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Abstract

Conventionally, to learn wave collapse and optical turbulence, one must study finite-time blow-up solu-
tions of one-component self-focusing nonlinear Schrödinger equations (NLSE). Here we consider simultaneous
blow-up solutions of two-component system of self-focusing NLSE. By studying the associated self-similar
solutions, we prove two components of solutions blow up at the same time. These self-similar solutions may
come from solitary wave solutions with multi-bumps forming abundant geometric patterns which cannot be
found in one-component self-focusing NLSE. Our results may provide the first step to investigate optical
turbulence in two-component system of NLSE.
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1 Introduction

Here we study solutions of two-component system of nonlinear Schrödinger equations given by




i∂tΦ +4Φ + µ1|Φ|2Φ + β|ψ|2Φ = 0,
i∂tψ +4ψ + µ2|ψ|2ψ + β|Φ|2ψ = 0, x ∈ Rn, t > 0,
Φ = Φ(x, t) , ψ = ψ(x, t) ∈ C ,
Φ(x, t) , ψ(x, t) → 0 as |x| → +∞, t > 0,

(1.1)

with initial data
Φ|t=0 = Φ0 ∈ Hs

0(Rn;C), ψ|t=0 = ψ0 ∈ Hs
0(Rn;C), s > 2 , (1.2)

where µj > 0’s are positive constants, n ≤ 3, and β ∈ R is a coupling constant. The system (1.1) has
applications in many physical problems, especially in nonlinear optics. Physically, the solution (Φ, ψ) denotes
the two-component beam in Kerr-like photorefractive media(cf. [1]). The positive constant µj is for self-focusing
in the j-th component of the beam. The coupling constant β is the interaction between two components of
the beam. As β > 0, the interaction is attractive, but the interaction is repulsive if β < 0. When the spatial
dimension is one i.e. n = 1, the system (1.1) is integrable, and there are many analytical and numerical results
on solitary wave solutions of the general N coupled nonlinear Schrödinger equations(cf. [2], [6], [7], [8]). However,
when the spatial dimension is two and three i.e. n = 2, 3, there are only few results on solitary wave solutions
of general N coupled nonlinear Schrödinger equations. One may refer to [11] for high dimensional solitary wave
solutions of three coupled nonlinear Schrödinger equations.

From physical experiment(cf. [12]), two dimensional photorefractive screening solitons and a two dimensional
self-trapped beam were observed. It is natural to believe that there are two dimensional multi-component
solitons and self-trapped beams. To obtain solitary wave solutions of the system (1.1), we may set Φ(x, t) =
ei λ1 t u(x) and ψ(x, t) = ei λ2 t v(x). Then we may transform the system (1.1) to steady-state two coupled
nonlinear Schrödinger equations given by





4u− λ1u + µ1u
3 + βuv2 = 0 in Rn,

4v − λ2v + µ2v
3 + βu2v = 0 in Rn,

u, v > 0 in Rn, u, v(x) → 0, as |x| → +∞ ,
(1.3)

where λj , µj > 0 are positive constants, n ≤ 3, and β is a coupling constant. From [10], the existence of ground
state (i.e. least energy) solutions of the system (1.3) may depend on the coupling constant β. When β is positive
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but sufficiently small, the system (1.3) has a ground state solution (u, v) which is radially symmetric. On the
other hand, as β becomes negative, there is no ground state solution of the system (1.3). Here we show the
existence and the configuration of bound state solutions if β is negative and |β| is small enough. Moreover,
bound state solutions of the problem (1.3) have multi-bumps forming abundant geometric patterns, provided
the ratio λ1/λ2 is sufficiently small. One may refer to Theorem 1.2 and 1.3 for the details.

Conventionally, solutions of one-component self-focusing nonlinear Schrödinger equations may blow up at
finite time (cf. [17]). Such a blow-up behavior may result in wave collapse and optical turbulence (cf. [4],
[5] and [15]). Due to the positive sign of µj ’s, the system (1.1) is of two-component self-focusing nonlinear
Schrödinger equations having an increasing tendency for the solution to be trapped in regions of highest intensity.
Consequently, it is natural to believe that the system (1.1) may have blow-up solutions which may produce wave
collapse and optical turbulence. Here we prove simultaneous blow-up on two components of the system (1.1) by
studying the associated self-similar solutions. These self-similar solutions have multi-bumps forming abundant
geometric patterns which cannot be found in one-component nonlinear Schrödinger equations. Therefore the
wave collapse of the system (1.1) is more complex than that of one-component self-focusing nonlinear Schrödinger
equations. This may provide the first step to investigate optical turbulence in two-component system of nonlinear
Schrödinger equations.

Now we state a theorem which may support the simultaneous blow-up behavior as follows:

Theorem 1.1. Let β > −√µ1µ2 if n = 3 ,and β is arbitrary if n = 2. Assume the initial condition (Φ0, ψ0) ∈
H1(Rn;C) satisfying

∫

Rn

|x|2(|Φ0|2 + |ψ0|2) dx < ∞ and one of the conditions as follows :

(i) H(Φ0, ψ0) < 0 ,

(ii) H(Φ0, ψ0) = 0,and
∫

Rn

n∑

j=1

xj [(iΦ0 · ∂xj Φ0) + (iψ0 · ∂xj ψ0)]dx < 0 ,

(iii) H(Φ0, ψ0) > 0,and
∫

Rn

n∑

j=1

xj [(iΦ0 ·∂xj Φ0)+(iψ0 ·∂xj ψ0)]dx ≤ −
√

H(Φ0, ψ0)(
∫

Rn

|x|2(|Φ0|2+|ψ0|2)dx)
1
2 ,

where H is the Hamiltonian of (1.1) defined by

H(Φ, ψ) =
∫

Rn

(|∇Φ|2 + |∇ψ|2)dx− 1
2

∫

Rn

(µ1|Φ|4 + µ2|ψ|4)dx

−β

∫

Rn

|Φ|2|ψ|2dx .
(1.4)

Besides, the dot ”·” denotes complex inner product defined by (a · b) = 1
2 (āb + ab̄) ∈ R for a, b ∈ C,where ā is

the complex conjugate of a. Then there exists a time t∗ < ∞ such that

lim
t↑t∗

‖∇Φ‖L2(Rn) = lim
t↑t∗

‖∇ψ‖L2(Rn) = ∞ . (1.5)

Furthermore, either lim
t↑t∗

‖Φ‖L∞(Rn) = ∞ or lim
t↑t∗

‖ψ‖L∞(Rn) = ∞ , provided ‖Φ0‖L2(Rn) and ‖ψ0‖L2(Rn) are

strictly positive.

Here we have assumed that neither Φ nor ψ may blow up earlier than the other. From Theorem 1.1, the system
(1.1) may have a solution (Φ, ψ) such that both ‖∇Φ‖L2(Rn) and ‖∇ψ‖L2(Rn) blow up at the same time but we
don’t know whether ‖Φ‖L∞(Rn) and ‖ψ‖L∞(Rn) blow up simultaneously.

