ON GROUND STATE OF SPINOR BOSE-EINSTEIN CONDENSATES
DAOMIN CAO, I.LIANG CHERN AND JUN-CHENG WEI

ABSTRACT. We prove the existence of the ground state for the spinor Bose-Einstein con-
densates in the one-dimensional case.

1. INTRODUCTION

In 1925, Einstein predicted that massive non-interacting bosons at low temperature could
occupy the same lowest-energy single-particle state and form the so-called Bosen-Einstein
condensates (BEC). This was realized experimentally in 1995 by laser cooling technique
for several alkali atomic dilute gases, such as 'Rb [1], 2Na [7], and "Li [5]. For bosonic
atoms, the total spin number F' corresponding to the lowest energy state has to be an
integer with 2F + 1 hyperfine states (mp = —F,—F + 1,...., F — 1, F'). They are called
spin-F' BEC. For the above alkali atoms, F' = 1.

In early experiments, the atoms are confined by magnetic trap, the spin direction follows
the magnetic field and thereby the spin degree of freedom are frozen. The atomic gas is
then described by a scalar wave function. Through the mean-field approximation, this
wave function satisfies the Gross-Pitaevskii equation (GPE) [6, 11, 21]:

2
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Here, f is the Planck constant, m the mass, ¢/* the complex conjugate of ¢, V' the trapping
potential

12 U
W) = [ a5 9u + V@Il + Pl

the Hamiltonian, and d = 1, 2,3 the underlying space dimensions. The parameter Uy =
4m%ay/m is the effective pairwise interaction energy between atoms, and ag is the s-wave
scattering length.

Recently, optical dipole trap is used to confine alkali atoms. Unlike the magnetic trap,
all hyperfine states are active [22, 23, 18, 3, 10]. The theory for these spinor BEC was
developed independently by several researchers [20, 12, 13]. In the case of F' = 1, the spin-
1 BEC are described by a vector wave function ¥ = (11,9, %_1)", where each component
corresponds to the mr = 1,0, —1 hyperfine states, respectively. The governing equation is
a generalized Gross-Pitaevskii equation (GGPE):
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where the Hamiltonian is given by
12 1 1
H(T) = / e[S [V + V(@)U + g @]+ g, [FE[].
Rd 2m 2 2

Here, the notation W' stands for (5,45, %" ), F = Fye, + Fye, + F,e,, and F,, F,, F, are
the Pauli spinor matrices

L (010 S (0 =1 0 10 0
Fpb=—1{101]),F,=—1 0 -1|,FE=[00 0
V210 1 0 V2o 1 o 00 —1

The quantity WIFW is the expectation (vector) of the spin, whereas |\IITF\II|2 standards
for the spin-spin interaction energy. More precisely,

UFP = O'F, Ve, + U'F, Ve, + T'F, Te,.

The parameters

4mh? ag + 2as ATh? —ay + as
i N
and ag, as are respectively the scattering lengths corresponding to the total spin zero
channel and two channel. The parameter g, characterizes the hyperfine-state independent
interaction, while the parameter g; characterizes the spin-exchange interaction.

Due to Feshbach resonance, the s-wave scattering length ay can be tuned over a large
range by adjusting the optical dipole trap. Therefore, the parameters g, and g, can be
positive or negative. For g, < 0 (resp. g, > 0), the spin-independent interaction is
attractive (resp. repulsive). For g; < 0 (resp. gs > 0), the spin-exchange interaction is
ferromagnetic (resp. anti-ferromagnetic).

This generalized GPE in component form is

I

( 2
thoyh, = —Qh—mvg + V() + gan ) th1 + g5 (1 + nop — n_1) ¢y + g%,
ihdppo = (L V2 + V(@) + gan ) Yo + gs (n1 + 1) Yo + gstrh_195, (1.3)

ihopp_1 = (—%VQ +V(z)+ gnn> Vo1 + gs (N1 + ng — my) Yoy + gsthdg.

\
Here,
n; = ‘1/}]|2’-7 = _1707 17 and n = ny +no+n_i.

