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Abstract

In this paper we study bound state solutions of a class of two-component nonlinear
elliptic systems with a large parameter tending to infinity. The large parameter giving
strong intercomponent repulsion induces phase separation and forms segregated nodal
domains divided by an interface. To obtain the profile of bound state solutions near the
interface, we prove the uniform Lipschitz continuity of bound state solutions when the spa-
tial dimension is N = 1. Furthermore, we show that the limiting nonlinear elliptic system
that arises has unbounded solutions with symmetry and monotonicity. These unbounded
solutions are useful to derive rigorously the asymptotic expansion of the minimizing en-
ergy which is consistent with the hypothesis of [23]. When the spatial dimension is N = 2,
we establish the De Giorgi type conjecture for the blow-up nonlinear elliptic system under
suitable conditions at infinity on bound state solutions. These results naturally lead us
to formulate De Giorgi type conjectures for this type of systems in higher dimensions.

1 Introduction

In a binary fluid like a mixture of oil and water, the two components of the fluid may
spontaneously separate and form two segregated domains divided by an interface. Such a
phenomenon called phase separation can be observed as well in cooling binary alloys, glasses
and polymer mixtures. The well-known Cahn-Hilliard equation has been proposed as a model
to describe the process of phase separation (cf. [10]). It is written in the form:

φt = ∆
δFε
δφ

= ∆
[
ε2∆φ+ (1− φ2)φ

]
for x ∈ Ω , t > 0 ,
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with no-flux boundary condition

∂νφ = ∂ν
[
ε2∆φ+ (1− φ2)φ

]
= 0 on ∂Ω ,

and mass conservation
1

|Ω|

∫
Ω

φ(x, t)dx = m.

Here φ = φ(x, t) ∈ R is the order parameter, Ω ⊂ RN is the region occupied by the fluid, ∂ν is
the exterior normal derivative on the boundary ∂Ω and ε > 0 is a small parameter giving the
length of transition regions between the domains. The Cahn-Hilliard free energy functional Fϵ
is defined by

Fε(u) =

∫
Ω

ε2|∇u|2 + 1

2
(1− u2)2 for u ∈ H1(Ω) ,

(see [15]). Stationary solutions with interfaces of the above equations satisfy

ε2∆φ+ (1− φ2)φ = λϵ in Ω , and ∂νφ = 0 on ∂Ω.

It is well-known that as ϵ → 0 and λϵ → 0, the profile of the solution φ near the interface
approaches to a solution of the following Allen-Cahn (AC) equation

∆Φ + (1− Φ2)Φ = 0 in RN .

For AC equation as above, De Giorgi [27] formulated in 1978 the following celebrated con-
jecture:
Let Φ be a bounded solution of AC equation such that ∂xNΦ > 0. Then the level sets {Φ = λ}
are hyperplanes, at least for dimension N ≤ 8. The conjecture has been investigated exten-
sively over the recent years and has been essentially settled by now (see Section 7 for detailed
discussions).

Indeed, phase separation is known to occur in a double condensate (cf. [29], [37], [38]).
In general, however, phase separation models between two components involve a system of
partial differential equations. The aim of this paper is to investigate questions analogous to the
previous one in the more general framework. One such system of particular interest arises in
a binary mixture of Bose-Einstein condensates with two different hyperfine states denoted by
|1⟩ and |2⟩ Due to strong inter-component repulsion, interfaces (so called domain walls) may
divide the condensate into segregated domains in the same way as in the mixture of oil and
water. A classical model to describe this involves the two component Gross-Pitaevskii (GP)
system derived from the following GP functional (cf. [40])

E =
1

2

∫
Ω

2∑
j=1

(
~2

2m
|∇Ψj|2 + Vj|Ψj|2 +

1

2
gjj|Ψj|4

)
+ g12|Ψ1|2 |Ψ2|2 dx .

Here ~ is Planck constant, m is the atom mass, Ω is the domain for condensate dwelling, Vj’s
are trapping potentials, and Ψj’s are wave functions corresponding to states |j⟩’s. Besides,
gij ∼ aij , where ajj’s and a12 are the intraspecies and interspecies scattering lengths. From the
variational principle, the model of double condensates can be written as i~∂Ψj/∂t = δE/δΨ∗

j

for j = 1, 2, that is,

i~
∂Ψj

∂t
= − ~2

2m
△Ψj + VjΨj + gjj|Ψj|2Ψj + g12|Ψ3−j|2Ψj , j = 1, 2 ,
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called the coupled Gross-Pitaevskii (GP) equations (cf. [1] and [40]) giving conservation laws
as follows: ∫

Ω

|Ψj|2 = Nj , for t > 0 , j = 1, 2 ,

where Nj’s are numbers of atoms.
To study phase separation of double condensates, as is explained in [45], we may switch off

trapping potentials Vj’s and let Vj ≡ 0, j = 1, 2. Due to Feshbach resonance (cf. [26]), we may

further set g12 =
~2
2m

Λ and gjj’s as nonnegative constants, where Λ is a large parameter tending
to infinity. Then the condition g212 > g11g22 for phase separation (cf. [3]) is fulfilled and the GP
functional becomes

E =

∫
Ω

2∑
j=1

(
~2

2m
|∇Ψj|2 +

1

2
gjj|Ψj|4

)
+

~2

2m
Λ|Ψ1|2 |Ψ2|2 dx .

To find standing wave solutions of the coupled GP equations, one sets Ψ1(x, t) = e−iϵ1 t/~u(x)
and Ψ2(x, t) = e−iϵ2 t/~v(x). Here ϵj’s are chemical potentials and u, v are the corresponding
condensate amplitudes (cf. [18]). Then the coupled GP equations become a class of nonlinear
elliptic systems that reads as follows:

− ~2
2m

∆u+ g11u
3 + ~2

2m
Λ v2u = ϵ1u in Ω,

− ~2
2m

∆v + g22v
3 + ~2

2m
Λu2v = ϵ2v in Ω,

u, v > 0 in Ω,
u = v = 0 on ∂Ω .

Due to conservation laws, we may regard ϵj’s as eigenvalues and u, v as eigenfunctions satisfying
normalization conditions ∫

Ω

u2 = N1 ,

∫
Ω

v2 = N2 .

By suitable scaling on u, v and spatial variables, the nonlinear elliptic systems with the
normalization conditions above can be transformed into

−∆u+ αu3 + Λv2u = λ1u in Ω, (1.1)

−∆v + βv3 + Λu2v = λ2v in Ω, (1.2)

u > 0, v > 0 in Ω, (1.3)

u = 0, v = 0 on ∂Ω , (1.4)∫
Ω

u2 =

∫
Ω

v2 = 1 . (1.5)

Hereafter, we assume that Ω is a bounded smooth domain in RN . Then solutions of (1.1)-(1.5)
can be regarded as critical points of the GP functional

EΛ(u, v) =

∫
Ω

(
|∇u|2 + |∇v|2

)
+
α

2
u4 +

β

2
v4 + Λu2v2 , (1.6)
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on the space (u, v) ∈ H1
0 (Ω) × H1

0 (Ω) with a constraint given by (1.5). The eigenvalues λj’s
are Lagrange multipliers with respect to (1.5). Both eigenvalues λj = λj,Λ’s and eigenfunctions
u = uΛ, v = vΛ depend on the parameter Λ. The system of equations (1.1)-(1.5) derived from
the GP functional (1.6) is the type of systems we study here. Recently, several interesting
results related to equations (1.1)-(1.5) have also been published in [8, 20, 21, 22, 44].

In this paper, we restrict our attention to solutions (uΛ, vΛ) of (1.1)-(1.5) such that the
associated eigenvalues λj,Λ’s are uniformly bounded, that is, we assume here that

sup
Λ>0

max{λ1,Λ , λ2,Λ} ≤ C , (1.7)

where C denotes a positive constant independent of Λ. It is obvious that (1.7) is equivalent to
EΛ(uΛ, vΛ) ≤ C. In particular, observe that, the ground state or least energy solution satisfies
this condition. Indeed by taking u and v with disjoint support, we derive an upper bound on
inf EΛ(u, v) independent of Λ. More generally, we consider here all bound state solutions that
satisfy a boundedness condition on the energy.

Formally, as Λ → +∞ (up to a subsequence), (u∞, v∞)-the limit of (uΛ, vΛ) satisfies

−∆u∞ + αu3∞ = λ1,∞u∞ in Ωu , (1.8)

and
−∆v∞ + βv3∞ = λ2,∞v∞ in Ωv , (1.9)

where Ωu = {x ∈ Ω : u∞(x) > 0} and Ωv = {x ∈ Ω : v∞(x) > 0} are positivity domains
composed of finitely disjoint domains with positive Lebesgue measure, and each λj,∞ is the
limit of λj,Λ’s as Λ → ∞ (up to a subsequence). Effective numerical simulations for (1.8) and
(1.9) can be found in [4], [5] and [17]. Several works deal with the convergence of (uΛ, vΛ). One
may refer to Chang-Lin-Lin-Lin [17] for the pointwise convergence of (uΛ, vΛ) away from the
interface γ ≡ {x ∈ Ω : u∞(x) = v∞(x) = 0}; Wei-Weth [46] for the uniform equicontinuity of
(uΛ, vΛ); and Noris-Tavares-Terracini-Verzini [39] for the uniform Hölder continuity of (uΛ, vΛ).
However, until now, the uniform Lipschitz continuity of the (uΛ, vΛ)’s has not yet been obtained.
One of the results here is the uniform Lipschitz continuity of the (uΛ, vΛ)’s when the spatial
dimension is N = 1 i.e. Ω = (a, b) (see Lemma 2.4). For higher dimensions, the problem is still
open.

To understand formally the connection between Fε the Cahn-Hilliard and EΛ the Gross-
Pitaevskii functionals, we set u = 1+ ρ, v = 1− ρ and ε = 1/

√
Λ a small parameter tending to

zero. Then (1.6) becomes

EΛ(u, v) =
2

ε2

[
Fε(ρ) +

∫
Ω

ε2

4
α (1 + ρ)4 +

ε2

4
β (1− ρ)4

]
,

which is dominated by the Cahn-Hilliard energy Fε.
One might think that near the interface, the profile of bounded solutions of (1.1)-(1.5) is

quite similar to that of bounded solutions of the scalar Allen-Cahn equation. However, this
is not the case. As we will see ((1.16) below), the blow up equation is a system, not a scalar
equation. One of the main goals of the paper is to study this system.

Here, we completely classify the one-dimensional solution of this system (see Theorem 1.3
below). In particular, we establish the symmetry, monotonicity, uniqueness and nondegeneracy
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of solutions of (1.16). This leads us to believe that there is an extended De Giorgi conjecture
for this new system. When the spatial dimension is N = 2, we provide sufficient conditions
that give this De Giorgi conjecture for solutions of (1.16) (see Theorem 1.8).

To derive the asymptotic behavior of (uΛ, vΛ)’s near the interface γ = {x ∈ Ω : u∞(x) =
v∞(x) = 0}, it is sufficient to consider the point xΛ ∈ Ω such that uΛ(xΛ) = vΛ(xΛ) = mΛ → 0
and xΛ → x∞ ∈ γ ⊂ Ω as Λ → +∞ (up to a subsequence). For simplicity, the mention “up to
a subsequence” will be understood in the remaining of this paper. When N = 1 and Ω = (a, b),
the estimate of mΛ’s is stated as follows:

Theorem 1.1. Assume that Ω = (a, b) ⊂ R, (uΛ, vΛ) solves the system (1.1)-(1.5) and (1.7)
holds. Let

mΛ = uΛ(xΛ) = vΛ(xΛ) → 0 as Λ → +∞ , (1.10)

and
xΛ → x∞ ∈ Ω as Λ → +∞ . (1.11)

Then it holds that
m4

ΛΛ → C0 as Λ → +∞ , (1.12)

where C0 is a positive constant. On the other hand, if (1.12) holds, then Λ1/4 min(|xΛ−a|, |xΛ−
b|) → +∞.