To get synchronous blow-up for both ‖Φ‖L∞(Rn) and ‖ψ‖L∞(Rn), we study self-similar solutions of the system
(1.1) in the critical case n = 2. We may generalize the idea of Rozanova (cf. [16]) to the system (1.1) by setting

Φ(x, t) = A1(x, t) eiφ1(x,t) , ψ(x, t) = A2(x, t) eiφ2(x,t) , (1.6)

where

A1(x, t) = u(ξ) exp
(
−

∫ t

0

a(τ)dτ

)
, A2(x, t) = v(ξ) exp

(
−

∫ t

0

a(τ)dτ

)
, (1.7)

and

φj(x, t) = a(t)
|x|2
4

+ γj(t) , γ′j(t) = λj exp
(
−2

∫ t

0

a(τ)dτ

)
, j = 1, 2 . (1.8)
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Here u and v are real-valued functions, λj ’s are positive constants, ξ = (ξ1, · · · , ξn) ∈ Rn is defined by

ξ = x exp
(
−

∫ t

0

a(τ)dτ

)
, x = (x1, · · · , xn) ∈ Rn , (1.9)

and a(·) is defined by an ordinary differential equation given by

a′(t) + a2(t) = 0 , ∀ t > 0 , (1.10)

with initial data
a(0) = a0 < 0 . (1.11)

By (1.6)-(1.10), we may transform the system (1.1) into
{ 4u− λ1u + µ1u

3 + βuv2 = 0 in Rn,
4v − λ2v + µ2v

3 + βu2v = 0 in Rn ,
(1.12)

where 4 is the Laplacian corresponding to ξ-coordinates denoted as 4 =
n∑

j=1

∂2
ξj

. Moreover, (1.10) and (1.11)

imply
a(t) =

a0

a0t + 1
→ −∞ as t ↑ t∗ = −1/a0 . (1.13)

Hence by (1.6), (1.7) and (1.13), we obtain a simultaneous blow-up solution with the blow-up time t∗ = −1/a0.
The configuration of such a solution is governed by the system (1.12) which is equivalent to the system (1.3).

To solve the system (1.3) and (1.12), we study the following problem:




4u− λ1u + µ1u
3 + βuv2 = 0 in Rn,

4v − λ2v + µ2v
3 + βu2v = 0 in Rn,

u, v > 0 in Rn, u, v ∈ H1(Rn),
(1.14)

where λ1, λ2, µ1, µ2 > 0 and β < 0. For self-similar solutions of the system (1.1), we are particularly interested
in the case of n = 2. The energy functional of the problem (1.14) is defined by

E[u, v] =
1
2

∫

Rn

|∇u|2 +
λ1

2

∫

Rn

u2 − µ1

4

∫

Rn

u4 +
1
2

∫

Rn

|∇v|2 +
λ2

2

∫

Rn

v2 − µ2

4

∫

Rn

v4 − β

2

∫

Rn

u2v2 . (1.15)

To find a least energy (ground state) solution of the problem (1.14), we consider the following minimization
problem:

C = inf
(u,v)∈N

u,v≥0,uv 6=0

E[u, v] , (1.16)

where N is the associated Nehari manifold given by

N =

{
(u, v) ∈ H1(Rn)×H1(Rn)

∣∣∣
∫

Rn

|∇u|2 + λ1

∫

Rn

u2 = µ1

∫

Rn

u4 + β

∫

Rn

u2v2,

∫

Rn

|∇v|2 + λ2

∫

Rn

v2 = µ2

∫

Rn

v4 + β

∫

Rn

u2v2

}
. (1.17)

In [10], we proved

Theorem A. There exists β0 ∈ (0,
√

µ1µ2) such that for β < 0, the minimum C of (1.16) is not attained.
However, for β ∈ (0, β0), the minimum C of (1.16) is attained.

A natural question is : are there another bound state solutions of the problem (1.14) for β < 0? In this
paper, we shall show amazing rich structures of bound state solutions for β < 0. Without loss of generality, we
assume that λ1 6= λ2. Note that when λ1 = λ2, β0 ∈ (−√µ1µ2, 0), a radially symmetric bound state of the type(
c1
c2

)
wλ1,1 exists. Hereafter, wλ,µ denotes the unique solution of





4w − λw + µw3 = 0,

w(0) = max
y∈Rn

w(y) ,

w > 0, w ∈ H1(Rn).

(1.18)
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It is obvious that wλ,µ(y) =
√

λ
µw1,1(

√
λy). Hence from now on, we may assume that

λ1 < λ2. (1.19)

Now we state our main result as follows:

Theorem 1.2. Let the spatial dimension n = 2. Assume that there exists a positive integer k ≥ 2 such that
√

λ1√
λ2

< sin
π

k
. (1.20)

Then there exists β0 < 0 such that for β0 < β < 0, problem (1.14) has a bound state solution (uβ , vβ) satisfying

(1) {
uβ

(
ye

2π
k i

)
= uβ(y), uβ(y) = uβ(y),

vβ

(
ye

2π
k i

)
= vβ(y), vβ(y) = vβ(y),

(1.21)

where i =
√−1, y = (y1, y2) and y = (y1,−y2).

(2) As β → 0−,

uβ(y) = wλ1,µ1(y) + O(|β|τ ),

vβ(y) =
k−1∑

j=0

wλ2,µ2(y − ξβ
j ) + O(|β|τ ),

where
〈
ξβ
0 , ..., ξβ

k−1

〉
forms a regular k−polygon and

|ξβ
j | ∼ log

1
|β| ·

1
2
(√

λ2 sin(π/k)−√λ1

) (1.22)

and τ is a positive number.

For any positive integer k ≥ 2, one may find a bound state solution (uβ , vβ) such that vβ has k bumps
forming a regular k−polygon around the single bump of uβ by reducing the ratio

√
λ1/

√
λ2 and |β|. This may

provide abundant geometric patterns for multi-bumps of solitary and self-similar solutions of the system (1.1).
In particular, as k = 6, the geometric pattern of multi-bumps can be sketched below:
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v

±°
²¯
v

Remark.

(1) Theorem 1.2 can be regarded as results for ”bifurcation from β = 0”. If λ1 = λ2, computations show that
bifurcation point for β may be a finite number.

(2) More complicated patterns, such as concentric polygons, honeycombs, etc can also be constructed by similar
arguments with specific symmetry properties.

Now we may use Theorem 1.2 to observe simultaneous blow-up solutions of the system (1.1). As the

spatial dimension n = 2, we may set xβ
j (t) = ξβ

j exp
(∫ t

0

a(τ) dτ

)
, for j = 0, 1, · · · , k − 1, where ξβ

j ’s are

obtained in Theorem 1.2 and a(·) is defined in (1.13). Then by (1.6)-(1.9), we have ‖ψ‖L∞(Rn) ∼ |ψ(xβ
j (t), t)| =

v(ξβ
j )/(a0t + 1) → ∞ and ‖Φ‖L∞(Rn) ∼ |Φ(0, t)| = u(0)/(a0t + 1) → ∞ as t ↑ t∗ = −1/a0. This may provide

simultaneous blow-up solutions of the system (1.1). Here we have used the fact from Theorem 1.2 that u(0)
and v(ξβ

j )’s are strictly positive numbers, provided β < 0 and |β| is small enough.
Theorem 1.2 can also be extended to n = 3. When n = 3, the geometric patterns are very important. We

only consider two geometric structures: cube and tetrahedra
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Theorem 1.3. Let n = 3, and √
λ1

λ2
<

{ √
3

3 for the cube,√
3

2 for the tetrehedra.