From (1.3), the following two integrals are conserved in time:

[ Gl + uaf + ) = (1.4

[ Gl = sy = . (15)

In this paper, we give a first mathematical study on the ground states associated with
(1.3). We consider the simplest case when V(z) = 0 and all ¢;(: = —1,0, 1) are real. We
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rename 1; by u;12. By rescaling, we may assume that % = 1. The energy functional
associated with (1.3) is

2
3 3

E(u1, ug, uz) = %fRd Zj:l |V [? + ign fRd (Zj:l |uj|2) (1.6)

—l—igs Jra [(uf — u3)? + 2u3(u? + u3) + 4ujugu3] .

It is natural to assume that
N >0, |M|<N. (1.7)

For given real numbers (N, M), we define

3
we H'E) =123 [ Suf =N, (|u1|2—\U3|2>=M}-
R 55 Rd

We consider the minimization problem

HN,M = {U = (Ul,UQ,U:s)

E() = 1nf{]E(u) ‘ u € HN,M}- (18)
A solution to (1.8) is called a ground state since it has the smallest energy. A ground state
(u1,ug,u3) is nontrivial if u; # 0, for j =1,2, 3.
Our main result in this paper is the following
Theorem 1.1. Let d =1 and
9n < gs < 0. (1.9)
Then a nontrivial ground state ezists. Moreover, the ground state (uy,us,us) is positive
and strictly decreasing in |x|.

Theorem 1.1 is proved via approximation. Namely, we consider a related minimization
problem in a bounded interval I} := [—k, k] and then let k¥ — +o00. More precisely, let us
define an energy functional on Ij:

2
3 3
E (u1, ug, uz) = %f]k Zj:l [V |* + ign flk (Zj:l |uj|2)
(1.10)
+19s [; [(uf — u3)? + 2uj(uf + u3) + duruguj) .
As before, for given real numbers (N, M), we define

3
ujeHg(Ik),j:Lz,s,/ Z\ujP:N,/I(|u1\2—\u3|2):M}.
k

Iy j=1

ko _
HN,M = {U = (u1, ug, u3)
We consider the approximate minimization problem

E§ = inf{E*(u) | u € Hy , }. (1.11)
It is easy to see that
Ef — Eyas k — +oc. (1.12)

We will prove
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Theorem 1.2. Assume that (1.9) holds. Then the minimization problem (1.11) can be
attained by some ug = (U1 k, Usk, Us ) where ujy > 0 and strictly decreasing in |x|.

The assumption (1.9) is almost necessary. In fact we have

Theorem 1.3. Suppose that g, > 0,gs > 0. Then (1.8) can not be achieved and hence
there is no ground state.

Remarks.

(1) Theorem 1.3 says that when g, > 0 and g; > 0, both spin-independent interac-
tion and spin-exchange interaction are repulsive, and because there is no trapping
potential, the atoms can not be confined, there is no nontrivial ground state.

(2) When g, < 0, each hyperfine state is confined to form a spike due to self-attractive
interaction. Theorem 1.1 characterize its normalized shape (symmetric about origin
and decreasing in 7). When g, < 0, the spin-exchange interaction is also attractive,
the three hyperfine states overlap to each other with peaks at origin. The condition
gn < g5 should only be a technical condition.

(3) The fact that we can only prove the existence of ground state in the one-dimensional
case is a serious restriction due to the Gagliardo-Nirenberg’s inequality (3.4). This is
also related to the fact that the critical exponent for nonlinear Schrédinger equation
is 1+ % which equals 3 when N = 2.

There are two difficulties in proving Theorem 1.1. First, we need to show that all
components of the minimizers are strictly positive. Second, in the one-dimensional case,
the set of even and strictly decreasing functions in H'(R) is not compact in L?(R). To
deal with the first difficulty, we have to use the special structure of the energy functional.
To overcome the second difficulty, we solve the minimization problem (1.11) first and then
show the compactness.

2. PROOF OF THEOREM 1.3

From the definition of E(uy, us, u3) we have

E(u1,ug, uz) = g [o(|uil® + [ub® + [uj]?) + 10 [ (u] + uj +u3)?
(2.1)
+19s Jr [2u5 (w1 +us)® + (uf — u5)?].
If g, > 0,9, > 0 we always have Ey > 0. We will show that Fy =0 if g, > 0, g, > 0.
Suppose that (u1,us, uz) such that u; € H'(R) satisfies

3
[0t =, [l s =
R 5 R

Set v;(z) = p%uj(px) for j =1,2,3. Then for any p > 0, (v, v2, v3) also satisfies

3
/ 3 losl? = N, / (Jor]? = Jus]?) = M.
R =1 R
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On the other hand, we have

E(v,v2,v3) = 5p° [o(|ut]® + [ubl® + [u5]?) + 1090 [o(uf + ud + u3)? 02)
2.2
+109s [ [2u5(ur + us)? + (uf — u3)?].

