LEAST ENERGY NODAL SOLUTION OF A SINGULAR
PERTURBED PROBLEM WITH JUMPING NONLINEARITY
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ABSTRACT. In this paper we study the asymptotic behavior of the least energy
nodal solution of a problem with a jumping nonlinearity.

1. INTRODUCTION

There has been a considerable interest to understand the asymptotic behavior

of positive solutions of the elliptic problem
2 .
e“Au—u+ f(u)=0 in Q
w f(w)
u=0 on 9N

where € > 0 is a parameter, f is a superlinear function,  is a smooth bounded
domain in RV . Let F(u) = fou f(t)dt. In this paper, we consider the problem

e2Au — Mut+Xu 4+ flu)=0 in Q
(1.2) ut #£ 0 in Q
u = 0 on 0N

where A\; > 0,X2 > 0 with A\; # )2, and u* = max{£u,0}. Let f : R — R be a
continuously differentiable function satisfying:

(f1) f(t) = o(t) as t — 0;

(f2) f(t) = O(Jt|P) ast — +oo for some p € (1, FA2)if N > 3andp > 1if N = 1,2;
(f3) there exists a constant 6 > 2 such that §F(

t) < tf(t) where
P = [ fs)as

(f4) |t f'(t) > f(t)(sgn t) for all t # 0.

Condition (f4) implies that § f(¢)t — F(t) is strictly increasing in (0, 4+00). Problem
(1.1) arises in various applications, such as chemotaxis, population genetic, chemical
reactor theory. Problem (1.2) arises in the study of population dynamics with
jumping nonlinearity [9]. It can also be considered as the limiting problem of the
following elliptic system

e?Au— Mu+ pud + fuv? =0in N

e2Av — A0 + pov® + fou® =0in Q

u,v > 0in Q

u=v=0on 0N

The system (1.3) arises in the Bose-Einstein condenstates and nonlinear optics. An
important phenomena of (1.3) is the so-called phase separation. As § — —oo, the

(1.3)
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components u, v separates and the difference function u —v approaches a solution of
(1.2) with f(u) = pru} — pou® . This has been proved for the least energy solution
of (1.3) in [5]-[7] and for radial solutions on two dimensional balls in [20]. We refer
to [4] [1] [2], [5]-[8], [10], [14], [19], [20] and the references therein.
Existence and concentration of positive solution of this type of problems were
extensively studied by Ni-Takagi [16], [17], Ni-Wei [18], del Pino- Felmer [11].
Define

1 A .
IAI(W):§/RN|VW|2+71/RNWZ— W)

and ) \
I,(W) = —/ VWPE+Z22 [ w2- | F(W).
2 Jrw 2 Jrn~ RN
Let W)y, be a least energy positive solution of

(—Au+ M\u= f(u) in RV
(1.4) u>0 in RV
{ u € H'(RY)
and Wy, be a least positive solution of
((—Au+ Mu = f(u) in RV
(1.5) $ u>0 in RV
{ u € HYRY).

By Gidas, Ni and Nirenberg [13], it is well known that W), is radially decreasing

and decays as

W, (Ial) ~ e V¥I#l[a| = as |o| = +oo
for ¢ = 1, 2. Throughout the course of the paper we will call Wj,; an entire solution
or a ground state.

In this paper, we prove the existence of a least energy nodal solution and show
that for € sufficiently small, the solution has a exactly one positive spike and one
negative spike and the spikes concentrate at two distinct points of €2, in other words
they repel each other. We define a function ¢ : 2 x 2 — R by

1
(a,y) = min {/Rrd(a, 00), /Sy, 00), 5 VI s~y
PIv e
Theorem 1.1. There exists g > 0 such that for every 0 < € < &g, the least energy
nodal solution u. € H(Q) of (1.2) having exactly one positive local mazimum
(hence a global mazimum) point P} and one negative local minimum (hence a global

g
minimum,) point P2 and

lim (P}, P) = max _¢(z,y),
e—0 (z,y) EQXQ
with uc(PY) = (=1)71Wy,(0) and u. — 0 in C}(Q\ {P}, P2}).

