Sample Solutions of Assignment 5 for MAT3270B: 3.4-3.9

Section 3.4

In each of problems find the general solution of the given differential equation

7. y'' - 2y' + 2y = 012. 4y'' + 9y = 014. 9y'' + 9y' - 4y = 015. y'' + y' + 1.25y = 0

Answer: 7. The characteristic equation is

$$r^2 - 2 + 2 = 0$$

Thus the possible values of r are $r_1 = 1 + i$ and $r_2 = 1 - i$, and the general solution of the equation is

$$y(t) = e^t(c_1 \cos t + c_2 \sin t).$$

12. The characteristic equation is

$$4r^2 + 9 = 0$$

Thus the possible values of r are $r_1 = \frac{3i}{2}$ and $r_2 = \frac{-3i}{2}$, and the general solution of the equation is

$$y(t) = c_1 \cos \frac{3t}{2} + c_2 \sin \frac{3t}{2}.$$

14. The characteristic equation is

$$9r^2 + 9r - 4 = 0$$

Thus the possible values of r are $r_1 = \frac{1}{3}$ and $r_2 = \frac{-4}{3}$, and the general solution of the equation is

$$y(t) = c_1 e^{\frac{t}{3}} + c_2 e^{\frac{-4t}{3}}.$$

15. The characteristic equation is

$$r^2 + r + 1.25 = 0$$

Thus the possible values of r are $r_1 = \frac{-1}{2} + i$ and $r_2 = \frac{-1}{2} - i$, and the general solution of the equation is

$$y(t) = e^{\frac{-t}{2}} (c_1 \cos t + c_2 \sin t).$$

23. Consider the initial value problem

$$3u'' - u' + 2u = 0, \ u(0) = 2, \ u'(0) = 0.$$

- a. Find the solution u(t) of this problem.
- b. Find the first time at which |u(t)| = 10.

Answer: (a.) The characteristic equation is

$$3r^2 - r + 2 = 0$$

Thus the possible values of r are $r_1 = \frac{1+\sqrt{23}i}{6}$ and $r_2 = \frac{1-\sqrt{23}i}{6}$, and the general solution of the equation is

$$u(t) = e^{\frac{t}{6}} (c_1 \cos \frac{\sqrt{23}t}{6} + c_2 \sin \frac{\sqrt{23}t}{6}).$$

(b.) From u(0) = 0, we get $c_1 = 2$ From u'(0) = 0, we get $c_2 = \frac{-2}{\sqrt{23}}$ Therefore,

$$u(t) = e^{\frac{t}{6}} \left(2\cos\frac{\sqrt{23}t}{6} - \frac{2}{\sqrt{23}}\sin\frac{\sqrt{23}t}{6}\right)$$

The first time is $t_0 = 10.7598$ such that |u(t)| = 10.

27.	Show	that	$W(e^{\lambda t})$	$\cos \mu t$,	$e^{\lambda t} \sin t$	$\mu t) =$	$= \mu e^{2\lambda t}$
-----	------	------	--------------------	----------------	------------------------	------------	------------------------

Answer: Let

$$y_1 = e^{\lambda t} \cos \mu t$$
$$y_2 = e^{\lambda t} \sin \mu t$$
$$W(e^{\lambda t} \cos \mu t, e^{\lambda t} \sin \mu t) = y'_2 y_1 - y'_1 y_2$$
$$= e^{2\lambda t} \cos \mu t (\lambda \sin \mu t + \mu \sin \mu t) - e^{2\lambda t} \sin \mu t (\lambda \cos \mu t - \mu \sin \mu t)$$
$$= \mu e^{2\lambda t}$$

-		

33. If the functions y_1 and y_2 are linearly independent solutions of y'' + p(t)y' + q(t)y = 0, show that between consecutive zeros of y_1 there is one and only one zero of y_2 . Note that this result is illustrated by the solutions $y_1 = \cos t$ and $y_2 = \sin t$ of the equation y'' + y = 0.

Answer: Assume the two consecutive zeros of y_1 are t_1 and t_2 , and $t_1 < t_2$. Then $y_1(t) < 0$ or $y_1(t) > 0$ for all $t_1 < t < t_2$.

Case A: We consider the case $y_1(t) > 0$ for all $t_1 < t < t_2$. In this case, obviously, $y'_1(t_1) > 0$ and $y'_1(t_2) < 0$.

 $W(y_1, y_2) = y'_2 y_1 - y'_1 y_2 \neq 0$ for all t, because y_1 and y_2 are linearly independent solutions of y'' + p(t)y' + q(t)y = 0, then $W(y_1, y_2)(t) > 0$ or $W(y_1, y_2)(t) < 0$ for all t.

If $W(y_1, y_2)(t) > 0$ for all t. We get

$$W(y_1, y_2)(t_1) = -y'_1(t_1)y_2(t_1) > 0$$
$$W(y_1, y_2)(t_2) = -y'_1(t_2)y_2(t_2) > 0$$

Hence $y_2(t_1) > 0$ and $y_2(t_2) < 0$, so there is one zero of y_2 .

If $W(y_1, y_2)(t) < 0$ for all t.

We get

$$W(y_1, y_2)(t_1) = -y'_1(t_1)y_2(t_1) < 0$$
$$W(y_1, y_2)(t_2) = -y'_1(t_2)y_2(t_2) < 0$$

Hence $y_2(t_1) < 0$ and $y_2(t_2) > 0$, so there is one zero of y_2 .

Case B: We consider the case $y_1(t) < 0$ for all $t_1 < t < t_2$. In this case, obviously, $y'_1(t_1) < 0$ and $y'_1(t_2) > 0$.

 $W(y_1, y_2) = y'_2 y_1 - y'_1 y_2 \neq 0$ for all t, because y_1 and y_2 are linearly independent solutions of y'' + p(t)y' + q(t)y = 0, then $W(y_1, y_2)(t) > 0$ or $W(y_1, y_2)(t) < 0$ for all t.