Taking p — 0 we have Ey = 0. Therefore E, can be achieved only by (0,0,0) & Hy -
This proves Theorem 1.3.
A corollary of the above proof is the following

Corollary 2.1. If g, < 0,9, < 0 then Ey < 0.

In fact, this follows directly from (2.2), by taking p small enough.

3. PROOF OF THEOREM 1.2

We now consider the minimization problem (1.11) and prove Theorem 1.2.
From the definition of EF (uy, us, u3), we have

EF (u1, ug, u3)
= 5 Jo ([ * + [ub? + [us]?) + 3 (g0 + g5) [7 (ui +ug) + 39a [} U3

+3(9n + 95) [;, (2u(ul + ud)) + 1(90 — 95) [, 2utul + 395 [, (duausud).

(3.1)
Let u® = (uf,u$,u$) be a minimizing sequence of (1.11). We can always assume that
each component uf is non-negative, since it is easy to see that

B (Jul, [ug, [ug]) < B (uf, ug, u5) (3-2)

and (|uf, [ug|, us]) € HY 5, Hence we can replace (uf, uj,ug) by (lugl, [ugl, [ug])-

For v € HY(R),v > 0, let us denote its Schwarz symmetrization by v*. Then we have
(see Theorem 3.2 of Lieb and Loss [14])

(e W > [l 5=1,2,3,
fR U’;L = fR(u;)4’ ] = 15 2,35

Jeudu < [o(w)?(up)?, 4,k =1,2,3,

[ Jrmusug < fpuius(up)?
which implies (by (3.1)) that
EF ((u1)", (uz)", (ug)") < B (ul, up, ug) (3:3)

0\ £\* JAY k
and ((uf)*, (us)*, (u3)*) € HN,M'
As a consequence, we can now assume that uf are nonnegative, even and non-increasing
in Ik-
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Next we show that minimizing sequence is uniformly bounded in Hg(Iy) for £ > 1.

Recall that

B (uf ufouf) — B (1= 00), [ () + (ud)? +
I

By Gagliardo-Nirenberg inequality ([25])

1 8
/ lul* < C (/ u'|? (/ \u\2) , for all w € H'(R),

we have for any € > 0, there exists C(€) > 0 such that

/\u\4<06/ W'l + O () /|u|)

o([ ) ([ ) <c[wre [
[we)sc@((f we)+(f we)),

—
IS
N
<
N
VAN

< Ce( lu'|? +
Iy, k

and

|| vPow| < C(/ u4)§(/ 'UZwQ)gﬁC/ u4+0/ v2w?
I I I I I,

IN

Ce(/ P+ /P + )
Iy,

([ )+ o) ()

Hence, making use of the above inequalities we get
5 i i ()P = = Eo - 79 f, 2+ (us)” + (ug)”)”

~19s fIk [2(u 2(“1 +ug)? + ((uf)® -

)?) = N.

k

(u5)*)’] + oe(1)

(3.4)

< Eo = $(gn + 90)e(f, (1) + () |2 + () [F] ) +C(N?

where 0,(1) — 0 as £ — +o0.
Choosing e sufficiently small, we see

3

/I [Zmu;)’\? + (uh)?)

i=1

<C

which implies that by Sobolev embedding

Ul <C, =123, £=1,2,--
(Let us remark that the constant C' here is independent of £ > 1.)

Thus, {u}} can not blow up in R, j = 1,2,3.

