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Abstract

The existence of 2𝜋-periodic positive solutions of the equation

𝑢′′ + 𝑢 =
𝑎(𝑥)

𝑢3

is studied, where 𝑎 is a positive smooth 2𝜋-periodic function. Under some
non-degenerate conditions on 𝑎, the existence of solution to the equation is
established.

1 Introduction and statement of the results

This paper is a continuation of [21] and studies the existence of 2𝜋-periodic positive
solutions of the equation

𝑢′′ + 𝑢 =
𝑎(𝑥)

𝑢3
(1.1)

for positive, smooth and 2𝜋-periodic 𝑎. Equation (1.1) arises from self-similar solu-
tions of the following generalized curve shortening problem

∂𝛾

∂𝑡
= Φ(𝜃)∣𝑘∣𝜎−1𝑘𝑁, 𝜎 > 0, 𝑥 ∈ 𝕊1 = ℝ/2𝜋ℤ, (1.2)

where 𝛾(⋅, 𝑡) is a planar curve, 𝑘(⋅, 𝑡) is its curvature with respect to the unit normal
𝑁 , and Φ is a positive function depending on the normal angle 𝑥 of the curve. This
problem has been extensively studied in the last three decades, see [1-7, 9, 10, 12,

∗LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China,
E-mail: mjiang@math.pku.edu.cn.

†Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong. E-
mail: wei@math.cuhk.edu.hk.

1



13, 15-19, 23]. Assuming that 𝛾(⋅, 𝑡) is convex, and 𝑤(𝑥, 𝑡) is its support function,
then using the normal angle 𝑥 to parameterize 𝛾, equation (1.2) is equivalent to

∂𝑤

∂𝑡
=

−Φ(𝑥)

(𝑤′′ + 𝑤)𝜎
, 𝑥 ∈ 𝕊1. (1.3)

Self-similar solutions of (1.3) are solutions having the form 𝑤(𝑥, 𝑡) = 𝜉(𝑡)𝑢(𝑥), which
are important in understanding the long time behaviors and the structure of singu-
larities of (1.2). It is rather easy to see that 𝜉(𝑡)𝑢(𝑥) is a self-similar solution if and
only if 𝑢 satisfies

𝑢′′ + 𝑢 =
𝑎(𝑥)

𝑢𝑝+1
, 𝑥 ∈ 𝕊1 (1.4)

with 𝑎(𝑥) = Φ
1
𝜎 (𝑥), 𝑝 + 1 = 1

𝜎
and ∣𝜉(𝑡)∣𝜎−1𝜉(𝑡)𝜉′(𝑡) = −𝐶, where 𝐶 is a positive

constant. Equation (1.4) also appears in image processing [23], 2-dimensional 𝐿𝑝-
Minkowski problem [8, 20] and other problems [19].

Equation (1.4) with 𝑝 ∕= 2 has been studied by many authors. When 𝑎 ≡ 1,
all solutions of (1.4) can be classified, see [1, 5]; and see [12, 13] for some results
when 𝑎 is 2𝜋-periodic. In particular, Matano-Wei [22] proved that (1.4) is solvable
if 0 ≤ 𝑝 < 7 and 𝑎 is 2𝜋-periodic and positive. An equation closely related to (1.4)
is

𝑢′′ + 𝜆𝑢 =
𝑎(𝑥)

𝑢𝜈
. (1.5)

Using the Poincaré-Birkhoff fixed point theorem, del Pino, Manásevich and Montero

in [11] proved that that (1.5) possesses a 2𝜋−periodic solution if 𝜆 ∕= (𝑛+1)2

4
, 𝑛 =

0, 1, ⋅ ⋅ ⋅ . An important step in establishing the existence of solutions of (1.4) and
(1.5) is to get an a priori estimate for all solutions.

The case 𝜎 = 1
3
in (1.2) is called the affine curve shortening problem. Thus 𝑝 = 2

and equation (1.4) becomes

𝑢′′ + 𝑢 =
𝑎(𝑥)

𝑢3
𝑥 ∈ 𝕊1, (1.6)

and a solution of equation (1.6) is a self-similar solution of the anisotropic affine
curve shortening problem. All results mentioned above do not cover the affine case.
Indeed, the situation for the affine case is quite different. It is known that there
are some obstructions for the existence and one can’t get a priori estimates for the
solutions of (1.6) without additional assumptions on 𝑎 due to the invariance of the
problem. To see this, let us consider its simplest form

𝑢′′ + 𝑢 =
1

𝑢3
, 𝑥 ∈ 𝕊1. (1.7)

Equation (1.7) is invariant under an action of the special linear group 𝑆𝐿(2,ℝ), and
all solutions of (1.7) are given by a 2-parameter family of functions

𝑢𝜀,𝜃(𝑥) =
(
𝜀2 cos2(𝑥− 𝜃) + 𝜀−2 sin2(𝑥− 𝜃)

) 1
2 , (1.8)
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for (𝜀, 𝜃) ∈ (0, 1] × [0, 𝜋). Thus the set of 2𝜋-periodic solutions of (1.7) is not
bounded. For more details on the group invariance of (1.7), see [2, 21].

To state the results for equation (1.6), we need two functions. Let 𝑎 be a positive
2𝜋-periodic and 𝐶2-function, and let

𝐴2(𝜃) =
𝑎′(𝜃)√
𝑎(𝜃)

+
𝑎′(𝜃 + 𝜋)√
𝑎(𝜃 + 𝜋)

(1.9)

and

𝐵2(𝜃) =

∫ 𝜋
2

−𝜋
2

(
𝑎′(𝜃 + 𝑡) + 𝑎′(𝜃 + 𝑡+ 𝜋)− 𝑎′(𝜃)− 𝑎′(𝜃 + 𝜋)

)
sin 2𝑡

sin2 𝑡
𝑑𝑡. (1.10)

Note that by definition, 𝐴2(𝜃) and 𝐵2(𝜃) are 𝜋−periodic, so they are defined on
𝕊1
1 = ℝ/𝜋ℤ. A function 𝑎 is called 𝐵-nondegenerate if (𝐴2(𝜃), 𝐵2(𝜃)) ∕= (0, 0) for
𝜃 ∈ 𝕊1

1.
In [2], Ai, Chou and Wei proved that if 𝑎 is a positive, B-nondegenerate and 𝐶2-

function of period 𝜋, then one can get a priori estimates for all 𝜋-periodic solutions
of (1.6). That is, there exists a constant 𝐶 depending on 𝑎 only such that

1

𝐶
≤ 𝑢 ≤ 𝐶 (1.11)

for any 𝜋-periodic solution 𝑢 of (1.6). This result was generalized in [21] to the case
that 𝑎 is 2𝜋-periodic. In establishing a priori estimates, a major problem is to study
possible blow-ups. The difference between 𝜋-periodic and 2𝜋-periodic cases is, for a
blow-up sequence 𝑢𝜀,𝑡, only single blow-up can occur when is 𝑎 is 𝜋−periodic, while
𝑎 is 2𝜋-periodic, there are 2 possible blow-ups. We have to analyze the interaction
between different blow-ups.

Let 𝑎 is a positive and B-nondegenerate. Then the map 𝐺(𝜃) = (𝐴2(𝜃), 𝐵2(𝜃))
satisfies 𝐺(𝜃) ∕= 0 for 𝜃 ∈ 𝕊1

1, and the degree 𝑑𝑒𝑔(𝐺, 𝕊1
1) is well-defined, where

𝑑𝑒𝑔(𝐺, 𝕊1
1) = 𝑑𝑒𝑔(𝐺,𝐷; 0), 𝐷 = {(𝑥, 𝑦)∣𝑥2 + 𝑦2 ≤ 1} = {(𝑟 cos 2𝜃, 𝑟 sin 2𝜃)∣0 ≤ 𝑟 ≤

1, 𝜃 ∈ [0, 𝜋]}, ∂𝐷 ≈ 𝕊1
1 = {(cos 2𝜃, sin 2𝜃)∣𝜃 ∈ [0, 𝜋]}, 𝐺 : 𝐷 → ℝ2 is a continuous

extension of 𝐺 : 𝕊1
1 → ℝ2, and 𝑑𝑒𝑔(𝐺,𝐷; 0) is the Brouwer degree. It is well known

that 𝑑𝑒𝑔(𝐺,𝐷; 0) is determined by the map 𝐺.
The existence results in [2] and [21] now can be stated as follows.