Note that for sufficiently small € > 0, the least energy positive solution to the
problem (1.1) has a unique maxima P.; u. decays exponentially away from P. and
d(P.,00) — max d(P,0Q) as £ — 0, which implies that the solution concentrates at

€

an interior point furthest from the boundary of . This was studied by Ni-Wei [15].
For the least energy nodal solution, the problem was studied by Noussair-Wei [18]
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when A\; = Ay =1 and f(u) = vP. They obtain the same results as in Theorem 1.1.
In addition, they prove that u.(x) = W(%)—W(z okl )+ve, where [|ve|| o (@) =
0 as € = 0 and W is the unique solution of the hmltlng problem. The study
of asymptotic behavior involves the uniqueness and non-degeneracy of solution
of the limiting problem. Then using the expansion, an asymptotic expansion of
the energy is obtained. This approach does not work here since u; and u_ are
not differentiable. Neither we have uniqueness nor nondegeneracy of the ground
state. There is another approach by del Pino and Felmer [11] where they used
variational characterizations of positive solutions and symmetrization technique.
However their approach works well for positive solutions but does not work for
sign-changing solutions. We shall modify the approach of del Pino and Felmer.
The problem here is more complicated since the solution is sign-changing and we
have to estimate the interaction of the positive and negative components.

2. PRELIMINARIES

Without loss of generality, we consider 0 < A; < A2. The associated functional
to the problem (1.2) is

Es(u)z/g(—w Pt P+ 2 = P ),

Note that from (f2), E. € C'(Hg (), R). Moreover, if u. € Hj((Q) is a critical point
of E., then u. € C2(2) NC(N) and hence u. is a classical solution of (1.2). Note
that E.(u) = E¢ », (u) + E¢ »,(u) where

Bons() = [ (G190 + @ - ) s
E.z, (u) = /Q (§|Vu|2 + %(u*f - F(u))dm

Define the Nehari set as

NEZ{UGHO( ) s ut #0,62 /|Vu+|2+)\1/ /f
(2.1) /|w |2+A2/ /fu u }

Define the positive and negative Nehari set as

(2.2) NF ={ue Hy(Q): (B, (u),u) = 0;u# 0 and u > 0}

and

(2.3) N ={ue Hy(Q) : (E. ,,(u),u) =0;u £ 0 and —u >0}

respectively. Note that any u belonging to N, is sign-changing. Moreover, all the

sign-changing solutions of (1.2) are contained in N;. Also note that N." "N = .
Let

(2.4) Ce = irb\f[ E_(u).

Remark 2.1. The set N is not a manifold in H}(Q) due to the lack of differentia-
bility of the map u — u*. In fact, M. N H2(Q) is a C! manifold of codimension 2
in H2(f), see [1]. Hence it is not clear whether a minimizer of E. on M. is indeed
a solution of (1.2).
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Remark 2.2. Define h*(t) = E.(tul). Note that h* is strictly increasing for t €
(0,1) and strictly decreasing in ¢ € (1,+00). This implies that maxg<t< oo hE(t)
exists and occurs at ¢ = 1.

We will show that there exists u. € N, such that ¢ = E.(u.), and that u, is a
least energy sign-changing solution. We state some elementary lemmas,

Lemma 2.3. For all e > 0, N-F and N are closed subsets of H}(Q2).

0< c+ = 1nf E = inf max E, tu
weNF €, )\1( ) WEHL (2),us0 150 € )\1( )
and
0<c. = inf E u inf max E, tu
€ WENT Ev\z( ) wEHL(S) uz0 150 € /\2( )

Moreover, N* is a C' manifold of codimension 1 and every minimizer u of E. on
NZE is positive.

Proof. This follows trivially by using (f4) and Sobolev embedding theorem. See
[15]. NF is a C' manifold of codimension 1 follows from [3]. a

Lemma 2.4. There ezists some u, € N, such that c. is achieved. Moreover, u, is
o weak solution and hence a classical nodal solution of (1.2).