If $W(y_1, y_2)(t) > 0$ for all t. We get

$$W(y_1, y_2)(t_1) = -y'_1(t_1)y_2(t_1) > 0$$
$$W(y_1, y_2)(t_2) = -y'_1(t_2)y_2(t_2) > 0$$

Hence $y_2(t_1) < 0$ and $y_2(t_2) > 0$, so there is one zero of y_2 .

If $W(y_1, y_2)(t) < 0$ for all t.

We get

$$W(y_1, y_2)(t_1) = -y'_1(t_1)y_2(t_1) < 0$$

$$W(y_1, y_2)(t_2) = -y'_1(t_2)y_2(t_2) < 0$$

Hence $y_2(t_1) > 0$ and $y_2(t_2) < 0$, so there is one zero of y_2 .

We need to show there is only one zero of y_2 between t_1 and t_2 .

If otherwise, then there is at least two zero of y_2 between t_1 and t_2 , we can select two consecutive zeros of y_2 , say t_3 and t_4 , such that $t_1 < t_3 < t_1 < t_4 < t_2$. Then from above proof we can show there is another zero of y_1 , say t_5 such that $t_1 < t_3 < t_1 < t_5 < t_4 < t_2$. This contradict that t_1 and t_2 are two consecutive zeros of y_1 .

38. Euler Equation. An equation of the form

 $t^{2}y^{''} + \alpha ty^{'} + \beta y = 0, \ t > 0,$

where α and β are real constants, is called an Euler equation. Show that the substitution $x = \ln t$ transform an Euler equation into an equation with constant coefficients.

Answer:

$$\frac{dx}{dt} = \frac{1}{t}$$
$$\frac{d^2y}{dt^2} = \frac{1}{t^2}\frac{d^2y}{dx^2} - \frac{1}{t^2}\frac{dy}{dx}$$

We get

$$t^{2}y^{''} + \alpha ty^{'} + \beta y = \frac{d^{2}y}{dx^{2}} + (\alpha + 1)\frac{dy}{dx} + \beta y = 0$$

Section 3.5

Find the general solutions of the given differential equations.

1. y'' - 2y' + y = 08. 16y'' + 24y' + 9y = 0

Answer: 1. The characteristic equation is

$$r^{2} - 2r + 1 = (r - 1)(r - 1) = 0$$

Thus the possible value of r is r = 1, and the general solution of the equation is

$$y(t) = (c_1 + c_2 t)e^t.$$

8. The characteristic equation is

$$16r^2 + 24r + 90$$

Thus the possible value of r is $r_1 = -\frac{3}{4}$, and the general solution of the equation is

$$y(t) = (c_1 + c_2 t)e^{\frac{-3}{4}t}.$$

In each of the problems use the method of reduction of order to find second solution of the given equation.

23.
$$t^2y'' - 4ty' + 6y = 0; t > 0; y_1(t) = t^2$$

25. $t^2y'' + 3ty' + y = 0; t > 0; y_1(t) = \frac{1}{t}$
26. $t^2y'' - t(t+2)y' + (t+2)y = 0; t > 0; y_1(t) = t$

	_	Ŀ	
 -			

Answer: 23. Let $y(t) = t^2 v(t)$, then

$$y' = v't^2 + 2tv$$

 $y'' = v''t^2 + 4v't + 2v$

So we get

 $t^4 v^{''} = 0$

. Then

$$v(t) = c_1 t + c_2$$

and so

$$y(t) = c_1 t^3 + c_2 t^2.$$

From $y_1(t) = t^2$, we find the second solution is $y_2(t) = t^3$.

25. Let $y(t) = t^{-1}v(t)$, then

$$y' = v't^{-1} - t^{-2}v$$
$$y'' = t^{-1}v''t^2 - 2v't^{-2} + 2t^{-3}v$$

So we get

 $tv^{''} + v^{'} = 0$

. Then

$$v(t) = c_1 \ln t + c_2$$

and so

$$y(t) = c_1 t^{-1} \ln t + c_2 t^{-1}.$$

From $y_1(t) = t^{-1}$, we find the second solution is $y_2(t) = t^{-1} \ln t$. 26. Let y(t) = tv(t), then

$$y' = v't + v$$
$$y'' = v''t + 2v'$$

So we get

 $v^{''} - v^{'} = 0$

. Then

$$v(t) = c_1 e^t + c_2$$

and so

$$y(t) = c_1 t e^t + c_2 t$$

From $y_1(t) = t$, we find the second solution is $y_2(t) = te^t$.

32. The differential equation

$$y^{''} + \delta(xy^{'} + y) = 0$$

arises in the study of the turbulent flow of a uniform stream past a circular cylinder. Verify that $y_1 = exp(\frac{-\delta x^2}{2})$ is one solution and then find the general solution in the form of an integral.

Answer:

$$y_{1} = e^{\frac{-\delta x^{2}}{2}}$$
$$y_{1}^{'} = -\delta x e^{\frac{-\delta x^{2}}{2}}$$
$$y_{1}^{''} = (\delta^{2} x^{2} - \delta) e^{\frac{-\delta x^{2}}{2}}$$

Then it is easy to see

$$y_1'' + \delta(xy_1' + y_1) = 0.$$

Let $y = ve^{\frac{-\delta x^2}{2}}$, then

$$y' = v'e^{\frac{-\delta x^2}{2}} - \delta xve^{\frac{-\delta x^2}{2}}$$
$$y'' = v''e^{\frac{-\delta x^2}{2}} - 2\delta xv'e^{\frac{-\delta x^2}{2}} + \delta^2 x^2ve^{\frac{-\delta x^2}{2}} - \delta ve^{\frac{-\delta x^2}{2}}.$$

We get $v'' - \delta x v' = 0$, and then $v(x) = \int_0^x c_1 e^{\frac{\delta x^2}{2}} + c_2$. Hence,

$$y(x) = (c_1 \int_0^x e^{\frac{\delta x^2}{2}} + c_2) e^{\frac{-\delta x^2}{2}}.$$

From $y_1 = exp(\frac{-\delta x^2}{2})$, we find the second solution is

$$y(x) = e^{\frac{-\delta x^2}{2}} \int_0^x e^{\frac{\delta x^2}{2}}$$

In the following problem use the method of of problem 33 to find second independent solution of the given equation.