In higher dimension, without loss of generality, we may assume C0 = 1. Let

ũΛ(y) =
1

mΛ

uΛ(mΛy + xΛ) , ṽΛ(y) =
1

mΛ

vΛ(mΛy + xΛ) , (1.13)

for y ∈ ΩΛ ≡ {y ∈ RN : mΛy + xΛ ∈ Ω} → RN (in general) as Λ → ∞. Then (ũΛ, ṽΛ) satisfies

−∆ũΛ +m4
Λαũ

3
Λ +m4

ΛΛṽ
2
ΛũΛ = m2

Λλ1ũΛ in ΩΛ, (1.14)

−∆ṽΛ +m4
Λβṽ

3
Λ +m4

ΛΛũ
2
ΛṽΛ = m2

Λλ1ṽΛ in ΩΛ . (1.15)

In view of (1.12), we expect that in any dimension, the limit of (ũΛ, ṽΛ)–(U, V ) solves the
following blow-up nonlinear elliptic system

∆U = V 2U , ∆V = U2V , U, V ≥ 0 in RN . (1.16)

Here we are only able to establish this fact when the dimension is N = 1. This is the statement
in the next result.

Theorem 1.2. Under the same hypotheses as in Theorem 1.1, assume xΛ → x∞ ∈ Ω as
Λ → +∞. Then there exist positive functions U(y), V (y) ∈ C∞(R) such that, as Λ → ∞,

ũΛ → U, ṽΛ → V in C2
loc(R) ,

where (U, V ) satisfies {
U ′′ = V 2U in R ,
V ′′ = U2V in R , (1.17)
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and U(0) = V (0) = 1. Moreover,

U ′2 + V ′2 − U2V 2 ≡ T∞ in R , (1.18)

where

T∞ = |Ω|−1 lim
Λ→∞

1

2

[
λ1,Λ + λ2,Λ + 3

∫
Ω

(u′Λ)
2
+ (v′Λ)

2

]
( up to a subsequence) (1.19)

is a positive constant.

To prove the existence of (U, V ) in Theorem 1.2, we need the asymptotic behavior of mΛ

satisfying (1.12) which can be derived from the uniform Lipschitz continuity of (uΛ, vΛ). Until
now, the uniform Lipschitz continuity of (uΛ, vΛ) holds only when the spatial dimension is one
(see Lemma 2.4). This is the reason why the result of Theorem 1.2 is only one dimensional.

A more general model is obtained when trapping potentials Vj’s are turned on. The system
(1.1)-(1.5) then is the form:

− u′′ + P1(x)u+ αu3 + Λv2u = λ1u in (a, b), (1.20)

− v′′ + P2(x)u+ βv3 + Λu2v = λ2v in (a, b), (1.21)

u > 0, v > 0 in (a, b), (1.22)

u(a) = u(b) = 0, v(a) = v(b) = 0 (1.23)∫ b

a

u2 =

∫ b

a

v2 = 1, (1.24)

where Pj, j = 1, 2 are C1([a, b]) functions. Assume

Pj ≥ 0 , |P ′
j| ≤M <

1

(b− a)3

[
π2 +

b− a

8
(α+ β)

]
in (a, b) , j = 1, 2 , (1.25)

where M is a positive constant independent of Λ. Then Theorem 1.1 and 1.2 also hold for the
system (1.20)-(1.24). We refer to Section 3.1 for the details of proofs.

Next, we study the limiting system (1.16) in dimension N = 1, that is, (1.17). The existence
of an nontrivial solution to (1.17) is given in Lemma 4.1. Using the method of moving planes,
we are able to completely classify the one-dimensional solutions of this system (1.16).

Theorem 1.3. Let N = 1 and (U, V ) be an nonnegative solution of (1.17). Then the following
properties hold.

(1) (Symmetry)There exists x0 ∈ R such that

V (y − x0) = U(x0 − y) , for y ∈ R .

(2) (Asymptotic behavior) Either{
U(−∞) = 0, U ′(−∞) = 0, U ′ > 0, U ′(∞) =

√
T∞ ,

V (∞) = 0, V ′(∞) = 0, V ′ < 0, V ′(−∞) = −
√
T∞ ,

or likewise with U and V interchanged, where T∞ > 0 is defined in (1.18).
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(3) (Nondegeneracy) (U, V ) is nondegenerate, that is, if (ϕ, ψ) is a bounded solution of the
linearized system

ϕ
′′
= V 2ϕ+ 2UV ψ , ψ

′′
= U2ψ + 2UV ϕ in R , (1.26)

then, it must be the case that (ϕ, ψ) = c(U
′
, V

′
) for some constant c.

Note that from Theorem 1.3 (2), both U and V are unbounded on R. This is one of the main

difficulties in the analysis. In fact, because this is a system, even in dimension one, carrying
out the moving planes procedure turns out to be somewhat involved. The question to know
whether such a result holds in higher dimension is an open problem.

Remark 1.4. Without loss of generality, we may set x0 = 0 and then Theorem 1.3 (1) gives
U(y) = V (−y) for y ∈ R. Whether or not the solution to (1.17) is unique up to rescaling
remains open. Theorem 1.3 (3) shows local uniqueness. �
Remark 1.5. Instead of Bose-Einstein condensates, the same system (1.17) also describes a
stationary membrane (representing a domain wall) in a static gravitational field of a black hole
(cf. [24]). �

Using Theorem 1.1 and 1.3, we can also derive the asymptotic expansion of the minimizing
energy as follows:

Theorem 1.6. Assume Ω = (−1, 1) and α = β = 0. Then the minimizing energy

EΛ ≡ min

{
EΛ(u, v) : (u, v) ∈ H1

0 (Ω)
2 ,

∫
Ω

u2 =

∫
Ω

v2 = 1 and u(x) = v(−x) ,∀x ∈ (−1, 1)

}
satisfies

2π2 −B1Λ
− 1

4 ≤ EΛ ≤ 2π2 −B2Λ
− 1

4 , (1.27)

as Λ → ∞ (up to a subsequence), where Bj, j = 1, 2 are positive constants independent of Λ.

Remark 1.7. In [23], 2π2 − EΛ is assumed to satisfy 2π2 − EΛ = QΛ− 1
4 + o(Λ− 1

4 ), where the
constant Q can be calculated formally. Here we give a rigorous proof of (1.27) which can be
regarded as a partial result of the above assumption. �

As analogue of De Giorgi’s conjecture for Allen-Cahn equation, the previous results lead us
to state the following conjecture for system (1.16).

Conjecture: At least up to the dimension N = 8, under the monotonicity condition

∂U

∂yN
> 0,

∂V

∂yN
< 0, (1.28)

a solution (U, V ) of the system (1.16) is necessarily one-dimensional, i.e. there exist a ∈ RN

such that U(y) = U0(a · y) and V (y) = V0(a · y) for y ∈ RN , where U0, V0 : R → R are smooth
functions.

Just note that by Theorem 1.3, the monotonicity condition (1.28) holds in the case of space
dimension N = 1. When the dimension is N ≥ 2, Theorem 1.1 and 1.2 are still open. Note
that the uniform Lipschitz continuity of the (uΛ, vΛ)’s is still open as well in the case of N ≥ 2.

We now derive further results in dimension N = 2. To this end, in addition to the previous
ones, we require the following assumptions:
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(H0) xΛ → x∞ ∈ Ω and mΛ = uΛ(xΛ) = vΛ(xΛ) → 0 as Λ → ∞.

(H1) m4
ΛΛ → C0 > 0 as Λ → +∞ , i.e. (1.12) holds.

(H2) ũΛ → U , ṽΛ → V strongly in H1
loc (R2) as Λ → ∞, where (ũΛ, ṽΛ) is defined in (1.13)

and (U, V ) solves (1.16).

(H3) For any large R,

1

R4

∫
B2R\BR

(U2 + V 2) ≤ C (independent of R) . (1.29)

Under the assumptions (H0)-(H3), we can give an affirmative answer to the above conjecture.

Theorem 1.8. Let N = 2 and assume that conditions (H0)-(H3) hold. Then the solution
(U, V ) of (1.16) with (1.28) must be one-dimensional.

Remark 1.9. The remaining question then is to know under which conditions, the previous
assumptions, in particular the growth condition (H3), hold. The hypothesis (H3) is satisfied if
we can show the following natural growth condition

U(x) + V (x) = O(|x|) as |x| → ∞ . (1.30)

Note that one dimensional solutions do satisfy such a growth condition. On the other hand,
the hypothesis (H3) is equivalent to the condition of frequency function given by

N(mΛR) ≤ 1 + oΛ(1) , for any large R (independent of Λ) , (1.31)

where N(·) defined below in (6.4) is the frequency function of (uΛ, vΛ)’s, and oΛ(1) is a quantity
tending to zero as Λ goes to infinity (see Theorem 6.1). �

The system of equations (1.1)-(1.4) is one particular case of parameter-dependent systems
of elliptic equations with k components:

−∆ui = fi(ui)ui −
k∑

j=1

j ̸=i

αijfij(uj)ui in Ω,

u1, . . . , uk > 0 in Ω,

u1 = · · · = uk = 0 on ∂Ω ,

(1.32)

where Ω ⊂ RN is a smooth bounded domain, fi, fij : [0,∞) → R are continuous locally
Lipschitz functions and αij > 0 are parameters for i, j = 1, . . . , k, j ̸= i. Two special cases
of (1.32) have been investigated in the literature. The case fij(t) = t for i ̸= j corresponds to a
Lotka-Volterra type system modelling the interaction between biological species in population
ecology. In particular, this case has been considered by Dancer and Du [19], Conti, Terracini
and Verzini [16] and Caffarelli and Lin [13]. Note that in population dynamics as well, phase
separation is known to occur if the repulsion of competition terms is strong enough. Another
case where the right hand side fi(ui)ui−

∑k
j=1

j ̸=i
αijfij(uj)ui is replaced by A(x)Πk

i=1u
ai
i arises in

combustion theory and has been considered recently by Caffarelli and Roquejoffre in [14].
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The paper is organized as follows: In Section 2, we give some preliminaries. In Section 3,
Theorem 1.1 is proved using blow-up analysis. In Section 4 and 5, we provide the proof of
Theorem 1.2, 1.3 and 1.8, respectively. The frequency function and the argument to show the
hypothesis (H3) are given in Section 6. Finally, we make a comparison between the Allen-Cahn
equation and (1.16), and we propose several open problems in Section 7.
Notations. In this paper, C is denoted as a generic constant which may vary between lines.
U(±∞) represents limy→±∞ U(y) as usual.

Acknowledgments: The research of Berestycki is partially supported by the PREFERED
project of the ANR, France. The research of Lin is partially supported by NCTS, NSC and
TIMS of Taiwan. The research of Wei is partially supported by an Earmarked Grant from RGC
of Hong Kong. The research of Zhao is partially supported by NSFC (Project 11101155) and
the Fundamental Research Funds for the Central Universities.

2 Preliminary

From now on, up to Section 5, we only consider the one dimensional problem. In this section,
we will give some basic estimates and relations which are often used later.

Lemma 2.1. In the interval Ω = (a, b) ⊂ R, assume that (uΛ, vΛ) solves system (1.1)-(1.5) and
that (1.7) holds. Then there is a constant C independent of Λ such that

∥uΛ∥C1/2([a,b]) ≤ C, ∥vΛ∥C1/2([a,b]) ≤ C. (2.1)

Furthermore, for any 0 < γ < 1
2
,

uΛ → u∞, vΛ → v∞ in Cγ([a, b]), (2.2)

with
u∞v∞ ≡ 0 in (a, b). (2.3)

Proof. Testing (1.1) against u′Λ, we have∫
Ω

|u′Λ|2 + α

∫
Ω

u4Λ + Λ

∫
Ω

u2Λv
2
Λ = λ1.

Thus ∥uΛ∥H1
0 ([a,b])

≤ C. Thus, (2.1) and (2.2) are standard results of Sobolev Imbedding. Then
(2.3) clearly follows from the above equality.

Remark 2.2. Actually for Ω ⊂ RN , we also know that uΛ and vΛ are always uniformly bounded
(see [17, Lemma 2.1]). �

In what follows, for simplicity, we write (u, v) and (λ1, λ2) rather than (uΛ, vΛ) and (λ1,Λ, λ2,Λ),
respectively.

