
Sample Solutions of Assignment 4 for MAT3270B: 3.1,3.2,3.3

Section 3.1

Find the general solution of the given. differential equation

1. y
′′

+ 2y
′ − 3y = 0

4. 2y
′′ − 3y

′
+ y = 0

7. y
′′ − 9y

′
+ 9y = 0

Answer: 1. The characteristic equation is

r2 + 2r − 3 = (r + 3)(r − 1) = 0

Thus the possible values of r are r1 = −3 and r2 = 1, and the general

solution of the equation is

y(t) = c1e
t + c2e

3t.

4. The characteristic equation is

2r2 − 3r + 1 = (2r − 1)(r − 1) = 0

Thus the possible values of r are r1 = 1
2

and r2 = 1, and the general

solution of the equation is

y(t) = c1e
t + c2e

t
2 .

7. The characteristic equation is

r2 − 9r + 9 = (r − 4)(r − 5) = 0

Thus the possible values of r are r1 = 5 and r2 = 4, and the general

solution of the equation is

y(t) = c1e
4t + c2e

5t.
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17. Find a differential equation whose general solution is y = c1e
2t +

c2e
−3t

Answer: The the characteristic equation is

(r − 2)(r + 3) = r2 + r − 6 = 0

So the equation is

y
′′

+ y
′ − 6y = 0.

21. Solve the initial value problem y
′′−y

′−2y = 0, y(0) = α, y
′
(0) = 2.

Then find α so that the solution approaches zero as t →∞.

Answer: The characteristic equation is

r2 − r − 2 = (r + 1)(r − 2) = 0

Thus the possible values of r are r1 = −1 and r2 = 2, and the general

solution of the equation is

y(t) = c1e
2t + c2e

−t.

Using the first initial condition, we obtain

c1 + c2 = α.

Using the second initial condition, we obtain

2c1 − c2 = 2.

By solving above equations we find that c1 = α+2
3

and c2 = 2(α+1)
3

.

Hence,

y(t) =
α + 2

3
e2t + c2 =

2(α + 1)

3
e−t.

From y(t) → 0 as t →∞, we find α = −2.
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22. Solve the initial value problem 4y
′′ − y = 0, y(0) = 2, y

′
(0) = β.

Then find β so that the solution approaches zero as t →∞.

Answer: The the characteristic equation is

4r2 − 1 = (2r + 1)(2r − 1) = 0

Thus the possible values of r are r1 = 1
2

and r2 = −1
2

, and the general

solution of the equation is

y(t) = c1e
1
2
t + c2e

− 1
2
t.

Using the first initial condition, we obtain

c1 + c2 = 2.

Using the second initial condition, we obtain

2c1 − c2 = 2β.

By solving above equations we find that c1 = β + 1 and c2 = 1 − β.

Hence,

y(t) = (β + 1)e
1
2
t + (1− β)e−

1
2
t.

From y(t) → 0 as t →∞, we find β = −1.

In each of the following problem determine the value of α, if any, for

which all solutions tend to zero as t → ∞; Also determine the value

of α, if any, for which all (nonzero) solutions become unbounded as

t →∞.

23.y
′′ − (2α− 1)y

′
+ α(α− 1)y = 0

Answer: The characteristic equation is

r2 − (2α− 1)r + α(α− 1) = (r − α)(r − (α− 1)) = 0
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Thus the possible values of r are r1 = α and r2 = α−1, and the general

solution of the equation is

y(t) = c1e
αt + c2e

(α−1)t.

If we want y(t) → 0 as t → ∞, then α < 0 and α − 1 < 0. Hence, in

this case α < 0;

If we want y(t) become unbounded as t →∞, then α > 0 and α−1 > 0.

Hence, in this case α > 1.

27. Find an equation of the form ay
′′ − by

′
+ cy = 0 for which all

solutions approach a multiple of e−t as t →∞.

Answer: We select y1 = e−t and y2 = e−2t. Let y(t) = c1y1(t)+c2y2(t)

satisfy ay
′′ − by

′
+ cy = 0, then the characteristic equation is

(r + 1)(r + 2) = (r2 + 3r + 2) = 0.

Hence the equation is y
′′

+ 3y
′
+ 2y = 0.

Section 3.2

Find the Wronskian of the given pair of functions.

1. e2t, e
−3t
2

3. e−2t, te−2t

6. cos2 θ, 1 + cos 2θ

Answer: The computation is easy, so we just give the final result.

1. W = −7
2

e
t
2
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3. W = e−4t

6. W = 0

In the following problems determine the longest interval in which the

given initial value problem is certain to have a unique twice differen-

tiable solution. Do not attempt to find the solution.

