
Sample Solutions of Assignment 5 for MAT3270B: 3.4-3.9

Section 3.4

In each of problems find the general solution of the given differential

equation

7. y
′′ − 2y

′
+ 2y = 0

12. 4y
′′

+ 9y = 0

14. 9y
′′

+ 9y
′ − 4y = 0

15. y
′′

+ y
′
+ 1.25y = 0

Answer: 7. The characteristic equation is

r2 − 2 + 2 = 0

Thus the possible values of r are r1 = 1 + i and r2 = 1 − i, and the

general solution of the equation is

y(t) = et(c1 cos t + c2 sin t).

12. The characteristic equation is

4r2 + 9 = 0

Thus the possible values of r are r1 = 3i
2

and r2 = −3i
2

, and the general

solution of the equation is

y(t) = c1 cos
3t

2
+ c2 sin

3t

2
.

14. The characteristic equation is

9r2 + 9r − 4 = 0
1
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Thus the possible values of r are r1 = 1
3

and r2 = −4
3

, and the general

solution of the equation is

y(t) = c1e
t
3 + c2e

−4t
3 .

15. The characteristic equation is

r2 + r + 1.25 = 0

Thus the possible values of r are r1 = −1
2

+ iand r2 = −1
2
− i, and the

general solution of the equation is

y(t) = e
−t
2 (c1 cos t + c2 sin t).

23. Consider the initial value problem

3u
′′ − u

′
+ 2u = 0, u(0) = 2, u

′
(0) = 0.

a. Find the solution u(t) of this problem.

b. Find the first time at which |u(t)| = 10.

Answer: (a.) The characteristic equation is

3r2 − r + 2 = 0

Thus the possible values of r are r1 = 1+
√

23i
6

and r2 = 1−√23i
6

, and the

general solution of the equation is

u(t) = e
t
6 (c1 cos

√
23t

6
+ c2 sin

√
23t

6
).

(b.) From u(0) = 0, we get c1 = 2

From u
′
(0) = 0, we get c2 = −2√

23
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Therefore,

u(t) = e
t
6 (2 cos

√
23t

6
− 2√

23
sin

√
23t

6
).

The first time is t0 = 10.7598 such that |u(t)| = 10.

27. Show that W (eλt cos µt, eλt sin µt) = µe2λt

Answer: Let

y1 = eλt cos µt

y2 = eλt sin µt

W (eλt cos µt, eλt sin µt) = y
′
2y1 − y

′
1y2

= e2λt cos µt(λ sin µt + µ sin µt)− e2λt sin µt(λ cos µt− µ sin µt)

= µe2λt

33. If the functions y1 and y2 are linearly independent solutions of

y
′′
+p(t)y

′
+ q(t)y = 0, show that between consecutive zeros of y1 there

is one and only one zero of y2. Note that this result is illustrated by

the solutions y1 = cos t and y2 = sin t of the equation y
′′

+ y = 0.

Answer: Assume the two consecutive zeros of y1 are t1 and t2, and

t1 < t2. Then y1(t) < 0 or y1(t) > 0 for all t1 < t < t2.

Case A: We consider the case y1(t) > 0 for all t1 < t < t2.

In this case, obviously, y
′
1(t1) > 0 and y

′
1(t2) < 0.
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W (y1, y2) = y
′
2y1 − y

′
1y2 6= 0 for all t, because y1 and y2 are linearly

independent solutions of y
′′
+ p(t)y

′
+ q(t)y = 0 , then W (y1, y2)(t) > 0

or W (y1, y2)(t) < 0 for all t.

If W (y1, y2)(t) > 0 for all t.

We get

W (y1, y2)(t1) = −y
′
1(t1)y2(t1) > 0

W (y1, y2)(t2) = −y
′
1(t2)y2(t2) > 0

Hence y2(t1) > 0 and y2(t2) < 0, so there is one zero of y2.

If W (y1, y2)(t) < 0 for all t.

We get

W (y1, y2)(t1) = −y
′
1(t1)y2(t1) < 0

W (y1, y2)(t2) = −y
′
1(t2)y2(t2) < 0

Hence y2(t1) < 0 and y2(t2) > 0, so there is one zero of y2.

Case B: We consider the case y1(t) < 0 for all t1 < t < t2.

In this case, obviously, y
′
1(t1) < 0 and y

′
1(t2) > 0.

W (y1, y2) = y
′
2y1 − y

′
1y2 6= 0 for all t, because y1 and y2 are linearly

independent solutions of y
′′
+ p(t)y

′
+ q(t)y = 0 , then W (y1, y2)(t) > 0

or W (y1, y2)(t) < 0 for all t.

If W (y1, y2)(t) > 0 for all t.