Theorem 1.1 Let 𝑎 be a positive, 𝐶2 and 2𝜋-periodic and B-nondegenerate func-
tion. Then

(1) equation (1.6) has a 𝜋−periodic solution if 𝑎 is 𝜋-periodic and 𝑑𝑒𝑔(𝐺, 𝕊1
1) ∕=

−1;
(2) equation (1.6) has a 2𝜋−periodic solution if 𝑎 is 2𝜋-periodic, ∥1−𝑎∥𝐶2 << 1

and 𝑑𝑒𝑔(𝐺, 𝕊1
1) ∕= −1.

The part (1) in the above theorem was proved in [2] and part (2) was proved in
[21]. The statement in [21] is slightly different, where the degree of 𝐺 is computed
as a 2𝜋-periodic map that equals to 2𝑑𝑒𝑔(𝐺,𝕊1

1).
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The aim of this paper is to remove the assumption ∥1 − 𝑎∥𝐶2 << 1 in the case
that 𝑎 is 2𝜋−periodic. Namely, we will prove

Theorem 1.2 Let 𝑎 be a positive, 𝐶2 and 2𝜋-periodic and B-nondegenerate func-
tion. Then equation (1.6) has a 2𝜋−periodic solution provided that 𝑑𝑒𝑔(𝐺,𝕊1

1) ∕= −1.

Now we explain briefly the reason that we made the assumption ∥1−𝑎∥𝐶2 << 1
in [21]. For 𝜋−peridic case, we can fix 𝜀 << 1 and consider the homotopy of 𝑎𝑠(𝑥) =
(1− 𝑠)(1 + 𝜀𝑎(𝑥)) + 𝑠𝑎(𝑥). Then for 𝑠 ∈ [0, 1], the function 𝑎𝑠 is 𝐵−nondegenerate
if 𝑎 is, and thus one can get uniform a priori estimate for all 𝜋-periodic solutions of

𝑢′′ + 𝑢 =
𝑎𝑠(𝑥)

𝑢3
. (1.12)

By Lyapunov-Schmit reduction, one can solve (1.12) for small 𝑠 if 𝑑𝑒𝑔(𝐺,𝕊1
1) ∕= −1,

and the solution can be continued to 𝑠 = 1 thanks to the priori estimate, see [2].
Lyapunov-Schmit reduction can be applied to 2𝜋-periodic case as well. However,
for 2𝜋-periodic 𝑎, we do not know how to construct a homotopy like 𝑎𝑠 as in the
𝜋-periodic case. The 𝐵−nondegenerate condition on 𝑎 is a nonlinear restriction.
Thus we imposed the assumption ∥1− 𝑎∥𝐶2 << 1.

In this paper, we take a different and more direct approach to prove Theorem
1.2. The key point and the main difference between this paper and [21] is that we
do not consider periodic solutions of (1.6), but instead the initial value problem of
(1.6). Let 𝑢(𝑢0, 𝑢

′
0;𝑥) be the solution of (1.6) with the initial boundary condition

𝑢(𝑢0, 𝑢
′
0; 0) = 𝑢0, 𝑢′(𝑢0, 𝑢′0; 0) = 𝑢′0.

An important observation is that the analysis of periodic solutions in [21] is valid
for solutions of the initial value problem as well, which enables us to use the degree
argument to find fixed point (𝑢0, 𝑢

′
0) of the Poincaré map:

𝑢(𝑢0, 𝑢
′
0; 2𝜋) = 𝑢0, 𝑢′(𝑢0, 𝑢′0; 2𝜋) = 𝑢′0. (1.13)

By the periodicity of 𝑎, (1.13) implies that 𝑢(𝑢0, 𝑢
′
0;𝑥) is a 2𝜋-periodic solution of

(1.6). But we do not use degree theory to find zeros of the map

(𝑢0, 𝑢
′
0) → (𝑢(𝑢0, 𝑢

′
0; 2𝜋)− 𝑢0), 𝑢

′(𝑢0, 𝑢′0; 2𝜋)− 𝑢′0))

directly, instead we introduce another map (𝑢0, 𝑢
′
0) → ℱ(𝑢0, 𝑢

′
0) defined by

ℱ(𝑢0, 𝑢
′
0) = (

∫ 2𝜋

0

𝑎′(𝑥)
𝑢2(𝑢0, 𝑢′0; 𝑥)

cos 2𝑥𝑑𝑥,

∫ 2𝜋

0

𝑎′(𝑥)
𝑢2(𝑢0, 𝑢′0;𝑥)

cos 2𝑥𝑑𝑥).

A key fact that will be used is that ℱ(𝑢0, 𝑢
′
0) = 0 implies (1.13). The advantage to

consider the map ℱ(𝑢0, 𝑢
′
0) is that one can get the asymptotic expansion as 𝜆 → 0

via the blow-up analysis. Having the asymptotic expansion, the existence of (𝑢0, 𝑢
′
0)

satisfying ℱ(𝑢0, 𝑢
′
0) = 0 can be accomplished by degree theory.
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The paper is organized as follows. In Section 2, it is shown that the existence
of 2𝜋-periodic solutions of (1.6) is equivalent to that ℱ has zeros. We analyze the
critical points of the solution 𝑢(𝜆, 𝜃; 𝑥) in detail in Section 3. An asymptotical
expansion of ℱ is given in Section 4 following the blow-up analysis of the solutions
𝑢(𝜆, 𝜃; 𝑥), and the main theorem is proved in Section 5 by making use of asymptotic
behavior of the map ℱ and the degree theory.

2 A Map

In this section we define a map ℱ : (0, 1] × ℝ/𝜋ℤ → ℝ2 such that each zero of the
map corresponds to a 2𝜋-periodic solution of

𝑢′′ + 𝑢 =
𝑎(𝑥)

𝑢3
. (2.1)

Let 𝑢(𝜆, 𝜃; 𝑥) be the solution of (2.1) satisfying the initial value conditions

𝑢(𝜆, 𝜃; 0) =
√
𝜆2 cos2 𝜃 + 𝜆−2 sin2 𝜃; 𝑢′(𝜆, 𝜃; 0) =

(𝜆2 − 𝜆−2) sin 𝜃 cos 𝜃√
𝜆2 cos2 𝜃 + 𝜆−2 sin2 𝜃

.

It is easy to see that any initial value 𝑢0 > 0, 𝑢′0 ∈ ℝ can be written as the above
form for (𝜆, 𝜃) ∈ (0, 1] × ℝ/𝜋ℤ. Hence all solutions of (2.1) are given by 𝑢(𝜆, 𝜃;𝑥).
By the periodicity of 𝑎, we know that 𝑢(𝜆, 𝜃;𝑥) is 2𝜋-periodic solution of (2.1) if
and only if

𝑢(𝜆, 𝜃; 2𝜋) = 𝑢(𝜆, 𝜃; 0), 𝑢′(𝜆, 𝜃; 2𝜋) = 𝑢′(𝜆, 𝜃; 0). (2.2)

We start with the following simple lemma.

Lemma 2.1 For any (𝜆, 𝜃), the solution 𝑢(𝜆, 𝜃;𝑥) exists for 𝑥 ∈ ℝ and there is a
constant 𝐶 independent of 𝜆 such that

1

𝐶
(𝜆2 + 𝜆−2) ≤ 𝑢2(𝜆, 𝜃; 𝑥) + 𝑢′2(𝜆, 𝜃;𝑥) +

𝑎(𝑥)

𝑢2(𝜆, 𝜃;𝑥)
≤ 𝐶(𝜆2 + 𝜆−2), 𝑥 ∈ [0, 2𝜋].

(2.3)

Proof. Let 𝑢 be a solution of equation (2.1). We define 𝐹 (𝑥) = 𝑢′2 + 𝑢2 +
𝑎(𝑥)

𝑢2(𝑥)
.