Proof. Let € > 0 be fixed. We use the argument by Bartsch, Weth and Willem [2].
Since ¢, = inf,en, E-(u), there exists a minimizing sequence u. , € N; such that
E.(uen) = ¢ as n — +oo. Note that by (f3), E. is coercive on N, as

23 i) (5 5) [P0l 0 4z

and hence there exist b(¢) > 0,d(¢) > 0 independent of n such that b(e) <
luZ,llmi @) < d(e). Therefore there exist uF € Hg(Q) such that uf, — uF as
n — +oo and by the Rellich Lemma uZ, — uf in LI(Q) for ¢ € (1, 2%5). This
implies that u* > 0 and u}.u; =0 since uj,n.us,n = 0. Thus uF are indeed the
positive and negative part of u. = u} — u_ . From the fact that (2.2) and (2.3) we
have [lu£,[|La(q) has a positive lower bound and this implies u¥ # 0. But also we
have

(2.6) lim [ f(u / fu

n—oo Q

and

(2.7) Tim / F(u / F(u

From (2.6) using Fatou’s lemma we have

s ) < / f(uyu

By a variant Remark 2.2 there exist s,t € (0, 1] such that

e o = [ Sttt
and

sz gy = | flsus)su:



This implies tu} — suZ € N; and hence
(2.8)
E.(tuf —su_) = E. , (tul )+ E: »,(su_) < nlgr;o E. (u:n)+JLrgo E. (u;n) =ce.

Note that we have used the fact (f4), (2.6), (2.7) to obtain
B (tul) < lim By, (ul) and B, (su7) < lim B, (u)-
n—oe n—oo
Hence we have c. < E.(tu! —su_) < c. and indeed tu? — su_ is a minimizer in
Ne.

By Remark 2.1 we want to show that v, := tul — su_ is a critical point of E..
If possible, let E!(v;) # 0 and then there exist § > 0 and A > 0 such that

(2.9) [|EL(w)|| > X whenever |jv. — w|| < 4.

Define a square S = (1, 2) x (3, 2) and for any (m,n) € S
Y(m,n) = muvt —no7.

Then from (2.8) we have

(2.10) ¢ = max E. () < ce

Indeed our earlier comments, E.(¢) < c. on S except at (1,1). Choose 7 =
min{ 5% 2} and B(v.,d) be ball centered at v.. Then by Willem [21] (Lemma
2.3 page 38), there exist a deformation n € C([0,1] x H}(Q); H}(Q)) such that

(a) n(t,w) =wift=0orif w € E-'(c. — 27, ¢ + 27),

(b) (1, ES+ 1 B(v., 8)) C ",

(c) E-:(n(1,w)) < E.(w),Yw € H}(Q). Moreover, by our remarks and results in
[21], we have

(2.11) max _E_(n(1,%(m,n)) < c..
(m,n)€eS

The idea of the proof is to obtain a contradiction. To this end we claim that
n(1,4(8)) NN # 0. Define h(m,n) = n(1,%(m,n)) and

Iy (m, ) = (E;<mv:)v:,E;<nv;>v;)

Mo, n) = (B2 Om )i ), 2 B2 ()G, )).

Note that the first component of IIy(m,n) is positive if m < 1 and is negative
if m > 1 with an analogous property for the second component. Hence by the
product rule for degree theory we have deg(Ily,S,0) = 1. Moreover, as 1) = h on
9S (by our choice of 7 and the property (a) of the deformation) we must have
deg(I1;, S,0) = deg(Il,, S,0). Hence there exists a tuple (mg,no) € S such that
IT5(mg,ne) = 0 which implies h(mq,no) = (1,9 (mo,n0)) € Ne. O

Lemma 2.5. Let w, ), and we z, be the least energy solutions of
—?Au+ Mu = f(u) in B.(0)
(2.12) u>0 in B,(0)
u=0 on 0B, (0)
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—e2Au+ Au = f(u) in B.(0)
(2.13) u>0 in B, (0)
u=0 on 8B,.(0)

respectively. Then for sufficiently small € > 0, we have

_2\/ﬁr(1+o(1))
E55>\1 (ws,)\l) = 6N{I>\1 (WAI) +e € }

2¢/Agr(1+0(1))
EE,/\2 (w&/\z) = EN{I/\2 (Wx\z) +e € }

where o(1) —» 0 as € = 0.