We get

W (y1, y2)(t1) = −y
′
1(t1)y2(t1) > 0

W (y1, y2)(t2) = −y
′
1(t2)y2(t2) > 0
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Hence y2(t1) < 0 and y2(t2) > 0, so there is one zero of y2.

If W (y1, y2)(t) < 0 for all t.

We get

W (y1, y2)(t1) = −y
′
1(t1)y2(t1) < 0

W (y1, y2)(t2) = −y
′
1(t2)y2(t2) < 0

Hence y2(t1) > 0 and y2(t2) < 0, so there is one zero of y2.

We need to show there is only one zero of y2 between t1 and t2.

If otherwise, then there is at least two zero of y2 between t1 and t2,

we can select two consecutive zeros of y2, say t3 and t4, such that

t1 < t3 < t1 < t4 < t2. Then from above proof we can show there is

another zero of y1, say t5 such that t1 < t3 < t1 < t5 < t4 < t2. This

contradict that t1 and t2 are two consecutive zeros of y1.

38. Euler Equation. An equation of the form

t2y
′′

+ αty
′
+ βy = 0, t > 0,

where α and β are real constants, is called an Euler equation. Show

that the substitution x = ln t transform an Euler equation into an

equation with constant coefficients.

Answer:
dx

dt
=

1

t
d2y

dt2
=

1

t2
d2y

dx2
− 1

t2
dy

dx
We get

t2y
′′

+ αty
′
+ βy =

d2y

dx2
+ (α + 1)

dy

dx
+ βy = 0.
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Section 3.5

Find the general solutions of the given differential equations.

1. y
′′ − 2y

′
+ y = 0

8. 16y
′′

+ 24y
′
+ 9y = 0

Answer: 1. The characteristic equation is

r2 − 2r + 1 = (r − 1)(r − 1) = 0

Thus the possible value of r is r = 1, and the general solution of the

equation is

y(t) = (c1 + c2t)e
t.

8. The characteristic equation is

16r2 + 24r + 90

Thus the possible value of r is r1 = −3
4
, and the general solution of the

equation is

y(t) = (c1 + c2t)e
−3
4

t.

In each of the problems use the method of reduction of order to find

second solution of the given equation.

23. t2y
′′ − 4ty

′
+ 6y = 0; t > 0; y1(t) = t2

25. t2y
′′

+ 3ty
′
+ y = 0; t > 0; y1(t) = 1

t

26. t2y
′′ − t(t + 2)y

′
+ (t + 2)y = 0; t > 0; y1(t) = t
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Answer: 23. Let y(t) = t2v(t), then

y
′
= v

′
t2 + 2tv

y
′′

= v
′′
t2 + 4v

′
t + 2v

So we get

t4v
′′

= 0

. Then

v(t) = c1t + c2

and so

y(t) = c1t
3 + c2t

2.

From y1(t) = t2, we find the second solution is y2(t) = t3.

25. Let y(t) = t−1v(t), then

y
′
= v

′
t−1 − t−2v

y
′′

= t−1v
′′
t2 − 2v

′
t−2 + 2t−3v

So we get

tv
′′

+ v
′
= 0

. Then

v(t) = c1 ln t + c2

and so

y(t) = c1t
−1 ln t + c2t

−1.

From y1(t) = t−1, we find the second solution is y2(t) = t−1 ln t.

26. Let y(t) = tv(t), then

y
′
= v

′
t + v

y
′′

= v
′′
t + 2v

′

So we get

v
′′ − v

′
= 0

. Then

v(t) = c1e
t + c2
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and so

y(t) = c1te
t + c2t.

From y1(t) = t, we find the second solution is y2(t) = tet.

32. The differential equation

y
′′

+ δ(xy
′
+ y) = 0

arises in the study of the turbulent flow of a uniform stream past a

circular cylinder. Verify that y1 = exp(−δx2

2
) is one solution and then

find the general solution in the form of an integral.

Answer:

y1 = e
−δx2

2

y
′
1 = −δxe

−δx2

2

y
′′
1 = (δ2x2 − δ)e

−δx2

2

Then it is easy to see

y
′′
1 + δ(xy

′
1 + y1) = 0.

Let y = ve
−δx2

2 , then

y
′
= v

′
e
−δx2

2 − δxve
−δx2

2

y
′′

= v
′′
e
−δx2

2 − 2δxv
′
e
−δx2

2 + δ2x2ve
−δx2

2 − δve
−δx2

2 .

We get v
′′ − δxv

′
= 0, and then v(x) =

∫ x

0
c1e

δx2

2 + c2.

Hence,

y(x) = (c1

∫ x

0

e
δx2

2 + c2)e
−δx2

2 .

From y1 = exp(−δx2

2
), we find the second solution is

y(x) = e
−δx2

2

∫ x

0

e
δx2

2 .
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In the following problem use the method of of problem 33 to find second

independent solution of the given equation.