Lemma 2.3. Under the same hypotheses as in Lemma 2.1, there exists a positive constant TΛ
and two positive constants C1, C2 independent of Λ such that

u′2 + v′2 − Λu2v2 − α

2
u4 − β

2
v4 + λ1u

2 + λ2v
2 = TΛ in (a, b) , (2.4)

and
0 < C1 < TΛ < C2 < +∞ , (2.5)
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Proof. Multiplying (1.1) on both sides by 2u′ and (1.2) by 2v′, we have

(u′2)′ − α

2
(u4)′ − Λv2(u2)′ + λ1(u

2)′ = 0 , in (a, b) ,

(v′2)′ − β

2
(v4)′ − Λu2(v2)′ + λ2(v

2)′ = 0 , in (a, b) .

Adding the two equalities, we get (2.4).
Now we claim 0 < C1 < TΛ < C2 < +∞. Integrating (2.4) over (a, b), we get∫ b

a

u′2 +

∫ b

a

v′2 − Λ

∫ b

a

u2v2 − α

2

∫ b

a

u4 − β

2

∫ b

a

v4 + λ1 + λ2 = TΛ(b− a). (2.6)

Using (1.1), (1.2), (1.5) and integrating by parts, we obtain∫ b

a

u′2 + α

∫ b

a

u4 + Λ

∫ b

a

u2v2 = λ1 , (2.7)∫ b

a

v′2 + β

∫ b

a

v4 + Λ

∫ b

a

u2v2 = λ2 . (2.8)

Combining (2.6)-(2.8) yields

2

∫ b

a

u′2 + 2

∫ b

a

v′2 + Λ

∫ b

a

u2v2 +
α

2

∫ b

a

u4 +
β

2

∫ b

a

v4 = TΛ(b− a).

Since from assumption (1.7) we know that λ1, λ2 are uniformly bounded with respect to Λ,
then it is obvious that TΛ < C2 <∞. On the other hand, Poincaré’s inequality shows that∫ b

a

u′2 ≥ C

∫ b

a

u2 = C1 > 0.

This gives TΛ > C1 > 0. Here we have used condition (1.5). Therefore, the proof of Lemma 2.3
is complete.

We now state the uniform Lipschitz continuity of uΛ and vΛ.

Lemma 2.4. Under the same hypotheses as in Lemma 2.1, we have

∥u′∥L∞ ≤ C, ∥v′∥L∞ ≤ C ,

where C is a positive constant independent of Λ.

Proof. By Lemma 2.3 and (1.4), it is easy to check that u′(a)2+v′(a)2 ≤ C and u′(b)2+v′(b)2 ≤
C, which implies that

|u′(a)| ≤ C, |u′(b)| ≤ C, |v′(a)| ≤ C, |v′(b)| ≤ C. (2.9)

Integrating (1.1) from a to x, we get

u′(x)− u′(a) = α

∫ x

a

u3 + Λ

∫ x

a

v2u− λ1

∫ x

a

u . (2.10)
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For x = b, by (1.7), (2.1), (2.9) and (2.10), this shows that

Λ

∫ b

a

v2u ≤ C. (2.11)

Then by (2.1) and (2.11), it follows that |u′(x) − u′(a)| ≤ C. Similarly, integrating (1.1) on
(x, b) yields that |u′(b) − u′(x)| ≤ C. Combining these two estimates shows that |u′| + |v′| is
uniformly bounded. The proof is thereby complete.

3 Proof of Theorem 1.1 and 1.2

In this section, we provide the proof of Theorem 1.1. Recall that u∞ and v∞ are defined in
Lemma 2.1. Owing to condition (1.5), we know that

∫ b
a
u2∞ =

∫ b
a
v2∞ = 1 which implies that

u∞, v∞ ̸≡ 0. Hence there exists xΛ ∈ Ω such that (1.10) and (1.11) hold.
We start with an a priori bound.

Lemma 3.1. Under the hypotheses of Theorem 1.1, it holds true that

lim sup
Λ→∞

Λm4
Λ <∞ .

Proof. We argue by contradiction. Suppose that along a sequence Λj → ∞,

m4
ΛΛ → ∞ as Λ = Λj → ∞ . (3.1)

Then let

ũ(y) =
1

mΛ

u

(
y

mΛ

√
Λ

+ xΛ

)
, ṽ(y) =

1

mΛ

v

(
y

mΛ

√
Λ

+ xΛ

)
,

defined for y ∈ ĨΛ, where ĨΛ = {y ∈ R : (a − xΛ)mΛ

√
Λ < y < (b − xΛ)mΛ

√
Λ}. Then (ũ, ṽ)

solves the system 
ũ′′ − α

Λ
ũ3 − ṽ2ũ+

λ1
m2

ΛΛ
ũ = 0 in ĨΛ ,

ṽ′′ − β

Λ
ṽ3 − ũ2ṽ +

λ2
m2

ΛΛ
ṽ = 0 in ĨΛ .

From (2.4) (see Lemma 2.3), we have

ũ′2 + ṽ′2 − ũ2ṽ2 − α

2Λ
ũ4 − β

2Λ
ṽ4 +

λ1
m2

ΛΛ
ũ2 +

λ2
m2

ΛΛ
ṽ2 =

TΛ
m4

ΛΛ
in ĨΛ . (3.2)

On the other hand, Lemma 2.4 gives∣∣∣∣ũ(y)− 1

mΛ

u(xΛ)

∣∣∣∣ ≤ C|y|
m2

Λ

√
Λ
,

∣∣∣∣ṽ(y)− 1

mΛ

v(xΛ)

∣∣∣∣ ≤ C|y|
m2

Λ

√
Λ

for y ∈ ĨΛ . (3.3)

Since mΛ = uΛ(xΛ) = vΛ(xΛ) → 0 and m4
ΛΛ → ∞, then these inequalities show that ũ and ṽ

are uniformly bounded and equicontinuous on any compact subinterval of ĨΛ. Owing to (1.11)
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and (3.1), it is obvious that Ω̃Λ tends to the entire real line R as Λ → ∞. Here we have used
the fact that mΛ → 0 as Λ → ∞. Thus, by (3.1), (3.3) and the Arzela-Ascoli Theorem,

ũ→ 1, ṽ → 1 in Cloc(R) , ũ′ , ṽ′ → 0 in L∞
loc(R) as Λ → ∞ , (3.4)

Hence (3.2) and (3.4) imply

TΛ
m4

ΛΛ
→ −1 as Λ → ∞ .

However, this contradicts (2.5) and (3.1). Therefore, the proof of Lemma 3.1 is complete.

We can now prove Theorem 1.1. We argue by contradiction. In view of Lemma 3.1, we
assume that Λm4

Λ → 0 as Λ → ∞. As in (1.13), let

ũ(y) =
1

mΛ

u(mΛy + xΛ), ṽ(y) =
1

mΛ

v(mΛy + xΛ) , (3.5)

for y ∈ IΛ, where IΛ =
(
a−xΛ
mΛ

, b−xΛ
mΛ

)
tends to the entire real line as Λ goes to infinity since we

assume xΛ → x∞ ∈ (a, b). As before, ũ and ṽ satisfyũ
′′ −m4

Λαũ
3 −m4

ΛΛṽ
2ũ+m2

Λλ1ũ = 0 in IΛ ,

ṽ′′ −m4
Λβṽ

3 −m4
ΛΛũ

2ṽ +m2
Λλ2ṽ = 0 in IΛ .

From Lemma 2.3, we have

ũ′2 + ṽ′2 −m4
ΛΛũ

2ṽ2 − α

2
m4

Λũ
4 − β

2
m4

Λṽ
4 + λ1m

2
Λũ

2 + λ2m
2
Λṽ

2 = TΛ in IΛ . (3.6)

Lemma 2.4 tells us that

ũ(y) =
1

mΛ

[u(xΛ) +O(1)mΛy],

so ũ is locally uniformly bounded and so is ṽ. By elliptic regularity, we know that ũ and
ṽ are bounded in C2

loc(R) and thus the Arzelà–Ascoli theorem yields that there exists U(y),
V (y) ∈ C2(R) such that

ũ→ U, ṽ → V in C2
loc(R).

Passing to the limit in the associated equations, we see that U , V satisfy the following equations

U ′′ = V
′′
= 0 in R.

Since U , V ≥ 0, they have to be constants. Furthermore, from (3.6), U and V satisfy

U ′2 + V ′2 = T∞.

Here TΛ → T∞ and T∞ > 0. Thus, this is a contradiction with the fact that U , V are constants.
Therefore, we know that Λm4

Λ converges to some positive constant C0. This proves (1.12).
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Next, we show that Λ1/4min(|xλ − a|, |xλ − b|) → +∞. To this end, we define

ũ(y) = Λ1/4u(
y

Λ1/4
+ xΛ), ṽ(y) = Λ1/4v(

y

Λ1/4
+ xΛ).

Then ũ and ṽ satisfy
ũ′′ − α

Λ
ũ3 − ṽ2ũ+

λ1√
Λ
ũ = 0 in (a− xΛ, b− xΛ)

4
√
Λ,

ṽ′′ − β

Λ
ṽ3 − ũ2ṽ +

λ2√
Λ
ṽ = 0 in (a− xΛ, b− xΛ)

4
√
Λ.

From Lemma 2.3, it follows that

ũ′2 + ṽ′2 − ũ2ṽ2 − α

2Λ
ũ4 − β

2Λ
ṽ4 +

λ1√
Λ
ũ2 +

λ2√
Λ
ṽ2 = TΛ.

Without loss of generality, we may assume Λ
1
4 (a − xΛ) → −C1 > −∞, where C1 is a positive

constant. A similar argument as above shows that there exist U , V ∈ C∞([−C1,∞)) such that
ũ→ U , ṽ → V in C2

loc([−C1,∞)) and
U ′′ = V 2U in [−C1,∞),

V ′′ = U2V in [−C1,∞),

U(0) = V (0) = C
1/4
0 ,

U(−C1) = V (−C1) = 0.

Fatou’s Lemma then yields∫ ∞

−C1

V 2U ≤ lim inf
Λ→∞

∫ (b−xΛ) 4√Λ

(a−xΛ) 4√Λ

ṽ2ũ ≤ Λ

∫ b

a

v2u ≤ C,

where the last inequality is due to (2.11). Thus, U(∞) = 0 or V (∞) = 0. Since U and V are
convex on (C1,∞), U(−C1) = V (−C1) = 0 and either U(∞) = 0 or V (∞) = 0, then we know

that U ≡ 0 or V ≡ 0, which contradicts U(0) = V (0) = C
1
4
0 .

Finally we prove Theorem 1.2. Recall that ũ and ṽ satisfy
ũ′′ − α

Λ
ũ3 − ṽ2ũ+

λ1√
Λ
ũ = 0 in (a− xΛ, b− xΛ)Λ

1/4,

ṽ′′ − β

Λ
ṽ3 − ũ2ṽ +

λ2√
Λ
ṽ = 0 in (a− xΛ, b− xΛ)Λ

1/4.

From Lemma 2.3, we have

ũ′2 + ṽ′2 − ũ2ṽ2 − α

2Λ
ũ4 − β

2Λ
ṽ4 +

λ1√
Λ
ũ2 +

λ2√
Λ
ṽ2 = TΛ.