Proof. For the proof see [11]. O

Let A = {z € Q: VAi|z — P| = Va|z — P}

Lemma 2.6. We have for € > 0 sufficiently small
(2.14) ¢ < 5N{IA1 (W) + D (W) +e™ 40 + o(e—%(iﬁ)}.

Proof. Let v. be a positive solution of

—&?Au+ X u= f(u) in By, (P)
(2.15) u>0 in By (P))
u=0 on B, (P1)

where 71 = min{d(P;,0%),d(P;,A)}. Let we be a positive solution of

—e?Au+ Mu= f(u) in By, (P)
(2.16) u>0 in B,,(P)
u=0 on B,,(P)

where ry = min{d(P, 00),d(P»,A)}. Note that supp v.Nsupp w. = @) and v. € N
and w, € N_ . Then we have v, — w. € N and hence we have from (2.15) and
(2.16),
Es (Us - ws)
EE,)q (UE) + EE,)\z (ws)

27g

27r
EN{A1 (W) + e+ Ly,(Wy,) +e =

Ce

IAIA

INA

+ 0(6_2%) + 0(6_2%)}.



Hence we have,

_ 2min{ry,ra}

c. < EN{I,\l(WAI) +e = +1(Wy,)

e

< EN{L\l(Wz\l)-i'I/\z(W,\z)-i‘e_M
(2.17) + o(e_w)}.

O
Corollary 2.7. We also have c. > 6N{I)\1 (W) + Ing(Wy,) + o(l)}.
Proof.
ce = Inf {Eex, (u) + Be, (u)} 2 ulerjl\% B (u) + ugjl\f_ B, (u)

this implies the result. O

Lemma 2.8. Ase — 0,

dPLO®) | d(PRO0) | |PL-P}
e 7

+ — +00.

7

Proof. As e?Au.(PL) < 0 it implies that f(uc(P})) > Au.(P}) which implies that
CuP~1(Pl) > A1, hence there exists a positive constant 8 such that uc(Pl) > 3
and similarly we obtain that u.(P?) < —3. Also by Lemma 2.6,

& [ 1Ful e [ @+ ne [ )P < o
Q Q Q

and hence by Moser iteration we obtain [[uc||z~) < C.

d(PL,00
Suppose that liII(l) d(F, ,00) < C. By scaling v.(z) = u-(ez + P}), then (1.2)
e—
reduces to,
Ave — Mve+Xvs + f(ue)=0 in Q
(2.18) vE £ 0 in Q.
ve = 0 on 0N,

where Q. = %. Note that from (2.6), ||ve|| g3 (q.) < C; there exists W € H'(RY)

we have v. — W in H'(RV) and by the Sobolev embedding theorem we have
v. = W in L} _(RY). Hence v. - W point-wise almost everywhere in RY . Also by

Schauder estimates, it follows that there exists C' > 0 such that |Jv.|| 8@y < c
for some 0 < 8 < 1. Hence by the Ascoli-Arzela’s theorem there exists W # 0 such
that
lve = Wllez mvy > 0ase—0
where W is a nontrivial solution satisfying
AW - MW + f(W)=0 in RY
(2.19) supW > B,W e H!
W =0 on ORY
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where RY = {y : y, > —a}. Then by a result in [12] we obtain W = 0, a contra-

d(P2, 09 P! - p?
diction. Similarly hn%] % = 4+00. Now we prove that 11m Q =400
By applying the Schauder estimates we obtain a C' > 0 such that ||5Du5|| L~ < C.