34. $t^2y'' + 3ty' + y = 0; t > 0; y_1(t) = \frac{1}{t}$

Answer: The original equation can be written as

$$y^{''} + \frac{3}{t}y^{'} + \frac{1}{t^2}y = 0.$$

From the Abel's theorem

$$W(y_1, y_2) = c_1 e^{-\int \frac{3dt}{t}} = \frac{c_1}{t^3} = y_1 y_2' - y_1' y_2 = \frac{y_2}{t} + \frac{y_2}{t^2}$$

We get

$$y_2' + \frac{y_2}{t} = \frac{c_1}{t^2},$$

and

$$y_2(t) = \frac{1}{t} [c_1 \ln t + c_2].$$

Г	-	-	ъ.
	-		
	-		

38. If a, b, c are positive constants, show that all solutions of ay'' + by' + cy = 0 approach zero as $t \to \infty$.

Answer: The characteristic equation is

$$ar^2 - br + c = 0$$

Case A: $b^2 - 4ac < 0$

Thus the possible values of r are $r_1 = \frac{-b+i\sqrt{4ac-b^2}}{2a}$ and $r_2 = \frac{-b-i\sqrt{4ac-b^2}}{2a}$, and the general solution of the equation is

$$y(t) = e^{\frac{-bt}{2a}} (c_1 \cos \frac{\sqrt{4ac - b^2}}{2a} t + c_2 \sin \frac{\sqrt{4ac - b^2}}{2a} t).$$

Hence, $y(t) \to 0$, as $t \to \infty$, since a, b are positive constants.

Case B: $b^2 - 4ac = 0$

Thus the possible values of r are $r_1 = \frac{-b}{2a}$, and the general solution of the equation is

$$y(t) = e^{\frac{-bt}{2a}}(c_1 + c_2 t).$$

Hence, $y(t) \to 0$, as $t \to \infty$, since a, b are positive constants.

Case C: $b^2 - 4ac > 0$

Thus the possible values of r are $r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$, and the general solution of the equation is

$$y(t) = c_1 e^{\frac{-b+\sqrt{b^2-4ac}}{2a}} + c_2 e^{\frac{-b-\sqrt{b^2-4ac}}{2a}}.$$

Hence, $y(t) \to 0$, as $t \to \infty$, since a is positive constant and $-b + \sqrt{b^2 - 4ac} < 0$.

39. (a) If a > 0 and c > 0, but b = 0, show that the result of Problem 38 is no longer true, but that all solutions are bounded as $t \to \infty$. (b) If a > 0 and b > 0, but c = 0, show that the result of Problem 38 is no longer true, but that all solutions approach a constant that depends on the initial conditions as $t \to \infty$. Determine this constants for the initial conditions $y(0) = y_0$, $y'(0) = y'_0(0)$.

Answer: (a). a > 0 and b > 0, but c = 0The characteristic equation is

$$ar^2 + cr = 0$$

Thus the possible values of r are $r_1 = \sqrt{\frac{c}{a}}i$ and $r_2 = -\sqrt{\frac{c}{a}}i$, and the general solution of the equation is

$$y(t) = c_1 \cos \sqrt{\frac{c}{a}}t + c_2 \sin \sqrt{\frac{c}{a}}t.$$

Hence, all solutions are bounded as $t \to \infty$.

(b): a > 0 and b > 0, but c = 0

The characteristic equation is

$$ar^2 - br = 0$$

Thus the possible values of r are $r_1 = 0$ and $r_2 = -\frac{b}{a}$, and the general solution of the equation is

$$y(t) = c_1 + c_2 e^{\frac{-bt}{a}}.$$

Hence, $y(t) \to c_1$, as $t \to \infty$, since a, b are positive constants. Obviously, c_1 depends on the initial conditions. From y'(0) = y'(0), we can get $c_2 = -\frac{ay'_0}{b}$. From $y(0) = y_0$, we get $c_1 = -\frac{ay'_0}{b} + y_0$.

1	-	-	٦		
				L	
. 4			-	L	
					l

Section 3.6

Answer: In each of the following problems, find the general solutions of the given differential equations.

1. $y'' - 2y' + 3y = 3e^{2t}$ 4. $y'' + 2y' = 3 + 4\sin 2t$ 7. $2y'' + 3y' + y = t + 3\sin t$ 10. $u'' + \omega_0^2 u = \cos \omega_0 t$ 11. $y'' + y' + 4y = 2\sinh t$ Answer: 1. The characteristic equation is

$$r^2 - 2r - 3 = (r - 3)(r + 1) = 0$$

Thus the possible values of r are $r_1 = 3$ and $r_2 = -1$, and the general solution of the homogeneous equation is

$$y(t) = c_1 e^{3t} + c_2 e^{-t}.$$

Let $Y(t) = Ae^{2t}$ where A is a constant to be determined. On substituting to the original equation, we get

$$-15Ae^{2t} = 3e^{2t}$$
.

So $A = -\frac{1}{5}$ and

$$y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{1}{5} e^{2t}$$

is the general solution of the original equation.

4. The characteristic equation is

$$r^2 + 2r = r(r+2) = 0$$

Thus the possible values of r are $r_1 = 0$ and $r_2 = -2$, and the general solution of the homogeneous equation is

$$y(t) = c_1 + c_2 e^{-2t}.$$

Let $Y(t) = At + B \sin 2t + C \cos 2t$ where A, Band, C are constants to be determined. On substituting to the original equation, we get

$$-4(B+C)\sin 2t + 4(B-C)\cos 2t + 2A = 3 + 4\sin 2t.$$

So $A = \frac{3}{2}$, $B = \frac{-1}{2}$ and $C = \frac{-1}{2}$ and

$$y(t) = c_1 + c_2 e^{-2t} + \frac{3t}{2} - \frac{1}{2}(\sin 2t + \cos 2t)$$

is the general solution of the original equation.

