorem, &2 fQ |Vue|> < C
and hence by Moser iteration, u. () is uniformly bounded. Thus applying Schauder
estimates we obtain a C' > 0 such that ||eDu.||z~ < C. Let P. € Q be a local
maxima of ue. If P, € Q, then u (P.) > 1. If P, € 99 then there exists a point
Se such that u.(Se) > 1, otherwise by the boundary Hopf lemma we must have
MET(PE) > 0, a contradiction. Suppose @ — 400, as € — 0, then by the
change of variable v, (z) = u.(P: + £z) and v, satisfies

Ave —vI4+0v2 =0 in Q. p,
ve(z) >0 in Q. p

ov,
ov

(6.7)

=0 ondQ,p

where Q. p, = 1(Q — P.) and v. — v in C},, where

Av—vi 40P =0 in R?
(6.8) v(z) >0 in R?
u(z) > 0 as |z|] - o

Using this we can show that ¢. = £?(I, +0(1)), a contradiction to Lemma 6.3. As a

A(Fe,09) g uniformly bounded. If possible, let P ; and F; 5 are two distinct

Psl P52

result,
local maxima of u.. Then u.(P.1) > 1 and u.(P.2) > 1. Suppose Q. =

Suppose along a subsequence |Q:| — do € [0,+00). Let @ = lim._,¢ @ Then
if 6o > 0, then define v. (y) = u.(ey+ P. 2) then it follows that, v. — U in C? (RN)
and satisfies

—AU=U?-U?! PR
U'(0) =U"(%) =0
U—->0 as |z| = o0

which is a contradiction as U'(r) < 0 for r € (0,+00). Now suppose o = 0. Then
. = U in C?.(R?) and U has a unique critical point at 0 (since U(0) > 1 and
U is a radial). Thus v, has a critical point in a neighborhood of zero which is a
contradiction. Hence |Q.| = +o0 as e = 0.

We claim that u. has exactly one maximum for sufficiently small ¢ > 0. First note
that as u. is a mountain pass solution and hence it has Morse index at most one. By
the above result M — 400 as € = 0. Now by Section 2, the principal eigen-
value \; > 0 such that A+ f'(U)p = —A19p and is easy to check that ¢; € D(R?)
hence [5. |[V9|* — f'(U)¢? < 0. Now using an appropriate cut-off function, we can
obtain the same property for 1) with compact support. Now define a two dimen-
sional subspace spanned by 9 (z) = zb(%) and 12 (z) = w(w;ﬁ) where z € Q.

Note that the support supp 11 Nsupp 1> = P as Pre=Pocl _, 4 . Hence we obtain a

two dimensional space on which &2 [o, |V);|> = f'(ue)? = [on [V ? = ([U)Y7 <0
fori =1,2. Asu. — U in C? _(R?) and 1); has compact support. Hence u. has
Morse index at least two, a contradiction.

The proof of P. € 99 follows exactly as Ni-Takagi [16]. O
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7. LOWER BOUND
First we prove that
Lemma 7.1. There ezists constants C; > 0 and Cy > 0 such that
(7.1) C1e%Gy(z, P:) < ug(z) < Cae®Gy(z, Pe) in Q\ QN Ber(Pr)
for some R > 0 sufficiently large.

Proof. In Q \ B.g(z.), u. and e*G (., P-) are bounded. We have e?Au, — ul =
—uf <0 and AG,; — G? = 0. Note uc(P:) = [|ue|c > 1. Since by Hopf maximum
principle we can choose 0 < n < 1 such that

Ou. o 0G,(z, P.)

% <e n—g,  on o\ QN B.gr(F.)).
Then we have
(7.2) A(nGq) — MGy)" = nAG, =Gy = (n —n")Gg > 0.

Hence
E2A(u5 —ne*Gy) —ul + (neGy)? <0

which implies that

uf — (ne®Gy)?

2
A(u, — ne® —
e“Aue —ne*Gy) p——Tc

(ue —ne®Gy) < 0.

Hence by the maximum principle we have u. > ne*G, in Q\ Ber(P:).

For the upper bound, let 0 < 6 < 1 such that u. < 6 in @\ Bcg(P.) and n; > 1
such that

6Gq (xa PE)

0
Ue > 5a7}1 5

ov —

on O(Q\ QN B.gr(F:)).
then we have
(7.3) A(mGy) — (mGy)? = mAG, — (G = (m —n{)GY.
Then u,. satisfies

e?Au, — ul > —07 in Q\ B.g(P:).
As a result, we obtain
ul — (me*Gy)?

2 @
A Us — ’I’ G -
c ( : 1€ q) Ue —171€°‘Gq

(ue —me*Gy) > =07 — (m —n{)G] > 0.