7. ty
′′

+ 3y = t, y(1) = 1, y
′
(1) = 2

11. (x− 3)y
′′

+ xy
′
+ (ln |x|)y = 0, y(1) = 0, y

′
(1) = 1

Answer: 7. The original solution can written as

y
′′

+
3

t
y = 1.

and p(t) = 0, q(t) = 3
t
, g(t) = 1. Then then only point of disconti-

nuity of the coefficients is t = 0. Therefore, the longest open interval,

containing the initial point t = 1, in which all the coefficients are con-

tinuous, is 0 < t < ∞.

Answer: 11. The original solution can written as

y
′′

+
x

x− 3
y
′
+

ln |x|
x− 3

= 0.

and p(t) = x
x−3

, q(t) = ln |x|
x−3

, g(t) = 0. Then the only points of

discontinuity of the coefficients is t = 0, and t = 3. Therefore, the

longest open interval, containing the initial point t = 1, in which all

the coefficients are continuous, is 0 < t < 3.

14.Verify that y1(t) = 1 and y2(t) = t
1
2 are solutions of the differential

equation yy
′′

+ (y
′
)2 = 0 for t > 0. Then show that c1 + c2t

1
2 is not, in
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general, a solution of this equation. Explain why this result does not

contradict Theorem 3.2.2.

Answer: It is easy to verify y1 and y2 are solutions of the differential

equation yy
′′
+(y

′
)2 = 0 for t > 0, and y = c1 +c2t

1
2 is not a solution(in

general) of this equation.

This result does not contradict Theorem 3.2.2 because this equation is

nonlinear.

15. Show that if y = φ(t) is a solution of the differential equation

y
′′
+ p(t)y

′
+ q(t)y = g(t), where g(t) is not always zero, the y = cφ(t),

where c is any constant other than 1, is not a solution. Explain why

this result does not contradict the remark following Theorem 3.2.2.

Answer:

[cφ(t)]
′′

+ p(t)[cφ(t)]
′
+ q(t)[cφ(t)]

= c[φ(t)
′′

+ p(t)φ(t)
′
+ q(t)φ(t)]

= cg(t) 6= g(t)

if c is a constant other than 1, and g(t) is not always zero.

This result does not contradict Theorem 3.2.2 because this equation is

not homogeneous.

17. If the Wronskian W of f and g is 3e4t, and if f(t) = e2t, find g(t).

Answer:

W = f(t)g
′
(t)− f

′
(t)g(t) = e2tg

′
(t)− 2e2tg(t)
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Let W = 3e4t, we get the following equation

g
′ − 2g(t) = 3e2t.

From the above equation, g(t) = te2t + ce2t.

19. If W (f, g) is the Wronskian of f and g, and if u = 2f−g, v = f+2g,

find the Wronskian W (u, v) of u and v in term of W (f, g).

Answer:

W (u, v) = uv
′ − u

′
v

= (2f − g)(f
′ − 2g

′
)− (2f

′ − g
′
)(f + 2g)

= 5fg
′ − 5f

′
g

= 5W (f, g).

20. If the Wronskian of f and g is t cos t− sin t and if u = f + 3g, v =

f − g, find the Wronskian of u and v.

Answer:

W (u, v) = uv
′ − u

′
v

= (f + 3g)(f
′ − g

′
)− (f

′
+ 3g

′
)(f − g)

= −4fg
′
+ 4f

′
g

= −4W (f, g) = −4(t cos t− sin t).
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In the following problems verify that the function y1 and y2 are solutions

of the given differential equation. Do they constitute a fundamental

set of solutions?

23. y
′′

+ 4y = 0, y1(t) = cos 2t, y2(t) = sin 2t

25. x2y
′′ − x(x + 2)y

′
+ (x + 2)y = 0, x > 0, y1(x) = x, y2(x) = xex

Answer: 23.

y1(t) = cos 2t, y
′
1(t) = −2 sin 2t, y

′′
1 (t) = −4 cos 2t

y2(t) = sin 2t, y
′
2(t) = 2 cos 2t, y

′′
2 (t) = −4 sin 2t

From above equation, we can verify that the function y1 and y2 are

solutions of the given differential equation y
′′

+ 4y = 0.

They constitute a fundamental set solutions because W (y1, y2) = 2.

25.

y1(x) = x, y
′
1(x) = 1, y1(x) = 0

y2(x) = xex, y
′
2(x) = (1 + x)ex, y

′′
2 (x) = (1 + x)ex

From above equation, we can verify that the function y1 and y2 are

solutions of the given differential equation x2y
′′−x(x+2)y

′
+(x+2)y =

0.

They constitute a fundamental set solutions because W (y1, y2) = x2ex.

Section 3.3

In the following problems determine whether the given pair of functions

is linearly independent or linearly dependent.
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3. f(t) = eλt cos µt, g(t) = eλt sin µt, µ 6= 0

4. f(x) = e3x, g(x) = e3(x−1)

Answer:

3.