Then for β < 0 and |β| small, problem (1.14) has a solution (uβ , vβ) such that

uβ ≈ wλ1,µ1(y) + O(|β|τ ),

vβ ≈
k∑

j=1

wλ2,µ2(y − ξj) + O(|β|τ ), (1.23)

where
〈
ξ1, ..., ξk

〉
forms regular cube or tetrahedra.

Remark. It is natural to believe that solutions with multi-bumps forming geometric patterns like octahedron,
dodecahedron, and icosahedron (i.e. the other three regular polyhedra) can also be constructed by similar methods.

The rest of this paper is organized as follows: In Section 2, we provide the proof of Theorem 1.1. Theorem 1.2
is proved in Sections 3-5, and Theorem 1.3 is proved in Section 6.

Acknowledgements: The research of the first author is partially supported by a research Grant (No. NSC 94-
2115-M-002-019) from NSC of Taiwan. The research of the second author is partially supported by an Earmarked
Grant from RGC of HK.

2 Proof of Theorem 1.1

Here we may generalize ideas for single scalar nonlinear Schrödinger equations (cf. [17]) to the system (1.1).
To prove Theorem 1.1, we need the following lemma:

Lemma 2.1. Let V (t) =
∫
Rn |x|2(|Φ|2 + |ψ|2)dx,∀t ≥ 0, where(Φ, ψ) is the regular solution of (1.1). Then

∀t > 0,
d2

dt2
V (t) = 8H + 8β(1− n

2
)
∫

Rn

|Φ|2|ψ|2dx− 2(n− 2)
∫

Rn

(µ1|Φ|4 + µ2|ψ|4)dx, (2.1)

where H is the Hamiltonian of (1.1) defined by (1.4).

Proof. By direct calculation and (1.1),it is easy to check that

− d

dt
V (t) = −4

∫

Rn

n∑

j=1

xj [(iΦ · ∂xj Φ) + (iψ · ∂xj ψ)]dx . (2.2)

Here we have used integration by parts. Besides,the dot ”·” denotes complex inner product defined by (a · b) =
1
2 (āb + ab̄) for a, b ∈ C,where ā is the complex conjugate of a.
Moreover,by (2.2),

− d2

dt2 V (t) = −4
∫

Rn

d∑

j=1

xj [(i∂tΦ · ∂xj Φ) + (iΦ · ∂xj ∂tΦ)]dx

−4
∫

Rn

n∑

j=1

xj [(i∂tψ · ∂xj ψ) + (iψ · ∂xj ∂tψ)]dx .

(2.3)
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Hence by (1.1), (2.3) and integration by parts,

− d2

dt2
V (t) = −4

∫

Rn

n∑

j=1

xj

[
Φ · ∂xj (4Φ + µ1|Φ|2Φ + β|ψ|2Φ)

]
dx

+4
∫

Rn

n∑

j=1

xj

[
(4Φ · ∂xj Φ) + µ1(Φ · ∂xj Φ)|Φ|2 + β(Φ · ∂xj Φ)|ψ|2] dx

+4
∫

Rn

n∑

j=1

xj

[
(4ψ · ∂xj

ψ) + µ2(ψ · ∂xj
ψ)|ψ|2 + β(ψ · ∂xj

ψ)|Φ|2] dx

−4
∫

Rn

n∑

j=1

xj [ψ · ∂xj
(4ψ + µ2|ψ|2ψ + β|Φ|2ψ)]dx

= 4
∫

Rn

n∑

j=1

xj

[
(4Φ · ∂xj

Φ) + µ1(Φ · ∂xj
Φ)|Φ|2 + β(Φ · ∂xj

Φ)|ψ|2] dx

+4
∫

Rn

n∑

j=1

∂xj
(xjΦ) · (4Φ + µ1|Φ|2Φ + β|ψ|2Φ)dx

+4
∫

Rn

n∑

j=1

xj

[
(4ψ · ∂xj

ψ) + µ2(ψ · ∂xj
ψ)|ψ|2 + β(ψ · ∂xj

ψ)|Φ|2] dx

+4
∫

Rn

n∑

j=1

∂xj (xjψ) · (4ψ + µ2|ψ|2ψ + β|Φ|2ψ)dx

= 8
∫

Rn

n∑

j=1

xj

[
(4Φ · ∂xj Φ) + µ1(Φ · ∂xj Φ)|Φ|2 + β(Φ · ∂xj Φ)|ψ|2] dx

+4n

∫

Rn

Φ · (4Φ + µ1|Φ|2Φ + β|ψ|2Φ)dx

+8
∫

Rn

n∑

j=1

xj

[
(4ψ · ∂xj ψ) + µ2(ψ · ∂xj ψ)|ψ|2 + β(ψ · ∂xj ψ)|Φ|2] dx

+4n

∫

Rn

ψ · (4ψ + µ2|ψ|2ψ + β|Φ|2ψ)dx

i.e.

− d2

dt2 V (t) = 8
∫

Rn

n∑

j=1

xj [(4Φ · ∂xj Φ) + µ1(Φ · ∂xj Φ)|Φ|2

+β(Φ · ∂xj Φ)|ψ|2]dx

+4n

∫

Rn

Φ · (4Φ + µ1|Φ|2Φ + β|ψ|2Φ)dx

+8
∫

Rn

n∑

j=1

xj [(4ψ · ∂xj ψ) + µ2(ψ · ∂xj ψ)|ψ|2

+β(ψ · ∂xj ψ)|Φ|2]dx

+4n

∫

Rn

ψ · (4ψ + µ2|ψ|2ψ + β|Φ|2ψ)dx

(2.4)

We may rewrite the first integral of (2.4) as

8
∫

Rn

n∑

j=1

xj(4Φ · ∂xj Φ)dx + 8
∫

Rn

n∑

j=1

xj(
µ1

4
∂xj |Φ|4 +

β

2
|ψ|2∂xj |Φ|2)dx (2.5)

Similarly, the third integral of (2.4) can be written as

8
∫

Rn

n∑

j=1

xj(4ψ · ∂xj ψ)dx + 8
∫

Rn

n∑

j=1

xj(
µ2

4
∂xj |ψ|4 +

β

2
|Φ|2∂xj |ψ|2)dx (2.6)
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Combining the second integral of (2.5) and (2.6),we obtain

8
∫

Rn

n∑

j=1

xj(
µ1

4
∂xj |Φ|4 +

µ2

4
∂xj |ψ|4)dx + 4β

∫

Rn

n∑

j=1

xj∂xj (|Φ|2|ψ|2)dx (2.7)

Using integration by parts, (2.7) becomes

−2µ1n

∫

Rn

|Φ|4dx− 2µ2n

∫

Rn

|ψ|4dx− 4βn

∫

Rn

|Φ|2|ψ|2dx . (2.8)

For the first integral of (2.5) and (2.6), we use integration by parts as follow:

∫

Rn

n∑

j=1

xj(4Φ · ∂xj Φ)dx =
∫

Rn

n∑

j=1

xj(
n∑

k=1

∂2
xk

Φ · ∂xj Φ)dx

= −
∫

Rn

n∑

j=1

n∑

k=1

∂xk
(xj∂xj

Φ) · ∂xk
Φdx

i.e. ∫

Rn

n∑

j=1

xj(4Φ · ∂xj Φ)dx = −
∫

Rn

n∑

j,k=1

∂xk
(xj∂xj Φ) · ∂xk

Φdx . (2.9)