Then by (2.1), one can easily get that

𝐹 ′(𝑥) =
𝑎′(𝑥)
𝑢2

,

which implies that
∣𝐹 ′(𝑥)∣ ≤ 𝐶∣𝐹 (𝑥)∣ (2.4)

since 𝑎(𝑥) is smooth and positive. Thus

∣(log𝐹 )′∣ ≤ 𝐶,

5



which leads to, for all 𝑅 > 0, there exists a constant 𝐶(𝑅) > 0 such that

𝐹 (𝑥) ≤ 𝐶(𝑅), 𝑥 ∈ [−𝑅,𝑅].
Now the global existence of 𝑢 follows immediately.

From (2.4) and Gronwall inequality we have

1

𝐶
𝐹 (0) ≤ 𝐹 (𝑥) ≤ 𝐶𝐹 (0), 𝑥 ∈ [0, 2𝜋]. (2.5)

The inequalities in (2.3) follows from (2.5),

1

𝐶
(𝑢′2(𝑥) + 𝑢2(𝑥) +

1

𝑢2(𝑥)
) ≤ 𝐹 (𝑥) ≤ 𝐶(𝑢′2(𝑥) + 𝑢2(𝑥) +

1

𝑢2(𝑥)
)

and

𝑢′2(0) + 𝑢2(0) +
1

𝑢2(0)
= 𝜆2 + 𝜆−2.

This completes the proof. □

Set

𝐴(𝜆, 𝜃) =

∫ 2𝜋

0

𝑎′(𝑥)
𝑢2(𝜆, 𝜃; 𝑥)

cos 2𝑥𝑑𝑥

𝐵(𝜆, 𝜃) =

∫ 2𝜋

0

𝑎′(𝑥)
𝑢2(𝜆, 𝜃; 𝑥)

sin 2𝑥𝑑𝑥

and
ℱ : (0, 1]× ℝ/𝜋ℤ → ℝ2 : ℱ(𝜆, 𝜃) = (𝐴(𝜆, 𝜃), 𝐵(𝜆, 𝜃)). (2.6)

We know that the map ℱ is well defined for all (𝜆, 𝜃) by Lemma 2.1. An important
feature of the map ℱ is that when 𝜆 = 1, the solution 𝑢(𝜆, 𝜃;𝑥) is independent of
𝜃, hence so is the map ℱ(𝜆, 𝜃). This is important for later purpose and the reason
that we write the initial value in terms of 𝜆 and 𝜃. But we will see this also causes
some difficulties in choosing the blow-up point when we perform blow-up analysis
at the same time.

The following result is the starting point of our approach later, which relates the
2𝜋-periodic solutions of (2.1) to the zeros of the map ℱ(𝜆, 𝜃).

Proposition 2.2 Let 𝑎 be a positive, 𝐶2 and 2𝜋-periodic function and ℱ be given
by (2.6). Then 𝑢(𝜆, 𝜃; 𝑥) is a 2𝜋-periodic solution of (2.1) if and only if ℱ(𝜆, 𝜃) = 0.

Proof. For any solution 𝑢 of (2.1), we have

(
𝑢2

2
)′′′ + 4(

𝑢2

2
)′ =

𝑎′(𝑥)
𝑢2

. (2.7)

Multiplying by cos 2𝑥, sin 2𝑥 and integration over [0, 2𝜋], we get ℱ(𝜆, 𝜃) = 0 if
𝑢(𝜆, 𝜃; 𝑥) is a 2𝜋-periodic solution of (2.1).
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Conversely, let ℱ(𝜆, 𝜃) = 0. It follows from (2.7) and integration by parts that

𝐴(𝜆, 𝜃) =

∫ 2𝜋

0

[(
𝑢2

2
)′′′ + 4(

𝑢2

2
)′] cos 2𝑥𝑑𝑥

= (
𝑢2

2
)′′ cos 2𝑥∣2𝜋0

= (𝑢′2 + 𝑢′′𝑢)∣2𝜋0
= (𝑢′2 +

𝑎(𝑥)

𝑢2
− 𝑢2)∣2𝜋0 .

(2.8)

Similarly, we have

𝐵(𝜆, 𝜃) =

∫ 2𝜋

0

[(
𝑢2

2
)′′′ + 4(

𝑢2

2
)′] sin 2𝑥𝑑𝑥

= −2(
𝑢2

2
)′ cos 2𝑥∣2𝜋0

= −2𝑢′𝑢∣2𝜋0 .

(2.9)

Hence ℱ(𝜆, 𝜃) = 0 and (2.8), (2.9) imply

𝑢′2(2𝜋)− 𝑢′2(0) = 𝑢2(2𝜋)− 𝑢2(0) +
𝑎(0)

𝑢2(0)𝑢2(2𝜋)
(𝑢2(2𝜋)− 𝑢2(0)),

𝑢′(2𝜋)𝑢(2𝜋) = 𝑢′(0)𝑢(0).
(2.10)

Let us assume 𝑢′(0) ∕= 0 and 𝑐 = 𝑢′(2𝜋)
𝑢′(0) . Then the second equality in (2.10) gives

𝑢′(2𝜋)
𝑢′(0)

=
𝑢(0)

𝑢(2𝜋)
= 𝑐 > 0. (2.11)

Substituting (2.11) into the first equality of (2.10) we get

(𝑐2 − 1)𝑢′2(0) = (1− 𝑐2)(1 +
𝑎(0)

𝑐2𝑢4(2𝜋)
)𝑢2(2𝜋). (2.12)

Therefore, 𝑐 = 1 and
𝑢′(2𝜋) = 𝑢′(0), 𝑢(2𝜋) = 𝑢(0). (2.13)

The case 𝑢′(0) = 0 can be treated similarly. Thus (2.13) always holds true, that is,
𝑢(𝜆, 𝜃; 𝑥) is a 2𝜋-periodic solution of (2.1). □

Remark 2.3 Let

𝐶(𝜆, 𝜃) =

∫ 2𝜋

0

𝑎′(𝑥)
𝑢2(𝜆, 𝜃;𝑥)

𝑑𝑥.

Then it follows from (2.7) that 𝑢(𝜆, 𝜃; 𝑥) is a 2𝜋-periodic solution of (2.1) also
implies 𝐶(𝜆, 𝜃) = 0. But this equation is not independent of ℱ(𝜆, 𝜃) = 0.
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In view of Proposition 2.2, in order to find 2𝜋-periodic solutions of (2.1), it
suffices to find a solution of

ℱ(𝜆, 𝜃) = 0. (2.14)

This will be accomplished by a degree argument. To this end we need an asymptotic
expansion of ℱ(𝜆, 𝜃) as 𝜆 → 0, which follows from blow-up analysis of 𝑢(𝜆, 𝜃;𝑥) as
𝜆→ 0.

3 Analysis of Critical Points of 𝑢(𝜆, 𝜃;𝑥)

The computation of the degree of ℱ(𝜆, 𝜃) relies on the asymptotic expansion, which
is based on the blow-up analysis of 𝑢(𝜆, 𝜃; 𝑦) as 𝜆 → 0. Since the blow-up is made
at a critical point of 𝑢(𝜆, 𝜃; 𝑦), we first give some analysis of the critical points of
𝑢(𝜆, 𝜃; 𝑦) in this section. This part is necessary and important in our later arguments,
which differs from [21], where we only consider periodic solutions, and the existence
of critical points is trivial.

From now on we always assume that 𝑎 is a positive, 𝐶2 and 2𝜋-periodic function.
And unless otherwise stated, the letter 𝐶 will always denote various generic constants
which are independent of 𝑘. We denote 𝐴 ∼ 𝐵 or 𝐴 = 𝑂(𝐵) if there exist two
positive uniform constants 𝐶1 and 𝐶2 such that 𝐶1𝐴 ≤ 𝐵 ≤ 𝐶2𝐴, and 𝑜(1) means a
quantity that goes to zero as 𝜆→ 0.

Lemma 3.1 Let 𝑢 be a monotonic solution of

𝑢′′ + 𝑢 =
𝑎(𝑥+ 𝜃)

𝑢3
, 𝑥 ∈ [0, 𝑇 ]. (3.1)

Then for 𝛿 > 0, there is an 𝜀0(𝛿) independent of 𝜃 such that if 𝑢(0) ≤ 𝜀0 or 𝑢(𝑇 ) ≤
𝜀0, we have

𝛾 = ∣{𝑥 ∈ [0, 𝑇 ]∣𝑢(𝑥) ≤ 𝜀0}∣ ≤ 𝛿

4
.

