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ABSTRACT. In this paper, we study the stability and multiple solutions
to Einstein-scalar field Lichnerowicz equation on compact Riemannian
manifolds. In particular, in dimension no more than 5, we can find
a different way (comparing with the previous result of Hebey-Pacard-
Pollack) by showing that there are at least two positive solutions or a
unique positive solution according to the coercivity property of a qua-
dratic form defined by the minimal solution obtained by the monotone
method. When the coercive condition fails, we prove a uniqueness re-
sult. A positive solution of the Lichnerowicz equation is also found in a
complete non-compact Riemannian manifold.

Résumé: Dans ce papier, nous étudions la stabilité et existence de
solutions multiples pour 1’équation scalaire de Einstein-Lichnerowicz,
sur une variété riemannienne compacte. En dimension inférieure ou
égale & 5, nous exposons une méthode différente (en comparaison avec
celle de Hebey-Pacard-Pollack) pour démontrer I’existence de deux so-
lutions positives, ou d’une unique solution positive, selon la coercivité
d’une forme quadratique, définie par la solution minimale provenant
de litération monotone. Quand la condition de coercivité n’est pas
satisfaite, nous prouvons un résultat d’unicité. L’existence d’une solu-
tion positive pour ’équation de Lichnerowicz est aussi montrée sur une
variété riemannienne compléte non compacte.
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1. INTRODUCTION

In the mathematical analysis of the Einstein field equations in general
relativity, an important part is to find reasonable initial data sets for solving
the nonlinear wave system. The initial data has to satisfy the the Einstein
constraint conditions, which are the Gauss and Codazzi equations. Using
the conformal method, one is lead to one of the simplest scalar equation,
which is named as the Einstein-scalar field Lichnerowicz equation (in short,
we just call it the Lichnerowicz equation). In this paper we mainly consider
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the following Einstein-scalar field Lichnerowicz type equation on a compact
Riemannian manifold (M, g) of dimension n > 3:

(1) —Au+ hu = BuP + Au—(P+2),

where p = Z—i’%, A is the Laplacian operator on M ( which is the standard

Laplacian operator when M = R"), h, A, and B are nontrivial smooth
functions on M with A > 0, B > 0 and A > 0. The existence results for
equation (1) can be studied by the monotone method and the mountain
pass theorem. For these, we refer to the works of Choquet-Bruhat-Isenberg-
Pollack and their friends [3]-[6] [10] and Hebey-Pacard-Pollack [9] (see also
[11] and [12] for related results).

As the first step we start from the minimal positive solution to (1). Based
on the minimal solution, which will be assumed to be strictly stable, we can
get second solution by using the mountain pass theorem (and see Theorem
4). Our construction is different from the mountain pass solution obtained
in [9] (and the construction in [2]). In the interesting work [7], the authors
developed the stability result which may be used to obtain the second so-
lution as in Theorem 4. The result of Druet-Hebey is more general in the
sense that there is no assumption on A. If the minimal solution u is not
strictly stable, we have a uniqueness result, which is stated in Theorem 5.
We shall also obtain a positive solution to (1) on a complete non-compact
Riemannian manifold (M™,g), n > 3. The result is stated in Theorem 7.

Using the monotone method, we can easily get the following result.

Theorem 1. Suppose that there is a positive super-solution v to (1). Then
for sufficiently small € > 0, there is a positive (stable) solution u to (1) such
that € < u(x) <wv(zx) in M.

The proof of this result is below. In fact, for small 0 < € < infys v(z), we
know that ug = € is a sub-solution to (1). Then using the monotone method
[14], we get a positive solution to (1) such that € < u(z) < v(z) in M. Here
we prefer to give a variational characterization of the solution u. Recall that
the equation (1) is the Euler-Lagrange equation of the functional

1 A B
T(u) = / SV + ha?] + L) - L,
Let ¥ = {u € H'(M);e < u(z) < v(x)}. Then J(u) is bounded from below
on Y and by the direct method, we can get a minimizer u, of the functional
J(u) on ¥ and by the standard regularity theory of elliptic equation of second
order, we know that u, is a smooth positive solution. We may denote this
solution as u. By the standard calculation we then obtain the stability of u.
In practise, we may find the following result more useful.