Similarly, ∫

Rn

n∑

j=1

xj(4ψ · ∂xj ψ)dx = −
∫

Rn

n∑

j,k=1

∂xk
(xj∂xj ψ) · ∂xk

ψdx . (2.10)

For the second integral of right side of (2.9) and (2.10),

−
∫

Rn

n∑

j,k=1

∂xk
(xj∂xj Φ) · ∂xk

Φdx = −
∫

Rn

n∑

j,k=1

(δjk∂xj Φ + xj∂xj ∂xk
Φ) · ∂xk

Φdx

= −
∫

Rn

|∇Φ|2dx−
∫

Rn

1
2

n∑

j,k=1

xj∂xj |∂xk
Φ|2dx

= −
∫

Rn

|∇Φ|2dx−
∫

Rn

1
2

n∑

j=1

xj∂xj |∇Φ|2dx

= (
n

2
− 1)

∫

Rn

|∇Φ|2dx

i.e.

−
∫

Rn

n∑

j,k=1

∂xk
(xj∂xj Φ) · ∂xk

Φdx = (
n

2
− 1)

∫

Rn

|∇Φ|2dx . (2.11)

Similarly

−
∫

Rn

n∑

j,k=1

∂xk
(xj∂xj ψ) · ∂xk

ψdx = (
n

2
− 1)

∫

Rn

|∇ψ|2dx . (2.12)

Here we have used integration by parts.
Now we put (2.11) and (2.12) into (2.9) and (2.10). Then

∫

Rn

n∑

j=1

xj(4Φ · ∂xj Φ)dx = (
n

2
− 1)

∫

Rn

|∇Φ|2dx , (2.13)

and ∫

Rn

n∑

j=1

xj(4ψ · ∂xj ψ)dx = (
n

2
− 1)

∫

Rn

|∇ψ|2dx . (2.14)
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Moreover,we may put (2.7), (2.8), (2.13) and (2.14) into (2.4) and obtain

− d2

dt2 V (t) = (4n− 8)
∫

Rn

(|∇Φ|2 + |∇ψ|2)dx− 2µ1n

∫

Rn

|Φ|4dx

−2µ2n

∫

Rn

|ψ|4dx− 4βn

∫

Rn

|Φ|2|ψ|2dx

+4n

∫

Rn

Φ · (4Φ + µ1|Φ|2Φ + β|ψ|2Φ)dx

+4n

∫

Rn

ψ · (4ψ + µ2|ψ|2ψ + β|Φ|2ψ)dx

(2.15)

Using integration by parts,we have

4n

∫

Rn

Φ · (4Φ + µ1|Φ|2Φ + β|ψ|2Φ)dx = −4n

∫

Rn

(|∇Φ|2 − µ1|Φ|4 − β|Φ|2|ψ|2) dx . (2.16)

and
4n

∫

Rn

ψ · (4ψ + µ2|ψ|2ψ + β|Φ|2ψ)dx = −4n

∫

Rn

(|∇ψ|2dx− µ2|ψ|4 − β|Φ|2|ψ|2) dx . (2.17)

Combining (2.15)-(2.17), one may get

− d2

dt2 V (t) = −8
∫

Rn

(|∇Φ|2 + |∇ψ|2)dx + 2n

∫

Rn

(µ1|Φ|4 + µ2|ψ|4)dx + 4βn

∫

Rn

|Φ|2|ψ|2dx

= −8H − 8β(1− n
2 )

∫

Rn

|Φ|2|ψ|2dx + 2(n− 2)
∫

Rn

(µ1|Φ|4 + µ2|ψ|4)dx ,
(2.18)

where H is the Hamiltonian of (1.1) defined by

H =
∫

Rn

(|∇Φ|2 + |∇ψ|2)dx− 1
2

∫

Rn

(µ1|Φ|4 + µ2|ψ|4)dx− β

∫

Rn

|Φ|2|ψ|2dx . (2.19)

Therefore by (2.18) and (2.19), we may complete the proof of Lemma 2.1.

Now we want to prove Theorem 1.1 as follows:
Firstly, we claim that the Hamiltonian H is independent of time t i.e.

H = H(Φ, ψ) = H(Φ0, ψ0), ∀t > 0 . (2.20)

One may multiply the equation of Φ in (1.1) by ∂tΦ̄ and integrate the resulting equation over Rn, where Φ̄ is
the complex conjugate of Φ. Then using integration by parts, we obtain

i

∫

Rn

|∂tΦ|2dx−
∫

Rn

n∑

j=1

∂xj Φ∂xj ∂tΦ̄dx +
∫

Rn

(µ1|Φ|2Φ + β|ψ|2Φ)∂tΦ̄dx = 0 (2.21)

Take complex conjugate on (2.21) and we have

−i

∫

Rn

|∂tΦ|2dx−
∫

Rn

d∑

j=1

∂xj Φ̄∂xj ∂tΦdx +
∫

Rn

(µ1|Φ|2Φ̄ + β|ψ|2Φ̄)∂tΦdx = 0 (2.22)

Adding (2.21) and (2.22) together may give

d

dt

∫

Rn

(|∇Φ|2 − µ1

2
|Φ|4)dx− β

∫

Rn

|ψ|2∂t|Φ|2dx = 0 (2.23)

As for (2.23), we may use the equation of ψ in (1.1) to derive

d

dt

∫

Rn

(|∇ψ|2 − µ2

2
|ψ|4)dx− β

∫

Rn

|Φ|2∂t|ψ|2dx = 0 (2.24)

Hence by adding (2.23) and (2.24), we obtain

d

dt
H(Φ, ψ) = 0, ∀t > 0 ,



9

where H(Φ, ψ) is defined in (1.4). This may imply (2.20).
Secondly, we use Lemma 2.1 to prove Theorem 1.1. Suppose n = 2. Then (2.1) implies

d2

dt2
V (t) ≤ 8H for t > 0 . (2.25)

On the other hand, if n=3, then (2.1) becomes

d2

dt2
V (t) ≤ 8H − 4β

∫

Rn

|Φ|2|ψ|2dx− 2
∫

Rn

(µ1|Φ|4 + µ2|ψ|4)dx . (2.26)

Hence by (2.26), (2.25) still holds if n = 3 and β > −√µ1µ2. By (2.20) and (2.25),

d2

dt2
V (t) ≤ 8H(Φ0, ψ0) for t > 0 . (2.27)

Consequently, by (2.2) and (2.27),

V (t) ≤ 4H(Φ0, ψ0)t2 + V ′(0)t + V (0) for t > 0 , (2.28)

where

V ′(0) = 4
∫

Rn

n∑

j=1

xj [(iΦ0 · ∂xj
Φ0) + (iψ0 · ∂xj

ψ0)]dx, (2.29)

and
V (0) =

∫

Rn

|x|2(|Φ0|2 + |ψ0|2)dx . (2.30)

Under any of the hypotheses (i)–(iii) in Theorem 1.1, there exists a time t0 such that the right-hand side of
(2.28) vanishes,and thus also t1 ≤ t0 such that

lim
t↑t1

V (t) = 0 . (2.31)