Proof: Let 𝑢 be monotonic increasing. We fix a constant 𝜀0 ≤ 1
8
such that

𝑎(𝑥)

𝑢3
− 𝑢 ≥ 8

𝛿2
, 0 < 𝑢 ≤ 𝜀0, 𝑥 ∈ [0, 2𝜋]. (3.2)

Then 𝐼 = {𝑥 ∈ [0, 𝑇 ]∣𝑢(𝑥) ≤ 𝜀0} = [0, 𝜂] for some 𝜂 ≥ 0. By the mean value
theorem, we can find 𝜉 ∈ (𝜂

2
, 𝜂) such that

𝑢(𝜂)− 𝑢(
𝜂

2
) = 𝑢′(𝜉)

𝜂

2
.

Therefore,

0 ≤ 𝑢′(𝜉) ≤ 2

𝜂
𝜀0 ≤ 1

4𝜂
. (3.3)
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Applying the mean value theorem to 𝑢′, using (3.1)-(3.3) we get

𝑢′(𝜉)− 𝑢′(0) ≥ 8

𝛿2
𝜉 ≥ 4

𝛿2
𝜂. (3.4)

Hence it follows from (3.3) and (3.4) that

4

𝛿2
𝜂 ≤ 1

4𝜂
,

that is, 𝜂 ≤ 𝛿
4
, thanks to the fact 𝑢′(0) ≥ 0. The proof is complete. □

With the aid of Lemma 3.1 now we have

Proposition 3.2 Let 𝑢 be a monotonic solution of (3.1) such that

𝑢2(𝑥) + 𝑢′2(𝑥) +
𝑎(𝑥)

𝑢2(𝑥)
∼ 𝜆2 + 𝜆−2, 𝑥 ∈ [0, 𝑇 ]. (3.5)

Then for 𝛿 > 0, there is a 𝜆0 independent of 𝜃 such that for all 𝜆 ≤ 𝜆0, we have
𝑇 ≤ 𝜋

2
+ 𝛿. In particular, in any interval having length more that 𝜋

2
+ 𝛿, the function

𝑢(𝑥) has at least one critical point.

Proof: As in Lemma 3.1, let us assume that 𝑢 is monotone increasing. Let 𝛿, 𝜀0 be
the constants given by in Lemma 3.1 and 𝑇1 ∈ [0, 𝑇 ] such that 𝑢(𝑇1) = 𝜀0. Then by
Lemma 3.1 we have 𝑇1 ≤ 𝛿

4
. Now we show 𝑇 − 𝑇1 ≤ 𝜋

2
+ 𝛿

2
if 𝜆 is small.

We argue by contradiction. Suppose there is a sequence 𝜆𝑛 → 0, 𝜃𝑛, monotone
increasing functions 𝑢𝑛 defined on a subinterval 𝐼𝑛 of [0, 𝑇 ] having length more than
𝜋
2
+ 𝛿

2
satisfies (3.5) and

𝑢′′𝑛 + 𝑢𝑛 =
𝑎(𝑥+ 𝜃𝑛)

𝑢3𝑛
. (3.6)

After translation we may assume 𝐼𝑛 = [0, 𝜋
2
+ 𝛿

2
]. First we note

𝑢𝑛(𝑥) ≥ 𝜀0, 𝑥 ∈ [0,
𝜋

2
+
𝛿

2
]

due to the fact that 𝑢𝑛 is monotonic increasing. Then

∣ 𝑎(𝑥)
𝑢3𝑛(𝑥)

∣ ≤ 𝐶, 𝑥 ∈ [0,
𝜋

2
+
𝛿

2
]. (3.7)

By the standard estimate to equation (3.6) we find

∥𝑢𝑛∥𝐶1 ≤ 𝐶(𝑀𝑛 + 1), (3.8)

where 𝑀𝑛 = max𝑥∈[0,𝜋
2
+𝛿] 𝑢𝑛(𝑥). It follows from (3.5) and (3.8) that 𝑀𝑛 → ∞ as

𝑛→ ∞.Divided (3.6) by𝑀𝑛 and letting 𝑛→ ∞, we get 𝑢𝑛

𝑀𝑛
→ 𝑣, max𝑥∈[0,𝜋

2
] 𝑣(𝑥) = 1

and

𝑣′′ + 𝑣 = 0, 𝑥 ∈ [0,
𝜋

2
+
𝛿

2
]. (3.9)
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Since 𝑢𝑛 is monotone increasing on [0, 𝜋
2
+ 𝛿

2
], so is 𝑣. This is impossible as 𝑣 satisfies

(3.9) and 𝑣 ≩ 0. The proof is finished. □

Recall that 𝑢(𝜆, 𝜃; 𝑥) is the solution of

𝑢′′ + 𝑢 =
𝑎(𝑥)

𝑢3
(3.10)

satisfying the initial value conditions

𝑢(𝜆, 𝜃; 0) =
√
𝜆2 cos2 𝜃 + 𝜆−2 sin2 𝜃; 𝑢′(𝜆, 𝜃; 0) =

(𝜆2 − 𝜆−2) sin 𝜃 cos 𝜃√
𝜆2 cos2 𝜃 + 𝜆−2 sin2 𝜃

.

According to Lemma 2.1, we know that

𝑢2(𝑥) + 𝑢′2(𝑥) +
𝑎(𝑥)

𝑢2(𝑥)
∼ 𝜆2 + 𝜆−2, 𝑥 ∈ [−2𝜋, 2𝜋]. (3.11)

Therefore, it follows from Proposition 3.2 that the function 𝑢(𝜆, 𝜃;𝑥) has critical
points in [0, 𝜋

2
+ 𝛿] and [−𝜋

2
− 𝛿, 0], respectively. It is easy to see from (3.10) and

(3.11) that all critical points of 𝑢(𝜆, 𝜃;𝑥) are nondegenerate for small 𝜆, hence they
are isolated. Using these facts now we define two functions Θ(𝜆, 𝜃) and Θ1(𝜆, 𝜃).
We restrict 𝜃 ∈ [0, 𝜋

2
) first. Let Θ(𝜆, 𝜃) and Θ1(𝜆, 𝜃) be the first critical point of

𝑢(𝜆, 𝜃; 𝑥) in 𝑥 ≥ 0 and 𝑥 ≤ 0, respectively. By definition we have that

Θ(𝜆, 0) = Θ1(𝜆, 0) = 0,

Θ(𝜆, 𝜃) is a local minimizer and Θ1(𝜆, 𝜃) is a local maximizer if 𝜃 ∈ [0, 𝜋
2
), since 𝜆 is

small and 𝑢′(𝜆, 𝜃; 0) ≤ 0. Moreover, as a consequence of (3.11) we see that

𝑚(𝜆, 𝜃) = 𝑢(𝜆, 𝜃; Θ(𝜆, 𝜃)) ∼ 𝜆, 𝜃 ∈ [0,
𝜋

2
)

and
𝑀(𝜆, 𝜃) = 𝑢(𝜆, 𝜃; Θ1(𝜆, 𝜃)) ∼ 𝜆−1, 𝜃 ∈ [0,

𝜋

2
).

The following lemma is proved in [21].