34. t2y
′′

+ 3ty
′
+ y = 0; t > 0; y1(t) = 1

t

Answer: The original equation can be written as

y
′′

+
3

t
y
′
+

1

t2
y = 0.

From the Abel’s theorem

W (y1, y2) = c1e
− ∫

3dt
t =

c1

t3
= y1y

′
2 − y

′
1y2 =

y
′
2

t
+

y2

t2

We get

y
′
2 +

y2

t
=

c1

t2
,

and

y2(t) =
1

t
[c1 ln t + c2].

38. If a, b, c are positive constants, show that all solutions of ay
′′

+

by
′
+ cy = 0 approach zero as t →∞.

Answer: The characteristic equation is

ar2 − br + c = 0

Case A: b2 − 4ac < 0

Thus the possible values of r are r1 = −b+i
√

4ac−b2

2a
and r2 = −b−i

√
4ac−b2

2a
,

and the general solution of the equation is

y(t) = e
−bt
2a (c1 cos

√
4ac− b2

2a
t + c2 sin

√
4ac− b2

2a
t).
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Hence, y(t) → 0, as t →∞, since a, b are positive constants.

Case B: b2 − 4ac = 0

Thus the possible values of r are r1 = −b
2a

, and the general solution of

the equation is

y(t) = e
−bt
2a (c1 + c2t).

Hence, y(t) → 0, as t →∞, since a, b are positive constants.

Case C: b2 − 4ac > 0

Thus the possible values of r are r1 = −b+
√

b2−4ac
2a

and r2 = −b−√b2−4ac
2a

,

and the general solution of the equation is

y(t) = c1e
−b+

√
b2−4ac

2a + c2e
−b−

√
b2−4ac

2a .

Hence, y(t) → 0, as t → ∞, since a is positive constant and −b +√
b2 − 4ac < 0.

39. (a) If a > 0 and c > 0, but b = 0, show that the result of Problem

38 is no longer true, but that all solutions are bounded as t →∞.

(b) If a > 0 and b > 0, but c = 0, show that the result of Problem

38 is no longer true, but that all solutions approach a constant that

depends on the initial conditions as t → ∞. Determine this constants

for the initial conditions y(0) = y0, y
′
(0) = y

′
(0).

Answer: (a). a > 0 and b > 0, but c = 0

The characteristic equation is

ar2 + cr = 0
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Thus the possible values of r are r1 =
√

c
a
i and r2 = −√

c
a
i, and the

general solution of the equation is

y(t) = c1 cos

√
c

a
t + c2 sin

√
c

a
t.

Hence, all solutions are bounded as t →∞.

(b): a > 0 and b > 0, but c = 0

The characteristic equation is

ar2 − br = 0

Thus the possible values of r are r1 = 0 and r2 = − b
a
, and the general

solution of the equation is

y(t) = c1 + c2e
−bt
a .

Hence, y(t) → c1, as t → ∞, since a, b are positive constants. Obvi-

ously, c1 depends on the initial conditions.

From y
′
(0) = y

′
(0), we can get c2 = −ay

′
0

b
.

From y(0) = y0, we get c1 = −ay
′
0

b
+ y0.

Section 3.6

Answer: In each of the following problems, find the general solutions

of the given differential equations.

1. y
′′ − 2y

′
+ 3y = 3e2t

4. y
′′

+ 2y
′
= 3 + 4 sin 2t

7. 2y
′′

+ 3y
′
+ y = t + 3 sin t

10. u
′′

+ ω2
0u = cos ω0t

11. y
′′

+ y
′
+ 4y = 2 sinh t
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Answer: 1. The characteristic equation is

r2 − 2r − 3 = (r − 3)(r + 1) = 0

Thus the possible values of r are r1 = 3 and r2 = −1, and the general

solution of the homogeneous equation is

y(t) = c1e
3t + c2e

−t.

Let Y (t) = Ae2t where A is a constant to be determined. On substi-

tuting to the original equation, we get

−15Ae2t = 3e2t.

So A = −1
5

and

y(t) = c1e
3t + c2e

−t − 1

5
e2t

is the general solution of the original equation.

4. The characteristic equation is

r2 + 2r = r(r + 2) = 0

Thus the possible values of r are r1 = 0 and r2 = −2, and the general

solution of the homogeneous equation is

y(t) = c1 + c2e
−2t.

Let Y (t) = At + B sin 2t + C cos 2t where A,Band, C are constants to

be determined. On substituting to the original equation, we get

−4(B + C) sin 2t + 4(B − C) cos 2t + 2A = 3 + 4 sin 2t.