Furthermore, from the equality,∫

Rn

|f |2dx =
1
n

∫

Rn

(∇ · x)|f |2dx

= − 1
n

∫

Rn

x · ∇(|f |2)dx, ∀f ∈ H1(Rn) ,

one may get the following inequality

‖f‖2L2(Rn) ≤
2
n
‖∇f‖L2(Rn)‖xf‖L2(Rn), ∀f ∈ H1(Rn) . (2.32)

Consequently, by (2.32),

‖Φ‖2L2(Rn) ≤
2
n
‖∇Φ‖L2(Rn)‖xΦ‖L2(Rn) ≤

2
n
‖∇Φ‖L2(Rn)

√
V (t) , (2.33)

and
‖ψ‖2L2(Rn) ≤

2
n
‖∇ψ‖L2(Rn)‖xψ‖L2(Rn) ≤

2
n
‖∇ψ‖L2(Rn)

√
V (t) , (2.34)

On the other hand,by (1.1), it is easy to check that

d

dt
‖Φ‖2L2(Rn) =

d

dt
‖ψ‖2L2(Rn) = 0, ∀t > 0 .

Thus
‖Φ‖2L2(Rn) = ‖Φ0‖2L2(Rn) , ‖ψ‖2L2(Rn) = ‖ψ0‖2L2(Rn) . (2.35)

Hence by (2.31), (2.33), (2.34) and (2.35), there exists a time t∗ ≤ t1 such that (1.5) holds.
Finally, we want to prove either lim

t↑t∗

∫
Rn |Φ|4dx = ∞ or lim

t↑t∗

∫
Rn |ψ|4dx = ∞. Suppose neither one of them

holds i.e. both lim
t↑t∗

∫
Rn |Φ|4dx < ∞ and lim

t↑t∗

∫
Rn |ψ|4dx < ∞. Then by Hölder inequality, we obtain

lim
t↑t∗

∣∣∣∣
1
2

∫

Rn

(µ1|Φ|4 + µ2|ψ|4)dx + β

∫

Rn

|Φ|2|ψ|2dx

∣∣∣∣ < ∞ . (2.36)

Thus by (1.4), (1.5) and (2.36), we have
lim
t↑t∗

H(Φ, ψ) = ∞ . (2.37)

However, (2.37) may contradict with (2.20) so either lim
t↑t∗

∫
Rn |Φ|4dx = ∞ or lim

t↑t∗

∫
Rn |ψ|4dx = ∞. Therefore we

may complete the proof of Theorem 1.1.
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3 Symmetry and Approximate solutions

In this section, we introduce function spaces with specific symmetry properties for the proof of Theorem 1.2.
These spaces are defined by

{
X = {u ∈ H2(C)|u(y) = u(yei 2π

k ); u(ȳ) = u(y)},
Y = {u ∈ L2(C)|u(y) = u(yei 2π

k ); u(ȳ) = u(y)}, (3.1)

where y = (y1, y2) and ȳ = (y1,−y2). In X(or Y ), we use the standard H2-norm (or L2-norm). Note that
equation (1.14) is invariant under the maps

(u, v) →
(

u
(
yei 2π

k

)
, v

(
yei 2π

k

))
,

and
(u, v) → (

u(y1,−y2), v(y1,−y2)
)
,

where i =
√−1 ∈ C.

Let ξ0 = (l, 0), ξj = ξ0e
i 2jπ

k , j = 1, 2, ..., k − 1, where c1 log 1
|β| ≤ l ≤ c2 log 1

|β| and c1, c2 are positive
constants to be determined. To approximate the solution of (1.14) with specific symmetry properties, we may
define a vector-valued function by

(
ul

vl

)
=




wλ1,µ1(y)
k−1∑
j=0

wλ2,µ2(y − ξj)


 , (3.2)

called the approximate solution of (1.14). Note that ul ∈ X, vl ∈ X. For notation convenience, we set
wj(y) = wλj ,µj (y) and w2,ξj (y) = wλ2,µ2(y − ξj) for j = 0, 1, ..., k − 1. Let

S

(
u
v

)
=

( 4u− λ1u + µ1u
3 + βuv2

4v − λ2v + µ1v
3 + βu2v

)
.

We first state the following lemma on the properties of wj(y):

Lemma 3.1. (1) As |y| → +∞, we have

wj(|y|) = Aj(1 + O(
1
|y| ))|y|

−n−1
2 e−

√
λj |y|, w′j(|y|) = −Aj(1 + O(

1
|y| ))|y|

−n−1
2 e−

√
λj |y|, (3.3)

where Aj > 0 is a positive generic constant, j=1,2.
(2) wj is nondegenerate, i.e.

Kernel(∆− λj + 3µjw
2
j ) ∩H2(Rn) = span

{
∂wj

∂y1
, ...,

∂wj

∂yn

}
. (3.4)

(3) If 0 <
√

λ1α1 <
√

λ2α2, then we have for |x1 − x2| >> 1,
∫

Rn

wα1
λ1,µ1

(y − x1)wα2
λ2,µ2

(y − x2) ≈ wα1
1 (|x1 − x2|)

∫

Rn

wα2
2 (y)e−

√
λ1α1y1dy, (3.5)

wα1
λ1,µ1

(y − x1)wα2
λ2,µ2

(y − x2) ≤ wα1
1 (|x1 − x2|)e(

√
λ1α1−

√
λ2α2)|y−x2|. (3.6)

Proof. (1) is well-known. (2) follows from the uniqueness of wj (cf.[14]).
By (3.3), we have for |x1 − x2| >> 1, z = y − x2,

wα1
λ1,µ1

(y − x1) = wα1
λ1,µ1

(z + x2 − x1) = (A1 + o(1))α1(|z + x2 − x1|)−
n−1

2 e−
√

λ1α1|z+x2−x1|

= wα1
λ1,µ1

(|x2 − x1|)e−
√

λ1α1<z,
x1−x2
|x1−x2|>+o(|z|)

.

Using (3.3) and Lebesgue’s Dominated Convergence Theorem, we obtain
∫

Rn

wα1
λ1,µ1

(y − x1)wα2
λ2,µ2

(y − x2) ≈ wα1
1 (|x1 − x2|)

∫

Rn

wα2
2 (y)e−

√
λ1α1<y,

x1−x2
|x1−x2|>dy

≈ wα1
1 (|x1 − x2|)

∫

Rn

wα2
2 (y)e−

√
λ1α1y1dy.

The proof of (3.6) is similar.



11

Now we may apply Lemma 3.1 to prove

Lemma 3.2.
∥∥∥∥S

(
u
v

) ∥∥∥∥
Y×Y

≤ c

(
|β|wλ1,µ1(l) + w2

(
2l sin

π

k

))
. (3.7)

Proof.

4ul − λ1ul + µ1u
3
l + βulv

2
l = βw1

( k−1∑

j=0

w2,ξj

)2

= βw1

( ∑

j

w2
2,ξj

+
∑

j 6=m

w2,ξj
w2,ξm

)
.