(3.5)

(3.6)
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Therefore from u’(z) we can obtain the existence of minimizer (uqy,us, usx) by ap-
plying compactness of embedding of subspace of Hg(I}) consisting of even functions into
L*(I},). We can also assume that uj, > 0 for j =1,2,3 and at least one component is not
identically 0. Furthermore, there are Lagrange multipliers \*¥, % such that (U1 oy U ks, Us k)
satisfies the Euler-Lagrange equation

() = (gn + 9s)ud — [(gn + g5)ud + (gn — gs)udlus — gsudus = (A + p¥)uy, in I
uly — guui — [(gn + g5)u2 + (gn + gs)ud]us — 2g5u1usuz = Nu, in Iy

Uz — (gn + QS)Ug - [(gn + gS)U% + (gn - gS)U%]U3 - gsulug = ()‘k - ﬁ"k)u& in I

\ u; > 0in (=K, k), u;(£k) =0,j =1,2,3.
(3.7)
Suppose that (uq g, sk, us k) is a minimizer of (1.11). It remains to show that u;; # 0,
for 7 =1,2,3. This will be done by two claims.
Claim 1: uyy; > 0.
We argue by contradiction. Suppose that usy > 0 and wugg(zo) = 0. Then by the
Maximum Principle, us; = 0, and hence (u;, us ) is a solution of
Ul = (gn + g5)u} = (gn — gs)uzur = (N 4 pF)uy, in Iy,
(3.8)
ug — (gn + gS)U'g — (gn — 95)“%“3 = (/\k - Nk)u?n in Iy

satisfying the constraint
N+M N-M
/ uik == , / /U/g,k - . (3.9)
I 2 I, 2

Let (¢1, @2, ¢3) be such that

P1 = —ULk, P2k = ULk T MUk, P3k = —U3k (3.10)

1
where n = (%) 2 and let €5 > 0 be a fixed small number.

Then by implicit function theorem, we can find ; > 0, ¢35 > 0 small such that

/ (lure +e101]® + leawal” + |ugp + e3pa]*) = N, (3.11)
Iy
/ (lure +e101[* = |ugp + eapal’) = M. (3.12)
Iy,

In fact, (3.11)-(3.12) are equivalent to

251/ ul,kgal—i-ef/ |g01\2+263/ u3,kg03+6§/ |g03\2—|—€§/ lpa? =0, (3.13)
I I I I Iy
281/ Ul,k@l‘*"f%/ lo1|* = 283/ U3,k993+5§/ |32, (3.14)
I I I I
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which are equivalent to

51/ U1 pP1 — 83/ U3 kP3 = 0(5% +€§), (3.15)
I I
1, 2 2 2
€1 U1 + €3 U3 kP3 = —552 lpa|” + O(e] + €3)- (3.16)
Iy, Iy, Iy,

By implicit function theorem, we can find e; = O(€2), e3 = O(32) satisfying (3.15)-(3.16).
Applying the above equality to the expression in EF (uy, uy, u3), we obtain

Ek (ula U2, U/3)
=& fI (u1,6)' @1+ (gn + 95) (ure) 1 + (9n — gs) (s k) *u1,k01)

+e3 fz (us k) ¢l + (9 + gs)(u3,k)3903 + (gn — gs)(ul,k)2U3,k903)
+52 [5 fIk (|3012| + (gn + 98)((u1,k)2 + (u3,k)2)90%) + 9s fIk
+Ek (ul,ka 0: u3,k) + O(E% + 8%)
= —e1 (N + 1) [} uipor — e3(N — ) [} uspes
£ [% i (19517 + (g + 95) ((we)® + (uan)?)e3) + 95 [, “1”““3”““02'2]
+Ek (ul,k7 O: u3,k) + 0(8% + 8%)
= 365 [ (61> + M lwal” + (gn + 95) ((urk)® + (usk)®) 93 + 295
+Ek (ul,k7 O: u3,k§) + O(S% + 6%)

’

]

(3.17)
We claim that if g, < 0 then
/ (16517 + ¥ 03 + (gn + g5) (ure)® + (use)®)e3] + 293/ uy gtz ks < 0. (3.18)
Iy, Iy

Indeed, from (3.8) and the choice of 7 we have

Jr ((usw)'” + 7 |(U3 k) 2+ (90 + 95) ((ur,e)* + 1*(usp)®) + 2(gn — g5)(1 + 0?) (ure)? (use)?)
+AF fl ur)® + 0 (usk)®) = 0,

/ [(u1) (ua) + Nour pus g + gn((urk) us + (usg)®usp)] = 0. (3.20)
Iy,

Using (3.19),(3.20) we have

flk [|(U1 kT nus, lc)'|2 + )‘k(ul g+ nus k) + (gn + gs) ((wr )" + 772(U3 lc)4)]
+2n9n [;, ((ur)*ua e + (uap)*uik) + (gn — g5) (L +1%) [}, (u1,6)* (uz)* = 0.
(

3.21)
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So, since g5 < 0 and u; 4us3y is not identically zero, we get

o U Cuie + nua )12 + N (uag + nuae)? + (9o + g5) ((ur)® + (uae)?) (g + nuze)?]
+2g;5 flk U pus k(U1 + Nu3 k)?
=2(1+n)gs [y, wipusp (1 +n)upusp + (ue)® +n(use)®) < 0.