So A = 3
2
, B = −1

2
and C = −1

2
and

y(t) = c1 + c2e
−2t +

3t

2
− 1

2
(sin 2t + cos 2t)

is the general solution of the original equation.

7. The characteristic equation is

2r2 + 3r + 1 = (2r + 1)(r + 1) = 0
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Thus the possible values of r are r1 = −1
2

and r2 = −1, and the general

solution of the homogeneous equation is

y(t) = c1e
−t + c2e

−t
2 .

Let Y (t) = A+Bt+Ct2 +D sin t+E cos t where A,B,C, D, andE are

constants to be determined. On substituting to the original equation,

we get

4C(A+3B)+(B+6C)t+Ct2+(−2D−3E+D) sin t+(−2E+3D+E) cos 2t = t2+3 sin t.

So A = 14, B = −6, C = 1, D = −3
10

and E = −9
13

and

y(t) = c1e
−t + c2e

−t
2 + 14t− 16Bt + t2 − 3

10
sin t− 9

13
cos t

is the general solution of the original equation.

10. The characteristic equation is

r2 + ω2
0 = 0

Thus the possible values of r are r1 = iω0 and r2 = −iω0, and the

general solution of the homogeneous equation is

u(t) = c1 cos ω0t + c2 sin ω0t.

Let Y (t) = At cos ω0t + Bt sin ω0t where A and B are constants to be

determined. On substituting to the original equation, we get

−2Aω0 sin ω0t + 2Bω0 cos ω0t = cos ω0t.

So A = 0, B = 1
2ω0

and

u(t) = c1 cos ω0t + c2 sin ω0t +
t

2ω0

sin ω0t

is the general solution of the original equation.

11. The characteristic equation is

r2 + r + 4 = 0



14

Thus the possible values of r are r1 = −1
2

+
√

15i
2

and r2 = −1
2
−

√
15i
2

,

and the general solution of the homogeneous equation is

u(t) = e−
t
2 (c1 cos

√
15t

2
+ c2 sin

√
15t

2
).

Let Y (t) = Aet +Be−t where A and B are constants to be determined.

On substituting to the original equation, we get

6Aet + 4Be−t = et + e−t.

So A = 1
6
, B = −1

4
and

u(t) = e−
t
2 (c1 cos

√
15t

2
+ c2 sin

√
15t

2
) +

1

6
et − 1

4
e−t

is the general solution of the original equation.

In each of the following problems, find the solutions of the given initial

problem.

13. y
′′

+ y
′ − 2y = 2t; y(0) = 0; y

′
(0) = 1

16. y
′′ − 2y

′ − 3y = 3tet; y(0) = 1; y
′
(0) = 0

Answer: 13. The characteristic equation is

r2 + r − 2 = 0

Thus the possible values of r are r1 = −2 and r2 = 1, and the general

solution of the homogeneous equation is

u(t) = c1e
t + c2e

−2t.

Let Y (t) = A+Bt where A and B are constants to be determined. On

substituting to the original equation, we get

B − 2(A + Bt) = 2t.
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So A = −1, B = −1
2

and

y(t) = c1e
t + c2e

−2t − t− 1

2

is the general solutions of the original equations.

From y(0) = 0, we get c1 + c2 = 1.

From y
′
(0) = 1, we get c1 − 2c2 = 1.

Hence, c1 = 1 and c2 = −1
2

and the solution of the initial problem is

y(t) = et − 1

2
e−2t − t− 1

2
.

16. The characteristic equation is

r2 − 2r − 3 = 0

Thus the possible values of r are r1 = 3 and r2 = −1, and the general

solution of the homogeneous equation is

u(t) = c1e
3t + c2e

−t.

Let Y (t) = (A+Bt)e2t where A and B are constants to be determined.

On substituting to the original equation, we get

2B − 3A− 3Bt = 3t.

So A = −2
3

, B = −1 and

y(t) = c1e
t3 + c2e

−t − (
2

3
t)e2t

is the general solution of the original equation.

From y(0) = 0, we get c1 + c2 = 5
3
.

From y
′
(0) = 1, we get 3c1 − c2 = 7

3
.

Hence, c1 = 1 and c2 = 2
3

and the solution of the initial problem is

y(t) = e3t − 2

3
e−t − (t +

2

3
)e2t.
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Section 3.7

In each of Problems use the method of variation of parameters to find a

particular solution of the differential equation. Then check your answer

by using the method of undetermined coefficients.

2. y
′′ − y

′ − 2y = 2e−t

4. 4y
′′ − 4y

′
+ y = 16e

t
2

Answer: 2. The characteristic equation is

r2 − r − 2 = 0

Thus the possible values of r are r1 = 2 and r2 = −1, and the general

solutions of the homogeneous equation are

u(t) = c1y1 + c2y2 = c1e
2t + c2e

−t.

