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ABSTRACT. We study some qualitative properties of entire positive radial solu-
tions of the supercritical semilinear biharmonic equation:

n+4

n—4

It is known from [2] that there is a critical value p. > (n 4+ 4)/(n — 4) of (*) for
n > 13 and (*) has a singular solution us(r) = Ké/(pfl)r_‘l/(”_l). We show that
for 5 <n <12o0rn > 13 and p < p., any regular positive radial entire solution
u of (*) intersects with us(r) infinitely many times. On the other hand, if n > 13
and p > p. then u(r) < us(r) for all r > 0. Moreover, the solutions are strictly
ordered with respect to the initial value a = u(0).

(%) A’u=u” nR*, n>5 p>

1. INTRODUCTION

We consider some qualitative properties of entire positive radial solutions to the

following supercritical biharmonic equation

(1.1) A’y =vP, u>0 in R

n+4
n—4-°

The corresponding supercritical second order elliptic equation

where n > 5 and p >

(1.2) —Au=v?, u>0 inR"

with p > Z—J_rg and n > 3 was intensively studied. In particular, we mention the

following theorem on the classification of positive radial entire solutions of (1.2).

Theorem 1.1. (Wang [4], Gui-Ni-Wang [3].) Let n > 3 and assume that p > 2£2.
Then for any a > 0 the equation (1.2) admits a unique radial solution u = u(r) such
that u(0) = a and u(r) = 0 as r — +o0o. The solution u satisfies u'(r) < 0 for all
r >0 and

(1.3) lim 7@ Vy(r) =L .= [pg . (n -2 %1)] 1/(1)71).

r—+00
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Moreover, if n < 10 or if n > 11 and

n?—8n+4+8/n—-1
(n—2)(n—10)

(1.4) p<pfi=

then u(r) — Lr=%®=Y changes sign infinitely many times. If n > 11 and p > p° then
u(r) < Lr=2®=Y for all r > 0 and the solutions are strictly ordered with respect to
the initial value a = u(0).

The main purpose of this paper is to establish a similar theorem for entire solutions
of (1.1).

Let us recall some known results on (1.1). In a recent paper [2], Gazzola and
Grunau studied the existence and uniqueness of entire radial solutions to (1.1).
They found the corresponding critical exponent p. for (1.1). To state their results,

we first define p. to be the unique value of p > Z—fi such that

—(n—4)(n® — 4n* — 128n + 256)(p — 1)* + 128(3n — 8)(n — 6)(p — 1)°

(1.5) +256(n? — 18n + 52)(p — 1)2 — 2048(n — 6)(p — 1) + 4096 = 0.
It has been shown in [2] that such a p. exists (and is unique) only when n > 13. Let
(1.6) uy(r) = K&/(p_l)r_‘l/(p_l)

where Ky = ﬁ[(n—?)(n—él)(p—1)3+2(n2—10n+20)(p—1)2—16(n—4)(p—1)+32].

It is easy to see that u, is a singular solution to (1.1) in R™ \ {0}.

The main results in [2] are the following theorem.
Theorem 1.2. ([2]) Let n > 5 and assume that p > 5. Then for any a > 0 the
equation (1.1) admits a unique radial positive solution u = u(r) such that u(0) = a
and u(r) — 0 asr — +00. Moreover, u satisfies u'(r) < 0, Au(r) <0, (Au)'(r) >0
for all ™ >0, and

(1.7) u(r) < (]%1)1/(”_1)115(7") for allr >0,
o)
(1.8) rkﬂ—noo ug(r) 1

Furthermore, for all m > 13, p > p., u(r) — us(r) does not change sign infinitely
many times.