(3.22)
Since £; = O(e2),e3 = O(e2), from (3.17) and (3.22), we conclude that we can choose
an element u € ]I-]I’fv 1 such that EF(u) < Fy. This is a contradiction to the minimality of

(ul,k7 U2k, u3,k)'

Therefore us j is a positive function.
Claim 2: Uy g > 0, Uz g > 0.

Suppose that u;; > 0 and u x(z9) = 0. By the Maximum Principle, u; x(z) = 0. By the
equation satisfied by u; we obtain gs(usk)*us = 0. Therefore either usy, = 0 or uzy = 0.

By Claim 1, ug > 0. Therefore the only possibility is that uz; = 0. In this case, M =0
and [; (ugx)? = N and uyy is a positive solution of

u" — gou® = Neu in I, (3.23)

Let (Ul,umus) = (51901,U2,k + 82@2@3@3) where e) = &3 =¢€,01 = p3 = p = U2k and

@2 = —ug k. Then for € > 0 sufficiently small, we can find €, > 0 small such that
el | leilP=¢5 | lgsl?, (3.24)
I I
& [ leit v [ leP 4t [ el + 26 [ unsen =0, (3.25)
Iy, Iy, Iy Iy

From (3.25), we derive that g5 = O(g?).
Since s, satisfies (3.23) we have

/ ((u2)' s + Nous kpa + g (usk)>2) = 0. (3.26)

Iy,

From (3.24),(3.25) and (3.26) we have

1
o [ (e + antinien) = 0 (2 [ el 42 [ leP et [ k). G2

Iy Iy, Iy Iy,
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Using (3.27) we get

E* (u1,ug,u3) = E* (€191, Ua k. + €22, €3¢3)
=31 [, |41+ 3(gn + g5)el [, len !

+33 [ (652 + 3 (gn + 95)3 [, lopsl*

+% f[k |(uz,k + £202)"|* + ign fIk [us s + €2602|*

+3(9n + 95) [1 [(E101 + €303) (uz + €2¢02)°]

+%(gn —9s) fzk 5%5580%90% + 9s fR 51€3<P1903(U2,k + 82902)2
=2 (30, 112+ 3o + 00) Ji luaseoiP)

23 (41,0 1417 + Son + 02) [, laeos]?)

+9s€1€3 flk |ug g + £202%p103

+e2 [flk (u2,) s + 9n [, (u2,k)3(;02} + €3 [% S (esl* + 5 9n(u2,k)* 03
+EF (0, ugk, 0) + o(e? + £2)

=2 (4, (L + N1 2) + S(on + 95) fy, [uzniri?)

(3.28)

23 (3 f,, (4 + X:loal?) + 3o + 95) [, [uneos )
+9s€1€3 fzk |u2,k|2S01Q03
+EF (0, ugk, 0) + o(e? + €3),

where we have used the fact that eo = O(e? + £3).
By the choices of €5, ¢;, we obtain

&2 (3 5, (64 + Xolor ) + 3 (90 + ) f;, luzpirr[?)
23 (5 01, (652 + A¥lpsl) + Som + 95) Jy, lopon?) + guzaes fy s

=2 ([, (&' + Nl l) + (g + 200) [y, luzaepl?) < 0

2
Y1P3 (3.29)

Thus we conclude that
EF (61, (1 4 €2) Uk, E1us) < EF(0, ugy, 0),
which is a contradiction to the minimality of (uy g, uok, us k).