7. The characteristic equation is

$$2r^2 + 3r + 1 = (2r+1)(r+1) = 0$$

Thus the possible values of r are $r_1 = \frac{-1}{2}$ and $r_2 = -1$, and the general solution of the homogeneous equation is

$$y(t) = c_1 e^{-t} + c_2 e^{\frac{-t}{2}}$$

Let $Y(t) = A + Bt + Ct^2 + D \sin t + E \cos t$ where A, B, C, D, and E are constants to be determined. On substituting to the original equation, we get

$$4C(A+3B) + (B+6C)t + Ct^{2} + (-2D-3E+D)\sin t + (-2E+3D+E)\cos 2t = t^{2} + 3\sin t.$$

So A = 14, B = -6, C = 1, $D = \frac{-3}{10}$ and $E = \frac{-9}{13}$ and

$$y(t) = c_1 e^{-t} + c_2 e^{\frac{-t}{2}} + 14t - 16Bt + t^2 - \frac{3}{10}\sin t - \frac{9}{13}\cos t$$

is the general solution of the original equation.

10. The characteristic equation is

$$r^2 + \omega_0^2 = 0$$

Thus the possible values of r are $r_1 = i\omega_0$ and $r_2 = -i\omega_0$, and the general solution of the homogeneous equation is

$$u(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t.$$

Let $Y(t) = At \cos \omega_0 t + Bt \sin \omega_0 t$ where A and B are constants to be determined. On substituting to the original equation, we get

$$-2A\omega_0\sin\omega_0t + 2B\omega_0\cos\omega_0t = \cos\omega_0t.$$

So A = 0, $B = \frac{1}{2\omega_0}$ and

$$u(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + \frac{t}{2\omega_0} \sin \omega_0 t$$

is the general solution of the original equation.

11. The characteristic equation is

$$r^2 + r + 4 = 0$$

Thus the possible values of r are $r_1 = \frac{-1}{2} + \frac{\sqrt{15}i}{2}$ and $r_2 = \frac{-1}{2} - \frac{\sqrt{15}i}{2}$, and the general solution of the homogeneous equation is

$$u(t) = e^{-\frac{t}{2}} \left(c_1 \cos \frac{\sqrt{15t}}{2} + c_2 \sin \frac{\sqrt{15t}}{2} \right)$$

Let $Y(t) = Ae^t + Be^{-t}$ where A and B are constants to be determined. On substituting to the original equation, we get

$$6Ae^t + 4Be^{-t} = e^t + e^{-t}.$$

So $A = \frac{1}{6}$, $B = \frac{-1}{4}$ and

$$u(t) = e^{-\frac{t}{2}} \left(c_1 \cos \frac{\sqrt{15}t}{2} + c_2 \sin \frac{\sqrt{15}t}{2} \right) + \frac{1}{6}e^t - \frac{1}{4}e^{-t}$$

is the general solution of the original equation.

In each of the following problems, find the solutions of the given initial problem.

13.
$$y'' + y' - 2y = 2t$$
; $y(0) = 0$; $y'(0) = 1$
16. $y'' - 2y' - 3y = 3te^t$; $y(0) = 1$; $y'(0) = 0$

Answer: 13. The characteristic equation is

$$r^2 + r - 2 = 0$$

Thus the possible values of r are $r_1 = -2$ and $r_2 = 1$, and the general solution of the homogeneous equation is

$$u(t) = c_1 e^t + c_2 e^{-2t}.$$

Let Y(t) = A + Bt where A and B are constants to be determined. On substituting to the original equation, we get

$$B - 2(A + Bt) = 2t.$$

So A = -1, $B = \frac{-1}{2}$ and

$$y(t) = c_1 e^t + c_2 e^{-2t} - t - \frac{1}{2}$$

is the general solutions of the original equations.

From y(0) = 0, we get $c_1 + c_2 = 1$.

From y'(0) = 1, we get $c_1 - 2c_2 = 1$.

Hence, $c_1 = 1$ and $c_2 = \frac{-1}{2}$ and the solution of the initial problem is

$$y(t) = e^{t} - \frac{1}{2}e^{-2t} - t - \frac{1}{2}.$$

16. The characteristic equation is

$$r^2 - 2r - 3 = 0$$

Thus the possible values of r are $r_1 = 3$ and $r_2 = -1$, and the general solution of the homogeneous equation is

$$u(t) = c_1 e^{3t} + c_2 e^{-t}$$

Let $Y(t) = (A+Bt)e^{2t}$ where A and B are constants to be determined. On substituting to the original equation, we get

$$2B - 3A - 3Bt = 3t.$$

So $A = \frac{-2}{3}$, B = -1 and

$$y(t) = c_1 e^{t3} + c_2 e^{-t} - \left(\frac{2}{3}t\right)e^{2t}$$

is the general solution of the original equation.

From y(0) = 0, we get $c_1 + c_2 = \frac{5}{3}$. From y'(0) = 1, we get $3c_1 - c_2 = \frac{7}{3}$.

Hence, $c_1 = 1$ and $c_2 = \frac{2}{3}$ and the solution of the initial problem is

$$y(t) = e^{3t} - \frac{2}{3}e^{-t} - (t + \frac{2}{3})e^{2t}.$$

н			ь.
н			
L	_		л.
	-	-	

Section 3.7

In each of Problems use the method of variation of parameters to find a particular solution of the differential equation. Then check your answer by using the method of undetermined coefficients.

2. $y'' - y' - 2y = 2e^{-t}$ 4. $4y'' - 4y' + y = 16e^{\frac{t}{2}}$

Answer: 2. The characteristic equation is

$$r^2 - r - 2 = 0$$

Thus the possible values of r are $r_1 = 2$ and $r_2 = -1$, and the general solutions of the homogeneous equation are

$$u(t) = c_1 y_1 + c_2 y_2 = c_1 e^{2t} + c_2 e^{-t}.$$

Method of variation of Parameters:

 $W(y_1, y_2) = -3e^t$ then a particular solution of the original equation is

$$Y(t) = -e^{2t} \int \frac{e^{-t}(2e^{-t})}{-3e^t} dt + e^{-t} \int \frac{e^{2t}(2e^{-t})}{-3e^t} dt$$
$$= \frac{-1}{9}e^{-t} - \frac{2}{3}te^{-t}$$

Hence,

$$y(t) = c_1 e^{2t} + c_2 e^{-t} - \frac{2}{3} t e^{-t}$$

are the general solutions of the original equation.