Method of variation of Parameters:

W (y1, y2) = −3et then a particular solution of the original equation

is

Y (t) = −e2t

∫
e−t(2e−t)

−3et
dt + e−t

∫
e2t(2e−t)

−3et
dt

=
−1

9
e−t − 2

3
te−t

Hence,

y(t) = c1e
2t + c2e

−t − 2

3
te−t

are the general solutions of the original equation.

Method of undetermined coefficients:

Let Y (t) = Ate−t where A is constant to be determined. On substi-

tuting to the original equation, we get

−3e−t = 2e−t.



17

So A = −2
3

and

y(t) = c1e
2t + c2e

−t − 1

9
e−t − 2

3
te−t

is the general solution of the original equation.

4. The original equation can written as:

y
′′ − y

′
+

1

4
y = 4e

t
2

The characteristic equation is

r2 − r +
1

4
= 0

Thus the possible values of r are r = 1
2
, and the general solutions of

the homogeneous equation are

u(t) = c1y1 + c2y2 = c1e
t
2 + c2te

t
2 .

Method of variation of Parameters:

W (y1, y2) = et then a particular solution of the original equation is

Y (t) = −e
t
2

∫
te

t
2 (4e

t
2 )

et
dt + te

t
2

∫
e

t
2 (4e

t
2 )

et
dt

= 2t2e
t
2

Hence,

y(t) = c1e
t
2 + c2te

t
2 + 2t2e

t
2

are the general solutions of the original equation.

Method of undetermined coefficients:

Let Y (t) = At2e
t
2 where A is constant to be determined. On substi-

tuting to the original equation, we get A = 2 and

y(t) = c1e
t
2 + c2te

t
2 + 2t2e

t
2

are the general solutions of the original equation.
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In each of Problems find the general solution of the given differential

equation.

5. y
′′

+ y = tan t, 0 < t < π
2

8. y
′′

+ 4y = 3 csc 2t, 0 < t < π
2

Answer: 5.The characteristic equation is

r2 + 1 = 0

Thus the possible values of r are r1 = i and r2 = −i, and the general

solution of the equation is

y(t) = c1 cos t + c2 sin t.

W (y1, y2) = 1 then a particular solution of the original equation is

Y (t) = − cos t

∫
sin t tan tdt + sin t

∫
cos t tan tdt

= − cos t ln tan t + sec t, 0 < t <
π

2
Hence,

y(t) = c1 cos t + c2 sin t− cos t ln tan t + sec t, 0 < t <
π

2

are the general solutions of the original equation.

8. The characteristic equation is

r2 + 4 = 0

Thus the possible values of r are r1 = 2i and r2 = −2i, and the general

solution of the equation is

y(t) = c1 cos 2t + c2 sin 2t.

W (y1, y2) = 2 then a particular solution of the original equation is

Y (t) = − cos 2t

∫
3 sin 2t csc 2t

2
dt + sin 2t

∫
3 cos 2t csc 2t

2
dt

= −3t

2
cos 2t +

3

4
sin 2t ln sin t, 0 < t <

π

2
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Hence,

y(t) = c1 cos 2t + c2 sin 2t− 3t

2
cos 2t +

3

4
sin 2t ln sin t, 0 < t <

π

2

are the general solutions of the original equation.

In each of the problems verify that the given functions y1 and y2 sat-

isfy the corresponding homogeneous equation; then find a particular

solution of the given nonhomogeneous equation.

13. t2y
′′ − 2y = 3t2 − 1, t > 0; y1 = t2, y2 = t−1

15. ty
′′

+ (1 + t)y
′
+ 4y = t2e2t, y1 = 1 + t, y2 = et

Answer: 5. It is easy to check that y1 and y2 satisfy

t2y
′′ − 2y = 3t2 − 1, t > 0.

W (y1, y2) = −3 and let

Y (t) = −t2
∫

t−1(3t2 − 1)

−3
+ t−1

∫
t2(3t2 − 1)

−3

=
3

10
t4 − 1

3
t2 ln t +

1

9
t2, t > 0.

then a particular solution of the original equation is

y(t) =
3

10
t4 − 1

3
t2 ln t, t > 0.

8. It is easy to check that y1 and y2 satisfy

ty
′′

+ (1 + t)y
′
+ 4y = t2e2t

W (y1, y2) = tet and let

Y (t) = −(1 + t)

∫
et(t2e2t)

tet
+ et

∫
(1 + t)(t2e2t)

tet

= (
1

2
t2 − 5

4
t +

5

4
)e2t.
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then a particular solution of the original equation is

y(t) = (
1

2
t2 − 5

4
t +

5

4
)e2t.