In this paper we completely characterize the asymptotic behavior of the radial

entire solutions of (1.1). We have the following theorem:
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Theorem 1.3. Let n > 5 and assume that p > Z—fi. Then for any a > 0 the
equation (1.1) admits a unique radial solution v = u(r) such that u(0) = a and
u(r) = 0 as r — +oo. The solution u satisfies u'(r) < 0 for all r > 0 and

: - 1/(p—1
(1.9) lim 74/® Dy(r) :KO/(p )

r—-+400

Moreover, if n < 12 or if n > 13 and p < p., where p. is given by (1.5), then
u — Ké/(p_l)r"l/(p’l) changes sign infinitely many times. If n > 13 and p > p.
then u(r) < Ké/(p_l)r_‘*/(p_l) for all ¥ > 0 and the solutions are strictly ordered
with respect to the initial value a = u(0). Namely, if ui(r) and us(r) are two radial

solutions of (1.1) with u1(0) < ug(0), then ui(r) < us(r) for r > 0.

Since the existence and uniqueness of entire radial solution to (1.1) are already
given by Theorem 1.2, we shall assume that u, is the unique entire radial solution
of (1.1) with u,(0) = a. If there is no confusion, we drop the index a.

In the rest of the paper, we proceed to prove Theorems 1.2 and 1.3. In Section 2,
we collect some important preliminaries. In Section 3, we prove Theorem 1.2 and
in Section 4, we prove Theorem 1.3.

After the completion of this paper, we came across the paper Ferrero-Grunau-
Karageordis [1] in which they proved the first part of Theorem 1.3, i.e., when p < p,.
Their method, based on dynamical system, is quite different from ours. Our method
generalizes the Sturm-Liouville comparison theorems to fourth order equations. In
fact, our method in this paper in the case of p > p. also gives a new and more direct
proof even in the second order case (Theorem 1.1).

Acknowledgments: The research of the first author is supported by a grant of
NSFC (10571022). The research of the second author is partially supported by an
Earmarked Grant from RGC of Hong Kong. The second author thanks Professor

Nassif Ghoussoub for many useful discussions.

2. EMDEN-FOWLER TRANSFORMATIONS, EIGENVALUES AND SOME
PRELIMINARIES
As in [2], we use the Emden-Fowler transformation:
(2.1) u(r) = r_zﬁv(t), t =logr (r > 0).

Therefore, after the change of (2.1), the equation in (1.1) may be rewritten as

(2.2) v (1) + Kzv"'(t) + Kov"(t) + K1v'(t) + Kov(t) = v*(t), t€R
3



where the coefficients are given in [pp. 911, [2]]. The characteristic polynomial

(linearized at K,/®~"

) is
vV 1/4 + K31/3 + K2V2 + Kiv + (1 — p)KO

and the eigenvalues are given by

_ N1+ Ny+ 4y N3 N1 — /Ny + 44/ N3

. 2(p—1) T 2(p—1) ’
Ny + /Ny — 4y/Nj Ny — /Ny — 4+/N3
vz = , V4=
2(p—-1) 2(p—1)

where

Nyii=—-(n—-4)(p—1)+8, No:=(n>—4n+8)(p—1)?
N3 :=(9n —34)(n —2)(p — 1)* +8(3n — 8)(n — 6)(p — 1)
+(16n2 — 288n + 832)(p — 1)? — 128(n — 6)(p — 1) + 256.
Let us also define

- 4
(23) I/j:l/j—pj,_]:]_,2,3,4.

A direct computation shows that r” are the four fundamental solutions to
(2.4) AZp = pul 1y

Using Proposition 2 of [2] and direct verifications, we have the following proposition:

Proposition 2.1. (i) For any n > 5 and p > "%, we have
(2.5) Up<2-—n<0<iy

(#) For any 5 < n < 12 orn > 13, p < p., we have 3,04 ¢ R and Re(i3) =
Re(y) =42 <0

(#i) For any n > 13,p = p., we have 3 = Uy = 477”

(iv) For any n > 13,p > p,, then

(2.6) 4—n<174<Tn<173<0,173+174=4—n.
Let us also recall the following theorem
Theorem 2.2. ([2]) The following limits hold:
: _ /(1) . k) (4) —
(2.7) tlgnoov(t) K, , tlgrnoov (t)=0

for any k > 1.