|P; — P2|

If possible let 1i_r>r(1) s = § < +0o0. Then it easily follows that uc(P}) > 3 and
>3

ue(P?) < —f which implies that u.(P!) — u.(P?) > 23. Then

P! — p?
20 < Jus(P) — ua(P2)| < ell Dl oo = T2
Suppose P. = ¥ Then along a subsequence |P:] = & € (0,+00). Define
ve = uc(ey + P1). Then v, - W in Clzoc( N and W satisfies
—AW + W — = f(W) in RV
(2.20) ( )= B, W(P)< -8
W e HY(RY)

where P = lim._s £¥€2— which implies that W is a nodal solution of (2.20) and
hence a critical point of the functional

L) = [ (170 + 307 + 202 - Fw)) o

and in particular we have (I' (W), W*) =0 and W € N, where

Neo = {u € H'Y(RY) : ut £ 0,/ |Vu™|? + /\1/ (wh?= [ fluhut
RN RN RN

[oavaton [ wr= [ o)

But by (2.1) we know that ™ (Iy,(Wy,) + In,(Wx,) + o(1)) > eN(I, (W) +
Io(W~) 4 o(1)). This implies

IOO(W+) + IOO(W_) < I/\1 (W/\1) + I)\z (W/\2) =Cx; T Cay
where ¢y, is a mountain pass critical value with respect to the functional I,, i.e.

2.21 c\, = inf I, (u).
( ) A uw€H(RN),u0, [, n |[Vul2+X; v u?=[in f(u)u A ( )
Also it easily follows that Io(W) = I, (W) > cy,, Ioo(W™) = L, (W™) > cy,-
Since any minimizer cy, is a weak solution, we have cx, = I, (W), cx, = In,(W ™).
Thus W+ = Wy, (z — R) and W~ = W, (z — S) for some R, S in RY. The first
equality implies W+ > 0 on RY which contradicts that W changes sign. O

Lemma 2.9. For sufficiently small € > 0, uc has exactly one positive local mazi-
mum and one negative local minimum.

Proof. Note that from Lemma 2.6, we obtain that ¢, < ™ (I, (Wy,) + In,(Wy,) +
o(1)). Suppose it has two positive local maxima as P. and (). and a negative local
minimum R.. Then it follows similarly as in the proof of Lemma 2.8 one can show
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that ‘Pf;Qf‘ — +00, @ — 400 and |PE;—RE| — 400 as € = 0. Also note that

L f(ue)ue — F(uz) > 0 by assumption (f4), and thus

e = Pulu) = [ (G~ Flur)ds

1 1
> | o Gt~ P+ / o Gt = Pl +

1
w L G =)

22) > (20 (0) + 10T +o(D)

a contradiction to Lemma 2.6. Hence u. has exactly one positive maximum and
one negative minimum. O

Now let us define

. VA1V A2
d. = min{ VA d(P!,090), VXd(P?,09), —Y"2_|p! — p? }
{VRae! om, Vauarz, 00, 2N i - 2
Then by the above lemma, ‘2_—5 — +00 as € = 0. Now let us re-scale the problem by

g€ = 7 and T = d.T. Then we have
€

— Q
(2.23) Au—Xut +Xu” + f(u) =0in Qq, = i
€
Lemma 2.10. For any 0 < &' < 1, there exists a constant C > 0 independent of
&' such that

_V/A10=8)le=Fg| _VA20-8)l==P2|
€ €

ul < Ce and u_ < Ce

Va € Q.
Proof. Let vi(y) = us(ey+P!). Then v} — Wy, in C2 (RY). Also we have W), (r) <
Ce~VNT for all r. Let R =1In $ such that ¢ = Ce™*. Then there exist an g9 > 0

such that v} (y) < Wy, (y) + ¢ < 2(. Let us consider the domain Q' = Q\ B.z(P!)
where R > 0 is large. Hence we can choose a { > 0, independent of € such that
v} < C on 8Bg(0). This implies that u} < 2¢ on OB.g(PL). For any 0 < §' < 1,
choose ( in such a way that

f(us_z <é,
)\1u5
consider the equation with u. > 0
u
—£2Aup + Mue = fi E)us in Q.