By similar arguments as to the one we have already used, we pass to the limit in the above two
equations, say ũ → U and ṽ → V . The Maximum Principle yields that U > 0 and V > 0 and
this completes the proof.
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3.1 Special trapping potential case

We now observe that the previous arguments of Theorems 1.1 and 1.2 can be extended to
the more general system (1.20)-(1.24). First, for Lemma 2.1, it is easy to check that

∥u∥L∞ , ∥v∥L∞ ≤ c1 , (3.7)

where c1 is a positive constant independent of Λ. Since
∫ b
a
u2 =

∫ b
a
v2 = 1, and u, v ∈ H1

0 ((a, b)),
it is obvious that ∫ b

a

u′2 ,

∫ b

a

v′2 ≥ π2 (b− a)−2 > 0 , (3.8)

and by Cauchy-Schwartz inequality,∫ b

a

u4 ≥ 1

b− a

(∫ b

a

u2
)2

= (b− a)−1 ,

∫ b

a

v4 ≥ 1

b− a

(∫ b

a

v2
)2

= (b− a)−1 . (3.9)

Regarding the analogue of (2.4) in Lemma 2.3, we have

u′2 + v′2 − P1u
2 − P2v

2 − Λu2v2 − α

2
u4 − β

2
v4 + λ1u

2 + λ2v
2 (3.10)

= u′2(a) + v′2(a)−
∫ x

a

P ′
1u

2 −
∫ x

a

P ′
2v

2 ≡ T̃Λ(x) for x ∈ (a, b) .

Now we want to show that

C1 ≤ T̃Λ ≤ C2 for x ∈ (a, b) , (3.11)

where Cj’s are positive constant independent of Λ. As before, we know that∫
Ω

u′2 +

∫
Ω

P1 u
2 + α

∫
Ω

u4 + Λ

∫
Ω

u2v2 = λ1 , (3.12)∫
Ω

v′2 +

∫
Ω

P2 v
2 + β

∫
Ω

v4 + Λ

∫
Ω

u2v2 = λ2 . (3.13)

Adding these relations, we obtain∫ b

a

2
(
u′2 + v′2

)
+

∫ b

a

α

2
u4 +

β

2
v4 +Λ

∫ b

a

u2v2 +

∫ b

a

∫ x

a

P ′
1u

2 + P ′
2v

2 = [u′2(a) + v′2(a)](b− a) .

(3.14)
Thus, by (1.25), (3.8), (3.9), (3.10) and (3.14), we get

T̃Λ ≥ 4π2 (b− a)−3 +
1

2
(α+ β) (b− a)−2 − 4M > 0 in (a, b) . (3.15)

Here we have used (1.25) and the fact that∫ x

a

|P ′
1|u2 ≤M ,

∫ x

a

|P ′
2| v2 ≤M ,
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for x ∈ (a, b). On the other hand, (3.10) and (3.14) imply that

T̃Λ ≤ 4M + 2(λ1 + λ2)(b− a)−1 . (3.16)

Combining (1.7), (3.15), (3.16), we thus obtain (3.11).
By (3.10) and (3.14), it is easy to check that u′(a) and v′(a) are uniformly bounded. Hence

as in Lemma 2.4, we get

|u′| ≤ C and |v′| ≤ C , ∀x ∈ (a, b) . (3.17)

Therefore, the blow-up argument in Section 3 is also applicable here and we get the same result
as in Theorem 1.1 and 1.2.

4 Proof of Theorem 1.3 and 1.6

In this section, we completely characterize the entire solution of the one-dimensional system:

U
′′
= UV 2, V

′′
= V U2, U, V ≥ 0 in R (4.1)

and prove Theorem 1.3.
First we shall prove the existence of solutions to (4.1).

Lemma 4.1. There exists an entire solution to (4.1) with the property that U(x) = V (−x).

Proof. First we solve (4.1) in a bounded interval [0, R]
U

′′
= UV 2,−R < x < R,U(−R) = 0, U(R) = R,

V
′′
= V U2,−R < x < R, V (−R) = R, V (R) = 0,

U(−x) = V (x),−R < x < R.

We denote such solution as (UR, VR). The existence of (UR, VR) follows from direct minimization

of the energy functional 1
2

∫ R
−R((U

′
)2 + (V

′
)2 + U2V 2)dx over the space {U ∈ H1(−R,R), V ∈

H1(−R,R), U(−R) = V (R) = 0, U(R) = V (−R) = R,U(−x) = V (x), U, V ≥ 0}. By maxi-
mum Principle, U, V > 0 in (−R,R). Since U ′′

R ≥ 0 and UR(−R) = 0, we deduce that U
′
R(x) > 0

for x ∈ (−R,R). Similarly, V ′
R(x) < 0 for x ∈ (−R,R). Thus UR and VR only meet at the origin.

So UR(x)−VR(x) > 0 for x ∈ (0, R). This implies that (UR−VR)
′′
(x) ≤ 0 in (0, R). By compari-

son principle, UR−VR ≥ x for x ∈ (0, R). Denoting x+ = max(x, 0), we see that V
′′ ≥ (x+)2V in

(−R,R). Let V0 be the unique solution of V
′′
0 −(x+)2V0 = 0, V0(+∞) = 0, V0(−∞) = −2x+o(1)

as x → −∞. Then for R large, we have VR(x) ≤ V0(x). By symmetry assumption we also
have UR(x) ≤ V0(−x). Letting R → +∞ and noting that UR(x) ≥ x+, we see that (UR, VR)
approaches a (nontrivial) solution to (4.1) in (0,+∞) with the property that U(x) = V (−x).

Our second lemma shows that U and V must be monotone.

Lemma 4.2. Let (U, V ) satisfy (4.1) with (U, V ) ̸= (0, 0). Then either U
′
> 0 and V

′
< 0, or

U
′
< 0 and V

′
> 0 on R. Furthermore, there exists a constant C such that |U ′|+ |V ′ | ≤ C.
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Proof. Clearly, the quantity (U
′
)2 + (V

′
)2 − U2V 2 is a constant, i.e.,

(U
′
)2 + (V

′
)2 − U2V 2 ≡ T∞ on R , (4.2)

for some constant T∞. Since U
′′ ≥ 0, either U

′
> 0,or U

′
< 0 on R, or there exists x1 such that

U
′
(x) > 0 for x > x1, U

′
(x) < 0 for x < x1. Similar statement holds for V . Let us first assume

that there exists x0 such that U
′
> 0, V

′
> 0 for x > x0. Then U(∞) = V (∞) and for x large

enough, say x ≥ x1, the equations of U and V show that (U +V )
′′ ≥ 2(U2+V 2) ≥ (U +V )2. If

we set φ = U+V > 0, it satisfies φ
′′ ≥ φ2 for x ≥ x1. Since φ is defined in (x1,∞), this implies

φ(x) → 0 as x → +∞ which is clearly a contradiction. This argument actually shows that
all cases are excluded except the one when U

′
and V

′
do not change sign and U

′
V

′
< 0 in R.

Furthermore, it is easily seen using (4.2) and the equations that |U ′ | and |V ′| are bounded.

Let us assume that U
′
> 0 and V

′
< 0. By a slight shift of the origin and rescaling, we may

assume that
U(0) = V (0) = 1. (4.3)

It is then straightforward to derive the asymptotic behavior of U and V .

Proposition 4.3. Let (U, V ) be a solution of (4.1)-(4.3) such that U
′
> 0 and V

′
< 0. Then

we have
V 2U → 0, U2V → 0 as y → ±∞. (4.4)

Furthermore, the following holds true.{
U(−∞) = 0, U ′(−∞) = 0, U ′(∞) =

√
T∞,

V (∞) = 0, V ′(∞) = 0, V ′(−∞) = −
√
T∞,

(4.5)

Proof. We only treat the limits as x → +∞ since the ones at −∞ follow from the change of
unknowns Ũ(x) = V (−x), Ṽ (x) = U(−x). Since U ′′

, V
′′
> 0, U

′
and V

′
have limits as x→ +∞.

Obviously, V
′′
(+∞) = 0. Assume by the way of contradiction that U

′
(∞) = ∞. Then, by

(4.2), UV → +∞ as x → +∞. This implies that V
′′
= U2V → +∞ as x → +∞ which is

impossible. Hence by (4.2), U
′
and UV have limits as x→ +∞. Thus limx→+∞ UV 2 = 0. Since

U has at most linear growth at ∞ and −V ′′
+ V ≤ 0 for large x with V (∞) = 0, V > 0, we see

that limx→+∞ UV = 0 and limx→+∞ U2V = 0. Therefore, by (4.2), we get U
′
(∞) =

√
T∞ and

complete the proof of (4.5).

Lemma 4.4. Let U and V be solutions of (4.5) such that U
′
> 0. Then U has two asymptotic

lines y = 0 at −∞, and

y =
√
T∞x+ b1 for some b1 ∈ R

at ∞ with T∞ > 0. Similarly V has two asymptotic lines, y = 0 at ∞, and at −∞

y = −
√
T∞x+ b2 for some b2 ∈ R.

Remark 4.5. Actually, it will be seen below that necessarily b1 = b2 in the above lemma (see
Corollary 4.7). �
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Proof. We will just prove that U has two asymptotic lines. We only need to consider the
situation at ∞. Since U

′′
> 0, U

′
> 0 implies that T∞ = (U

′
(∞))2 > 0. Since U ′(∞) =

√
T∞,

it is not difficult to get

(
√
T∞ − ϵ)x ≤ U(x) ≤ (

√
T∞ + ϵ)x for x ∈ (M,∞) and M large.

It is easily seen that one can define function V1 such that
V ′′
1 = (

√
T∞ − ϵ)2x2V1 in (M,∞),

V1 > 0,

V1(M) = V (M), V1(∞) = 0.

Then, for any ρ, 0 < ρ <
√
T∞−ϵ
2

, there exists a constant C > 0 and M > 0 such that V1(y) ≤
Ce−ρy

2
for all y ∈ (M,∞). Furthermore we have, in the considered region,

(V − V1)
′′ − U2(V − V1) = [U2 − (

√
T∞ − ϵ)2x2]V1 ≥ 0,

which implies, by Maximum Principle,

V (x) ≤ Ce−
ρy2

2 , ∀y ∈ (M,∞). (4.6)

From the equation on V , it follows that V
′′ ≤ Cy2e−ρy

2
for y ≥ M . Therefore, by integrating,

we get 0 ≥ V
′
(y) ≥ −Ce−ρy2 for y ≥ M . Hence (U ′)2 − T∞ ≥ −(V ′)2 ≥ Ce−ρy

2
for y ≥ M .

This implies that U(y)−
√
T∞y ≥ −C for y ≥ M . Letting b1 := infR{U −

√
T∞y}, in view of

the convexity of U , we see that z =
√
T∞y + b1 is an asymptotic line of U at +∞.

Proposition 4.6. Let (U, V ) be a solution of (4.1)-(4.3).Then we have

V (y) = U(−y).

Proof. We assume here that U
′
> 0 hence (4.5) holds. Also without loss of generality, we may

assume that b1 ≥ b2 where b1 and b2 are the y−intercept of the asymptotic lines in Lemma 4.4.
Indeed, if needed we substitute (U, V ) by (V (−x), U(−x)) which also satisfies (4.5) and this
substitution interchanges b1 and b2.

To prove Proposition 4.6, we will use the method of moving planes which actually reduces
here to a “moving point”. For λ > 0, define Iλ = {x;x > λ} = (λ,∞) and for x ∈ Iλ, set

Uλ(x) := U(2λ− x), Vλ(x) := V (2λ− x)

and
w1 := U − Vλ, w2 := Uλ − V.

Note that Uλ and Vλ also satisfy U
′′

λ = UλV
2
λ , V

′′

λ = VλU
2
λ . Therefore, w1 and w2 satisfy the

following equation
−w′′

1 + U2
λw1 = pλw2 (4.7)

−w′′

2 + U2w2 = qλw1 (4.8)
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where pλ = U(V + Uλ) and qλ = Uλ(U + Vλ) so that pλ, qλ > 0. Note that qλ(x) = pλ(2λ− x)
as was clear from the symmetry of the problem.

We first claim: for λ sufficiently large, w1 and w2 are positive in Iλ.
In fact, from the asymptotic behavior (4.5), we know that

U(x) ≥
√
T∞x+ b1, V (x) ≤ −

√
T∞x

− +K,

for all x ∈ R, where x− = max(−x, 0) and K is a constant. Therefore, w1(x) ≥
√
T∞(x+(2Λ−

x)− + b1 −K) for all x ∈ Iλ. Clearly, if λ is sufficiently large, say λ ≥ λ0, we get w1(x) > 0 for
all x ∈ Iλ. From the equation (4.8), we see that if λ ≥ λ0,{

−w′′
2 + U2w2 > 0 in Iλ,

w2(λ) = U(λ)− V (λ) > 0, w2(∞) = 0.
(4.9)

If w2 were not positive, then it would reach a minimum at some x̄ ∈ Iλ such that w2(x̄) =
minIλ w2 < 0 with w

′′
2 (x̄) ≥ 0 and that obviously contradicts the equation (4.9). Hence w1, w2 >

0 in Iλ for λ ≥ λ0. The claim is thus proved.
Next, let

λ∗ := inf{λ > 0;wµ1 (x) > 0 in Iµ for all µ ≥ λ}.