Theorem 2. Assume that A, B, h are positive functions on the compact Rie-
mannian manifold (M™, g), n > 3. Assume that there are positive constants
co, A1 and By such that h(z) > ¢y, A(z) < A1, b(x) < By on M. Assume
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further that there is a positive constant X such that
X — B XP — A, X~ (D) — .

Then for any € > 0 small, there is a positive solution u to (1) such that
e <u(z) < X.

If we assume that there are positive constants ¢y, A; and B; such that
h(z) > cy, A(z) < Az, b(z) < By on M, then the curves y = ¢pX and
y = A, XP + BX~(?+2) intersect at two points X; and X, with X; < Xo.
Then we know that for X = X;,5 = 1,2,

h(z)X — B(z)X? — A(z) X~ > ¢ X — By XP — A, X2 =g

Hence u = X is a super-solution to (1). We may assume that X; < 1.

Note that there is a positive constant Ao such that A(z) > Ag. Then for
any small constant € > 0, the constant function u = € is a sub-solution to
(1). In fact, we always have

h(z)e — B(z)e? — A(z)e P2 <.
Therefore, by the monotone method, we get a positive solution u to (1) such
that e < u(z) < Xj.
We remark that similar result is obtained in Theorem 4 in [3]. One may

also see the works [4][5][6] and [10] for more results by the monotone method.
We note that in some cases, the solution u is strictly stable. Recall that

1"

(J (H)’Ua’U) :/|V’U|2 —{—h(w)’UQ 4 (p+2)Ag_(p+3)'u2 —pByp_luQ.
Note that for X <1 in Theorem 2,

(p+2)Au @) _pBup 1 > (p+2)AX; P _pBxP~! > 0.

Then the strictly stability of u follows.

The plan of this paper is below. In section 2, we introduce the coercive
condition about the solution u and we introduce the mountain pass geometry
in section 3. The main result is proved in section 4. The uniqueness result
is proved in section 5. In the last section we obtain the stable solution on
complete non-compact Riemannian manifold.

2. A MOUNTAIN PASS SOLUTION: ASSUMPTION

To obtain a mountain pass solution to (1), we now introduce a bubble
solution. Fix a € M" such that B(a) = max B(z). Let U, be the standard
bubble solution to the equation

n(n — 2 n(n — 2

(0 =2) =2y g

with the base point a € S”. Again in the the stereographic coordinates at
—a in R"™ we have

[_A + ]Ua,e =

N B (S
Uae C"[62+Iw\2]
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where Cj, is the well-known dimensional constant (see [1] and [15]).

We remark that h = 4(’;—_721)59 — |V®|? for some nontrivial function @,

where S is the scalar curvature of the metric g.

We shall look for a large solution of the form v = u 4+ v and follow the
mini-max principle used in the paper of Brezis-Nirenberg [1] (1983).

Then the problem (1) is reduced to finding positive solution to

(2) —Av+ (h— f'(z,0))v = f(z,v) — f'(z,0),
where v = max(v,0) and
[z, 0) = fi(z,0) + f-(z,v),
with
f+(@,v) = Bl(u+ vy)? — u”]
and

F-(@,0) = Al +vy) @) —y 042,

Note that for v > 0 large the leading of f(z,v) is BvP and for v > 0 small
the leading term in f(z,v) is f'(z,0)v = [pB — (p + 2) AJuv. For this reason
we write it as

f(.’l:, U) = fl(wa O)U + g+(:1:, 'U) +9- (:L', U)
with
g+ (z,v) = fr(z,v) — fi(z,0)v = BoP + ...
and
|g*($7'0)| = |f*($’ ’U) - fl—(ma 0)U| < CU21
where C' is a uniform constant depending only on u.
For (2) the corresponding functional is

1) = [ 31Vl + (b(a) - F'(2.0)u) - G,
with )
G(z,u) = Gi(z,u) + G_(z,u) = o1 /Buﬂ’_+1 + .y

where
Gi(z,u) = /Ou(g+(ac,v)dv, and G_(z,u) = /OU g—(z,v))dv.