3. THE CASE OF p < p.

In this section, we prove that for p < p., u(r) — us(r) must have infinitely many
intersections (and hence prove Theorem 1.2). This amounts to the study of the

following linearized equation
(3.1) A2p =puP~'¢, H(r) = 0asr — +oo.
First we have

Lemma 3.1. (1) If $(0) = 0, then ¢ = 0.
(2) If $(0) = 1. Then A¢p(0) < 0.
Proof: (1) Suppose ¢(0) = 0 and A¢(0) # 0. We may assume that A¢(0) > 0.
Since ¢(0) = ¢/(0) = 0, we may assume that ¢(r) > 0 for r € (0, R) and ¢(R) = 0.
(R can be +00.) Then in (0, R), (A¢)' > 0 and hence A¢(r) > 0 for r € (0, R). This
implies that ¢'(r) > 0 and ¢(r) > 0 for r € (0, R]. This contradicts with ¢(R) = 0.
(2) follows from the same arguments. O

As a consequence of (1) of Lemma 3.1, we have

Lemma 3.2. The solution to (3.1) is given by

4
(3.2) ¢(r) = C(p —

for some ¢ # 0.

: u(r) +ru (1))

The following theorem gives the asymptotic behavior of u, which is of independent

interest.
Theorem 3.3. Let u be the unique solution of (1.1). Then we have for r large
(3.3) u(r) = (=Ko) 3r=@=D 4 M7 cos(B1Inr) + Mor®sin(B1Inr) + O(r*~?)

where § = 7%)/1\]_3 >0, v3=a+ ﬁ +1403 and M? + M2 # 0. (Note that it is

known from Proposition 2 of [2] that o + zﬁ <0.)
Proof: Using the Emden-Fowler transformation:
(3.4) u(r) = rfﬁv(t), t =logr (r > 0),
and letting v(t) = (Kj)Y®~Y — h(t), we see that h(t) satisfies
(3.5) KO (t) + K3h"(t) + Ky (t) + KB (t) + (1 — p)Koh(t) + O(R?) =0, t> 1.
Therefore in the leading order, we can write
4

(3.6) h(t) = My 51 cos Bt + Mye!® =D sin Bt + Mze”t + o(e"?")
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(note that we have from Theorem 2.2 that limy . A(t) = 0). This then implies
that as r — 400,

(3.7) o(r) = Mir®cos(BIn7) + Myr®sin(B1Inr) + Msr” + o(r™)

where (1) = r_ﬁh(t) = us(r) — u(r).
We now show that M? + M3 # 0.
Suppose now that M; = My = 0. Then we have

(3.8) @ ~TTR s T — 400

where k = —y — (n—2) > 0 by Proposition 2.1. Furthermore, ¢(r) has no zeroes for
r large. We show that this is impossible. In fact, it is easy to see that ¢ must change
sign in (0, +00). Otherwise, we assume ¢(r) > 0 for » > 0 (note that u(r) < us(r)
for r small). Then using the behavior of ¢ near oo and integrating the equation

A?p = uP(r) — uP(r) over R", we see that

/Ooo(ug(r) —uP(r))r"tdr =0

which contradicts with ¢ = us —u > 0. Here we need to use the fact that p >
(n+4)/(n—4).

Suppose ¢(r) has exactly k& zeroes in (0,+00) (recalling that ¢ has no zeroes

n—1,.1

2mn—k as r — 400, we easily see that r"~'¢'(r) has

when 7 is large) and ¢(r) ~ r

at least k zeroes. On the other hand, since the function n(r) := r"~'¢/(r) satisfies

n(0) = 0 (note p > (n+ 2)/(n —2)) and n(r) — 0 as r — +o0, we see that
n'(r) has at least k + 1 zeroes. Thus Ap(r) = —=7'(r) has at least k + 1 zeroes.