Method of undetermined coefficients:

Let $Y(t) = Ate^{-t}$ where A is constant to be determined. On substituting to the original equation, we get

$$-3e^{-t} = 2e^{-t}.$$

17

So $A = \frac{-2}{3}$ and

$$y(t) = c_1 e^{2t} + c_2 e^{-t} - \frac{1}{9} e^{-t} - \frac{2}{3} t e^{-t}$$

is the general solution of the original equation.

4. The original equation can written as:

$$y^{''} - y^{'} + \frac{1}{4}y = 4e^{\frac{t}{2}}$$

The characteristic equation is

$$r^2 - r + \frac{1}{4} = 0$$

Thus the possible values of r are $r = \frac{1}{2}$, and the general solutions of the homogeneous equation are

$$u(t) = c_1 y_1 + c_2 y_2 = c_1 e^{\frac{t}{2}} + c_2 t e^{\frac{t}{2}}.$$

Method of variation of Parameters:

 $W(y_1, y_2) = e^t$ then a particular solution of the original equation is

$$Y(t) = -e^{\frac{t}{2}} \int \frac{te^{\frac{t}{2}}(4e^{\frac{t}{2}})}{e^{t}} dt + te^{\frac{t}{2}} \int \frac{e^{\frac{t}{2}}(4e^{\frac{t}{2}})}{e^{t}} dt$$
$$= 2t^{2}e^{\frac{t}{2}}$$

Hence,

$$y(t) = c_1 e^{\frac{t}{2}} + c_2 t e^{\frac{t}{2}} + 2t^2 e^{\frac{t}{2}}$$

are the general solutions of the original equation.

Method of undetermined coefficients:

Let $Y(t) = At^2 e^{\frac{t}{2}}$ where A is constant to be determined. On substituting to the original equation, we get A = 2 and

$$y(t) = c_1 e^{\frac{t}{2}} + c_2 t e^{\frac{t}{2}} + 2t^2 e^{\frac{t}{2}}$$

are the general solutions of the original equation.

In each of Problems find the general solution of the given differential equation.

5.
$$y'' + y = \tan t$$
, $0 < t < \frac{\pi}{2}$
8. $y'' + 4y = 3\csc 2t$, $0 < t < \frac{\pi}{2}$

Answer: 5. The characteristic equation is

$$r^2 + 1 = 0$$

Thus the possible values of r are $r_1 = i$ and $r_2 = -i$, and the general solution of the equation is

$$y(t) = c_1 \cos t + c_2 \sin t.$$

 $W(y_1, y_2) = 1$ then a particular solution of the original equation is

$$Y(t) = -\cos t \int \sin t \tan t dt + \sin t \int \cos t \tan t dt$$
$$= -\cos t \ln \tan t + \sec t, \ 0 < t < \frac{\pi}{2}$$

Hence,

$$y(t) = c_1 \cos t + c_2 \sin t - \cos t \ln \tan t + \sec t, \ 0 < t < \frac{\pi}{2}$$

are the general solutions of the original equation.

8. The characteristic equation is

$$r^2 + 4 = 0$$

Thus the possible values of r are $r_1 = 2i$ and $r_2 = -2i$, and the general solution of the equation is

$$y(t) = c_1 \cos 2t + c_2 \sin 2t.$$

 $W(y_1, y_2) = 2$ then a particular solution of the original equation is

$$Y(t) = -\cos 2t \int \frac{3\sin 2t \csc 2t}{2} dt + \sin 2t \int \frac{3\cos 2t \csc 2t}{2} dt$$
$$= -\frac{3t}{2}\cos 2t + \frac{3}{4}\sin 2t \ln \sin t, \ 0 < t < \frac{\pi}{2}$$

Hence,

$$y(t) = c_1 \cos 2t + c_2 \sin 2t - \frac{3t}{2} \cos 2t + \frac{3}{4} \sin 2t \ln \sin t, \ 0 < t < \frac{\pi}{2}$$

are the general solutions of the original equation.

In each of the problems verify that the given functions y_1 and y_2 satisfy the corresponding homogeneous equation; then find a particular solution of the given nonhomogeneous equation.

13. $t^2y'' - 2y = 3t^2 - 1, t > 0; y_1 = t^2, y_2 = t^{-1}$ 15. $ty'' + (1+t)y' + 4y = t^2e^{2t}, y_1 = 1+t, y_2 = e^t$

Answer: 5. It is easy to check that y_1 and y_2 satisfy

$$t^2y'' - 2y = 3t^2 - 1, \ t > 0.$$

$$W(y_1, y_2) = -3$$
 and let

$$Y(t) = -t^2 \int \frac{t^{-1}(3t^2 - 1)}{-3} + t^{-1} \int \frac{t^2(3t^2 - 1)}{-3}$$
$$= \frac{3}{10}t^4 - \frac{1}{3}t^2 \ln t + \frac{1}{9}t^2, \ t > 0.$$

then a particular solution of the original equation is

$$y(t) = \frac{3}{10}t^4 - \frac{1}{3}t^2\ln t, \ t > 0.$$

8. It is easy to check that y_1 and y_2 satisfy

$$ty^{''} + (1+t)y^{'} + 4y = t^{2}e^{2t}$$

 $W(y_1, y_2) = te^t$ and let

$$\begin{split} Y(t) &= -(1+t)\int \frac{e^t(t^2e^{2t})}{te^t} + e^t\int \frac{(1+t)(t^2e^{2t})}{te^t} \\ &= (\frac{1}{2}t^2 - \frac{5}{4}t + \frac{5}{4})e^{2t}. \end{split}$$

then a particular solution of the original equation is

$$y(t) = (\frac{1}{2}t^2 - \frac{5}{4}t + \frac{5}{4})e^{2t}.$$

22. By choosing the lower limit of the integration in Equ.(28) in the text as the initial point t_0 , show that Y(t) becomes

$$Y(t) = \int_{t_0}^t \frac{y_1(s)y_2(t) - y_1(t)y_2(s)}{y_1(s)y_2'(s) - y_1'(s)y_2(s)}g(s)ds.$$

Show that Y(t) is a solution of the initial value problem

$$L[y] = g(t), \ y(t_0) = 0, \ y'(t_0) = 0.$$

Thus Y can be identified with v in problem 21.