Therefore, u, ; # 0. Similarly we can show that us; # 0. Thus we have completed the
proof of Theorem 1.2.
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4. PROOF OF THEOREM 1.1

From Section 3, for each k£ > 1, we obtain a minimizer to the minimization problem
(1.11) which satisfies the following Euler-Lagrange equation

/

| wik(£k) = 0,u54(z) > 0 for z € (=K, k), j=1,2,3,
(4.1)
where \¥, ¥ are two Lagrange multipliers.

Let us collect some properties of u;j: we have u;,(z) > 0 in (—k, k), u,, is even and
decreasing. For k > ko, E§f < —C < 0 by Corollary 2.1, and ||u; |z (7,) < C for some C
(independent of k > ko).

Thus we can take a subsequence of k& — 400 such that u;; — u; uniformly in R where
u; € H'(R),u; > 0 and u; is decreasing.

Since u; € H'(R) and u; is decreasing, we see that u;(z) — 0 as |z| = +oc. Thus, for
any 6 > 0, we can find R; > 0 such that for |z] > Rj, uj(z) < §/2. As a consequence of
decreasing property of u;;, we can find &y such that

ujk(z) < ujn(Rs) <6, for |z| > Ry, k > ko. (4.2)

Since u;, — u; in LP(— Ry, R5s) and from (4.2) we see that for p > 2,k > ko, f‘sz& ujy <
6?2, we can conclude that u;; — u; in LP(R) for p > 2.

The main difficulty is to show that u;, — u; strongly in L*(R). If so, then (u1,us, u3)
satisfies the constraint (1.5)-(1.7) and is a minimizer of the minimization problem (1.8).
By the same arguments as those of Claim 1 and Claim 2, we can show that u; > 0. So it
remains to prove the strong convergence in L?(R). We proceed in a few claims.

Claim 3 limy_, oo (AF — %) > 0, limy_, ;o A¥ > 0, limg_, oo (A* + p¥) > 0.

In fact, suppose limy_, oo(A¥ + p*) < —C < 0. Then from the equation for u; ;, we see
that u,; satisfies

C
uy g, + 7 Lk <0, uy(z) >0in (—k, k). (4.3)

But for £ large, by Sturm Comparison theorem, u; ; must change signs in (—\/5%, VCr),
which is a contradiction to the fact that u(z) > 0in (=, k).
The other cases can be dealt with similarly.

Claim 4. There exists a positive constant C' > 0 such that

NN+ kM >C >0 (4.4)

ulll,k — (g + gS)Uik — [(gn + gS)“%,k + (gn — gs)uﬁ,k]m,k - gsug,ku&k = ()\]C + ,uk)ULk in (—k, k),
Uy — gnug,k — [(gn + gs)“ik + (gn + gs)ug,k]uu — 295Uy pU2kUs ke = Nugy in (—k, k),

ug = (9n + 95)us = [(gn + 95)U3 4 + (gn — gs)ud pJus ke — gsurpud, = (A — pF)usy in (=k, k),
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In fact, by integrating by parts, we obtain that

3
V[ (k) [ (0 =) 2 B (s v ) 2 €50 (45)

Iy ;=1 Iy,
for k large.
Claim 5. There exists C' > 0 such that \* > ¢y > 0 and [, u3) — [} uj as k — +o0.

From Claim 3, we deduce that limy_, (A —|u*|) > 0. By Claim 4, we have \* > C' > 0.
From the equation for uyj and using (4.2), we have that us satisfies

Ug ), — %um >0, for |z| > R, k > ky (4.6)

where R is a fixed large number. Since ug,(+k) = 0 and by comparison principle, we
deduce that

ug () < uz,k(R)e_@”_Rl < Ce %l (4.7)
Note that R > R; only depends on C. Thus we conclude that usj has exponential decay.
So [; ujy — [pus-
Since A\¥ > C > 0, we see that either \¥ + % > ¢y/2 or \F — ¥ > C/2. Let us assume
that A\¥ + ¥ > C'/2. Then by the same proof as Claim 5, we have

Claim 6. Assuming that \¥ + % > £ > 0, then Ji, uie = Jpul as k — +oo.

Now it remains to show that fIk u3; — [gu3. Suppose not. By Claim 3, we may
assume that limy_,, o (A\* — p¥) = 0. In fact, if limg_, ;oo (A* — p¥) > C > 0, then similar
arguments as in Clam 5 show that u;y has exponential decay and hence [, uf, — [z u3
which contradicts to our assumption. (Since \¥ > C > 0, \F + p*F > % > 0, ur and ugy
have exponential decay.)