Similar idea implies that 7”71 (A¢p)’(r) has at least k zeroes and (r"~1(Ayp)’(r))’ has
at least k+1 zeroes. Therefore, A%2p = —L;(r""1(Ap)'(r)) has at least k+ 1 zeroes.

rn—1

This contradicts our assumption that ¢ has k zeroes, since A%2p = p€P~lyp, where
&(r) € (minf{u(r), us(r) }, max{u(r), us(r)}) > 0 for all r > 0. This proves our claim
and completes the proof of Theorem 3.3. O

4. THE CASE OF p > p,

In this section, we consider the case p > p.. We prove the following two theorems:
Theorem 4.1. For p > p., we have u(r) < us(r) for r > 0.

Theorem 4.2. For p > p., the solution to (3.1) remains of constant sign, that is,

(4.1)

- 1u—|—ru'(r) < 0.
6



The proofs of both theorems depend on the use of comparison principle for fourth
order equations.

We prove Theorem 4.2 first.
Proof of Theorem 4.2: Assume that Theorem 4.1 holds, i.e., u(r) < us(r). Let
¢(r) be a solution of (3.1). By Lemma 3.1, we may assume that ¢(0) = 1, A¢(0) < 0
Let v(r) = r”. Then it is easy to see that

(4.2) A%y = pub~lep

By Proposition 2.1, we have 4 > 4 — n. This implies that fBT(O) r~*|pltb < +o00. So
we can multiply (3.1) by ¢ and (4.2) by ¢ and integrate over B,.(0) to obtain

(43) 0= / p(u —uP ) g+ / (Ad) d—Adw]+ / Ay — (M) 6]
1 (0) 9B,(0) 9B,(0)

= 11(7”) + IQ(T‘) + 13(7”)
where I;(r) are defined at the last equality.

Let us assume that there exist r1, 75 € (0,400] such that
(44) QS(T) >0,r€ (05 Tl)a ¢(7‘1) =0, A¢(T) <0, re (OaTQ)’ A¢(7'2) =

We divide our proof into three cases:
Case 1: 1 = 9.

In this case, we take r = r; = ro. Then we have I1(r) > 0, I5(r) > 0, I3(r) > 0.
The identity (4.3) gives a contradiction.

Case 2: 9 < 11.

In this case, we take r = 7. Then it is easy to see that I;(ro) > 0, Iy(re) =
faB, [(Ag) — Ag)'] > 0. It remains to estimate I3(rs).

To thls end, we first show that A¢ > 0 for r € (ry,71). In fact, since A?¢p =
puP~l¢ > 0 in (0,7,), we see that A¢ must be positive for r > r, and near r,.
Suppose that there exists 73 < r; such that A¢(r3) = 0. Then we have A¢ >
0, A(A¢) > 01in (r2,73). This is impossible (since A¢ must attain its maximum in
(re,r3) where A(A¢) < 0).

Now we consider the function ®(r) = r" 1(Ay¢ — (Av) ¢). Its derivative is given
by

'(r) = ("I (r) Ay(r) — (r"TH(AY) (1)) é(r)
= r"AG(r)Ap(r) — ¢(r)A%p(r)] < 0 for r € (ro,1).
(Here we have used the fact that Ay < 0.) So ®(ry) > ®(ry) = r{‘_lAw(rl)qﬁ'( 1) >

0. As a consequence, we have proved that I3(ry) = ry ™" i) 9B,, ®(ry) > 0. So again,
7



we have I1(ry) > 0, Iy(ry) > 0, I3(r2) > 0 and this gives a contradiction to the
identity (4.3).
Case 3: r; < ro.

The proof is similar to Case 2. In this case, we take r = r;. Then it is easy to see
that I,(ry) > 0, I3(r) faB A1/J¢’ > 0. It remains to estimate I5(ry).