To obtain further result, we need to assume that (§)
the least eigenvalue of —A + h — f'(z,0) is positive.
Recall here that
f'(,0) = [pBuP~" — (p +2) Au®+9)].

The importance of the condition (§) is that it gives us a property that
for some uniform constant Ay > 0, for any « with the norm |u| small,

I(u) > Aolul? + of|ul).
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Because of the leading term in I(-) is [ B|u[P*!, we can see that
I(tu) - —o0, as t— o0

for any fixed v = e; # 0 in H'(M). This is the mountain pass property
which will play a key role in our argument. However, because of the negative
power term in I(-), we should be very careful to choose a class of paths for
mountain pass value.

We remark that this assumption is not very strong since the solution u is
stable and we always have the conclusion that

the least eigenvalue of —A + h — f'(z,0) is non-negative.
We remark that, generally speaking, we don’t know the sign of the term
f'(=,0) + Ve[,
3. MOUNTAIN PASS SOLUTION: INTRODUCTION
The following basic fact is well-known in Riemannian geometry.

Lemma 3. In the normal coordinates (x1,...,z,) centered at p € M, we
have the following expansion of the volume element

1
dvg = (1— gRijxixj + 0(|z|*))dz
where R;; is the Ricci tensor of the metric g at p.

We now consider the Lichnerowicz equation
(3) Agu—hu+ BuP + Au P2 =

0
on the compact Riemannian manifold (M",g), n > 3, where Ay is the
Laplacian operator of the metric g on M, p = 23, h, A>0,and B > 0 are
smooth functions on M. We shall write f(z,u) = BuP + Au"P~2.
Suppose u is the positive solution to (3) obtained by the monotone method.
We are looking for the mountain pass solution to (3). Let u = u + v. Then

we consider the following equation
(4) Agv —hv+ f(z,u+vy) — f(z,u) =0, v>0, on M.
Let

Fi(z,v) = [(w+ v )PT —uPth — (p+ DuPoy],

p+1

Fy(z,0) = [(w+v )P w7+ (p+ Du™P "y

p+1
and
F(H),’U) = Fl(l‘,’l)) —FQ(.’L',’U).

One can easily see that Fy(z,v) is non-positive and we may drop it in our
consideration of the mini-max argument.
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Then by an easy computation we know that the equation (4) is the Euler-
Lagrange equation for the functional

(5 10) = 5 [ (9 + )~ [ Plz,0)

on HY(M).

Fix a € M which is the maximum point of B(z) on M and choose the
normal coordinates (z1,...,z,) at a in B,(a), r < inj(a) the injectivity
radius of g at a. Let £ be the cut-off function on M such that &(z) = 1
in the ball Bs(a) and £(z) = 0 outside the ball Bys(a). For € > 0 small,
consider

Ve,a ('7") = f(ﬂ?) Ue,a(-r)a

where
Veal®) = (o o)
satisfies
-2
AU o(z) = MUWL(.’EV’, in R".

4

In short, we write U = U; ,. We shall omit the lower order term caused by

0(|z|?*)dz in the volume form dv, = (1+ 0(|z|?))dz in the small ball Bys(a).
Though the term Fy(z,v) in I may not be very important in mountain

pass construction, it is useful when we use the implicit function theorem.