Hence we obtain by the maximum principle in Q \ B.g(F;)
ue(z) < Coe®Gy(z, Pr).

In order to obtain the lower bound we define
(7.4) ue = Ve p, + €%,
If we plug this in equation (1.2), then 1. € H* () satisfies

52A"/}5 + fI(VE,Pe)ws = —& “Ec[Ve,p.] + Ne[the] in 9,
(7.5)

9.

£y =0 on Of.

where

Ne[pe] = e {f(Ve,p. + %) — f(Ve,p.) — Eafl(VE,Pe e}
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Lemma 7.2. For sufficiently small € > 0, there exists C > 0 such that
(7.6) 19l Lo (@) < C-

Proof. We claim that ¢ is uniformly bounded. If possible, let there exists a se-
quence gy, such that [|¢: k|lcc = 00. Let |1)¢| have its maximum at a point k. € €.
As % = 0 by Hopf’s lemma k. € int(1).

We claim that @ <C.

Suppose this is not true then ‘ki—Psl — +00. Then we have three cases; |P-—k.| < 4,

0 < |P. — k.| <26 or |P: — k| > 24.
Case 1 When |P. — k.| > 26, and as a result —Aw.(k;) > 0 and there exists a
¢ > 0 such that 1. (k.) > c¢. We have from (7.5)
0< _52+aA¢s(ks) = {f(Vs,Pe (ks) + 6“1/15(/%)) - f(VE,Ps)} - Es[Vs,we]
which reduces to
(Gylke, P.) + 60y (k) + )1 < Gi(k., P.) + o(1)

and hence a contradiction.

Case 2 When |P. — k.| < 4. Then eR < |P. — k.| < §

{f (Ve (ke) +e%e(ke)) = f(Ve,p.)} — Ec[Ve,p.] 2 0.
This implies that
1 D) < 1
(= +orom) < (m=7r)

which is a contradiction. The other case is much easier to handle.
Thus we consider ¥ (z) = ¥ (k. + ex)

Ve
U, =—.
T [dellos
By the Schauder estimates, we obtain ||lI!E||Cll,s is bounded for some 6 € (0,1]

and hence by the Arzela-Ascoli’s theorem there exists ¥o € C! such that ||¥. —
Tollcy  — 0 as e — 0. Using the fact that @ < C, 1o satisfies

AT+ f(U)¥=0 in R}

(7.7) ('9‘;0| st
0 .
6—y2 =0 mn 6R3_

Now we show that ¥y € D.
We obtain a contradiction by showing that V¥,(0) = 0. Using the fact that
Vue(P:) =0 and

_ Vue(P:) — VV. P, (Fr)
VIO = T

we obtain V¥,.(0) — 0 as e — 0. This implies that V¥,(0) = 0 by pointwise
convergence and hence V(ay g—zg)(O) = 0 and this implies that a; = 0.

|
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Lemma 7.3. We have,

2
(7.8) C. = %Ioo(U) + 20728 (P.) + o(e2(@+D),
Proof. We want to write uc =V p, +&%t.. So we have

Ja(ua) = JEU/E,PE)
+ e / (€2VVe p, Vb — F(Vep, 0o )da
Q

62(1
+ ([ Ve - 5 002)
62(1
= [ |POr 00— FVn) = Ve b = 51 (V)02
which can be expressed as
Je(ue) = JE(V;:,PE)

+ ea/Es[Vs,ps]wsdx
Q

2a
+ %(52/9|v¢5|2dx—f’(Vs,P€)¢?)

2a

- [F(vs,pe+sawe)—F(v;,PE)—eafw;,PE)ws—5 FVep)e?].
Q

2
Now we estimate the following terms

/Q E.[VepJWeds = /lw_PEKEREE[v;,ps]wﬁ / E.[Ve.p, 1

eR<|z—P.|<2§

+ BlVorlvet [ ElVel.

§<|z—P:|<26 |z—P:|>25
< Ce' + 0?5 | log 8|

' 1

24+a+to

+ Ce @ / m‘*‘&ap/ Gf;iﬂg
6<|z—P:|<25 € |z—P:|>28

o(1)e**2.

IN

(From (7.5)

/ (V.2 — [ (Ve p, )02} = e~ / BVp e — / ATATN
Q Q Q

As a result, we only estimate

/QNE[¢6]¢6 = /IzPEISER NE[¢6]¢E + /sR<zPE§6 NE[¢6]¢6
NE g g NE g €
- ~/6<|z—P5|<25 [w ]’lp * ~/|a:—P5|226 [,(/} ]¢

I I Ns € I NE (3 (>3
PR /6<|z—P5|<26 [w ]w - /|a:—P5|226 [w ]w
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We compute I;. As ¢ > 5, we obtain
L = 8a(9(/ (U.,p. +6<p0)q_2¢g) = 0(e**?).
BSR(PE)

We calculate I.