€

Then we obtain,
—?Au, + (1= 6)M\u. <0 in Q*
ue >0 in Q'
ue <2¢ in OB.r(P})
ug =0 on Of).

_VA1a-8)|a—P}|
€

(2.24)

Using a comparison argument we obtain u} < Ce . We obtain the
other estimate similarly. a
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3. LOWER BOUND OF THE ENERGY EXPANSION

In order to obtain the greatest lower bound of the energy E. we consider three
cases.
Case 1. Suppose that
d

Vo d(zi ,00)

—+lase—0.

Note that

c. > inf E.y (u)+ inf E.,(u).
ueNT ueNT

We use del Pino-Felmer’s symmetrization technique in [11] to conclude that
Eop(u?) > sN{IM (Wy,) + Lo st ey }
We also deduce that
B, (ug) > EN{IA2 (Wh,) + %e2W}

and as d. = v/A1d(PL,00) + o(1), we have

(3.1) Ce Z5N<I>\1(W/\1)+I,\2(W>\2)+e‘2(d€t°(1))).
Case 2. Suppose that
d
=55 ey 1 = 0.

Then we argue as in Case 1.

Case 3. Suppose that
g = V% o poy
VMV T
Then we can choose § > 0 such that d. > (1 + E)(S)\/_d(P1 o90), d. >

58)v/Xad(P2,09). Furthermore, we define |P' — Pl| = |Pl — P2|

Then we have
p2| — L
VAV
We consider balls By, ,45(P!) and Bg, ,45,(P2), where 0 < § << d. 1 is small
and §y ~ \/‘/%5 is defined by

(3-2) (de,l + 5)2 - d§,1 = (d5,2 + 52)2 - d?,z-

Define the intersection I'c = Bg, ,4+6(P}) N Bq, ,4+5(P2). Then the total volume

of T. ~ 60(6°%"). Since I'. = (T N {ue > 0}) U (T N {uc < 0}), we either have
[T 0 fu. > 0} < 3T or [T 0 fu. < 0} < 3L,
Without loss of generality, let

1+
W+F de,1

|P' — [P} = P2| =d.».

1
ITe N {u: > 0} < §|Fs|

Thus 1
|Ba. . +5(P2) N {ue > 0} < |Ba, ,+5(P)| = 5ITel = 1B:. (0)]
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“— VX o= P = Vs o — P

FI1GURE 1. The region of intersection

where r. = (di,. + 6)(1 — n) for some 0 < n < 1, where 5 ~ 573", We define a
smooth function

(@) 1 iflz— P <(dq+6)(1—1n)
xTr) =
X 0 if |z — P!> (d1+9)

and 0 < x <1 and |Vy| < ﬁ. Then the support of ufy? is contained in
By, ,+s(P}). Multiplying (1.2) by u}x® we obtain

2 +.2 +\2.2 _ +.2
(3.4) /Q EVuV(ux?) + M (uh)PP = /Q flueutx
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Now let us compute
/ 2Vu V(ulx?) = / 2Vul V(utx?)
Q Q

= /62Vui{xV(UJx)+U§xVx}
Q

/ 62{(V(Uix) VOV () + u:wiuj}
Q

/ 62{|V<u:x>|2 VT uty) + ujxvxvu:}
Q

[0 - utvxvus - @Hva? + v |
Q

(3.5) = 52/ |V(ujx)|2_52/(uj—)2|vx|2
Q2 Q
where
(3.5) & [ Il < eNe L
Q

On the other hand
[ty = [ atoutx [ (o - faxdulx
Q Q Q

(P+1)V/X1(de,1+8)(1~- F)
(37) = [ Fututxr oNer ST
Q
Note that in order to derive (3.6), we use the assumption (f2), Lemma 2.10, (3.3)
VAiia-s)e—rl
ul < Ce™ = , 0 = L ,
2(1—mn)

and |Vx| # 0if |z — P.,| > (d:1 + 0)(1 — n). Moreover, note that {f(utx) —
fluc)xtutx =0if x = 1. When (d.;1 +9)(1 —n) < |z — P}| < (d.1 + 0) using (f2)
we obtain