22. By choosing the lower limit of the integration in Equ.(28) in the

text as the initial point t0, show that Y (t) becomes

Y (t) =

∫ t

t0

y1(s)y2(t)− y1(t)y2(s)

y1(s)y
′
2(s)− y

′
1(s)y2(s)

g(s)ds.

Show that Y (t) is a solution of the initial value problem

L[y] = g(t), y(t0) = 0, y
′
(t0) = 0.

Thus Y can be identified with v in problem 21.

Answer:

Y (t) = −y1(t)

∫
y2(s)g(s)

W (y1, y2)(s)
ds + y2(t)

∫
y1(s)g(s)

W (y1, y2)(s)
ds

=

∫ t

t0

−y1(t)y2(s)g(s)

y1(s)y
′
2(s)− y2(s)y

′
1(s)

ds +

∫ t

t0

y2(t)y1(s)g(s)

y1(s)y
′
2(s)− y2(s)y

′
1(s)

ds

=

∫ t

t0

y1(s)y2(t)− y2(s)y1(t)

y1(s)y
′
2(s)− y2(s)y

′
1(s)

g(s)ds

Hence,

Y (0) =

∫ t0

t0

y1(s)y2(t)− y2(s)y1(t)

y1(s)y
′
2(s)− y2(s)y

′
1(s)

g(s)ds

From

Y (t) = −y1(t)

∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds + y2(t)

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds,
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we get

Y
′
(t) = −y

′
1(t)

∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds + y

′
2(t)

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds

then

Y
′
(t0) = −y

′
1(t0)

∫ t0

t0

y2(s)g(s)

W (y1, y2)(s)
ds + y

′
2(t0)

∫ t0

t0

y1(s)g(s)

W (y1, y2)(s)
ds = 0

Y
′′
(t) = −y

′′
1 (t)

∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds + y

′′
2 (t)

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds + g(t)

Hence, Y
′′
(t) + p(t)Y

′
(t) + q(t)Y (t)

= [y
′′
2 (t) + p(t)y

′
2(t) + q(t)y2(t)]

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds

−[y
′′
1 (t) + p(t)y

′
1(t) + q(t)y1(t)]

∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds + g(t) ≡ g(t).

Therefore, Y (t) is a solution of the initial value problem

L[y] = g(t), y(t0) = 0, y
′
(t0) = 0.

23. (a) Use the result of Problem 22 to show that the solution of the

initial value problem

y
′′

+ y = g(t), y(t0) = 0, y
′
(t0) = 0

is

y =

∫ t

t0

sin (t− s)g(s)ds

(b) Find the solution of the initial value problem

y
′′

+ y = g(t), y(0) = y0, y
′
(0) = y

′
0.
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Answer: The characteristic equation is

r2 + 1 = 0

Thus the possible values of r are r1 = i and r2 = −i, and the general

solution of the homogeneous equation is

y(t) = c1 cos t + c2 sin t.

(a) From the result in Problem 22, we get the solution of the initial

problem

Y (t) =

∫ t

t0

y1(s)y2(t)− y1(t)y2(s)

y1(s)y
′
2(s)− y

′
1(s)y2(s)

g(s)ds

=

∫ t

t0

cos s sin t− cos t sin s

cos s cos s + sin s sin s
g(s)ds

=

∫ t

t0

(cos s sin t− cos t sin s)g(s)ds

=

∫ t

t0

sin (t− s)g(s)ds

(b) Because

y(t) = c1 cos t + c2 sin t

satisfy the corresponding homogenous equation, let y(0) = y0 and

y
′
(0) = y

′
0, then we get c1 = y0 and c2 = y

′
0. Hence, the solution

of the initial problem is

y(t) = y0 cos t + y
′
0 sin t +

∫ t

t0

sin (t− s)g(s)ds.

28. The method of reduction of order (Section 3.5) can also be used

for the nonhomogeneous equation

y
′′
(t) + p(t)y

′
(t) + q(t)y(t) = g(t), (i)
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provided one solution y1 of the corresponding homogeneous equation is

known. Let y = v(t)y1(t) and show that y satisfies Equ.(i) if and only

if

y1v
′′

+ [2y
′
1(t) + p(t)y1(t)]v

′
= g(t), (ii)

Equation (ii) is a first order linear equation for v
′
. Solving this equa-

tion, integrating the result, and then multiplying by y1(t) lead to the

general solution of Eq.(i).

Answer: Let y = v(t)y1(t), then

y
′
(t) = v

′
(t)y1(t) + v(t)y

′
1(t)

y
′′
(t) = v

′′
(t)y1(t) + 2v

′
(t)y

′
1(t) + v(t)y

′′
1 (t)

So,

y
′′
(t) + p(t)y

′
(t) + q(t)y(t)

= y1v
′′

+ [2y
′
1(t) + p(t)y1(t)]v

′
+ v(y

′′
1 (t) + p(t)y

′
1(t) + q(t)y1(t))

= g(t)

if y1 is the solution of the corresponding homogeneous equation and

y1v
′′

+ [2y
′
1(t) + p(t)y1(t)]v

′
= g(t).