Answer:

$$Y(t) = -y_1(t) \int \frac{y_2(s)g(s)}{W(y_1, y_2)(s)} ds + y_2(t) \int \frac{y_1(s)g(s)}{W(y_1, y_2)(s)} ds$$
$$= \int_{t_0}^t \frac{-y_1(t)y_2(s)g(s)}{y_1(s)y_2'(s) - y_2(s)y_1'(s)} ds + \int_{t_0}^t \frac{y_2(t)y_1(s)g(s)}{y_1(s)y_2'(s) - y_2(s)y_1'(s)} ds$$
$$= \int_{t_0}^t \frac{y_1(s)y_2(t) - y_2(s)y_1(t)}{y_1(s)y_2'(s) - y_2(s)y_1'(s)} g(s) ds$$

Hence,

$$Y(0) = \int_{t_0}^{t_0} \frac{y_1(s)y_2(t) - y_2(s)y_1(t)}{y_1(s)y_2'(s) - y_2(s)y_1'(s)}g(s)ds$$

From

$$Y(t) = -y_1(t) \int_{t_0}^t \frac{y_2(s)g(s)}{W(y_1, y_2)(s)} ds + y_2(t) \int_{t_0}^t \frac{y_1(s)g(s)}{W(y_1, y_2)(s)} ds,$$

we get

$$Y'(t) = -y'_1(t) \int_{t_0}^t \frac{y_2(s)g(s)}{W(y_1, y_2)(s)} ds + y'_2(t) \int_{t_0}^t \frac{y_1(s)g(s)}{W(y_1, y_2)(s)} ds$$

then

$$Y'(t_0) = -y'_1(t_0) \int_{t_0}^{t_0} \frac{y_2(s)g(s)}{W(y_1, y_2)(s)} ds + y'_2(t_0) \int_{t_0}^{t_0} \frac{y_1(s)g(s)}{W(y_1, y_2)(s)} ds = 0$$

$$Y''(t) = -y''_1(t) \int_{t_0}^t \frac{y_2(s)g(s)}{W(y_1, y_2)(s)} ds + y''_2(t) \int_{t_0}^t \frac{y_1(s)g(s)}{W(y_1, y_2)(s)} ds + g(t)$$

Hence $V''(t) + g(t)V'(t) + g(t)V(t)$

Hence, Y''(t) + p(t)Y'(t) + q(t)Y(t)

$$= [y_2''(t) + p(t)y_2'(t) + q(t)y_2(t)] \int_{t_0}^t \frac{y_1(s)g(s)}{W(y_1, y_2)(s)} ds$$

$$-[y_1''(t) + p(t)y_1'(t) + q(t)y_1(t)]\int_{t_0}^t \frac{y_2(s)g(s)}{W(y_1, y_2)(s)}ds + g(t) \equiv g(t).$$

Therefore, Y(t) is a solution of the initial value problem

$$L[y] = g(t), \ y(t_0) = 0, \ y'(t_0) = 0.$$

23. (a) Use the result of Problem 22 to show that the solution of the initial value problem

$$y'' + y = g(t), \ y(t_0) = 0, \ y'(t_0) = 0$$

is

$$y = \int_{t_0}^t \sin\left(t - s\right) g(s) ds$$

(b) Find the solution of the initial value problem

$$y'' + y = g(t), \ y(0) = y_0, \ y'(0) = y'_0.$$

Answer: The characteristic equation is

$$r^2 + 1 = 0$$

Thus the possible values of r are $r_1 = i$ and $r_2 = -i$, and the general solution of the homogeneous equation is

$$y(t) = c_1 \cos t + c_2 \sin t.$$

(a) From the result in Problem 22, we get the solution of the initial problem

$$Y(t) = \int_{t_0}^{t} \frac{y_1(s)y_2(t) - y_1(t)y_2(s)}{y_1(s)y_2'(s) - y_1'(s)y_2(s)}g(s)ds$$
$$= \int_{t_0}^{t} \frac{\cos s \sin t - \cos t \sin s}{\cos s \cos s + \sin s \sin s}g(s)ds$$
$$= \int_{t_0}^{t} (\cos s \sin t - \cos t \sin s)g(s)ds$$
$$= \int_{t_0}^{t} \sin (t - s)g(s)ds$$

(b) Because

$$y(t) = c_1 \cos t + c_2 \sin t$$

satisfy the corresponding homogenous equation, let $y(0) = y_0$ and $y'(0) = y'_0$, then we get $c_1 = y_0$ and $c_2 = y'_0$. Hence, the solution of the initial problem is

$$y(t) = y_0 \cos t + y'_0 \sin t + \int_{t_0}^t \sin (t - s)g(s)ds.$$

28. The method of reduction of order (Section 3.5) can also be used for the nonhomogeneous equation

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t), \qquad (i)$$

provided one solution y_1 of the corresponding homogeneous equation is known. Let $y = v(t)y_1(t)$ and show that y satisfies Equ.(i) if and only if

$$y_1 v^{''} + [2y_1^{'}(t) + p(t)y_1(t)]v^{'} = g(t),$$
 (ii)

Equation (ii) is a first order linear equation for v'. Solving this equation, integrating the result, and then multiplying by $y_1(t)$ lead to the general solution of Eq.(i).

Answer: Let $y = v(t)y_1(t)$, then

$$y'(t) = v'(t)y_1(t) + v(t)y'_1(t)$$
$$y''(t) = v''(t)y_1(t) + 2v'(t)y'_1(t) + v(t)y''_1(t)$$

So,

$$y''(t) + p(t)y'(t) + q(t)y(t)$$

= $y_1v'' + [2y'_1(t) + p(t)y_1(t)]v' + v(y''_1(t) + p(t)y'_1(t) + q(t)y_1(t))$
= $q(t)$

if y_1 is the solution of the corresponding homogeneous equation and

$$y_1v'' + [2y'_1(t) + p(t)y_1(t)]v' = g(t).$$

-	_	_		
			Ŀ	
	_			

In each of the problems use the method outlined in Problem 28 to solve the given differential equation.