Here we write wµ1 , w
µ
2 to emphasize the dependence of w1 and w2 on the parameter µ. By

equation (4.8) above and by the Maximum Principle as already used, w2 > 0 in Iλ for all
λ > λ∗. Since U(0) = V (0) = 1, λ∗ ≥ 0.

By continuity, we know that wλ
∗

1 , w
λ∗
2 ≥ 0 in Iλ∗ . We claim that λ∗ = 0 and, to this end,

argue by contradiction, and assume that λ∗ > 0. Then since w1 = wλ
∗

1 ≥ 0, w2 = wλ
∗

2 ≥ 0 and
w1(λ

∗), w2(λ
∗) > 0, from the equation (4.7) and (4.8) and the strong maximum principle, we

know that w1, w2 > 0 in Iλ∗ .
From the asymptotic behvaior, it follows that, as x→ +∞,

w1(x)−
[√

T∞x+ b1 +
√
T∞(2λ∗ − b2)− b2] > 0.

Hence wλ
∗

1 (∞) = 2
√
T∞λ

∗ + b1 − b2 > 0 since we have chosen b1 ≥ b2.
The same asymptotic behavior shows that for all λ close to λ∗ and below it, say 0 < λ∗−η ≤

λ ≤ λ∗, with η > 0 sufficiently small, one can choose A sufficiently large and find ν > 0 such
that

wλ1 (x) ≥ ν > 0 for all x ≥ A and λ∗ − η ≤ λ ≤ λ∗.

Now, we know that minx∈[λ∗,A]w
λ∗
1 (x) > 0. then by continuity, we get

min
[λ,A]

wλ1 (x) > 0 for all λ∗ − η ≤ λ ≤ λ∗.

Together with the previous inequality this yields wλ1 (x) ≥ 0 for all λ such that λ∗−η ≤ λ ≤
λ∗. We thus get a contradiction to the minimality of λ∗. Therefore λ∗ = 0.

We can now conclude. Going all the way to λ∗ = 0, we get U(x) ≥ V (−x) for x ≥ 0. Now
w0

2 ≥ 0 implies U(−x) ≥ V (x), ∀x ≥ 0. Putting these together we get

U(x) ≥ V (−x) ∀x ∈ R.
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Since U(0) = V (0) = 1, U(x)− V (−x) reaches a minimum at x = 0 implying U
′
(0) = −V ′

(0).
This shows that w0

1(0) = 0, (w0
1)

′
(0) = U

′
(0) + V

′
(0) = 0. Then, the Hopf Lemma applied to

w0
1 ≥ 0 as a solution of (4.7) in R+ shows that w0

1 ≡ 0, that is U(x) ≡ V (−x). The proof of
Proposition 1.1 is thereby complete.

The above proposition implies the following consequence.

Corollary 4.7. In Lemma 4.4 it holds that

b1 = b2.

Proof of Theorem 1.3. Part (1) and (2) of the theorem follows Proposition 4.3 and Proposition
4.6.

It remains to prove (3) of Theorem 1.3. Let (ϕ, ψ) be a solution of (1.26) and |ϕ|+ |ψ| ≤ 1.
Let

ϕ = U
′
ϕ̄, ψ = V

′
ψ̄.

Then it is easy to see that ϕ̄ satisfies

U
′
ϕ̄

′′
+ 2U

′′
ϕ̄

′
= 2UV V

′
(ψ̄ − ϕ̄) (4.10)

and ψ̄ satisfies
V

′
ψ̄

′′
+ 2V

′′
ψ̄

′
= 2UV U

′
(ϕ̄− ψ̄) (4.11)

Multiplying (4.10) by U
′
ϕ̄ and integrating over (a, b), we have

(U
′
)2ϕ̄

′
ϕ̄|ba =

∫ b

a

(U
′
)2(ϕ̄

′
)2 +

∫ b

a

2UV U
′
V

′
(ψ̄ − ϕ̄)ϕ̄ (4.12)

Similarly we also have

(V
′
)2ψ̄

′
ψ̄|ba =

∫ b

a

(V
′
)2(ψ̄

′
)2 +

∫ b

a

2UV U
′
V

′
(ϕ̄− ψ̄)ψ̄ (4.13)

Adding (4.12) and (4.13), we obtain

(U
′
)2ϕ̄

′
ϕ̄|ba + (V

′
)2ψ̄

′
ψ̄|ba =

∫ b

a

(V
′
)2(ψ̄

′
)2 +

∫ b

a

(U
′
)2(ϕ̄

′
)2 −

∫ b

a

2UV U
′
V

′
(ψ̄ − ϕ̄)2 (4.14)

We calculate

(U
′
)2ϕ̄

′
ϕ̄ = ϕϕ

′ − U
′′

U ′ ϕ
2.

From the equation for ϕ(x), we see that ϕ is exponentially decaying as x → −∞. In fact, by
the asymptotic behavior of U and V as x→ −∞, we infer that ϕ

′′
is exponentially decaying as

x → −∞ and hence limx→−∞ ϕ
′
exists and must be zero since ϕ is bounded. By the equation

again, ϕ
′
is exponentially decaying as x→ −∞ and so the limx→−∞ ϕ(x) = ϕ(−∞) exists. But

this limit must be zero since ϕ
′′
= V 2ϕ + 2UV ψ. Because ϕ

′
(x) is exponentially decaying as

x→ −∞ and ϕ(−∞) = 0, we conclude that ϕ is exponentially decaying as x→ −∞. Similarly
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as x → +∞, ϕ
′′
is exponentially decaying and hence ϕ

′
(+∞) exists and must be zero. This

yields also that ϕ
′
is exponentially decaying when x→ +∞. Thus we have

(U
′
)2ϕ̄

′
ϕ̄|+∞

−∞ = lim
b→+∞

(−U
′′

U ′ ϕ
2) = 0 (4.15)

Similarly, we have

(V
′
)2ψ̄

′
ψ̄ = ψψ

′ − V
′′

V ′ ψ
2

(V
′
)2ψ̄

′
ψ̄|+∞

−∞ = lim
a→+∞

(
V

′′

V ′ ψ
2) = 0. (4.16)

Combining (4.14), (4.15) and (4.16), we deduce that

ϕ̄ = C1, ψ̄ = C2, ϕ̄ = ψ̄ (4.17)

Thus (ϕ, ψ) = c(U
′
, V

′
).

4.1 Proof of Theorem 1.6.

Assume Ω = (−1, 1) and α = β = 0. Then (1.6) becomes now EΛ(u, v) =
∫ 1

−1
(u′2 + v′2) +

Λ
∫ 1

−1
u2v2. Here we want to estimate the minimizing energy

EΛ ≡ min

{
EΛ(u, v) : (u, v) ∈ H1

0 (−1, 1)2 ,

∫ 1

−1

u2 =

∫ 1

−1

v2 = 1 , u(x) = v(−x) ,∀x ∈ (−1, 1)

}
.

(4.18)
Firstly, we want to prove the lower bound estimate of EΛ. (I state the proof of lower bound
estimate firstly, and then use (4.25)-(4.27) to show (4.41) to avoid disconcerting readers as the
notes suggest) Let (uΛ, vΛ) be the minimizer of (4.18). For simplicity, we may set (u, v) =
(uΛ, vΛ) which satisfies 

u′′ = ϵ−4v2u− λu in (−1, 1) ,
v′′ = ϵ−4u2v − λv in (−1, 1) ,

u = v = 0 at ± 1 ,
(4.19)

and
u(x) = v(−x) for x ∈ (−1, 1) , (4.20)

where ϵ = Λ− 1
4 . Here we have invoked the symmetry of the problem to use a single parameter

λ as the Lagrangian-multipliers for both constraints. Moreover, both u and v are positive
functions on (−1, 1). By the same arguments of Theorem 1.2, Proposition 2.1 and 2.2 of [17],
it is easy to check that as ϵ→ 0 i.e. Λ → ∞ (up to a subsequence),

λ→ π2 , (4.21)

u(x) → u0(x) =

{ √
2 sin(π x) for x ∈ (0, 1] ,

0 for x ∈ [−1, 0] ,
(4.22)
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and

v(x) → v0(x) =

{
−
√
2 sin(π x) for x ∈ [−1, 0) ,

0 for x ∈ [0, 1] ,
(4.23)

for x ∈ (−1, 1).
Without loss of generality, by (4.20), (4.22), (4.23), Theorem 1.1 and 1.2, we may assume

u(0) = v(0) = ϵ, u′(0) > 0 and v′(0) < 0 . (4.24)

By (4.19), it is easy to check that

(v′u− u′v)
′
= ϵ−4

(
u2 − v2

)
uv in (−1, 1) , (4.25)

and (
u2 − v2

)′′
+ 2λ

(
u2 − v2

)
= 2

(
u′2 − v′2

)
in (−1, 1) . (4.26)

Then we have

Proposition 4.8. There does not exist an interval (ξ, η) ⊂ (0, 1) such that u ≥ v ≥ 0 in (ξ, η),
u′ < 0, v′ > 0 at ξ and u′ > 0, v′ < 0 at η.

Proof. We may prove this by contradiction. Suppose there exists an interval (ξ, η) ⊂ (0, 1) such
that u ≥ v ≥ 0 in (ξ, η), u′ < 0, v′ > 0 at ξ and u′ > 0, v′ < 0 at η. Then integrating (4.25)
from ξ to η, we may get the contradiction and complete the proof.

Proposition 4.9. There does not exist 0 < ρ < 1 such that u(ρ) = v(ρ) > 0 and u > v > 0 on
(0, ρ).

Proof. We may also prove this by contradiction. Suppose there exists 0 < ρ < 1 such that
u(ρ) = v(ρ) > 0 and u > v > 0 on (0, ρ). Let ϕ(x) = u2(x) − v2(x) for x ∈ (−1, 1). Then by
(4.26) and Lemma 2.4, we have

|ϕ′′ + 2λϕ| ≤ K0 in (−1, 1) , (4.27)

where K0 is a positive constant independent of ϵ. Note that ϕ(0) = ϕ(ρ) = ϕ(1) = 0. Hence
(4.21) and (4.27) imply ρ ∈ (γ1, γ2) ⊂ (0, 1), where γj’s are positive constant independent of ϵ.
This may contradict to (4.22) and (4.23). Therefore, we may complete the proof.

Due to (4.19), u′′ ≥ 0 if and only if v ≥ ϵ2
√
λ. Similarly, v′′ ≥ 0 if and only if u ≥ ϵ2

√
λ.

Hence by (4.24), Proposition 4.8 and 4.9, we obtain v′(x) ≤ 0 for x ∈ [0, 1). Consequently,
0 < v(x) ≤ v(0) = ϵ for x ∈ [0, 1] and ∫ 1

0

v2(x) dx ≤ ϵ2 . (4.28)

Similarly, we may have 0 < u(x) ≤ u(0) = ϵ for x ∈ [−1, 0] and∫ 0

−1

u2(x) dx ≤ ϵ2 . (4.29)
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Thus (4.28), (4.29) and the constraint
∫ 1

−1
u2 =

∫ 1

−1
v2 = 1 give∫ 1

0

u2(x) dx ,

∫ 0

−1

v2(x) dx ≥ 1− ϵ2 . (4.30)

On the other hand, ∫ 1

0

u′2 ≥ Eu,ϵ
∫ 1

0

u2 , (4.31)

and

Eu,ϵ = inf

{∫ 1

0

w′2 : w ∈ H1(0, 1) , w(0) = ϵ , w(1) = 0 ,

∫ 1

0

w2 = 1

}
≥ π2 − C0ϵ , (4.32)

where C0 is a positive constant independent of ϵ. Then (4.30)-(4.32) give∫ 1

0

u′2 ≥ π2 − C1ϵ , (4.33)

where C1 is a positive constant independent of ϵ. Similarly,∫ 0

−1

v′2 ≥ π2 − C2ϵ , (4.34)

where C2 is a positive constant independent of ϵ. Combining (4.33) and (4.34), we may have
the lower bound estimate of EΛ given as follows:

EΛ ≥ 2π2 − C3 Λ
− 1

4 , (4.35)

where C3 is a positive constant independent of Λ. Here we have used the fact that ϵ = Λ− 1
4 .