As before, we first show that é(r) < 0 for r € (r1,re). In fact, since A¢ < 0 in
(0,72), we see that ¢ must be negative for r > r; and near 7. Suppose that there
exists 73 < ry such that ¢(r3) = 0. Then we have A¢ < 0, ¢ < 0 in (r1,73). This is
impossible (since ¢ must attain its minimum in (rs,73) where A¢ > 0).

Now we consider the function ¥(r) = r"~1((A¢)'y) — Ap)’). Tts derivative is given
by

U(r) = (r"H(Ag) (r)(r) — (r" (1)) Ag(r)
= I A%G(r)Y(r) — Ap(r)Ay(r)] < 0 for r € (ry,ry).

So U(ry) > U(ry) = 75 1(A) (r2)y(re) > 0. As a consequence, we have proved that
L(r)=r" faBrl(o) U(ry) > 0. So again, we have I1(ry) > 0, Iy(r1) > 0, I3(r;) >0
and a contradiction to the identity (4.3). These contradictions imply that ¢ remains
constant sign and this completes the proof. O
Proof of Theorem 4.1: The proof is similar to that of Theorem 4.2. Let ¢y =
us(r) — u(r). Then it is easy to see that ¢q satisfies

(4.5) A?¢y = ul — (us — ¢p)? < pul~ g, 7 > 0

Now let 1po(r) = r”. Then by Proposition 2.1, 73 > £-%. Thus fBR(O) =4 ol by <
fBR(O) rAp/=lp=n)/2 < 400 since p > 2. Thus the integral ul~'¢gt)p is
integrable. Similar to (4.3), we have the following identity

46) [ (oo~ Boi)+ | [ — () o] <0
8B,(0) 8B, (0

Now note that ¢g > 0, A¢y < 0 for r small. So we may assume (4.4). The case
r1 = 19 is easy to be excluded. We just need to consider the case ry < 1. To this end,
we first show that A¢gy > 0 for r € (9, 71). In fact, since A?¢y = w2 — (us — @o)? > 0
n (0,71), we see that A¢y must be positive for r > ry and near r,. Suppose that
there exists 73 < r; such that A¢gy(rs) = 0. Then we have A¢y > 0, A(Ag¢y) > 0
n (re,rs). This is impossible (since A@y must attain its maximum in (ry,r3) where
A(Agy) < 0). The rest of the proof is exactly the same as before. We omit the
details. 0



Theorem 4.2 yields very important estimates on the asymptotic behavior of .

Corollary 4.3. (1). Assume that p > p.. Then the set of of solutions {u.(r)} to
(1.1) is well ordered. That is if a > b then uy(r) > up(r) for all v > 0.
(2). If p > p, then we have the following asymptotic expansion for u:

(4.7) u(r) = Ko/ Dr e 4 0Py O (rmexrae))
where My # 0. If p = p., then we have the following asymptotic expansion for u:
(4.8) u(r) = Ky/® Vr=4@=D L (M, + My log r)rAl_Tn +0(r*™)

Proof of Corollary 4.3: For (1), we note that ¢ = 9% satisfies (3.1) with ¢(0) =

1> 0. By Theorem 4.2, ¢ > 0. Thus u,(r) > uy(r) for a > b.
For (2), if p > p., we have

(49) ’u,(’r‘) = Ké/(p_l),r—‘l/(]l—l) +M1’f‘ﬁ3 + M2r134 + O(,,,,Ina.X(Zﬂg,IZ;)).
If M; =0, then
(4.10) u(r) = Ké/(:ﬂ—l)r—fl/(p—l) +0(r™)

which implies that ¢ = O(r”). Now as in the proof of Theorem 4.2, we have

(4.11) / p(ul™" —uP N gr™ ™ dr = 0
0

where the integral is finite because 20, < 4 — n. This is impossible since ¢ > 0. So
M, # 0.

When p = p,, (4.8) follows from the fact that 73 = 7, = 4_7”. O
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