By Lemma 3.1, and the fact that
√

λ1 <
√

λ2, |a|+ |b| ≥ |a± b|, we have
∥∥w1w

2
2,ξj

∥∥
L2(R)

≤ cw1(l)
∥∥w1w

2
2,ξj

w2
2,ξm

∥∥
L∞(R)

≤ ce−|y|
√

λ1 · e−(|y−ξj |+|y−ξm|)
√

λ2

≤ ce−|y|
√

λ1 · e−(|y−ξj |+|y−ξm|)
√

λ1 · e(
√

λ1−
√

λ2)|ξj−ξm|

≤ ce−
√

λ1(|l|+|y−ξm|) · e(
√

λ1−
√

λ2)|ξj−ξm| .

Hence
∥∥4ul − λ1ul + µ1u

3
l + βulv

2
l

∥∥
L2(Rn)

≤ c|β|w1(l) + cw1(|l|) · e−2(
√

λ2−
√

λ1)|l|| sin π/k|

≤ c(|β|+ e−σl)|w1(l)|, (3.8)

for 0 < σ < 2(
√

λ2 −
√

λ1)| sin π
k |. Similarly,

4vl − λ2vl + µ2v
3
l + βu2

l vl = µ2

[(
k−1∑

j=0

w2,ξj

)3

−
k−1∑

j=0

w3
2,ξj

]
+ βw2

1

(∑

j

w2,ξj

)

= O
( ∑

j 6=m

w2
2,ξj

w2,ξm

)
+ O

(
|β|

∑

j

w2,ξj w
2
1

)
.

So
∥∥4vl − λ2vl + µ2v

3
l + βu2

l vl

∥∥
L2(Rn)

≤ c
∑

j 6=m

w2(|ξj − ξm|) + c|β|w1(l)

≤ c
∑

j 6=m

w2(2l| sin π

k
|) + c|β|w1(l), (3.9)

since |ξj − ξm| = 2| sin π(m−j)
k |l ≥ 2l sin π

k .
Therefore by (3.8) and (3.9), we obtain (3.7) and complete the proof of Lemma 3.2.

Now we want to estimate E[ul, vl] as follows:

Lemma 3.3. For l >> 1,

E[ul, vl] =λ
4−n

2
1 µ−1

1 I[w] + kλ
4−n

2
2 µ−1

2 I[w]− µ2

2

∑

j 6=m

∫

Rn

w2
2,ξj

w2,ξm

− β

2

∑

j

∫

Rn

w2
1w

2
2,ξj

+ O
(
e−2

√
λ2l sin π

k + |β|e−2
√

λ1l
) · e−σl , (3.10)

for some σ > 0.



12

Proof. We may use Lemma 3.1 to compute the energy E[ul, vl]. By (1.15), we have

E[ul, vl] =λ
4−n

2
1 µ−1

1 I[w] +
1
2

∫

Rn

∣∣∣∣∇
∑

j

wλ2,µ2,ξj

∣∣∣∣
2

+
λ2

2

∫

Rn

( ∑

j

wλ2,µ2,ξj

)2

− µ2

4

∫

Rn

( ∑

j

wλ2,µ2,ξj

)4

− β

2

∫

Rn

w2
λ1,µ1

( ∑

j

wλ2,µ2,ξj

)2

=λ
4−n

2
1 µ−1

1 I[w] + kλ
4−n

2
2 µ−1

2 I[w] +
1
2

∑

j 6=m

µ2

∫

Rn

wλ2,µ2,ξj w
3
λ2,µ2,ξm

− µ2

4

∫

Rn

[( ∑

j

wλ2,µ2,ξj

)4

−
∑

j

w4
λ2,µ2,ξj

]

− β

2

∫

Rn

w2
λ1,µ1

( ∑

j

w2
λ2,µ2,ξj

+
∑

j 6=m

wλ2,µ2,ξj wλ2,µ2,ξm

)

=λ
4−n

2
1 µ−1

1 I[w] + kλ
4−n

2
2 µ−1

2 I[w]− 1
2

∑

j 6=m

µ2

∫

Rn

wλ2,µ2,ξj
w3

λ2,µ2,ξm

− µ2

4

∫

Rn

[( ∑

j

wλ2,µ2,ξj

)4

−
∑

j

w4
λ2,µ2,ξj

− 4
∑

j 6=m

wλ2,µ2,ξj
w3

λ2,µ2,ξm

]

− β

2

∑

j

∫

Rn

w2
λ1,µ1

w2
λ2,µ2,ξj

− β

2

∫

Rn

w2
λ1,µ1

∑

j 6=m

wλ2,µ2,ξj wλ2,µ2,ξm . (3.11)

By Lemma 3.1,
∫

Rn

w2,ξj w
3
2,ξj

≈ w2(|ξi − ξj |),
∫

Rn

∣∣∣∣
( ∑

j

w2,ξj

)4

−
∑

j

w4
2,ξj

− 4
∑

j 6=m

w2,jw
3
2,m

∣∣∣∣

≤ C
∑

j 6=m

∫

Rn

w2
2,ξj

w2
2,ξm

≤ C
∑

j 6=m

(
w2(|ξj − ξm|)

)3/2

≤ Ce−3l
√

λ2| sin π
k | , (3.12)∫

Rn

w2
1w2,ξj w2,ξm ≤

∫

Rn

w2
1e
−√λ2(|y−ξj |+|y−ξm|)

≤
∫

Rn

w2
1e
−√λ1(|y−ξj |+|y−ξm|) · e(

√
λ1−

√
λ2)|ξj−ξm|

≤ e−2
√

λ1l · e2l(
√

λ1−
√

λ2) sin π
k , (3.13)

where C is a universal positive constant. Consequently, (3.10) follows from (3.11), (3.12) and (3.13). Therefore
we may complete the proof of Lemma 3.3.

4 Localized Energy Method

In this section, we use the so-called “Localized Energy Method” to reduce the problem to a finite-dimensional
one. Similar method has been used in the proof of Theorem 4 of [11]. For background and references on this
method, we refer to [3], [9], [11] and [13].

In this reduction process, the symmetry assumption plays an important role so we focus on two spatial
dimension case i.e. n = 2. Let

L

(
φ
ψ

)
= S′

(
ul

vl

) (
φ
ψ

)

=
( 4φ− λ1φ + 3µ1u

2
l φ + βv2

l φ + 2βulvlψ
4ψ − λ2ψ + 3µ2v

2
l ψ + βu2

l ψ + 2βulvlφ

)
,
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for
(

φ
ψ

)∈ X ×X. Let

Kl = span
{(

0
∂vl

∂l

)}
. (4.1)

Recall that vl =
k−1∑
j=0

w2

(
y − lei2π j

k

)
and i =

√−1. Now we consider the following linear problem:

Given f, g ∈ Y , find φ, ψ ∈ X and c ∈ R such that




L

(
φ

ψ

)
=

(
f

g

)
+ c

(
0

∂vl

∂l

)
,

∫

R2
φ

∂vl

∂l
= 0 .