Thus we may also assume that

lim (\* — p¥) =o. (4.8)

k——00

Claim 7. uju3 = 0 and u3z = 0.
Using (4.8), we see that the limit ug satisfies
wy — (gn + 95)ui — [(gn + g5)us + (gn — gs5)ui]us — gsusus = 0 in R (4.9)

Integrating from 0 to z, we obtain that |uz(z)| > C| [f uiu3|. Since |jus|m < C, we derive
that u3 = 0 and wu? = 0.

If both u; = 0, us = 0, we then derive that N = —M (since u; , — uy, ugp — ug strongly
in L?(R)), which is impossible.

There are two cases to be considered.

Case 1: uy > 0,u; = 0.
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By Claim 5, \* > C > 0. Since u; = ug = 0, from (4.2), we see that |(g, + g5)u? +
(gn —i—gs)ug,,c —2gsuy gus | — 0 uniformly in R. Hence from the equation for us ) and Claim
7, we see that ugyy satisfies

Uy g — Gnlis g > C2—Ou2,k, ug > 0in (—k, k), usi(E£k) = 0. (4.10)

Using the equation for usj and (4.8), we see that us satisfies
C .
ug j, — gnug,ku;),,k < Uk Uk > 01in (—k, k), usk(£k) = 0. (4.11)

Multiplying (4.10) by usy and (4.11) by us x and then integrating over (—k, k), we obtain
a contradiction.
Case 2: u; > 0,uy = 0.
In this case, we observe that u; satisfies
u! — (gn + gs)ud = 2)\%; in R, u; € H'(R) (4.12)
where limy_, oo ¥ = limy_, oo ¥ = A0 > 0.

On the other hand, 522% — 19 () which satisfies

AN

iy — (gn + gs)uitiy = \ds. (4.13)
It is easy to see that 0 < 14y < 1 since @2(0) = 1. From (4.12) and (4.13), we obtain then

/\O/ula2 =0 (4.14)
R

which is impossible.
In conclusion, we have proved that as k — +oo, fIk uly — [puj for j=1,2,3.
This completes the proof of Theorem 1.1.

5. APPLICATIONS TO 2 X 2 BEC SYSTEM

Our proof of Theorem 1.1 can also be applied to obtain ground states for the two-
component Bose-Einstein system. Such a system appears in a mixture of BEC of different
hyperfine states confined under different kinds of traps [19]. A theoretical study was
proposed by the following coupled nonlinear Schrédinger equation [8].

Let

1 1
Balwo) = 5 [ (WP +10F) = 5 [ Galul? + gl +2802), (5.1)

where p; > 0 and po are positive constants, and 3 € R is the coupling constant.
Let N > 0. Consider the constrained minimization problem

inf{ Ey(u,v) | / (Il + vf2) = N }. (5.2)



14 DAOMIN CAOQ, I-LIANG CHERN AND JUN-CHENG WEI

A nontrivial solution to (5.2) is called a ground state which satisfies the following Euler-
Lagrange equation
u” + pud + Buv? = I,
V" + pev® + Buv = v, (5.3)
u,v € H'(R).
Then we have

Theorem 5.1. If 3 > max{u, us}, then (5.2) can be achieved by (ug,vq) such that uy >
0,v9 > 0. Furthermore, we have

B — po p—
———Ww, Vg = 55— W 5.4
32— gy 0\ B = e (54)
where w is the unique homoclinic solution of
w" — \w +w® = 0. (5.5)

On the other hand, if we consider the following minimization problem

wt{ Ey(u,0) | [ =N, [ ol = Na), (5.6)
R R
where N; > 0, N, > 0, then we have

Theorem 5.2. If § > 0 then (5.6) can be achieved by (ug,vo) such that ug > 0,v9 > 0 and
satisfy
" 4+ pud + fuv? = \u in R,
V" + pov® + Butv = A in R, (5.7)
u,v € H(R)
for some Ay > 0, Ay > 0.