Lemma 3.3 As 𝜆→ 0, the following estimate holds uniformly in 𝜃:

Θ(𝜆, 𝜃)−Θ1(𝜆, 𝜃) =
𝜋

2
+ 𝑜(1). (3.12)

Using the lemma above we can prove

Proposition 3.4 Let 𝑢(𝜆, 𝜃; 𝑥) and Θ(𝜆, 𝜃) be as above. Then as 𝜆 → 0, the fol-
lowing estimate holds uniformly in 𝜃 ∈ [0, 𝜋

2
):

Θ(𝜆, 𝜃) = 𝜃 + 𝑜(1), 𝜃 ∈ [0,
𝜋

2
). (3.13)
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Proof: Since 𝜃 ∈ [0, 𝜋
2
), 𝑢(𝜆, 𝜃;𝑥) is monotone decreasing on [Θ1(𝜆, 𝜃),Θ(𝜆, 𝜃)]. We

are going to prove: ∀𝛿 > 0, ∃𝜆0(𝛿) > 0 such that for all 𝜆 ≤ 𝜆0,

∣Θ(𝜆, 𝜃)− 𝜃∣ ≤ 𝛿, 𝜃 ∈ [0,
𝜋

2
). (3.14)

To this end, first applying Lemma 3.1 to 𝑢(𝜆, 𝜃;𝑥) in the interval [Θ1,Θ], we
conclude that there is an 𝜀0(𝛿) such that

∣{𝑥 ∈ [Θ1,Θ]∣𝑢(𝜆, 𝜃;𝑥) ≤ 𝜀0}∣ ≤ 𝛿

4
. (3.15)

Let 𝑇 (𝜆, 𝜃) be given by 𝑢(𝜆, 𝜃;𝑇 (𝜆, 𝜃)) = 𝜀0. Then (3.15) implies

∣Θ(𝜆, 𝜃)− 𝑇 (𝜆, 𝜃)∣ ≤ 𝛿

4
. (3.16)

In order to get (3.14), it suffice to show it holds for 𝜃 ≤ 𝑇 (𝜆, 𝜃), since if 𝜃 ≥ 𝑇 (𝜆, 𝜃),
(3.16) implies

∣Θ(𝜆, 𝜃)− 𝜃)∣ ≤ ∣Θ(𝜆, 𝜃)− 𝑇 (𝜆, 𝜃)∣ ≤ 𝛿

4
.

In the remaining we show ∃𝜆0(𝛿) > 0 such that for all 𝜆 ≤ 𝜆0,

∣𝜋
2
− 𝜃 +Θ1(𝜆, 𝜃)∣ ≤ 𝛿

2
, 𝜃 ∈ [0,

𝜋

2
). (3.17)

Having this estimate, (3.14) follows from Lemma 3.3 immediately.
To prove (3.17) we consider the function 𝑣𝜆(𝑥) = 𝜆𝑢(𝜆, 𝜃; 𝑥+Θ1), which satisfies

𝑣′′𝜆 + 𝑣𝜆 = 𝜆
𝑎(𝑥+Θ1)

𝑢3(𝜆, 𝜃;𝑥+Θ1)
:= 𝜆𝑓𝜆(𝑥), 𝑥 ∈ [0, 𝑇 (𝜆, 𝜃)−Θ1] (3.18)

and
𝑣′𝜆(0) = 𝜆𝑢′(𝜆, 𝜃; Θ1) = 0, (3.19)

𝑣𝜆(𝜃 −Θ1) = 𝜆𝑢(𝜆, 𝜃; 0) = 𝜆
√
𝜆2 cos2 𝜃 + 𝜆−2 sin2 𝜃. (3.20)

Thus

𝑣𝜆(𝑥) =− cos 𝑥

∫ 𝑥

0

𝜆𝑓𝜆(𝑠) sin 𝑠𝑑𝑠+ sin 𝑥

∫ 𝑥

0

𝜆𝑓𝜆(𝑠) cos 𝑠𝑑𝑠

+ 𝑣𝜆(0) cos𝑥.

(3.21)

By definition we have

𝑢(𝜆, 𝜃;𝑥) ≥ 𝜀0, 𝑥 ∈ [Θ1, 𝑇 (𝜆, 𝜃)],

∣ 𝑎(𝑥)

𝑢(𝜆, 𝜃;𝑥)
∣ ≤ 𝐶(𝛿), 𝑥 ∈ [Θ1, 𝑇 (𝜆, 𝜃)].
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It follows that
∣𝑓𝜆(𝑥)∣ ≤ 𝐶(𝛿), 𝑥 ∈ [0, 𝑇 (𝜆, 𝜃)−Θ1].

Hence from (3.21) we deduce that

𝑣𝜆(𝜃 −Θ1) = 𝑣𝜆(0) cos(𝜃 −Θ1) + 𝑜(1), 𝜆→ 0 (3.22)

and
𝑣′𝜆(𝜃 −Θ1) = −𝑣𝜆(0) sin(𝜃 −Θ1) + 𝑜(1), 𝜆→ 0. (3.23)

On the other hand, from (3.20) we infer that

𝑣𝜆(𝜃 −Θ1) = sin 𝜃 + 𝑜(1) 𝜆→ 0 (3.24)

holds uniformly in 𝜃. Therefore, inserting (3.24) into (3.22) we have

𝑣𝜆(0) cos(𝜃 −Θ1) = sin 𝜃 + 𝑜(1), 𝜆→ 0 (3.25)

uniformly in 𝜃, too.
Now we separate two cases:

(1) 𝜃 ≤ 𝛿
8
. In this case, using 𝑣𝜆(0) ∼ 1 and (3.25), one can find 𝜆1(𝛿) such that

∣ cos(𝜃 −Θ1)∣ = sin
𝛿

4
, 𝜆 ≤ 𝜆1(𝛿).

This shows that

∣𝜋
2
− (𝜃 −Θ1)∣ ≤ 𝛿

4
, 𝜆 ≤ 𝜆1(𝛿). (3.26)

(2) 𝜃 ≥ 𝛿
8
. In this case, we see that, as 𝜆→ 0,

𝑣′𝜆(𝜃 −Θ1) = 𝜆𝑢′(𝜆, 𝜃; 0)

= 𝜆
(𝜆−2 − 𝜆2) sin 𝜃 cos 𝜃√
𝜆2 cos2 𝜃 + 𝜆−2 sin2 𝜃

= − cos 𝜃 + 𝑜(1)
(3.27)

uniformly in 𝜃. Combining (3.23) with (3.27) we arrive at

𝑣𝜆(0) sin(𝜃 −Θ1) = − cos 𝜃 + 𝑜(1). (3.28)

Thus as a consequence of (3.25) and (3.28), we can find 𝜆2(𝛿) such that

∣𝜋
2
− (𝜃 −Θ1)∣ ≤ 𝛿

4
, 𝜆 ≤ 𝜆2(𝛿) (3.29)

and ∣𝑣𝜆(0)−1∣ ≤ 𝛿
2
. Combining (3.26) with (3.29) we get (3.17). This completes the

proof of (3.17) and (3.14). □

In the next section we will perform the blow-up analysis at a minimum point
of 𝑢(𝜆, 𝜃 : 𝑥) as 𝜆 → 0 for all 𝜃 ∈ [0, 𝜋). (The reason for performing blow-up
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analysis at a minimum point is only for the simplicity of notation since one can do
the same process at a maximum point as well.) As shown before, the first critical
point of 𝑢(𝜆, 𝜃;𝑥) in 𝑥 ≥ 0 is a minimum point if 𝜃 ∈ [0, 𝜋

2
). But this is not the

case if 𝜃 ∈ [𝜋
2
, 𝜋), so we need to define the function Θ(𝜆, 𝜃) slightly different. Let

Θ2(𝜆, 𝜃) be the first critical point of 𝑢(𝜆, 𝜃;𝑥) in 𝑥 ≥ 0 which is a maximum point as
𝜃 ∈ [𝜋

2
, 𝜋), and let Θ(𝜆, 𝜃) be the critical point of 𝑢(𝜆, 𝜃; 𝑥) next to Θ2(𝜆, 𝜃). Clearly,

Θ(𝜆, 𝜃) is a minimum point and we have

𝑚(𝜆, 𝜃) = 𝑢(𝜆, 𝜃; Θ(𝜆, 𝜃)) ∼ 𝜆,

𝑀(𝜆, 𝜃) = 𝑢(𝜆, 𝜃; Θ2(𝜆, 𝜃)) ∼ 𝜆−1.

By the same argument, one can show that the estimate (3.13) holds for 𝜃 ∈ [𝜋
2
, 𝜋).

Thus we have

Proposition 3.5 Let 𝑢(𝜆, 𝜃; 𝑥) be as above. Then for 𝜆 << 1, there exists a func-
tion Θ(𝜆, 𝜃) which is a local minimum of 𝑢(𝜆, 𝜃;𝑥) such that𝑚(𝜆, 𝜃) = 𝑢(𝜆, 𝜃; Θ(𝜆, 𝜃)) ∼
𝜆 and

Θ(𝜆, 𝜃) = 𝜃 + 𝑜(1) (3.30)

holds uniformly in 𝜃 ∈ [0, 𝜋).