About the upper bound estimate of EΛ, it is easy to get a upper bound of EΛ independent
of Λ. Indeed, taking test functions

u0(x) =

{ √
2 sin(πx) if 0 ≤ x ≤ 1 ,

0 if − 1 ≤ x < 0 ,

and v0(x) = u0(−x) for x ∈ [−1, 1], we get EΛ ≤ EΛ(u0, v0) = 2π2. However, Theorem 1.6
involves a more precise upper bound on EΛ describing how EΛ approaches to 2π2 as Λ → ∞.
The idea of the more precise test functions we construct below is an approximation of u0 (and
v0) involving the solution (U, V ) of the system (1.17).

We use the results of Section 1 to construct the comparison function and obtain the upper
bound of EΛ. By Theorem 1.2, there exists the associated limit (U, V ) solving (1.17) and
satisfying (1.18). Since Ω = (−1, 1) and α = β = 0, then by (1.19) and (4.21)-(4.23), we may
obtain T∞ = 2π2. Consequently,

U ′′ = V 2U , V ′′ = U2V in R , (4.36)

and
U ′2 + V ′2 − U2V 2 = 2π2 in R . (4.37)
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By Theorem 1.3 and Lemma 4.4, we have U(y) = V (−y) for y ∈ R, U(R) =
√
2πR + B +

O(e−CR) and U ′(R) =
√
2π+O(e−CR) as R → ∞, where B ∈ R is a constant. Integrating (4.36)

and (4.37) on [−R,R], we use integration by part to get∫ R

−R
U2V 2 =

2
√
2π

3
B +O(e−CR),

∫ R

−R
U ′2 =

∫ R

−R
V ′2 = 2π2R +

√
2π

3
B +O(e−CR) , (4.38)

for R > 0 sufficiently large. Now we define the comparison function of EΛ as follows:
Let

ǔϵ(x) =

{
χ(x)ϵU(x

ϵ
) for − 1 ≤ x ≤ ϵ

2
3 ,√

2
1+δϵ

sin
[

π
1+δϵ

(x+ δϵ)
]

for ϵ
2
3 ≤ x ≤ 1 ,

where ϵ = Λ− 1
4 and χ(x) is a smooth cut-off function such that χ ≡ 1 if x ≥ −1

2
and χ ≡ 0 if

x ≤ −1. Besides, by Taylor expansion, there exists δϵ =
B√
2π
ϵ+ 3B

2
√
2π
ϵ
5
3 +O(ϵ2) such that√

2

1 + δϵ
sin

[
π

1 + δϵ
(ϵ

2
3 + δϵ)

]
= ϵU(ϵ−

1
3 ) =

√
2πϵ

2
3 +Bϵ+O(e−Cϵ

− 1
3 ).

Then it is easy to check that∫ 1

−1

ǔ2ϵ =

∫ ϵ
2
3

−1

χ2ϵ2U2(
x

ϵ
) +

∫ 1

ϵ
2
3

2

1 + δϵ
sin2

[
π

1 + δϵ
(x+ δϵ)

]
= 1 +O(ϵ2).

Let ûϵ = ∥ǔϵ∥−1
L2(−1,1) ǔϵ. Then ûϵ ∈ H1

0 (−1, 1) and ∥ûϵ∥L2(−1,1) = 1. Similarly, we may define v̂ϵ

and have v̂ϵ(x) = ûϵ(−x) for x ∈ (−1, 1). Hence by (4.38), we have
∫ 1

−1
ǔ′2ϵ = π2 − 5

√
2

3
Bπϵ +

O(ϵ2), which gives that ∫ 1

−1

û′2ϵ =

∫ 1

−1

v̂′2ϵ = π2 − 5
√
2

3
Bπϵ+O(ϵ2) (4.39)

because of ∥ǔϵ∥2L2(−1,1) = 1 +O(ϵ2). On the other hand, we may also obtain that

1

ϵ4

∫ ϵ
2
3

−ϵ
2
3

ǔ2ϵ v̌
2
ϵ = ϵ

∫ ϵ−
1
3

−ϵ−
1
3

U2(y)V 2(y)dy = ϵ

∫ ∞

−∞
U2V 2 +O(e−Cϵ

− 1
3 ),

1

ϵ4

∫ −ϵ
2
3

−1

ǔ2ϵ v̌
2
ϵ ≤

C

ϵ4

∫ −ϵ
2
3

−1

ǔ2ϵ =
C

ϵ

∫ −ϵ−
1
3

− 1
ϵ

U2(y)dy = O(e−Cϵ
− 1

3 ) ,

and similarly

1

ϵ4

∫ 1

ϵ
2
3

ǔ2ϵ v̌
2
ϵ = O(e−Cϵ

− 1
3 ) .
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Thus
1

ϵ4

∫ 1

−1

û2ϵ v̂
2
ϵ = ϵ

∫ ∞

−∞
U2V 2 +O(ϵ3) =

2
√
2

3
Bπϵ+O(ϵ3). (4.40)

Therefore, by (4.39) and (4.40), we get

E(ûϵ, v̂ϵ) = 2π2 − 8
√
2

3
Bπϵ+O(ϵ2),

which implies the following upper bound estimate

EΛ ≤ 2π2 − 8
√
2

3
BπΛ− 1

4 +O(Λ− 1
2 ). (4.41)

Therefore, combining (4.35) and (4.41), we may complete the proof of Theorem 1.6.

5 De Giorgi type result

In this section we will study the high-dimensional case of the equation of U and V .
The proof of Theorem 1.8 is analogous to that in [32]. First we give the following non-

degenerate result.

Proposition 5.1. Suppose that U , V satisfy (1.16) and (1.28). Assume that ϕ, ψ satisfy

1

R2

∫
B2R\BR

(ϕ2 + ψ2) ≤ C for large R, (5.1)

and {
∆ϕ = V 2ϕ+ 2UV ψ in RN ,

∆ψ = 2UV ϕ+ U2ψ in RN .

Then for some constant C ∈ R,

(ϕ, ψ) = C(∂NU, ∂NV ).

Remark: The proof of Proposition (5.1) also gives the proof of Part II of Theorem 1.2.

Proof. It is more convenient to designate σ1(y) = ∂NU(y) and σ2(y) = ∂NV (y). Define ϕ̃ and
ψ̃ such that

ϕ = σ1ϕ̃, ψ = σ2ψ̃.

Then the following equalities hold

div(σ2
1∇ϕ̃) + 2UV σ1σ2(ϕ̃− ψ̃) = 0, (5.2)

div(σ2
2∇ψ̃)− 2UV σ1σ2(ϕ̃− ψ̃) = 0. (5.3)

Let χR(y) = χ(|y|/R) be a cut-off function where χ(s) = 1 for 0 < s < 1, χ(s) = 0 for s > 2.
Testing (5.2) against ϕ̃χ2

R, we have∫
RN

χ2
Rσ

2
1|∇ϕ̃|2 +

∫
RN

2σ2
1ϕ̃χR∇ϕ̃∇χR −

∫
RN

2UV σ1σ2(ϕ̃− ψ̃)ϕ̃χ2
R = 0. (5.4)
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Similarly, we also have∫
RN

χ2
Rσ

2
2|∇ψ̃|2 +

∫
RN

2σ2
2ψ̃χR∇ψ̃∇χR +

∫
RN

2UV σ1σ2(ϕ̃− ψ̃)ψ̃χ2
R = 0. (5.5)

Adding (5.4) and (5.5) may give∫
RN

χ2
Rσ

2
1|∇ϕ̃|2 +

∫
RN

χ2
Rσ

2
2|∇ψ̃|2

= −
∫
RN

2σ2
1ϕ̃χR∇ϕ̃∇χR −

∫
RN

2σ2
2ψ̃χR∇ψ̃∇χR +

∫
RN

2UV σ1σ2(ϕ̃− ψ̃)2χ2
R

≤ −
∫
B2R\BR

2σ2
1ϕ̃χR∇ϕ̃∇χR −

∫
B2R\BR

2σ2
2ψ̃χR∇ψ̃∇χR . (5.6)

Here we have used (1.28) and the fact that
∫
RN 2UV σ1σ2(ϕ̃− ψ̃)2χ2

R is non-positive. Moreover,
by Hölder’s inequality, the right hand side term of (5.6) can be dominated by∣∣∣∣∫

B2R\BR

2σ2
1ϕ̃χR∇ϕ̃∇χR

∣∣∣∣+ ∣∣∣∣∫
B2R\BR

2σ2
2ψ̃χR∇ψ̃∇χR

∣∣∣∣
≤ 2

(∫
B2R\BR

χ2
Rσ

2
1|∇ϕ̃|2

) 1
2
(∫

B2R\BR

σ2
1ϕ̃

2|∇χR|2
) 1

2

+ 2

(∫
B2R\BR

χ2
Rσ

2
2|∇ψ̃|2

) 1
2
(∫

B2R\BR

σ2
2ψ̃

2|∇χR|2
) 1

2

≤2

(∫
B2R\BR

χ2
Rσ

2
1|∇ϕ̃|2 +

∫
B2R\BR

χ2
Rσ

2
2|∇ψ̃|2

) 1
2

·
(∫

B2R\BR

σ2
1ϕ̃

2|∇χR|2 +
∫
B2R\BR

σ2
2ψ̃

2|∇χR|2
) 1

2

. (5.7)

The last inequality comes from |A · B| ≤ |A||B| for A,B ∈ R2. Thus by (5.6) and (5.7), we
may obtain∫

RN

χ2
Rσ

2
1|∇ϕ̃|2 +

∫
RN

χ2
Rσ

2
2|∇ψ̃|2 ≤ 4

(∫
B2R\BR

σ2
1ϕ̃

2|∇χR|2 +
∫
B2R\BR

σ2
2ψ̃

2|∇χR|2
)
. (5.8)

By (5.1) and |∇χR| ≤ C
R
, we have∫

B2R\BR

(σ2
1ϕ̃

2|∇χR|2 + σ2
2ψ̃

2|∇χR|2) ≤ C, (5.9)

which yields that ∫
BR

σ2
1|∇ϕ̃|2 +

∫
BR

σ2
2|∇ψ̃|2 ≤ C.

Here we have used (5.8) and (5.9). Then it is obvious that
∫
RN σ

2
1|∇ϕ̃|2 +

∫
RN σ

2
2|∇ψ̃|2 <∞, so∫

B2R\BR

σ2
1|∇ϕ̃|2 +

∫
B2R\BR

σ2
2|∇ψ̃|2 → 0 as R → ∞. (5.10)
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Using (5.6)–(5.10) again, we finally get that∫
RN

χ2
Rσ

2
1|∇ϕ̃|2 +

∫
RN

χ2
Rσ

2
2|∇ψ̃|2 → 0 as R → ∞.

Thus ∇ϕ̃ ≡ ∇ψ̃ ≡ 0 in RN i.e. ϕ̃ ≡ C1, ψ̃ ≡ C2. Therefore, by (5.2) and (5.3), it is easy to
check that C1 = C2 and we may complete the proof of Proposition 5.1.