I

e“O( / (Ue.p. + 6900)"2@0?)
Bs (PE)\BER(PE)

62—04 )
= saO(/ 7) = O(c26%).
Bs(PO\Ber(P,) [T — Pc|*~

Estimating in the neck region

/ Nl = 0(6“ / V;’;zwf)-
5<|z—P,|<26 o<|z—P.|<25 T °

In the neck region we have
Vep, =Uep. + (1 =) (e*Gq — Ue,p. — £¢0).

In order to estimate

1
Ea/ Vq_2¢3 — 62/ w‘o‘
§<|z—P.|<26 b T §<|z—P.|<26 |z — P.|o(a=2) 7€
1
< o . —
- 5<lo—P.|<2s [T — P>~
= 0(%5%).
Whenever |z — P.| > 26, we have
/ Nelppelpe = o(e™).
|z—P:|>28
Similarly, we show that
g2 A
J L R R L LT
Q

= o(e”T?*).
The estimate follows exactly as the previous estimate. This completes the proof. [

Remark 7.1. As a result of Lemma 6.3 and Lemma 7.3, we obtain ®,(P.) —
Igniarb@q(P). Hence Theorem 1.1 is proved.
€

8. PROFILE OF SPIKES N =2 AND ¢ =5

In this case a = % The proof of Theorem 1.1 remains almost the same. So we
calculate only estimate (8.1) as K is not integrable. So we have

s fley1)
€

52/ Us = 62/5 U (y1, y2)dyady:
B (P)\0. o Jo

s fley1)

= 52‘/06‘/0 € [Uﬁ(yl’O)+(9(|y2|U6(y',0))]dy2dy1

e*H(P)

3
(8.1) = — / [U°(y1,0)yidy + O(E*)U° (y1,0)y]dys-
0
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6
As U%(y1,0) ~ Z—;s’, we estimate the first term in (8.2) in the following way,

/UG y1,0)y;dys /U6 y1,0)y7dy,

17 dyl +

= 0E®)+ #63 /1; y—ldyl

3
_ Y € d 3
(8.2) = 3 log A + O(e”).

Moreover, it is also easy to check that
WH(P)E: 5
(8.3) 62/ VU..p|*> = —% log ot O(e?)
Q

As 6 = €7° we have from (8.2) and (8.3)
2 1 1
(8.4) I (ue) = %Ioo - TUO g’ <log )H(PE) + o(s4 (log g))

1
as wg = 5.

9. PROFILE OF SPIKES N =3 AND ¢ > 3

When ¢ > 3, U(r) ~ 22 as r — +00. The projection PU. p = nU. p where 7 is
the same cut-off function defined in (5.9). In this case we perform the reduction in
D?(R3.). Note that in this case K is not integrable. Therefore from Lemma 1.1
we estimate the terms involved in K. Note that in this case 2|VU, p|? is the lowest
order term in the energy expansion and hence

oU,
g2 / VU.p>? = & / Uep—r + / Ue,pf(Ue,p)
Q 80 ov
8UEP

(9.1) - U 2P 4 o(et)
80N Bs (P) v

Now from (1.16) we have

oU, _ 1 _% 6f 6U5p 8UE’P
ov 5(1 + Vo fF) [Z Oyi 0z dzn |’
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Thus we have

oU..p of 0U.p  OU.p
62/ U, < = 5/ [ e i]d !
QN B; (P) T ov B2(P) Z y; 0z O0zn Y

- o v (v, 1) [i(sk,-yi e

i=1

Uy, L) _au(y, L)
Ay - Oyn ]

U (y',0) < -
= 53[/ Uly',00—=22) kiylly'| e
BE(O)( )=, ; yily'|

8 U y 0)
- U(y',0) k; Z5+(’) ]
/Bi(o) Z

H(P)/ aU(y',0)
— 64 /70 /d !
2 /. (O)U (y )7& y'|dy

+ 0(54(log5))
_ _54(log é) H(ZP)%% +o(s4(1og%>)

aU(y170)| I|71 _ 82U(y170)
ar YT T2

using the fact that

10. PROFILE OF SPIKES N =3 AND ¢ =3

Whenq—3 by Lemma 1.1 of [7], we have U(r) ~ %r\/loﬁgr
U2 ~ i logr Note that in this 2| VU.,p|*> and UZ , are of the same order and

are the lowest order term in the energy expansion and hence we have from (9.1)
and R>1

H(P ' 1
52/|VUE,P|2 = E4L/ U(y’,O)MIy’Idy'+°(E4(log(10g—)>>

= ¢ HELP) /1:/5 r(lolgT) et 0(64 (log (log §>>>
_ _E4$(log(logé))+O(84(10g(10g§)).
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