Remark 3.6 One can show that Θ(𝜆, 𝜃) is the first local minimum of 𝑢(𝜆, 𝜃; 𝑥) in
𝑥 ≥ 0, which is 𝐶1 in (𝜆, 𝜃) via the implicit function theorem. But one should
note that Θ(𝜆, 𝜃 + 𝜋) ∕= Θ(𝜆, 𝜃) + 𝜋 in general. However, we will see that (3.30) is
sufficient for the degree argument in Section 5.

4 Asymptotic Expansion of ℱ(𝜆, 𝜃)

In this section, following the argument in [21], we give an asymptotic expansion of
the solution ℱ(𝜆, 𝜃) given in the last section. This is crucial in the computation of
the degree of ℱ(𝜆, 𝜃) in the next section. We note that in [21], the blow-up argument
was used to obtain a priori estimates of 2𝜋-periodic solutions of (2.1). An important
observation here is that the argument not only works for the periodic solutions of
(2.1), but also for all solutions of (2.1).

Let 𝑚(𝜆, 𝜃) = 𝑢(𝜆, 𝜃; Θ(𝜆, 𝜃)) and

𝑈𝜀(𝑥) =
(
𝜀2 cos2 𝑥+ 𝜀−2 sin2 𝑥

) 1
2 .

We define a transformation

𝑥 = Θ(𝜆, 𝜃) + 𝜓𝜆,𝜃(𝑦) = Θ(𝜆, 𝜃) +

∫ 𝑦

0

1

𝑈2
𝜀−1(𝜏)

𝑑𝜏,

where 𝜀(𝜆, 𝜃) = (𝑎(Θ(𝜆, 𝜃))−
1
4𝑚(𝜆, 𝜃) ∼ 𝜆. It induces a rule of transformation of the

equation

𝑢′′ + 𝑢 =
𝑎(𝑥)

𝑢3
, 𝑥 ∈ [0, 𝑇 ] (4.1)
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as follows: let

𝑣(𝜆, 𝜃; 𝑦) = 𝑈𝜀−1(𝑦)𝑢(Θ(𝜆, 𝜃) + 𝜓𝜆,𝜃(𝑦)) = 𝑈𝜀−1(𝑥−Θ(𝜆, 𝜃))𝑢(𝜆, 𝜃; 𝑥),

using
𝑑𝑦

𝑑𝑥
= 𝑈−2

𝜀 (𝑥−Θ(𝜆, 𝜃)), and

𝑑2𝑦

𝑑𝑥2
=

(
𝜀2 − 𝜀−2

)
sin 2(𝑥−Θ(𝜆, 𝜃))𝑈−4

𝜀 (𝑥−Θ(𝜆, 𝜃)),

one can verify that

𝑑2𝑣(𝜆, 𝜃; 𝑦)

𝑑𝑦2
+ 𝑣(𝜆, 𝜃; 𝑦) =

𝑎(Θ(𝜆, 𝜃) + 𝜓𝜆,𝜃(𝑦))

𝑣3(𝜆, 𝜃; 𝑦)
. (4.2)

Using equation (4.2), the following result on the asymptotical behavior of 𝑢(𝜆, 𝜃; 𝑥)
as 𝜆 → 0 was proved in [21], where the periodic solutions was dealt with. The ar-
gument is valid for the solution 𝑢(𝜆, 𝜃;𝑥). Hence the detail of the proof is omitted.

Proposition 4.1 Let 𝑎 be a positive, 𝐶2 and 2𝜋-periodic function. Then ∃ 𝐶 > 0
such that

1

𝐶
≤ 𝑣(𝜆, 𝜃; 𝑦) ≤ 𝐶, ∣𝑣𝑦(𝜆, 𝜃; 𝑦)∣ ≤ 𝐶, 𝑦 ∈ [−2𝜋, 2𝜋], (4.3)

and
∥𝑣(𝜆, 𝜃; 𝑦)− 𝑣(Θ; 𝑦)∥𝐶1([−2𝜋,2𝜋]) ≤ 𝐶𝜆2∣ log 𝜆∣, 𝜆→ 0, (4.4)

where 𝑣(Θ; 𝑦) is the 2𝜋-periodic function given by

𝑣(Θ; 𝑦) =

{
𝑎

1
4 (Θ), 𝑦 ∈ [−𝜋

2
, 𝜋
2
],(

𝑎
1
2 (Θ) sin2 𝑦 + 𝑎(Θ + 𝜋)𝑎−

1
2 (Θ) cos2 𝑦

) 1
2 , 𝑦 ∈ [𝜋

2
, 3𝜋

2
].

(4.5)

Remark 4.2 Extending 𝑣(Θ; 𝑦) to a 2𝜋-periodic function, then one can prove that
the estimate

∥𝑣(𝜆, 𝜃; 𝑦)− 𝑣(Θ; 𝑦)∥𝐶1([𝑎,𝑏]) ≤ 𝐶𝜆2∣ log 𝜆∣ (4.6)

holds for any bounded interval [𝑎, 𝑏], but the constant 𝐶 may depend on the interval.
This fact will be used later.

Recall that for (𝜆, 𝜃) ∈ (0, 1]× 𝕊1
1,

ℱ(𝜆, 𝜃) = (𝐴(𝜆, 𝜃), 𝐵(𝜆, 𝜃)), (4.7)

where

𝐴(𝜆, 𝜃) =

∫ 2𝜋

0

𝑎′(𝑥)
𝑢2(𝜆, 𝜃;𝑥)

cos 2𝑥𝑑𝑥,
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𝐵(𝜆, 𝜃) =

∫ 2𝜋

0

𝑎′(𝑥)
𝑢2(𝜆, 𝜃;𝑥)

sin 2𝑥𝑑𝑥.

To compute the degree we need the asymptotic behavior of ℱ(𝜆, 𝜃) as 𝜆 → 0.
Let Θ(𝜆, 𝜃) be the function in Proposition 3.5, 𝑚(𝜆, 𝜃) = 𝑢(𝜆, 𝜃; Θ(𝜆, 𝜃)), 𝜀(𝜆, 𝜃) =

(𝑎(Θ(𝜆, 𝜃))−
1
4𝑚(𝜆, 𝜃) ∼ 𝜆. For simplicity of notations we omit (𝜆, 𝜃) in 𝑢 and Θ.

Then

𝐴(𝜆, 𝜃) =

∫ 2𝜋

0

𝑎′(𝑥)
𝑢2(𝑥)

cos 2𝑥𝑑𝑥

=

∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
cos 2(𝑥+Θ)𝑑𝑥

= cos 2Θ

∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
cos 2𝑥𝑑𝑥− sin 2Θ

∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
sin 2𝑥𝑑𝑥

and

𝐵(𝜆, 𝜃) =

∫ 2𝜋

0

𝑎′(𝑥)
𝑢2(𝑥)

sin 2𝑥𝑑𝑥

=

∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
sin 2(𝑥+Θ)𝑑𝑥

= sin 2Θ

∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
cos 2𝑥𝑑𝑥+ cos 2Θ

∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
sin 2𝑥𝑑𝑥.

Using the asymptotic expansion given by Proposition 4.1 now we prove

Proposition 4.3 Let 𝑎 be a positive, 𝐶2 and 2𝜋-periodic function. Then as 𝜆→ 0,
we have∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
cos 2𝑥𝑑𝑥 =

𝑎′(Θ)√
𝑎(Θ)

+
𝑎′(𝜋 +Θ)√
𝑎(𝜋 +Θ)

+𝑂(𝜆2∣ log 𝜆∣), (4.8)

and∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
sin 2𝑥𝑑𝑥

=𝑚2(𝜆, 𝜃)

∫ 𝜋
2

−𝜋
2

(
𝑎′(𝑥+Θ) + 𝑎′(𝑥+ 𝜋 +Θ)− 𝑎′(Θ)− 𝑎′(𝜋 +Θ)

)
sin 2𝑥

sin2 𝑥
𝑑𝑥+ 𝑜(𝜆2).

(4.9)

The proof is similar to that of Proposition 3.1 in [21].
Proof. Let

𝑥 = 𝜓𝜆,𝜃(𝑦) =

∫ 𝑦

0

1

𝜀−2 cos2 𝜏 + 𝜀2 sin2 𝜏
𝑑𝜏,
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𝑣(𝜆, 𝜃; 𝑦) = (𝜀−2 cos2 𝑦 + 𝜀2 sin2 𝑦)
1
2𝑢(Θ(𝜆, 𝜃) + 𝜓𝜆,𝜃(𝑦)).