Proof of Theorem 1.8. Testing the first equation in (1.16) against χ2
RU , we have∫

RN

χ2
R|∇U |2 +

∫
RN

2χRU∇χR∇U = −
∫
RN

χ2
RU

2V 2 ≤ 0,

where χR is defined in the previous proof. Thus Hölder’s inequality yields that∫
B2R

χ2
R|∇U |2 ≤ 4

∫
B2R\BR

|∇χR|2U2 . (5.11)

Similarly we also have ∫
B2R

χ2
R|∇V |2 ≤ 4

∫
B2R\BR

|∇χR|2V 2 . (5.12)

Then by (5.11) and (5.12), we obtain

1

R2

∫
B2R\BR

|∇U |2 + |∇V |2 ≤ 1

R2

∫
B4R

χ2
2R(|∇U |2 + |∇V |2)

≤ C

R2

∫
B4R\B2R

|∇χ2R|2(U2 + V 2)

≤ C

R4

∫
B4R\B2R

(U2 + V 2) ≤ C , (5.13)

where the last inequality may come from the assumption (H3) i.e. (1.29).
Let ϕ = ∇U ·ν and ψ = ∇V ·ν where ν ∈ R2 such that ∇U(0) ·ν = 0. Then Proposition 5.1

and (5.13) may imply (ϕ, ψ) = C(∂NU, ∂NV ), where C is a constant. Hence by ∇U(0) · ν = 0
and(1.28), C = 0 i.e. ϕ ≡ 0 and ψ ≡ 0. Therefore, U(y) = U0(a · y), V (y) = V0(a · y) for y ∈ R2

and we may complete the proof of Theorem 1.8, where U0, V0 : R → R and a ⊥ ν.

Furthermore, we can get the stability result of U and V , that is,∫
RN

|∇ϕ|2 + |∇ψ|2 +
∫
RN

V 2ϕ2 + U2ψ2 + 4UV ϕψ ≥ 0,

for any compactly supported smooth functions ϕ, ψ.

Proposition 5.2. The solution U , V of (1.16) is stable for any dimension.

Proof. We use the method in [31]. Note that

∆∂NU = V 2∂NU + 2UV ∂NV, (5.14)

∆∂NV = 2UV ∂NU + U2∂NV. (5.15)
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Let ϕ, ψ be two compactly supported smooth functions in RN . Multiplying (5.14) with ϕ2

∂NU

and integrating by parts, we have∫
RN

2ϕ∇ϕ∇(∂NU)

∂NU
−
∫
RN

ϕ2|∇∂NU |2

(∂NU)2
+

∫
RN

V 2ϕ2 +

∫
RN

2UV
∂NV

∂NU
ϕ2 = 0.

Using Young’s inequality, we then obtain that∫
RN

|∇ϕ|2 +
∫
RN

V 2ϕ2 +

∫
RN

2UV
∂NV

∂NU
ϕ2 ≥ 0.

Dealing similarly with (5.15) and ψ2

∂NV
, and we get∫

RN

|∇ψ|2 +
∫
RN

U2ψ2 +

∫
RN

2UV
∂NU

∂NV
ψ2 ≥ 0.

Thus an addition of the above two inequalities says that∫
RN

|∇ϕ|2 + |∇ψ|2 +
∫
RN

V 2ϕ2 + U2ψ2 + 2UV

(
∂NV

∂NU
ϕ2 +

∂NU

∂NV
ψ2

)
≥ 0.

Since UV ≥ 0 and ∂NU∂NV < 0, we finally get∫
RN

|∇ϕ|2 + |∇ψ|2 +
∫
RN

V 2ϕ2 + U2ψ2 + 4UV ϕψ ≥ 0.

The proof is concluded.

6 Frequency function

In this section, we show how to use (1.31) the condition of the frequency function of (uΛ, vΛ)’s
to prove (1.29) when the spatial dimension N = 2. For notation convenience, we may denote
uΛ, vΛ and λΛj ’s by u, v and λj’s, respectively. To define the frequency function, we may intro-
duce the following quantities:

H(r) =

∫
∂Br

(u2 + v2)dSx, (6.1)

I (r) =

∫
Br

{
|∇u|2 + |∇v|2 + P̄Λ(u, v)

}
dx, (6.2)

where Br ⊂ Ω is the two-dimensional ball with center at xΛ and radius r, and P̄Λ is set as

P̄Λ(u, v) = αu4 + β v4 + 2Λu2 v2 −
(
λ1u

2 + λ2v
2
)
. (6.3)

Now we define the frequency function N of (u, v) as follows:

N(r) =
rI (r)

H (r)
, (6.4)
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for r > 0 such that Br ⊂ Ω. By (1.13), it is easy to check that

N(mΛ r) = Ñ(r) ≡ rĨ (r)

H̃ (r)
, (6.5)

for r > 0, where

H̃(r) =

∫
∂Br

(
ũ2 + ṽ2

)
dSy , (6.6)

Ĩ (r) =

∫
Br

{
|∇ũ|2 + |∇ṽ|2 + P̃Λ(ũ, ṽ)

}
dy, (6.7)

and
P̃Λ(ũ, ṽ) = m4

Λ α ũ
4 +m4

Λ β ṽ
4 + 2m4

Λ Λ ũ
2 ṽ2 −

(
m2

Λ λ1ũ
2 +m2

Λ λ2ṽ
2
)
. (6.8)

Hereafter, we denote ũ, ṽ as ũΛ, ṽΛ for notation convenience. Besides, we also use the same
notation Br to denote a two-dimensional ball with radius r and center at the origin.

Due to the hypothesis (H0) (i.e. xΛ → x∞ ∈ Ω as Λ → ∞), it is obvious that

m−1
Λ dist(xΛ, ∂Ω) → ∞ as Λ → ∞ , (6.9)

and then the frequency function Ñ(r) is well-defined for r > 0 and Λ sufficiently large. As
for (1.12) of [25], we may obtain

H̃ ′ =
1

r
H̃ + 2

∫
∂Br

(ũ ũρ + ṽ ṽρ) dSy , ∀ r > 0 , (6.10)

where ρ = |y|. Here we have used the fact that the spatial dimension N = 2. By (1.14) and
(1.15), it is obvious that

1

2
∆(ũ2) = |∇ũ|2 +m4

Λαũ
4 +m4

ΛΛũ
2ṽ2 −m2

Λλ1ũ
2 in Br , (6.11)

1

2
∆(ṽ2) = |∇ṽ|2 +m4

Λβṽ
4 +m4

ΛΛũ
2ṽ2 −m2

Λλ2ṽ
2 in Br . (6.12)

Hence by (6.7), (6.11), (6.12) and the divergence theorem, we have

Ĩ(r) =
1

2

∫
Br

∆
(
ũ2 + ṽ2

)
dy =

1

2

∫
∂Br

∂ρ
(
ũ2 + ṽ2

)
dy . (6.13)

Moreover, by (6.13), (6.10) can be transformed into

H̃ ′ =
1

r
H̃ + 2Ĩ , ∀ r > 0 , (6.14)

i.e.
d

dr

(
log

H̃

r

)
=

2

r
Ñ(r) , ∀ r > 0 . (6.15)

Integrating (6.15) from R0 to l, we have

H̃(l) =
1

R0

H̃(R0) l e
∫ l
R0

2
r
Ñ(r) dr

, for l > R0 , (6.16)
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where R0 > 1 is a positive constant. Using integration by part, it is obvious that∫ l

R0

1

r
Ñ dr = Ñ(l) log l − Ñ(R0) logR0 −

∫ l

R0

(log r) Ñ ′(r) dr . (6.17)

By (6.5), it is easy to check that

Ñ ′ =

(
Ĩ ′

Ĩ
+

1

r
− H̃ ′

H̃

)
Ñ . (6.18)

Consequently, by (6.14), (6.18) becomes

Ñ ′ =

(
Ĩ ′

Ĩ
− 2Ĩ

H̃

)
Ñ . (6.19)

By (6.7), it is obvious that

Ĩ ′(r) =

∫
∂Br

{|∇ũ|2 + |∇ṽ|2 + P̃Λ}dSy

=

∫
∂Br

{(|∇ũ|2 + |∇ṽ|2)
2∑
s=1

ys

r
νs + P̃Λ}dSy,

where νs = ys/r is the s component of outer normal vector ν = y
r
. Using integration by parts,

we may get

Ĩ ′(r) =
1

r

∫
Br

2∑
k,s=1

[
∂

∂ys
(ũ2k + ṽ2k)

]
ysdy +

2

r

∫
Br

(|∇ũ|2 + |∇ṽ|2) dy +
∫
∂Br

P̃ΛdSy

=
2

r

∫
Br

2∑
k,s=1

(ũkũks + ṽkṽks)y
sdy +

2

r

∫
Br

(|∇ũ|2 + |∇ṽ|2)dy +
∫
∂Br

P̃Λ dSy ,

where ũk, ṽk, ũks and ṽks denote ∂yk ũ, ∂yk ṽ, ∂yk∂ysũ and ∂yk∂ys ṽ, respectively. Moreover,

2

r

∫
Br

2∑
k,s=1

(ũkũks + ṽkṽks)y
sdy

=
2

r

∫
∂Br

2∑
k,s=1

(ũkũs + ṽkṽs)y
s · νkdSy −

2

r

∫
Br

2∑
k,s=1

(ũkkũs + ṽkkṽs)y
sdy

−2

r

∫
Br

2∑
k,s=1

(ũkũs + ṽkṽs)δksdy ,

where δks =

{
1 if k = s
0 if k ̸= s.

Therefore,

Ĩ ′(r) =

∫
∂Br

P̃ΛdSy + 2

∫
∂Br

(
ũ2ρ + ṽ2ρ

)
dSy −

2

r

∫
Br

2∑
s=1

(ysũs∆ũ+ ysṽs∆ṽ)dy (6.20)
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where ũρ = ∂ρũ and ṽρ = ∂ρṽ. By (1.14) and (1.15) and (6.8), it is easy to check that

−2

r

∫
Br

2∑
s=1

(ysũs∆ũ+ ysṽs∆ṽ)dy =
−1

r

∫
Br

y · ∇P̂Λdy , (6.21)

where

P̂Λ(ũ, ṽ) = m4
Λ

α

2
ũ4 +m4

Λ

β

2
ṽ4 +m4

ΛΛũ
2ṽ2 −m2

Λ(λ1ũ
2 + λ2ṽ

2) . (6.22)

Using integration by parts,

−1

r

∫
Br

y · ∇P̂Λdy = −1

r

∫
∂Br

(y · ν) P̂ΛdSy +
2

r

∫
Br

P̂Λdy

= −
∫
∂Br

P̂ΛdSy +
2

r

∫
Br

P̂Λdy.

Then (6.20) can be rewritten as

Ĩ ′(r) =

∫
Br

2

r
P̂Λdy + 2

∫
∂Br

(
ũ2ρ + ṽ2ρ

)
dSy +

∫
∂Br

(
P̃Λ − P̂Λ

)
dSy . (6.23)

Hence by (6.8), (6.22) and (6.23), we obtain

Ĩ ′(r) ≥ 2

∫
∂Br

(
ũ2ρ + ṽ2ρ

)
dSy −m2

Λ

2λ

r

∫
Br

(ũ2 + ṽ2)dy, (6.24)

where λ = supΛ>0 {λ1, λ2}. From (6.13), (6.19) and (6.24), we obtain

Ñ ′(r) =

(
Ĩ ′

Ĩ
− 2Ĩ

H̃

)
Ñ(r) (6.25)

≥

(
2
∫
∂Br

(
ũ2ρ + ṽ2ρ

)
dSy

Ĩ(r)
−

2m2
Λλ
∫
Br
(ũ2 + ṽ2)dy

rĨ(r)
−
∫
∂Br

∂
∂ρ
(ũ2 + ṽ2)dSy

H̃(r)

)
Ñ(r)

≥ −
2m2

Λλ
∫
Br
(ũ2 + ṽ2)dy

H̃(r)
.