We may bound it below (since it may be useful in finding more solutions).
Claim : For n = 3,

/ FQ(xave,a) = O(Gn/z) + 0(6);
M
for n =4,
/ (2, veq) = 0("/?) + 0(log €);
M
and for n > 5,
/ Fo(2,v¢0) = 0(6"/2) + 0(€?).
M
In fact, for |z| > ¢'/2, we have v, < 1 and
Fo(z,veq < Cv?’a.
In short we write v = v 4. Then we have
€ 2 2 o/ 242
Fy(z,v) < C (S 2 < g / (1+r2)2"dr,
/|ac|>el/2 lo|>e1/2 €2 + |z[2 =172

which is of order 0(¢) for n = 3, 0(e?log€) for n = 4, and o(€?) for n > 5.
Note that

[ =
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and
o) [ ar =),
|z|<el/2

Then

[ omen= [ fwe ey [ arte=o@n),
al<el/? jaf<el/2 al<el/?

Combining all above together we have proved the Claim.
Compute

%/qwﬁ+m%:1/|wm+o@

where C(e) = wh(a fo |€|%(r)dr)e, where w is the area of the 2-sphere S? for
n=3,C(e) = K3 (a)e 2|loge|—|—o( ) for n = 4, and C(€) = K3e?h(a)+o(e?)
with K3 = [, U? for n > 5. Following the work of Brezis-Nirenberg [1] we
shall write

Kf/ VU, K2=</ rHh e, KéZ/ or
R’I’L n n

Recall that the best Sobolev constant is S = K1 /K.
We now compute [,, Fi(z,v) = z% [ BvPtt + I + I + I3, where

B 1
h:/‘+ﬂwﬂﬁhf“ﬂﬁhw+mfwwﬂ—w%J¢lﬂ,
p

12:/ Buv?, and 13:1—)/ Buv®.
M 2/

It is well-known that

1 p+1 _ ! 2
] BvP™ = B(a)Kg + 0(€°).

In the dimension three to five, this expansion is enough for our use. For
higher dimensions, the term 0(e?) can be further expanded via the use of
AK (a) and the curvature of the metric g.

We now compute or estimate I1,l», and I3 one by one.

It is clear that I = u(a)B(a)e»=2)/2 S UP + o(em=2)/2).,

For the computation of I3, we have

I3 = O(e) for n = 3,

Is = EB(a)u(a)e?|log €| + 0(e?) for n = 4, and

Is = EB(a)u(a)?~'€® + o(e?) for n > 5.

For n < 4, then %4 <2,p+1>2, and we have

I < / w0 < 0 — o),
M

For n =5,
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Then we have for n = 3, the leading term for £} is in I,

/ Fi(z,v) = g(a)B(a)el/2 U? + 0(61/2) + 0(e);
M R3

for n = 4, the leading term is in I5 too,

| Ao = u@B@e [ 17+,

Then for n = 3,

I(v) = % +C(e)

and for n = 4,

_ B(a)
p+1

K~ (@B [ 07+ e 1000
R3

. K1 B(a)

T2 Cle) p+1

For n = 5, using proposition 1 in [13],

_B(a) ; u\a af/ 06/
| Peo) = 28K+ @B [ U7 o).

1(v)

K} —u(a)B(a)e /R4 UP + o(e).

In this case, we have

K B(a)
71 +0l) - p+1

When n = 6, we have I; = 0 and
/ Fi(z,v) = o(€?).
M

I(v) =

n

K} — u(a)B(a) / UPE2 + O(3/2).

Then

I(v) = —+C(e) — pB_(I_ai Kb+ 7162 + o(€?)

where
m = Ksh(a)B(a) — 2uB(a) — pB(a)u(a)’~".
When n > 7, we have

B
I = I—)/ ng_lqu—F/ [(w+v)P T — Pt — 0P — (p+ 1) (uPv +u?)].

Note that

—E/ BuP™'v? = —EB(a)gp_l(a)e2 U?

and

/pf Cllw o) — T =P — (p+ 1) (P + we”)] = o(€?).