We remark that the minimization problems (5.2),(5.6) arise naturally in the study
of standing waves of the coupled Gross-Pitaevskii equations, i.e., the coupled nonlinear
Schrédinger equations,

2@ = AD; + 1|1 [>®1 + B| D[Py,
—i2®y = ADy + 1| Py [?Py + S|P [P, (5.8)
®;, =,(y,t) eC, j= 1,2

where p1, 1o are positive constants, and 3 is a coupling constant.
For any solutions to (5.8), the following two integrals are conserved

/|<Dact /|q>x0|2/\q>2xt\_/|¢2xo (5.9)

Thus it is natural to consider problems (5.2)-(5.6
System (5.8) arises in the Hartree-Fock theory for a double condensate, i.e. a binary
mixture of Bose-Einstein condensates in two different hyperfine states |1) and 12) ([8]).
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To obtain solitary wave solutions of the system (5.8), we set ®;(z,t) = e1tu(z),
Oy (z,t) = 2 y(x), and the system (5.8) is transformed to an elliptic system given by

Ay — Mu+ pud + fuv? =0 in RY,
Av — Av + pov® + Buv =0 in RY, (5.10)
u,v € H'(R?)

where A1, Ao, 1, o > 0 are positive constants and # # 0 is a coupling constant.

The existence of least energy solution to (5.10) is studied in [2, 15, 24]. In [2, 4, 17, 16, 24],
the existence of bound states (i.e., solutions to (5.10)) when 3 > 0 is proved. Note that
the minimization problems (5.2) and (5.6) are different from the minimization problems in

2] and [15].

Proof of Theorem 5.1: Following the proof of Theorem 1.1, and using Schwarz sym-
metrization, we can show the existence of minimizer (ug,vy) such that uy € H'(R), vy €
H'(R), up > 0,u9 > 0 and satisfies (5.3). (Here as in the proof of Theorem 1.1, we
have to first work on a bounded domain (—k, k) for k large. Then we show the L?-strong
convergence of the sequence.)

The difficulty is to show that ug # 0, vy Z 0.

We argue by way of contradiction. Suppose that vg = 0. Then uy #Z 0 and ug is a
positive solution of

u" + pud + Bv*u = lu inR
Set u = ug + €101,V = €90,, with &1 > 0,&5 > 0,p; € H'(R), 0o € H'(R) such that

/ (luf? + o) / uf? =

R

251/u0g01 +sf/ \(p1\2+e§/ la|* = 0. (5.11)
R R R

We can choose ¢; such that fR ugpr < 0, then for fixed e9 > 0 small, ¢y # 0 there exists
g1 > 0 so that (5.11) holds and &; = O(&3).
Using (5.11) and ¢; = O(£3) we have

Eﬂ(u v) = 2f]R ‘U0+51Q01|2+8g|§0l2|2)

namely

T Je (1 |uo + e1o1|* + poed|pa|* + 265 (uo + €1¢1)¢3)
= Es(uo, 0) + &1 [ (upp| — muder) + O(el)

+€% (% fR |9012 ) fR UOQOZ) + 0(52)
=E5(uo,0) — 1A [ uopr + O(e3) + &3 (3 [ l0h* — 2 [ udd) + O(ed)
= [ (u0,0) + 52 ( fR |902‘2 + )‘802 s fR Uo‘Pz) + 0(52)

(5.12)
Note that the first eigenvalue of

—¢" + A = vulg
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is 1. Thus if 8 > py, then we can choose @5 such that

/(|902\2+A902 ﬂ/uosoz

and therefore Eg(u, v) < Eg(ug, 0), which deduces that vy # 0.

Similarly, if # > po, then ug > 0. Therefore we have proved the first part of Theorem
5.1.

To prove the last part, we consider the set I = {ug > cvg}, where ¢ = 4 /g:—ﬁ. From the

equation (5.3), we have

(ugvo — uovg)lar + /[(ulug + Bugue)ve — (p2vf + Buguo)ue) = 0.
I

Note that on I,

/ (0 + Bvua)vo — (vl + Buuo)uo] = (2 — B) / wovo (4 — *0?) < 0.

T
On the other hand,
(uguo — ugvy)|ar < 0.
Thus I must be an empty set. So ug < cvy. Similarly we can prove that uy > cv.
So ug = cvg. This proves (5.4).

O
Proof of Theorem 5.2. This follows easily from the proof of Theorem 1.1. Note that
because of the constraints, we obtain ug > 0, v > 0. O
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