29.
$$t^2y'' - 2ty' + 2y = 4t^2, t > 0; y_1(t) = t$$

30. $4y'' + 7ty' + 5y = t, t > 0; y_1(t) = t$

Answer: 29. Use the method in Problem 28, the original equation can be written as

$$y''(t) - \frac{2}{t}y'(t) + \frac{2}{t^2}y(t) = 4.$$

Let v satisfies

$$y_1v'' + [2y'_1(t) + p(t)y_1(t)]v' = g(t)$$

then tv'' = 4 and $v = 4t \ln t + c_1 t$. So $y_2 = y_1 v = 4t^2 \ln t + c_1 t^2$ is the solution of $t^2 y'' - 2ty' + 2y = 4t^2$, t > 0.

Hence, the general solution are

$$y_2 = c_1 t^2 + c_2 t + 4t^2 \ln t$$

29. Use the method in Problem 28, the original equation can be written as

$$y''(t) + \frac{7}{t}y'(t) + \frac{5}{t^2}y(t) = \frac{1}{t}.$$

Let v satisfies

$$y_1v'' + [2y'_1(t) + p(t)y_1(t)]v' = g(t)$$

then $v'' + \frac{5}{t}v' = 1$ and $v = \frac{1}{12}t^2 + c_1t^{-4}$. So $y_2 = y_1v = \frac{1}{12}t + c_1t^{-5}$ is the solution of 4y'' + 7ty' + 5y = t, t > 0. Hence, the general solution are

$$y_2 = c_1 t^{-5} + c_2 t^{-1} + \frac{1}{12} t.$$

Section 3.8

In the following problem, determine ω_0 , R and δ so as to write the given expression in the form $u = R \cos \omega_0 t - \delta$.

3. $u = 4\cos 3t - 2\sin 3t$

Answer: $R = \sqrt{4^2 + (-2)^2} = 2\sqrt{5}$ and $\delta = \arctan(\frac{-2}{4}) \cong -0.4636$ Hence $u = 2\sqrt{5}\cos 3t - \delta$ with $\delta = \arctan(\frac{-2}{4}) \cong -0.4636$.

5. A mass weighing 2 lb stretches a spring 6 in. If the mass is pulled down an additional 3 in. and then released, and if there is no damping, determine the position u of the mass at time t. Plot u versus t. Find the frequency, period, and amplitude of the motion.

Answer: Generally, the motion the mass is described by the following equation

$$mu''(t) + \gamma u'(t) + ku(t) = F(t).$$

Since nothing is said in the statement of the problem about an external force, we assume that F(t) = 0.

Also, $\gamma = 0$ because there is no damping.

To determine m note that

$$m = \frac{w}{g} = \frac{2lb}{32ft/sec^2} = \frac{1}{16}\frac{lb - sec^2}{ft}.$$

The spring constant k is be found from the statement that the mass stretches the spring 6 in, or by $\frac{1}{2}$ ft. Thus

$$k = \frac{2lb}{1/2ft} = 4\frac{lb}{ft}.$$

The equation of motion of the mass is

$$u'' + 64u(t) = 0.$$

The initial conditions are $u(0) = \frac{1}{4}$ and u'(0) = 0. The general solution is

$$u = A\cos(8t) + B\sin(8t).$$

25

The solution satisfies the initial conditions $u(0) = \frac{1}{4}$ and u' = 0, so we can get $A = \frac{1}{4}$ and B = 0.

Hence, the position u of the mass at time t is

$$\frac{1}{4}\cos(8t)ft, \text{tin sec; } \omega = 8rad/sec, \ T = \pi/4sec, \ R = 1/4ft.$$

19.Assume that the system described by the equation $mu'' + \gamma u' + ku = 0$ is either critically damped or overdamped. Show that the mass can pass through the equilibrium position at most once, regardless of the initial conditions.

Answer:

Case A: If the system is critically damped, then $\gamma = 2\sqrt{km}$. The characteristic equation of the original differential equation is

$$mr^2 + \gamma r + k = 0$$

Thus the possible value of r is $r = \frac{-\gamma}{2m}$, and the general solution of the homogeneous equation is

$$y(t) = (c_1 + c_2 t)e^{\frac{-\gamma}{2m}t}$$

Obviously, y(t) at most have one zero, regardless the coefficients of c_1 and c_2 , because y(t) always nondecreasing or nonincreasing. Hence, the mass can pass through the equilibrium position at most once, regardless of the initial conditions.

Case B: If the system is overdamped, then $\gamma > 2\sqrt{km}$.

The characteristic equation of the original differential equation is

$$mr^2 + \gamma r + k = 0$$

		F	
		L	
-		L	

Thus the possible values of r are $r_1 = \frac{-\gamma + \sqrt{\gamma^2 - 4mk}}{2m} < 0$ and $r_2 = \frac{-\gamma - \sqrt{\gamma^2 - 4mk}}{2m} < 0$ for $\gamma > 2\sqrt{km}$, and the general solution of the homogeneous equation is

$$y(t) = c_1 e^{\frac{-\gamma + \sqrt{\gamma^2 - 4mk}}{2m}t} + c_2 e^{\frac{-\gamma - \sqrt{\gamma^2 - 4mk}}{2m}t}$$
$$= e^{\frac{-\gamma}{2m}} (c_1 e^{\frac{\sqrt{\gamma^2 - 4mk}}{2m}t} + c_2 e^{\frac{-\sqrt{\gamma^2 - 4mk}}{2m}t}).$$

Obviously, y(t) at most have one zero, regardless the coefficients of c_1 and c_2 , then the mass can pass through the equilibrium position at most once, regardless of the initial conditions.

24. The position of a certain spring-mass system satisfied the initial value problem

$$\frac{3}{2}u'' + ku = 0, \ u(0) = 2, \ u'(0) = v.$$

If the period and amplitude of the resulting motion are observed to be π and 3, respectively, determine the value of k and v.