Then

cos 2𝑥 =
cos2 𝑦 − 𝜀4 sin2 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
,

sin 2𝑥 =
2𝜀2 sin 𝑦 cos 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
.

Set Θ = 𝜓𝜆,𝜃(Θ1). Then using the change of variable 𝑥 = 𝜓𝜆,𝜃(𝑦) and Proposition
4.1 we obtain ∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
cos 2𝑥𝑑𝑥

=

∫ 2𝜋−Θ1

−Θ1

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(𝜆, 𝜃; 𝑦)

cos2 𝑦 − 𝜀4 sin2 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦

=

∫ 2𝜋−Θ1

−Θ1

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦) +𝑂(𝜀2∣ log 𝜀∣)
cos2 𝑦 − 𝜀4 sin2 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦

=

∫ 2𝜋−Θ1

−Θ1

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦)

cos2 𝑦 − 𝜀4 sin2 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦 +𝑂(𝜀2∣ log 𝜀∣)

=

∫ 3
2
𝜋

−𝜋
2

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦)

cos2 𝑦 − 𝜀4 sin2 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦 +𝑂(𝜀2∣ log 𝜀∣).

(4.10)

In the above equality we have used the fact that the function 𝑣(Θ; 𝑦) is 2𝜋-periodic.
Now we estimate the right-hand side of (4.10). First we have

∣
∫ 𝜋

2

−𝜋
2

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)− 𝑎′(Θ)

𝑣2(Θ; 𝑦)

cos2 𝑦 − 𝜀4 sin2 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦∣

≤𝐶
∫ 𝜋

2

−𝜋
2

∣𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)− 𝑎′(Θ)∣𝑑𝑦

=𝑂(𝜀2∣ log 𝜀∣),

(4.11)

∫ 𝜋
2

−𝜋
2

𝑎′(Θ)

𝑣2(Θ; 𝑦)

cos2 𝑦 − 𝜀4 sin2 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦 =

∫ 𝜋
2

−𝜋
2

𝑎′(Θ)

𝑣2(Θ; 𝑦)
(1− 2𝜀4 sin2 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
)𝑑𝑦

=

∫ 𝜋
2

−𝜋
2

𝑎′(Θ)

𝑣2(Θ; 𝑦)
𝑑𝑦 +𝑂(𝜀2)

=
𝑎′(Θ)√
𝑎(Θ)

+𝑂(𝜀2).

(4.12)

It follows from (4.11) and (4.12) that∫ 𝜋
2

−𝜋
2

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦)

cos2 𝑦 − 𝜀4 sin2 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦 =

𝑎′(Θ)√
𝑎(Θ)

+𝑂(𝜀2∣ log 𝜀∣). (4.13)
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Similarly we have∫ 3
2
𝜋

𝜋
2

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦)

cos2 𝑦 − 𝜀4 sin2 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦 =

𝑎′(Θ + 𝜋)√
𝑎(Θ + 𝜋)

+𝑂(𝜀2∣ log 𝜀∣). (4.14)

Inserting (4.13) and (4.14) into (4.10) we get (4.8) as 𝜆 ∼ 𝜀.
Now we prove (4.9). The proof is more involved. First we obtain∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
sin 2𝑥𝑑𝑥

=

∫ 2𝜋−Θ1

−Θ1

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(𝜆, 𝜃; 𝑦)

2𝜀2 sin 𝑦 cos 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦

=

∫ 2𝜋−Θ1

−Θ1

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦) +𝑂(𝜀2∣ log 𝜀∣)
2𝜀2 sin 𝑦 cos 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦

=

∫ 2𝜋−Θ1

−Θ1

(
𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦)
+𝑂(𝜀2∣ log 𝜀∣)) 2𝜀2 sin 𝑦 cos 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦

(4.15)

By elementary computations one has∫ 2𝜋−Θ1

−Θ1

∣ 2𝜀2 sin 𝑦 cos 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
∣𝑑𝑦 =

∫ 3
2
𝜋

−𝜋
2

∣ 2𝜀2 sin 𝑦 cos 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
∣𝑑𝑦 = 𝑂(𝜀2∣𝑙𝑜𝑔𝜀∣). (4.16)

So from (4.15) and (4.16) we see that∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
sin 2𝑥𝑑𝑥

=

∫ 2𝜋−Θ1

−Θ1

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦)

2𝜀2 sin 𝑦 cos 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦 +𝑂(𝜀4∣ log 𝜀∣2)

=

∫ 3
2
𝜋

−𝜋
2

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦)

2𝜀2 sin 𝑦 cos 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦 +𝑂(𝜀4∣ log 𝜀∣2).

(4.17)

In order to get (4.9) we express the integral in the right-hand side of (4.17) in
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terms of 𝑥, that is, we use the change of variable 𝑦 = 𝜓−1
𝜆,𝜃(𝑥). Then∫ 𝜋

2

−𝜋
2

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦)

2𝜀2 sin 𝑦 cos 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦

=

∫ 𝜋
2

−𝜋
2

𝑎′(𝑥+Θ)

𝑣2(Θ;𝜓−1
𝜆,𝜃(𝑥))

𝜀2 sin 2𝑥

𝜀4 cos2 𝑥+ sin2 𝑥
𝑑𝑥

=
𝜀2

𝑎
1
2 (Θ)

∫ 𝜋
2

−𝜋
2

𝑎′(𝑥+Θ) sin 2𝑥

𝜀4 cos2 𝑥+ sin2 𝑥
𝑑𝑥

=
𝜀2

𝑎
1
2 (Θ)

∫ 𝜋
2

−𝜋
2

𝑎′(𝑥+Θ)− 𝑎′(Θ)

sin𝑥

sin𝑥 sin 2𝑥

𝜀4 cos2 𝑥+ sin2 𝑥
𝑑𝑥

=
𝜀2

𝑎
1
2 (Θ)

∫ 𝜋
2

−𝜋
2

𝑎′(𝑥+Θ)− 𝑎′(Θ)

sin2 𝑥
sin 2𝑥𝑑𝑥+ 𝑜(𝜀2)

=𝑚2(𝜆, 𝜃)

∫ 𝜋
2

−𝜋
2

𝑎′(𝑥+Θ)− 𝑎′(Θ)

sin2 𝑥
sin 2𝑥𝑑𝑥+ 𝑜(𝜀2)

(4.18)

by Lebesgue’s dominated convergent theorem. Similarly, we have∫ 3
2
𝜋

𝜋
2

𝑎′(𝜓𝜆,𝜃(𝑦) + Θ)

𝑣2(Θ; 𝑦)

2𝜀2 sin 𝑦 cos 𝑦

cos2 𝑦 + 𝜀4 sin2 𝑦
𝑑𝑦

=

∫ 3
2
𝜋

𝜋
2

𝑎′(𝑥+Θ)

𝑣2(Θ;𝜓−1
𝜆,𝜃(𝑥))

𝜀2 sin 2𝑥

𝜀4 cos2 𝑦 + sin2 𝑥
𝑑𝑥

=𝜀2
∫ 3

2
𝜋

𝜋
2

𝑎′(𝑥+Θ) sin 2𝑥

𝜀4𝑎−
1
2 (Θ)𝑎(Θ + 𝜋) cos2 𝑥+ 𝑎

1
2 (Θ) sin2 𝑥

𝑑𝑥

=𝜀2
∫ 3

2
𝜋

𝜋
2

𝑎′(𝑥+Θ)− 𝑎′(Θ)

sin𝑥

sin𝑥 sin 2𝑥

𝜀4𝑎−
1
2 (Θ)𝑎(Θ + 𝜋) cos2 𝑥+ 𝑎

1
2 (Θ) sin2 𝑥

𝑑𝑥

=
𝜀2

𝑎
1
2 (Θ)

∫ 3
2
𝜋

𝜋
2

𝑎′(𝑥+Θ)− 𝑎′(Θ)

sin2 𝑥
sin 2𝑥𝑑𝑥+ 𝑜(𝜀2)

=
𝜀2

𝑎
1
2 (Θ)

∫ 𝜋
2

−𝜋
2

𝑎′(𝑥+Θ+ 𝜋)− 𝑎′(Θ + 𝜋)

sin2 𝑥
sin 2𝑥𝑑𝑥+ 𝑜(𝜀2)

=𝑚2(𝜆, 𝜃)

∫ 𝜋
2

−𝜋
2

𝑎′(𝑥+Θ+ 𝜋)− 𝑎′(Θ + 𝜋)

sin2 𝑥
sin 2𝑥𝑑𝑥+ 𝑜(𝜀2).