In each of the problems use the method outlined in Problem 28 to solve

the given differential equation.

29. t2y
′′ − 2ty

′
+ 2y = 4t2, t > 0; y1(t) = t

30. 4y
′′

+ 7ty
′
+ 5y = t, t > 0; y1(t) = t

Answer: 29. Use the method in Problem 28, the original equation can

be written as

y
′′
(t)− 2

t
y
′
(t) +

2

t2
y(t) = 4.
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Let v satisfies

y1v
′′

+ [2y
′
1(t) + p(t)y1(t)]v

′
= g(t)

then tv
′′

= 4 and v = 4t ln t + c1t.

So y2 = y1v = 4t2 ln t+c1t
2 is the solution of t2y

′′−2ty
′
+2y = 4t2, t >

0.

Hence, the general solution are

y2 = c1t
2 + c2t + 4t2 ln t

29. Use the method in Problem 28, the original equation can be

written as

y
′′
(t) +

7

t
y
′
(t) +

5

t2
y(t) =

1

t
.

Let v satisfies

y1v
′′

+ [2y
′
1(t) + p(t)y1(t)]v

′
= g(t)

then v
′′

+ 5
t
v
′
= 1 and v = 1

12
t2 + c1t

−4.

So y2 = y1v = 1
12

t + c1t
−5 is the solution of 4y

′′
+ 7ty

′
+ 5y = t, t > 0.

Hence, the general solution are

y2 = c1t
−5 + c2t

−1 +
1

12
t.

Section 3.8

In the following problem, determine ω0, R and δ so as to write the

given expression in the form u = R cos ω0t− δ.

3. u = 4 cos 3t− 2 sin 3t
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Answer: R =
√

42 + (−2)2 = 2
√

5 and δ = arctan(−2
4

) ∼== −0.4636

Hence u = 2
√

5 cos 3t− δ with δ = arctan(−2
4

) ∼== −0.4636.

5. A mass weighing 2 lb stretches a spring 6 in. If the mass is pulled

down an additional 3 in. and then released, and if there is no damping,

determine the position u of the mass at time t. Plot u versus t. Find

the frequency, period, and amplitude of the motion.

Answer: Generally, the motion the mass is described by the following

equation

mu
′′
(t) + γu

′
(t) + ku(t) = F (t).

Since nothing is said in the statement of the problem about an ex-

ternal force, we assume that F (t) = 0.

Also, γ = 0 because there is no damping.

To determine m note that

m =
w

g
=

2lb

32ft�sec2
=

1

16

lb− sec2

ft
.

The spring constant k is be found from the statement that the mass

stretches the spring 6 in, or by 1
2

ft. Thus

k =
2lb

1/2ft
= 4

lb

ft
.

The equation of motion of the mass is

u
′′

+ 64u(t) = 0.

The initial conditions are u(0) = 1
4

and u
′
(0) = 0.

The general solution is

u = A cos(8t) + B sin(8t).
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The solution satisfies the initial conditions u(0) = 1
4

and u
′
= 0, so we

can get A = 1
4

and B = 0.

Hence, the position u of the mass at time t is

1

4
cos(8t)ft, tin sec; ω = 8rad/sec, T = π/4sec, R = 1/4ft.

19.Assume that the system described by the equation mu
′′
+γu

′
+ku =

0 is either critically damped or overdamped. Show that the mass can

pass through the equilibrium position at most once, regardless of the

initial conditions.

Answer:

Case A: If the system is critically damped, then γ = 2
√

km.

The characteristic equation of the original differential equation is

mr2 + γr + k = 0

Thus the possible value of r is r = −γ
2m

, and the general solution of the

homogeneous equation is

y(t) = (c1 + c2t)e
−γ
2m

t.

Obviously, y(t) at most have one zero, regardless the coefficients of c1

and c2, because y(t) always nondecreasing or nonincreasing. Hence, the

mass can pass through the equilibrium position at most once, regardless

of the initial conditions.

Case B: If the system is overdamped, then γ > 2
√

km.

The characteristic equation of the original differential equation is

mr2 + γr + k = 0
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Thus the possible values of r are r1 =
−γ+

√
γ2−4mk

2m
< 0 and r2 =

−γ−
√

γ2−4mk

2m
< 0 for γ > 2

√
km, and the general solution of the homo-

geneous equation is

y(t) = c1e
−γ+

√
γ2−4mk
2m

t + c2e
−γ−

√
γ2−4mk
2m

t

= e
−γ
2m (c1e

√
γ2−4mk

2m
t + c2e

−
√

γ2−4mk
2m

t).