(4.2)

For the problem (4.2), we have the following crucial a-priori estimates

Lemma 4.1. There exist β0 > 0 such that for |β| < β0, if
(

φ
ψ

)
satisfies (4.2), then

‖φ‖H2 + ‖ψ‖H2 ≤ C(‖f‖L2 + ‖g‖L2) . (4.3)

Proof. We prove this by contradiction. Suppose there exist |βn| → 0, fn, gn, φn and ψn satisfying (4.2), such
that

‖fn‖L2 + ‖gn‖L2 → 0 as n →∞ , and ‖φn‖H2 + ‖ψn‖H2 = 1 for n ∈ N . (4.4)

To avoid clumsy notation, we omit the index n. Firstly, we derive the estimate for c. Multiplying the equation
of ψ by ∂vl

∂l , we obtain
∫

R2

(4ψ − λ2ψ + 3µ2v
2
l ψ + βu2

l ψ + 2βulvlφ
)∂vl

∂l
=

∫

R2
g
∂vl

∂l
+ c

∫

R2

(∂vl

∂l

)2

. (4.5)

Since 4(
∂vl

∂l

)− λ2
∂vl

∂l + 3µ2v
2
l · ∂vl

∂l = o(1) in L2, it is easy to check that

c = O(‖g‖L2) + O(‖φ‖H2 + ‖ψ‖H2)|β| = o(1). (4.6)

Now we claim that the operator
L01φ = 4φ− λ1φ + 3µ1u

2
l φ (4.7)

is invertible from X to Y . In fact, if L01φ = 0 and φ ∈ ∩X, then φ =
2∑

j=1

cj
∂wλ1,µ1

∂yj
. Since φ(ȳ) = φ(y), we

obtain that c2 = 0 and φ = c1
∂wλ1,µ1

∂y1
= c1w

′
λ1,µ1

(|y|) y1
|y| . On the other hand, since φ(yei2π/k) = φ(y), we also

obtain c1 = 0. Hence φ ≡ 0. Thus L01 is invertible. Moreover, since β → 0, the operator

L11φ = 4φ− λ1φ + 3µ1u
2
l φ + βv2

l φ

can be regarded as a small perturbation of L01 so the operator L11 is also invertible. Hence, we may write

φ = L−1
11 (−2βulvlψ + f) ,

and obtain
‖φ‖H2(R2) ≤ c‖ − 2βulvlψ + f‖L2(R2) → 0. (4.8)

As for the operator L01 on φ, we may define another operator on ψ by

L02ψ = 4ψ − λ2ψ + 3µ2v
2
l ψ .

Then we have
L02ψ = −βu2

l ψ − βulvlφ + g + c
∂vl

∂l
=: g2.

Hence ‖g2‖L2(R2) = o(1). By (4.8),

‖ψ‖H2(R2) = 1− ‖φ‖H2(R2) ≥
1
2

. (4.9)
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Now we set
ψ0(y) ≡ ψ(ξ0 + y) → ψ̃0(y) in C1

loc(R2) as l → +∞ .

Then as l → +∞, ψ0 satisfies

4ψ0 − λ2ψ0 + 3µ2w
2
λ2,µ2,ξ0

(ξ0 + y)ψ0

+3µ2

∑

j 6=m

(
wλ2,µ2,ξj

wλ2,µ2,ξm

)
(ξ0 + y)ψ0 + 3µ2

∑

j 6=0

w2
λ2,µ2,ξj

(ξ0 + y)ψ0

= g2(ξ0 + y) ,

i.e.
4ψ̃0 − λ2ψ̃0 + 3µ2w

2
λ2,µ2

ψ̃0 = 0. (4.10)

Here we have used the fact that ‖g2‖L2(R2) = o(1), wλ2,µ2,ξ0(ξ0 + y) = wλ2,µ2(y) and w2
λ2,µ2,ξj

(ξ0 + y) =
w2

λ2,µ2
(ξ0 − ξj + y) → 0 as l → +∞ for j 6= 0. Hence

ψ̃0 = c1
∂wλ2,µ2

∂y1
+ c2

∂wλ2,µ2

∂y2
. (4.11)

Moreover,

0 =
∫

R2
ψ(y + ξ0)

∂vl

∂l
(y + ξ0) =

∫

R2
ψ0(y)

∂vl

∂l
(y + ξ0) → k

∫

R2
ψ̃0(y)

∂wλ2,µ2

∂y1
(y) .

Here we have used the k-symmetry property of ψ̃0. Thus it is obvious that c1 = 0 and

ψ̃0 = c2
∂wλ2,µ2

∂y2
= c2w

′
λ2,µ2

(|y|) y2

|y| . (4.12)

Notice that ψ0(ȳ) = ψ(y) i.e. ψ̃0(ȳ) = ψ̃0(y) so we obtain c2 = 0. Hence ψ̃0 ≡ 0 and we have
∫

R2
v4

l (y)ψ2(y) =
∫

R2
v4

l (y + ξ0)ψ2(y + ξ0) =
∫

R2
v4

l (y + ξ0)ψ2
0(y) → 0 .

Thus by the equation of ψ, we obtain ‖ψ‖H2 ≤ ‖ 4ψ−λ2ψ‖L2 → 0 which may contradict with (4.9). Therefore
we may complete the proof of Lemma 4.1.

Remark. The proof of Lemma 4.1 also explains how we use specific symmetry properties to show the kernel of
L is one dimensional, and hence the problem becomes one dimensional, too.

Once Lemma 4.1 is proved, we have the following lemmas. We refer to Lemma 8, Proposition 1 and Lemma
10 of [11] for similar proofs.

Lemma 4.2. Given
(
f
g

)∈ Y × Y , there exists unique
(

φ
ψ

)∈ X ×X and c satisfying (4.2).

Lemma 4.3. The following nonlinear problem has a unique solution:




S

(
ul + φl

vl + ψl

)
= c

(
0

∂vl

∂l

)
,

∫

R2
φl

∂vl

∂l
= 0,

(
φl

ψl

)
∈ (H2(R2) ∩X)2.

(4.13)

Moreover, we have ∥∥∥∥
(

φl

ψl

)∥∥∥∥
H2(R2)

≤ c

∥∥∥∥S

(
ul

vl

)∥∥∥∥
L2(R2)

(4.14)

and the map l → φl is C1.

Finally, we define M(l) =: E[ul + φl, vl + ψl]. Then we have

Lemma 4.4. If M(l) has a critical point l = l0, then (ul0 + φl0 , vl0 + ψl0) satisfies (1.14) and the properties
listed in Theorem 1.2.
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5 Reduced problem

We first compute M(l):

Lemma 5.1. For 0 < |β| << 1, we have

M(l) = A0 − α(l)− β

2
γ(l) + O

(
e−2

√
λ2 sin πl/k + |β|e−2

√
λ1l

)
e−σl.

where

A0 = λ
4−n

2
1 µ−1

1 I[w] + kλ
4−n

2
2 µ−1

2 I[w] , α(l) = kµ2

∫

R2
w3

2,ξ0
w2,ξ1 , γ(l) = k

∫

R2
w2

1w
2
2,ξ0

.

Proof. It is easy to check that

M(l) =E[ul + φl, vl + ψl]

=E[ul, vl] +
∫

R2
(4ul − λ1ul + µ1u

3
l + βulv

2
l )φl

+
∫

R2
(4vl − λ2vl + µ2v

3
l + βu2

l vl)ψl +
∫

R2

(|φl|2 + |ψl|2
)

=E[ul, vl] + O
(
e−2

√
λ2 sin πl

k + |β|e−2
√

λ1l
)
e−σl .

Then by Lemma 3.3, we may complete the proof of Lemma 5.1.