Then we have
I = pK3B(a)u’ ' (a)e” + o(€?)

and
K,

I(v) = T—I—C(E) -

B(a)

pyre lKé — pK3B(a)uP(a)e? + o(€?).
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Let tg = ﬁ)ll(é and t; = typ + 2/e. With this computation result we can

the mini-max construction for (1) via considering the value
(6)
K40, Blaw

I KI_ B 2 yu (n—2)/2 (n—2)/2

(tv) 5 11 Ko u(a)B(a)t RnU € +0(e )
for n <5,

_Ki+Cle) ,  Bl@)trt' 2 2 2 _
(M) I(tv) = 5 e — | Ky + 71t°e” + o(e”), for n =6,
® .
P

I(tv) = Ki+0() . Bla)t K} —pK3B(a)uP ' (a)et* +o(€?), forn > 7

2 p+1
for ¢t € [0,%1] and get the following result.

Theorem 4. Assume that A, B,h are positive functions on the compact
Riemannian manifold (M"™,g), n > 3. Assume that (§) is true. Assume
that 3 <n < 6. Then we can always define a mountain pass of I(-) and get
a positive solution to (2) provided the condition (§) is true.

We remark that for n = 6, one may assume that

7 -1
—— = K3h(a) — 2u — pu(a)?™ <0
By = Ksh(@) — 2~ pu(a)
with a curvature assumption to get the same conclusion as above. For n > 6,
one need to assume the flat-ness condition about B as the scalar curvature
problem. We shall not present this kind of result in this paper.

The proof of theorem 4 will be given in next section.

4. MOUNTAIN PASS SOLUTION: PROOF

We now use the mountain pass theorem (see also the argument of Theorem
2.1 (also lemma 2.1) in [1]) to prove Theorem 4.
In fact, the solution corresponds to the minimax value defined by
¢ = inf sup I(u),
ver ueE ( )
where T stands for the set of continuous paths joining 0 and t1¢, . in H'.
The plan to prove Theorem 4 is to use the mountain pass geometry of I
and show that
1
9 c< sn/2,
©) n(max B)(n—2)/n
where S is the best Sobolev constant in R™. From the classical theorem of

Ambrosetti-Rabinowitz (1973) (see [1]), we know that there is a sequence
{u;} C H' such that

I(u;) = ¢, and I'(uj) — 0.
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It is a classical argument [1] that we know that {u;} is a bounded sequence
in H'. Then we may assume that u; converges weakly to a limit w in H 1
and in LP*!, and strongly in L? for 1 < ¢ < p + 1. We remark that the
negative power term in F or in f converge strongly in corresponding spaces
([9])-

Suppose that © = 0. We may assume that

/\vu_,-|2 1

for some [ > 0. Then we must have
/B|Uj+‘p+1 —1

and 3! = ¢ (and this implies that I > 0).
Using the Sobolev inequality

2 n(n—2) , 2 2
/\V“j\ + 7 % > Slujlpi1 > W|B“j+|p+1a
we get that
S 2
1> 5 ploe)
- (ma,x B)(P+1)/2

Then we have

c> L n/2,

~ n(max B)(n=2)/n
Assume that the limit u # 0 and u; does not converge strongly in H'
to u. Then w is a solution to (2). We claim that I(u) = ¢. In fact, by
Bresiz-Lieb lemma [1] we know that

c+— I(uj) = I(u) + I(uj —u) +o(1).
Note that
1 1
I =) = [ 51905 =) = — [ Blugs —usl* +o()

Let w; = u; — u. Then w; — 0 strongly in L?. Using (I'(u;),u;) — 0 we

get that
[ 19w = [ Brogpt + o).

This gives us that
1)+ 3 [ 9wy =+ o(0).
We may assume that
/|ij|2 — k>0, and /B\wj+|p+1 — k.
Using the Sobolev inequality we have that

s 2/(p+1)
2 G meon
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A contradiction. Hence we have that u; does not converge strongly in H'
to u, which is a positive solution in H' and I(u) = c¢. By the standard
regularity theory we know that u > 0 is a smooth solution to (2).

In the remaining part of this section we show that (9) is always true.