Obviously, y(t) at most have one zero, regardless the coefficients of c1

and c2, then the mass can pass through the equilibrium position at

most once, regardless of the initial conditions.

24. The position of a certain spring-mass system satisfied the initial

value problem

3

2
u
′′

+ ku = 0, u(0) = 2, u
′
(0) = v.

If the period and amplitude of the resulting motion are observed to be

π and 3, respectively, determine the value of k and v.

Answer: The period of the motion is

T = 2π(
m

k
)

1
2 = 2π(

3/2

k
)

1
2 = π.

So we get k = 6 and the equation can written as u
′′

+ 4u = 0.

Obviously, the general solution of this equation is

u(t) = A cos 2t + B sin 2t.

From u(0) = 2, then A = 2.

From the amplitude of the resulting motion is 3, R =
√

A2 + B2 = 3

and then B = ±√5.

Hence,

u(t) = 2 cos 2t +±
√

5 sin 2t
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and

v = u
′
(0) = ±2

√
5

Section 3.9

17. Consider a vibration system described by the initial value problem

u
′′

+
1

4
u
′
+ 2u = 2 cos ωt, u(0) = 0, u

′
(0) = 2.

(a.) Determine the steady-state part of the solution of this problem.

(b.) Find the amplitude A of the steady-state solution in terms of ω.

(c.) Plot A versus ω.

(d.) Find the maximum value of A and the frequency ω for which it

occurs.

Answer: The characteristic equation of the original differential equa-

tion is

r2 +
1

4
r + 2 = 0

Thus the possible values of r are r1 = −1
8
+

√
127
8

i r2 = −1
8
−

√
127
8

i, and

the general solution of the homogeneous equation is

u(t) = e−
1
8
t(c1 cos

√
127

8
t + c2 sin

√
127

8
t).

The motion of this system can be described by

u(t) = e−
1
8
t(c1 cos

√
127

8
t + c2 sin

√
127

8
t) + R cos(ωt− δ).

where

R = 2/

√
(2− ω2)2 +

ω2

16
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Figure 1. for problem 17

ω = 0.7

cos δ =
2− ω2

√
(2− ω2)2 + ω2

16

and

sin δ =
1
4
ω√

(2− ω2)2 + ω2

16

(a.) The steady-state part of the solution of this problem is

u =
[32(2− ω2) cos ωt + 8ω sin ωt]

64− 63ω2 + 16ω4
.

(b.)The amplitude A of the steady-state is

A =
8√

64− 63ω2 + 16ω4
.

(c.) For graph of A versus ω, see Figure 1.

(d.)The maximum value of A is

A =
64√
127
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and the corresponding frequency

ω =
3
√

14

8
.

18. Consider the forced but undamped system described by the initial

value problem

u
′′

+ u = 3 cos ωt, u(0) = 0, u
′
(0) = 0.

a. Find the solution u(t) for ω 6= 1.

b. Plot the solution u(t) versus t for ω = 0.7, ω = 0.8 and ω = 0.9.

Describe how the response u(t) changes as ω varies in this interval.

What happens as ω takes on values closer and closer to 1? Note that

the natural frequency of the unforced system is ω0 = 1.

Answer: (a.) ω0 =
√

k/m = 1, if ω 6= ω0, then the general solution is

u = c1 cos t + c2 sin t +
3

1− ω2
cos ωt.

From u(0) = 0, u
′
(0) = 0, we get c1 = − 3

1−ω2 , c2 = 0.

Hence the solution is

u(t) =
3

1− ω2
(cos ωt− cos t).

(b.) For the graphs of the solution u(t) versus t for ω = 0.7, ω = 0.8

and ω = 0.9, see Figure 2., Figure 3. and Figure 4.

We can write above solution as:

u(t) = (
3

1− ω2
sin

(1− ω)t

2
) sin

(1 + ω)t

2
.

If |1 − ω| is small, the |1 + ω| is much greater than |1 − ω|. Conse-

quently, sin (1+ω)t
2

is rapidly oscillating function compared to sin (1−ω)t
2

.

Thus the motion is a rapid oscillation with frequency 1+ω
2

but with a
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Figure 2. for problem 18

ω = 0.7

slowly varying sinusoidal amplitude 3
1−ω2 sin (1−ω)t

2
.

The amplitude of u(t) gets larger and lager as w varies from ω = 0.7,

ω = 0.8 to ω = 0.9, and closer and closer to 1, the natural frequency

of the unforced system.
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Figure 3. for problem 18

ω = 0.8;

−100 −80 −60 −40 −20 0 20 40 60 80 100
−40

−30

−20

−10

0

10

20

30

40

Figure 4. for problem 18

ω = 0.9