Let c1 <
1

2(
√

λ2 sin π
k −

√
λ1)

< c2. Then we have

Lemma 5.2. The following problem

max
{

M(l)
∣∣∣c1 log

1
|β| ≤ l ≤ c2 log

1
|β|

}

has a critical point lβ, i.e. M ′(lβ) = 0.

Proof. By lemma 3.1 and (3.3), it is not difficult to see that

α(l) ≈ l−1/2e−2
√

λ2l sin π
k , α′(l) ≈ −2

√
λ2α(l) sin

π

k
;

γ(l) ≈ l−1/2e−2
√

λ1l, γ′(l) ≈ −2
√

λ1γ(l).

Now we let lβ be such that α′(lβ) + β
2 γ′(lβ) = 0. Then we have

lβ ≈ 1
2(
√

λ2 sin π
k −

√
λ1)

log
1
|β| ,

and

M(lβ) =A0 − α(lβ)− β

2
γ(lβ)

=A0 − α(lβ) +
γ(lβ)
γ′(lβ)

α′(lβ)

≈A0 − α(lβ) +

√
λ2 sin π

k√
λ1

· α(lβ)

≈A0 +

√
λ2 sin π

k −
√

λ1√
λ1

· l−1/2
β e−2

√
λ2lβ sin π

k

≈A0 +

√
λ2 sin π

k −
√

λ1√
λ1

(
log

1
|β|

)−1/2

· |β|
√

λ2 sin π
k√

λ2 sin π
k
−√λ1 .

Hence

max M(l) ≥ M(lβ) ≥ A0 + c0

(
log

1
|β|

)−1/2

|β|τ1 , (5.1)
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where τ1 =

√
λ2 sin π

k√
λ2 sin π

k −
√

λ1

.

Now that

M
(
c1 log

1
|β|

)
≈A0 −

(
|β|2c1

√
λ2 sin π

k +
β

2
· |β|2c1

√
λ1

)(
c1 log

1
|β|

)−1/2

≈A0 −
(
|β|2c1

√
λ2 sin π

k − |β|1+2c1
√

λ1

) (
c1 log

1
|β|

)−1/2

≤A0 − |β|2c1
√

λ2 sin π
k

(
c1 log

1
|β|

)−1/2

if 2c1

√
λ2 sin

π

k
< 1 + 2c1

√
λ1.

M
(
c2 log

1
|β|

)
≈A0 −

(
|β|2c2

√
λ2 sin π

k − |β|1+2c2
√

λ1

)(
c2 log

1
|β|

)−1/2

≤A0 + |β|1+2c2
√

λ1

(
c2 log

1
|β|

)−1/2

if 2c2

√
λ2 sin

π

k
> 1 + 2c2

√
λ1.

In any case, we have

max
{

(M
(
c1 log

1
|β|

)
,M

(
c2 log

1
|β|

)}
≤ A0 + |β|1+2c2

√
λ1

(
c2 log

1
|β|

)−1/2

if 2c2

√
λ2 sin

π

k
> 1 + 2c2

√
λ1.

(5.2)

Suppose M(lβ) ≤ max
{

(M
(
c1 log 1

|β|
)
,M

(
c2 log 1

|β|
)}

. Then comparing (5.1) and (5.2), we obtain

c0|β|τ1 ≤ c
−1/2
2 |β|1+2c2

√
λ1 .

As long as we choose 1 + 2c2

√
λ1 > τ1 =

√
λ2 sin π

k√
λ2 sin π

k −
√

λ1

i.e. c2 > 1

2(
√

λ2 sin π
k−

√
λ1) , we obtain a contradiction

right away. Therefore we may complete the proof of Lemma 5.2.

Remark. We have showed that the critical point lβ satisfying lβ ∼ 1
2(
√

λ2 sin π
k −

√
λ1)

log
1
|β| .

6 Proof of Theorem 1.3

The proof of Theorem 1.3 depends on the choice of symmetry class. We first consider the cubic case

¿
¿

¿¿

¿
¿

¿¿

¿
¿

¿¿

x

Assume the cube has a center at (0, 0, 0) and eight vertices at (a, b, c)’s for a, b, c ∈ {±1}. Let L1 be the plane
y− z = 0 , L2 be the plane x− z = 0, and L3 be the plane x− y = 0. Let Tj be the transformation of reflection
through the plane Lj , i.e. Tj(x, y, z) = reflection of (x, y, z) to the plane Lj .
Now we set

X = {u ∈ H2(R3)|u(x, y, z) = u(−x, y, z) = u(x,−y, z) = u(x, y,−z) = u
(
Tj(x, y, z)

)
, j = 1, 2, 3} ,

and

Y = {u ∈ L2(R3)|u(x, y, z) = u(−x, y, z) = u(x,−y, z) = u(x, y,−z) = u
(
Tj(x, y, z)

)
, j = 1, 2, 3} .
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We wish to put one spike at the center for u and eight spikes at the vertices of a cube for v. We need to
determine the locations of eight spikes. Due to specific symmetry properties v(x, y, z) = v(±x,±y,±z), the
problem of determining eight spikes can be reduced first to determine one spike in the quadrant {x > 0, y >
0, z > 0}. One may regard the problem as a three dimensional problem. Then we use the reflection symmetry
v(x, y, z) = v(Tj(x, y, z)) , j = 1, 2, 3 to further reduce the problem to an one dimensional problem. Thus, as for
the proof of Theorem 1.2, we may set ξ0 = (l, l, l) as one vertex of the cube and ξj , j = 1, · · · , 7 as the other
seven vertices of the cube, where l > 0 is an one-dimensional parameter. Then the problem can be reduced
to an one dimensional problem like the critical point problem of Lemma 4.4 and 5.2. Therefore we may apply
similar arguments to complete the proof of Theorem 1.3 for this case.

In the tetrahedra case, we may assume that the four vertices are P1 = (0, 0, 1), P2 = (1, 0, 0), P3 =
(−1/2,

√
3/2, 0) and P4 = (−1/2,−√3/2, 0).

!!!!!!

c
c

c
cc

¶
¶

¶
¶

¶
¶

e
e

e
e

e
e

e

Q3r

Q1

r
Q4r

Q2r

P2

P1

P3

P4

Let Q1 be the center of the triangle P2P3P4. We set l1 as the axis joining P1 and Q1. Let T1 be the rotation
around l1 by angle 2π

3 . Similarly, we can define lj , Tj , j = 2, 3, 4. Let L1 be the plane containing P1, P2 and
(0, 0, 0), L2 be the plane containing P1, P3 and (0, 0, 0) and L3 be the plane containing P1, P4 and (0, 0, 0).
Let T4+j be the reflection through Lj for j = 1, 2, 3. Then it is easy to see that the tetrahedra is invariant to
Tj ’s. Moreover, the Laplace operator is also invariant under Tj ’s. Now we set

X = {u ∈ H2(R3)|u(
Tj(x, y, z)

)
= u(x, y, z) , j = 1, · · · , 7} ,

and
Y = {u ∈ L2(R3)|u(

Tj(x, y, z)
)

= u(x, y, z) , j = 1, · · · , 7}.
Then similar as before, the problem can be reduced to an one-dimensional problem. Therefore we may apply
similar arguments to complete the proof of Theorem 1.3 for this case.
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