W (f, g) = fg
′ − f

′
g

= e2λt cos µt(λ sin µt− µ sin µt)− e2λt sin µt(λ cos µt− µ sin µt)

= −µe2λt 6= 0 for µ 6= 0

Hence, the given pair of functions is linearly independent.

4.

W (f, g) = fg
′ − f

′
g

= e3x3e3(x−1) − 3e3xe3(x−1) = 0

Hence, the given pair of functions is linearly dependent.

9. The Wronskian of two functions is W (t) = t sin2 t. Are the functions

linearly independent or linearly dependent? Why?

Answer: The functions is linearly independent because W is not al-

ways zero.

11. If the functions y1 and y2 are linearly independent solutions of

y
′′

+ p(t)y
′
+ q(t)y = 0, prove that c1y1 and c2y2 are also linearly

independent solutions, provided that neither c1 nor c2 is zero.
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Answer: Obviously, W (c1y1, c2y2) = c1c2W (y1, y2). so c1y1 and c2y2

are also linearly independent solutions, provided that neither c1 nor c2

is zero.

13. If the functions y1 and y2 are linearly independent solutions of

y
′′

+ p(t)y
′
+ q(t)y = 0, determine under what conditions the function

y3 = a1y1 + a2y2 and y4 = b1y1 + b2y2 also form a linearly independent

set of solutions.

Answer: W (y3, y4) = (a1y1 + a2y2)(b1y
′
1 + b2y

′
2)− (a1y

′
1 + a2y

′
2)(b1y1 +

b2y2) = (a1b2 − a2b1)W (y1, y2). So if y3 and y4 also form a linearly

independent set of solutions, then W (y3, y4) is not always zero. Hence

(a1b2 − a2b1) 6= 0.

19. Show that if p is differentiable and p(t) > 0, then the Wronskian

W (t) of two solutions of [p(t)y
′
]
′
+ q(t)y = 0 is W (t) = c

p(t)
, where c is

constant.

Answer: The original equation can be written as

p(t)y
′′

+ p
′
(t)y

′
+ q(t)y = 0

⇒

y
′′

+
p
′
(t)

p(t)
y
′
+

q(t)

p(t)
y = 0

From Abel’s theorem W (t) = c exp [− ∫ p
′
(t)

p(t)
]dt] = ce− ln p(t) = c

p(t)
.
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20. If y1 and y2 are linearly independent solutions ty
′′
+ 2y

′
+ tety = 0

and if W (y1, y2)(1) = 2, find the value of W (y1, y2)(5).

Answer: The original equation can be written as

y
′′

+
2

t
y
′
+ ety = 0

From Abel’s theorem W (y1, y2)(t) = c exp [− ∫
2
t
dt] = c

t2
.

We can find c = 2 by W (y1, y2)(1) = 2. Hence, W (y1, y2)(5) = 2
25

In the following problems through 24 to 26 assume that p and q are

continuous, and that the functions y1 and y2 are solutions of the dif-

ferential equation y
′′

+ p(t)y
′
+ q(t)y = 0 on an open interval I.

24. Prove that if y1 and y2 are zero at the same point in I, then they

cannot be a fundamental set of solutions on that interval.

Answer: W (y1, y2) = y1y
′
2 − y

′
1y2 = 0 at some point in I because y1

and y2 are zero at the same point in I. Hence, from Theorem 3.3.3

they cannot be a fundamental set of solutions on I.

25. Prove that if y1 and y2 have maxima or minima at the same point in

I, then they cannot be a fundamental set of solutions on that interval.

Answer: From y1 and y2 have maxima or minima at the same point

in I, saying t0, we can get y
′
1(t0) = y

′
2(t0) = 0. Therefore W (y1, y2) =

y1y
′
2 − y

′
1y2 = 0 at t0 in I. Hence, from Theorem 3.3.3 they cannot be

a fundamental set of solutions on I.
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26. Prove that if y1 and y2 have a common point of inflection t0 in

I, then they cannot be a fundamental set of solutions on that interval

unless both p and q are zero at t0.

Answer: If y1 and y2 have a common point of inflection t0 in I, then

y
′
1(t0) = y

′
2(t0) = 0. Therefore W (y1, y2) = y1y

′
2 − y

′
1y2 = 0 at t0 in

I. Hence, from Theorem 3.3.3 they cannot be a fundamental set of

solutions on I.

Supplement Problem: Consider the following two functions:

y1(t) =

{
t2, t ≤ 0
0 t > 0

(1)

y2(t) =

{
0, t ≤ 0
t2, t > 0

(2)

Show that y1, y2 is linearly independent but W [y1, y2] ≡ 0. What is

wrong?

Answer: If there exist two constants k1 and k2 such that k1y1+k2y2 =

0, then [k1y1 + k2y2](1) = k2y2(1) = k2 = 0. Similarly, k1 = 0. So y1, y2

is linearly independent. This result does not contradict Theorem 3.3.1

because Theorem 3.3.1 does not include this case.