Answer: The period of the motion is

$$T = 2\pi \left(\frac{m}{k}\right)^{\frac{1}{2}} = 2\pi \left(\frac{3/2}{k}\right)^{\frac{1}{2}} = \pi.$$

So we get k = 6 and the equation can written as u'' + 4u = 0. Obviously, the general solution of this equation is

$$u(t) = A\cos 2t + B\sin 2t.$$

From u(0) = 2, then A = 2.

From the amplitude of the resulting motion is 3, $R = \sqrt{A^2 + B^2} = 3$ and then $B = \pm \sqrt{5}$. Hence,

$$u(t) = 2\cos 2t + \pm\sqrt{5}\sin 2t$$

and

28

$$v = u'(0) = \pm 2\sqrt{5}$$

Section	3.9	9

17. Consider a vibration system described by the initial value problem

$$u'' + \frac{1}{4}u' + 2u = 2\cos\omega t, \ u(0) = 0, \ u'(0) = 2.$$

(a.) Determine the steady-state part of the solution of this problem.

(b.) Find the amplitude A of the steady-state solution in terms of ω .

(c.) Plot A versus ω .

(d.) Find the maximum value of A and the frequency ω for which it occurs.

Answer: The characteristic equation of the original differential equation is

$$r^2 + \frac{1}{4}r + 2 = 0$$

Thus the possible values of r are $r_1 = -\frac{1}{8} + \frac{\sqrt{127}}{8}i r_2 = -\frac{1}{8} - \frac{\sqrt{127}}{8}i$, and the general solution of the homogeneous equation is

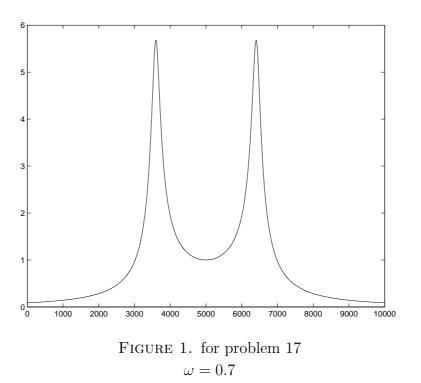
$$u(t) = e^{-\frac{1}{8}t} (c_1 \cos \frac{\sqrt{127}}{8}t + c_2 \sin \frac{\sqrt{127}}{8}t).$$

The motion of this system can be described by

$$u(t) = e^{-\frac{1}{8}t} (c_1 \cos \frac{\sqrt{127}}{8}t + c_2 \sin \frac{\sqrt{127}}{8}t) + R \cos(\omega t - \delta).$$

where

$$R = 2/\sqrt{(2-\omega^2)^2 + \frac{\omega^2}{16}}$$



$$\cos \delta = \frac{2 - \omega^2}{\sqrt{(2 - \omega^2)^2 + \frac{\omega^2}{16}}}$$

and

$$\sin \delta = \frac{\frac{1}{4}\omega}{\sqrt{(2-\omega^2)^2 + \frac{\omega^2}{16}}}$$

(a.) The steady-state part of the solution of this problem is

$$u = \frac{[32(2 - \omega^2)\cos\omega t + 8\omega\sin\omega t]}{64 - 63\omega^2 + 16\omega^4}.$$

(b.) The amplitude A of the steady-state is

$$A = \frac{8}{\sqrt{64 - 63\omega^2 + 16\omega^4}}.$$

(c.) For graph of A versus ω , see Figure 1.

(d.) The maximum value of \boldsymbol{A} is

$$A = \frac{64}{\sqrt{127}}$$

and the corresponding frequency

$$\omega = \frac{3\sqrt{14}}{8}.$$

18. Consider the forced but undamped system described by the initial value problem

$$u^{''} + u = 3\cos\omega t, \ u(0) = 0, \ u^{'}(0) = 0.$$

a. Find the solution u(t) for $\omega \neq 1$.

b. Plot the solution u(t) versus t for $\omega = 0.7$, $\omega = 0.8$ and $\omega = 0.9$. Describe how the response u(t) changes as ω varies in this interval. What happens as ω takes on values closer and closer to 1? Note that the natural frequency of the unforced system is $\omega_0 = 1$.

Answer: (a.) $\omega_0 = \sqrt{k/m} = 1$, if $\omega \neq \omega_0$, then the general solution is $u = c_1 \cos t + c_2 \sin t + \frac{3}{1 - \omega^2} \cos \omega t$. From u(0) = 0, u'(0) = 0, we get $c_1 = -\frac{3}{1 - \omega^2}$, $c_2 = 0$.

Hence the solution is

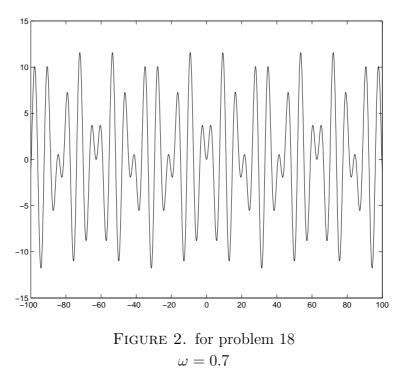
$$u(t) = \frac{3}{1 - \omega^2} (\cos \omega t - \cos t).$$

(b.) For the graphs of the solution u(t) versus t for $\omega = 0.7$, $\omega = 0.8$ and $\omega = 0.9$, see Figure 2., Figure 3. and Figure 4.

We can write above solution as:

$$u(t) = \left(\frac{3}{1-\omega^2}\sin\frac{(1-\omega)t}{2}\right)\sin\frac{(1+\omega)t}{2}.$$

If $|1 - \omega|$ is small, the $|1 + \omega|$ is much greater than $|1 - \omega|$. Consequently, $\sin \frac{(1+\omega)t}{2}$ is rapidly oscillating function compared to $\sin \frac{(1-\omega)t}{2}$. Thus the motion is a rapid oscillation with frequency $\frac{1+\omega}{2}$ but with a



slowly varying sinusoidal amplitude $\frac{3}{1-\omega^2}\sin\frac{(1-\omega)t}{2}$.

The amplitude of u(t) gets larger and lager as w varies from $\omega = 0.7$, $\omega = 0.8$ to $\omega = 0.9$, and closer and closer to 1, the natural frequency of the unforced system.