3 V31(1=8 )le—PY|
{Futx) = flue)xJufx < CemPH)——=—+

and hence
/Q{f(Uix)—f(us)x}@x < CeNe
Hence combining (3.4), (3.5) and (3.7) we have

62/ IV(uix)lz+A1/(us+x)2
Q Q
2\/)‘1(d5,1+5)(1—g))

AL +1)(de,1+6)(1-8) VR (e 1+8) (- )
€ €

< CeNe

(3.5) = [ stz of e

Let ve = t.uf x where . is such that

62/ |Vvs|2+)\1/v3:/f(vs)vs.
Q Q Q

_2\/A1(1—-;L>(ds,1+s>>
€ .

Now we claim that
te =140 (e
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Define 4 : [0, 4+00) % [0, 3*) = R such that
5(t.0) = [ feutnutx = [ faroutx=p [ 1ty
for some 3* > 0. Then & € C*. Note that (1,0) = 0 and
5110 = [ Fhouto? £0

Hence by implicit function theorem, there exists a C! function 8 — ¢(3) such that
a(t(8),B) =0, for small § and ¢(0) = 1. Letting te =1+ ﬁ, we have from (3.8)

B~ e? Jo IVuxI* + M Jo(udX) fQ X
e2 [ |Vud x| + M Jol ud x)2 — Jo f'(ud)(ud X)
Hence
O( N 2m(ds,1+5)(1—%)>
eVe c
B~ "
Jo Fludx)udx — [o f(udx) (ud x)?
2¢/31(1= 1)(de 1 496)
which implies 8 = O(e™ e ). Then we obtain,
e s _ & N2, 2 +.12 2_N
5 |VUE| = E |V(u5 X)' +e /6 |vu5 Xl +O(/B € )7
Ba, . +5(P}) Ba, . +5(P}) Ba, . +5(F})
A A
5 vl =5 (ux)” + M B (uFx)” + 0(8%"),
2 Ba;  +5(PF) 2 Ba,  +s(P}) Ba,  +5(P})
and

/ Flv.) = / Flutx) + 8 Flutyutx + 0(B%EN).
Ba, . +5(P}) Ba, .+s(P}) Ba, .+s(P})

Also we have

e / VutxlP+h / ()~ / Fuut x = 0(BeN).
Bd1,s+5(Pel) Bd1)5+5(P51) Bd1)€+5(P€1)

Using the above facts we have,

2 A
5—/ |Vv5|2+—1/ V2 —/ F(v.)
2 By, . +5(P}) 2 By . +5(P}) Bay . +5(P})

A
/ [Vutx|? + 5 / (uFx)? - / F(uty)
Bay ,+5(P1) 2 JBay ,4s(P) Bay ,+3(P})

+ 0Nt —1%)
= [ (3rroutx- o) + 06N - 1p)
Buy  4s(P1) \2

o

1
= [ (s - rn) + o (N -1 e
Q
m(2+”)(d£,1+5))

VA1 (p+1) (1= 2)(de 1 +8) )
£

(3.9)= E., (u] )+6N0(6_
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for some o € (0,min(1,p — 1)). Thus we have

VA1(24+0)(de,1+9)
+ . N X - - &°
Ez—:,kl (us ) Z j1\1/1£ EE,/\l \Ba, +5(PL) (U) —Ceve €

€

2¢/21(1— 2)(de,149) VA1 (240)(de 1 +96)
> EN{I)\l (Wkl) +e : } - CEN(?_ €
1 2/210-3)(de,149)
> EN{IA1 (Wa) + 56_+}
1 20-2)de+d)
> EN{I)\I(W)‘I)-i-ie 2 }

Similarly we obtain the estimate for E. »,(u_ ). This proves the result.

Proof of Theorem 1.1. This follows from Lemma 2.6 and Section 3. O
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