Here we have used (6.5) and the Schwartz inequality. Note that by (H1), (H2) and (6.5)-(6.8),
it is obvious that

Ñ(r) → Ñ∞(r) ≡
∫
Br

|∇U |2 + |∇V |2 + 2C0 U
2V 2 dy∫

Br
U2 + V 2 dy

> 0 as Λ → ∞ , (6.26)

for r > 0.
Now we want to claim that {

r
∫
∂Br

ũ2 dSy ≥
∫
Br
ũ2dy ,

r
∫
∂Br

ṽ2 dSy ≥
∫
Br
ṽ2 dy ,

(6.27)
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i.e. ∫
Br

(ũ2 + ṽ2)dy ≤ rH̃(r) , (6.28)

for r > 0 and Λ sufficiently large. Using integration by parts, it is easy to check that∫
Br

(r2 − |y|2)∆(ũ2) dy = 2r

∫
∂Br

ũ2 dSy − 4

∫
Br

ũ2 dy ∀r > 0 . (6.29)

and ∫
Br

(r2 − |y|2)∆(ṽ2) dy = 2r

∫
∂Br

ṽ2 dSy − 4

∫
Br

ṽ2 dy ∀r > 0 . (6.30)

Put (6.11) and (6.12) into (6.29) and (6.30). Then we have

r

∫
∂Br

ũ2 dSy ≥
∫
Br

[
2−m2

Λλ1(r
2 − |y|2)

]
ũ2 dy ≥

∫
Br

ũ2 dy , (6.31)

and

r

∫
∂Br

ṽ2 dSy ≥
∫
Br

[
2−m2

Λλ1(r
2 − |y|2)

]
ṽ2 dy ≥

∫
Br

ṽ2 dy , (6.32)

for r > 0 and Λ sufficiently large. Here we have used the hypothesis that mΛ tends to zero as
Λ goes to infinity. Therefore, we complete the proof of (6.27) and (6.28).

Combining (6.25) and (6.28), it is obvious that

Ñ ′(r) ≥ −2m2
Λλ r , (6.33)

for r > 0 and Λ sufficiently large. Then (6.16), (6.17) and (6.33) may give∫ 2R

R

H̃(l) dl = K0

∫ 2R

R

l1+2Ñ(l) dl + oΛ(1) for R > R0 , (6.34)

where K0 is a positive constant independent of Λ and oΛ(1) is a small quantity tending to zero
as Λ goes to infinity. Hence the condition (1.29) is equivalent to

lim sup
Λ→∞

∫ 2R

R

l1+2Ñ(l) dl ≤ CR4 , (6.35)

for R sufficiently large. On the other hand, by (6.26) and (6.33), we have

Ñ∞(R + h)− Ñ∞(R) = lim
Λ→∞

Ñ(R + h)− Ñ(R)

= lim
Λ→∞

∫ R+h

R

Ñ ′(r) dr

≥ lim
Λ→∞

∫ R+h

R

−2m2
Λλ r dr

= − lim
Λ→∞

m2
Λλ(2Rh+ h2) = 0 ,

i.e.
Ñ∞(R + h) ≥ Ñ∞(R) for R, h > 0 . (6.36)
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Suppose Ñ∞(R1) > 1 + δ for some R1 > R0, where δ is any positive constant. Then (6.36)
implies

Ñ∞(R) ≥ 1 + δ for R ≥ R1 , (6.37)

which may fail the condition (6.35) i.e. (1.29). Therefore, we have proved that

Theorem 6.1. Assume (H0)-(H2) hold. Then the hypothesis (H3) i.e. (1.29) is equivalent to

Ñ∞(R) ≤ 1 for R sufficiently large (6.38)

i.e. Ñ(R) ≤ 1 + oΛ(1) , where oΛ(1) is a small quantity tending to zero as Λ goes to infinity.

7 Comparison with Allen-Cahn equation and some open

problems

In this section, we compare the system (1.16) and the Allen-Cahn equation

∆u+ u− u3 = 0 in RN . (7.1)

Equation (7.1) arises in the gradient theory of phase transitions by Allen-Cahn, in connection
with the energy functional in bounded domains Ω

Jϵ(u) =
ϵ

2

∫
Ω

|∇u|2 + 1

4ϵ

∫
Ω

(1− u2)2, ϵ > 0 (7.2)

whose Euler-Lagrange equation corresponds precisely to a ϵ-scaling of equation (7.1) in the
expanding domain ϵ−1Ω. The theory of Γ-convergence developed in the 70s and 80s, showed a
deep connection between this problem and the theory of minimal surfaces, see Modica, Mortola,
Kohn, Sternberg, [34, 35, 36, 43]. In fact, it is known that for a family uϵ of local minimizers of
Jϵ with uniformly bounded energy must converge, up to subsequences, in L1-sense to a function
of the form χE − χEc where χ denotes characteristic function, and ∂E has minimal perimeter.
Thus the interface between the stable phases u = 1 and u = −1, represented by the sets [uϵ = λ]
with |λ| < 1 approach a minimal hypersurface, see Caffarelli and Córdoba [11, 12], and also
Röger and Tonegawa [41], for stronger convergence and uniform regularity results on these level
surfaces.

E. De Giorgi [27] formulated in 1978 the following celebrated conjecture concerning entire
solutions of equation (7.1).

Let u be a bounded solution of equation (7.1) such that ∂u
∂xN

> 0. Then u is one-dimensional,
at least for dimension N ≤ 8.

Equivalently, u depends on just one Euclidean variable so that it must have the form

u(x) = tanh

(
x · a− b√

2

)
, (7.3)

for some b ∈ R and some a with |a| = 1 and aN > 0, where the function w(t) = tanh
(
t/
√
2
)
is

the unique solution of the one-dimensional problem,

w′′ + (1− w2)w = 0, w(0) = 0 w(±∞) = ±1 .
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Great advance in De Giorgi conjecture has been achieved in recent years, having been fully
established in dimensions N = 2 by Ghoussoub and Gui [33] and for N = 3 by Ambrosio and
Cabré [2]. Savin [42] established its validity for 4 ≤ N ≤ 8 under the following mild additional
assumption

lim
xN→±∞

u(x
′
, xN) = ±1 (7.4)

Recently, del Pino, Kowalczyk and Wei [28] has disproved De Giorgi’s conjecture in dimension
N ≥ 9 by constructing a bounded solution of equation (7.1) which is monotone in one direction
whose level sets are not hyperplanes. The basis of their construction is a minimal graph different
from a hyperplane built by Bombieri, de Giorgi and Giusti [9].

Condition (7.4) is related to the so-called Gibbons’ Conjecture:

Gibbons’ Conjecture: Let u be a bounded solution of equation (7.1) satisfying

lim
xN→±∞

u(x
′
, xN) = ±1, uniformly in x′. (7.5)

Then the level sets {u = λ} are all hyperplanes.

Gibbons’ Conjecture has been proved in all dimensions with different methods by Caffarelli
and Córdoba [12], Farina [30], Barlow, Bass and Gui [6], and Berestycki, Hamel, and Monneau
[7]. In references [12, 6], it is proven that the conjecture is true for any solution that has one
level set which is a globally Lipschitz graph.

Our problem (1.1)-(1.5) produces the limiting system (1.16). We have initiated study on
(1.1)-(1.5) and (1.16), but there are still many questions remains. The major difficulty is that
we have a system of equations instead of a single equation. In the following, we list some of
the emerging questions:

1. Is there a “Γ-Convergence” theory for (1.1)-(1.5)?
2. The key estimate (1.12) in higher dimensions is still missing. It will require some extra

techniques.
3. For Allen-Cahn equation (7.1), u is bounded between −1 and +1. On the other hand,

the system (1.16) has unbounded one-dimensional solutions. Is there a growth estimate for
(1.16)? We believe that the following growth should hold

U(x) + V (x) = O(|x|) (7.6)

4. The De Giorgi type result for (1.16) is completely open, except in dimension two. What is
the underlying geometry? We tend to believe that minimal surface is the underlying geometry.

5. Similar to the Gibbons’s Conjecture, we also have the following conjecture

Conjecture: Let (U, V ) be a solution of system (1.16) satisfying

lim
xN→−∞

U(x
′
, xN) = 0, lim

xN→+∞
U(x

′
, xN) = +∞, uniformly in x′, (7.7)

lim
xN→−∞

V (x
′
, xN) = +∞, lim

xN→+∞
V (x

′
, xN) = 0, uniformly in x′. (7.8)

Then (U, V ) are one-dimensional. This conjecture is completely open.
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and applications to singular limits in models for diffusion flames. Arch. Ration. Mech.
Anal. 183 (2007), no. 3, 457–487.

[15] J.W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,
J. Chem. Phys 28(2), 258-267 (1958).

[16] M. Conti, S. Terracini and G. Verzini. Asymptotic estimates for the spatial segregation of
competitive systems, Adv. Math., 195(2) (2005), 524-560.

34



[17] S.M. Chang, C.S. Lin, T.C. Lin and W.W. Lin, Segregated nodal domains of two-
dimensional multispecies Bose-Einstein condensates. Phys. D 196 (2004), no. 3-4, 341–361.

[18] F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein conden-
sation in trapped gases, Reviews of Modern Physics, Vol. 71, No. 3 (1999), 463-512.

[19] E.N. Dancer and Y. Du, Competing species equations with diffusion, large interactions,
and jumping nonlinearities, J. Differential Equations 114(2) (1994), 434–475.

[20] E.N. Dancer; K. Wang; Z. Zhang, The limit equation for the Gross-Pitaevskii equations
and S. Terracini’s conjecture. J. Funct. Anal. 262 (2012), no. 3, 1087-1131.

[21] E.N. Dancer; K. Wang; Z. Zhang, Dynamics of strongly competing systems with many
species. Trans. Amer. Math. Soc. 364 (2012), no. 2, 961-1005.

[22] E.N. Dancer; K. Wang; Z. Zhang, Uniform H?lder estimate for singularly perturbed
parabolic systems of Bose-Einstein condensates and competing species. J. Differential
Equations 251 (2011), no. 10, 2737-2769.

[23] Q. Du and J. Zhang, Asymptotic analysis of a diffuse interface relaxation to a nonlocal
optimal partition problem, to appear in Dis. Conti. Dynam. Sys.

[24] V. P. Frolov, A. L. Larsen and M. Christensen, Domain wall interacting with a black hole:
A new example of critical phenomena, Phys Rev D, 59 (1999) 125008(1-8).

[25] N. Garofalo and F. Lin, Monotonicity properties of variational integrals, Ap weights and
unique continuation, Indiana Univ. Math. J. 35 (1986), no. 2, 245–268.

[26] S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M.
van Kempen, B.J. Verhaar and W. Ketterle, Radio-frequency spectroscopy of ultracold
fermions, Science 300 (2003) 1723-1726.

[27] E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on
Recent Methods in Nonlinear Analysis (Rome, 1978), 131–188, Pitagora, Bologna (1979).

[28] M. del Pino, M. Kowalczyk and J. Wei, On De Giorgi’s Conjecture in Dimensions N ≥ 9,
preprint 2008, arXiv.org/0806.3141.

[29] B.D. Esry, C.H. Greene, J.P. Burke Jr. and J.L. Bohn, Hartree-Fock theory for double
condensates, Phys. Rev. Lett. 78 (1997) 3594-3597.

[30] A. Farina, Symmetry for solutions of semilinear elliptic equations in RN and related con-
jectures, Ricerche Mat. 48(suppl.) (1999), 129–154.

[31] A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new
results via a geometric approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. VII (2008),
741–791.

[32] C. Gui, Allen-Cahn equation and its generalizations. Preprint.

35



[33] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related prob lems, Math.
Ann. 311 (1998), 481-491.

[34] R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy.
Soc. Edinburgh Sect. A, 11 (1989), pp. 69-84.

[35] L. Modica, The gradient theory of phase transitions and the minimal interface criterion.
Arch. Rational Mech. Anal. 98 (1987), no. 2, 123–142.

[36] L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Unione Mat. Ital. Sez. B
14, 285–299 (1977).

[37] D.S. Hall, M.R. Matthews, J.R. Ensher, C.E.Wieman and E.A. Cornell, Dynamics of
component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett.
81 (1998) 1539–1542.

[38] C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell and C.E.Wieman, Production of two
overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78 (1997)
586–589.

[39] B. Noris, H.Tavares, S. Terracini and G. Verzini, Uniform holder bounds for nonlinear
Schrodinger systems with strong competition, preprint 2009.

[40] L.Pitaevskii and S. Stringari, Bose-Einstein condensation, Oxford 2003.
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