We now try to bound of the quantity

sup I(tv)
te[0,t1]

by using the computation results in (6-8).

Let C = K7 — 71(¢) for some small v, (e) > 0 and D = B(a)K}.

’ZﬁD is taken at to = (§)!/P

Recall that the maximum value of %C —
with the value
D2/ (p+1) nmax B(n—2)/n
Using the implicit function theorem we know that the maximal value of
I(tgq,) is taken at to + o(e). Hence we have

Sn/2,

n

Therefore, the condition (9) is satisfied and the proof of theorem 4 is com-
plete.

5. UNIQUENESS WHEN THE CONDITION (§) FAILS

The main question now is to show the assumption (§) is not true at w.
Hence, there is a positive solution 1 > 0 such that

[-A+h— f'(z,0)]n =0, in M.
Furthermore, we have by using the monotone method and the bifurcation
theory of Crandall-Rabinowitz [2] that u is the minimal solution to (1). In
this case we always have a family of minimal positive solutions (A, u(\)) €
(0,1] x C?(M) to the perturbation problem
—Au+ hu = A[BuP + Au~ P2, in M

with u(1) = u.

Assume that there is another positive solution w to (1). Then we have
w>uin M. Let ¢ = w —u. Then ¢ > 0 satisfies (2). Using the convexity
of f(z,v) we know that

(10) —A¢+ (h— f'(x,0))p >0, in M.
Then for any ¢ € R, we have
—A(¢—cn) + (b — f'(2,0))(¢ —cn) >0, on M.

Choose ¢ € R such that ¢ — c¢p > 0 has its minimum value 0 at o € M.
Then this implies that at x,
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however, by (10),
0<=A(¢—cn) + (h—f'(z,0)(¢—cn) = —A(p —cn),

which is a contradiction.
In conclusion we have

Theorem 5. Assume that A, B,h are positive functions on the compact
Riemannian manifold (M",g), n > 3. Assume that the condition (§) fails,
i.e., there is a positive solution n > 0 such that

[-A+h—f'(z,0)]n =0, in M.

Then the problem (1) has a unique positive solution u.

6. EXISTENCE RESULT FOR LICHNEROWICZ EQUATION ON COMPLETE
NON-COMPACT RIEMANNIAN MANIFOLDS

We now make a remark about the solvability of (1) on a general non-
parabolic complete Riemannian manifold (M,g). We make the following
two assumptions about (M, g).

(1). We shall assume that the Riemannian manifold (M",g), n > 3, is
not parabolic, that is, the positive Green function G(z,y) exists on M x M
to the operator —A.

(2). For the complete Riemannian manifold (M, g), assume that there is
a positive constant Z > 1 such that the function

(11) h(z) — B(z)Z — A(z)Z'™" > 0.
The important feature about the assumption (1) is the following result:

Proposition 6. Assume (1) above is true and assume that 0 < h € L' (M, g)
and h # 0 with

/ G(z,y)h(y)dvg < oo.
M

Then the equation
—Au+hu=0, in M

has a bounded positive solution u.

This result has been proved by A.Grigor’yan [8]. With the help of the
result above, we have

Theorem 7. Assume (1) and (2) above. Assume also that0 < h € L*(M, g)
and h # 0 such that

/ G(z,y)h(y)dvy < oo.
M

Then there is a positive solution u to the Lichnerowicz equation (1) with
O<u<Z.



STABILITY AND MULTIPLE SOLUTIONS TO LICHNEROWICZ EQUATION 13

Proof. By our assumption, we can get a bounded positive solution u, to the
equation

—Au+hu=0, in M.

We may normalize u, such that 0 < u, < 1. Using the strong maximum
principle, we know that u(z) < 1 on M.

It is now clear that u_ = u, < Zn=2)/4 — uy are a pair of sub and
super solutions to (1). Hence we get by the monotone method that there is
a positive solution u to (1) with ug < u < Z. This completes the proof of
Theorem 7. 0
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