(4.19)

Finally, putting (4.17), (4.18) and (4.19) together and taking 𝜆 ∼ 𝜀 into account
we get (4.9). This completes the proof of Proposition 4.3. □
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5 Proof of Theorem 1.2

Now we are ready to find solutions of ℱ(𝜆, 𝜃) = 0 via the degree theory and prove the
main theorem of this paper, Theorem 1.2. Recall that the map𝐺(𝜃) = (𝐴2(𝜃), 𝐵2(𝜃))
in Theorem 1.2 and ℱ(𝜆, 𝜃 for fixed 𝜆 are 𝜋-periodic and defined on 𝕊1

1 = ℝ/𝜋ℤ.
We first need

Lemma 5.1 For 0 < 𝜆 << 1, we have

ℱ(𝜆, 𝜃) = (𝐴(𝜆, 𝜃), 𝐵(𝜆, 𝜃)) ∕= 0, 𝜃 ∈ 𝕊1
1. (5.1)

Hence 𝑑𝑒𝑔(ℱ(𝜆, 𝜃),𝕊1
1) is well-defined.

Proof. This can be easily proved by contradiction. Suppose there is a sequence
𝜆𝑘 → 0, 𝜃𝑘 ∈ 𝕊1

1 such that ℱ(𝜆𝑘, 𝜃𝑘) = 0. Then we have∫ 2𝜋−Θ𝑘

−Θ𝑘

𝑎′(𝑥+Θ𝑘)

𝑢2(𝑥+Θ𝑘)
cos 2𝑥𝑑𝑥 = 0 (5.2)

and ∫ 2𝜋−Θ𝑘

−Θ𝑘

𝑎′(𝑥+Θ𝑘)

𝑢2(𝑥+Θ𝑘)
sin 2𝑥𝑑𝑥 = 0, (5.3)

where Θ𝑘 = Θ(𝜆𝑘, 𝜃𝑘). Then Proposition 4.3, (5.2) and (5.3) yield

𝐴2(Θ𝑘) =
𝑎′(Θ𝑘)√
𝑎(Θ𝑘)

+
𝑎′(𝜋 +Θ𝑘)√
𝑎(𝜋 +Θ𝑘)

→ 0 (5.4)

and

𝐵2(Θ𝑘) =

∫ 𝜋
2

−𝜋
2

(
𝑎′(𝑥+Θ𝑘) + 𝑎′(𝑥+ 𝜋 +Θ𝑘)− 𝑎′(Θ𝑘)− 𝑎′(𝜋 +Θ𝑘)

)
sin 2𝑥

sin2 𝑥
𝑑𝑥→ 0.

(5.5)
But we know that 𝐴2

2(𝜃)+𝐵
2
2(𝜃) is continuous and does not vanish for 𝜃 ∈ 𝕊1

1, there
is a constant 𝑐0 such that

𝐴2
2(𝜃) +𝐵2

2(𝜃) ≥ 𝑐0 > 0, 𝜃 ∈ 𝕊1
1. (5.6)

Clearly, (5.6) contradicts to (5.4) and (5.5). □

Proposition 5.2 For 0 < 𝜆 << 1, the following equality holds:

𝑑𝑒𝑔(ℱ(𝜆, 𝜃),𝕊1
1) = 𝑑𝑒𝑔(𝐺(𝜃),𝕊1

1) + 1. (5.7)

Proof of Proposition 5.2: the case 𝐴2(𝜃) ≡ 0.
We use homotopy invariance of the degree to prove (5.7). To this end, set

ℱ1(𝜆, 𝜃) = (𝐴2(𝜃), 𝜆
2𝐵2(𝜃)) = (0, 𝜆2𝐵2(𝜃))
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and
𝐻1(𝑠, 𝜆, 𝜃) = 𝑠𝑒−2𝑖𝜃ℱ(𝜆, 𝜃) + (1− 𝑠)ℱ1(𝜆, 𝜃).

Here we denote 𝑒𝑖𝜃(𝑥, 𝑦) = (cos 𝜃𝑥 − sin 𝜃𝑦, cos 𝜃𝑦 + sin 𝜃𝑥). It is obvious that
𝐻1(𝑠, 𝜆, 𝜃) is continuous in (𝑠, 𝜆, 𝜃) and 𝜋-periodic in 𝜃.

Claim: For 𝜆 << 1,

𝐻1(𝑠, 𝜆, 𝜃) ∕= 0, 𝑠 ∈ [0, 1], 𝜃 ∈ 𝕊1
1.

Indeed, if 𝐻1(𝑠, 𝜆, 𝜃) = 0, then

𝑠𝑒−2𝑖Θ(𝜆,𝜃)ℱ(𝜆, 𝜃) + (1− 𝑠)𝑒2𝑖(𝜃−Θ(𝜆,𝜃))(0, 𝜆2𝐵2(𝜃)) = 0. (5.8)

It follows from Proposition 4.3 that the second coordinate equation in (5.8) is

𝑠𝑚2(𝜆, 𝜃)𝐵2(Θ(𝜆, 𝜃)) + (1− 𝑠)𝜆2𝐵2(𝜃) cos 2(𝜃 −Θ(𝜆, 𝜃)) + 𝑜(𝜆2) = 0. (5.9)

Hence
𝐵2(𝜃) = 0 (5.10)

provided by 𝑚2(𝜆, 𝜃) ∼ 𝜆2 and 𝜃−Θ(𝜆, 𝜃) = 𝑜(1). But we know that 𝐵2(𝜃) does not
vanish since 𝑎 is B-nondegenerate and 𝐴2 ≡ 0, a contradiction.

By the definition of the degree, it is easy to see that

𝑑𝑒𝑔(ℱ1(𝜆, 𝜃), 𝕊1
1) = 𝑑𝑒𝑔(𝐺(𝜃), 𝕊1

1) = 0.

Then it follows from the claim and the homotopy invariance of the degree that

𝑑𝑒𝑔(𝑒−2𝑖𝜃ℱ(𝜆, 𝜃),𝕊1
1) = 𝑑𝑒𝑔(ℱ1(𝜆, 𝜃),𝕊1

1) = 0. (5.11)

The left-hand side of (5.11) equals to −1+ 𝑑𝑒𝑔(ℱ(𝜆, 𝜃),𝕊1
1). So as a result of (5.11),

𝑑𝑒𝑔(ℱ(𝜆, 𝜃),𝕊1
1) = 1 = 𝑑𝑒𝑔(𝐺(𝜃),𝕊1

1) + 1.

This completes the proof. □

Next we turn to the case that 𝐴2(𝜃) is not identically zero. After shifting, in this
case we may assume 𝐴2(0) = 𝐴2(𝜋) ∕= 0. It is more involved since we are not able
to prove 𝐻1(𝑠, 𝜆, 𝜃) ∕= 0 anymore as before due to the fact that in the asymptotic
expansion in Proposition 4.3, the orders of 𝜆 in (4.8) and (4.9) are different. Some
modifications of the homotopy are needed.

Set
ℱ2(𝜆, 𝜃) = (𝐴2(Θ(𝜆, 𝜃)), 𝜆2𝐵2(Θ(𝜆, 𝜃)))

and

𝐻2(𝑠, 𝜆, 𝜃) = 𝑠𝑒−2𝑖Θ(𝜆,𝜃)ℱ(𝜆, 𝜃) + (1− 𝑠)ℱ2(𝜆, 𝜃) := (𝐾1(𝑠, 𝜆, 𝜃), 𝐾2(𝑠, 𝜆, 𝜃)).

It is obvious that 𝐻2(𝑠, 𝜆, 𝜃) is continuous in (𝑠, 𝜆, 𝜃), but is not 𝜋-periodic in 𝜃 in
general, thus the degree of this map is not well-defined. However, in view of the
asymptotic estimate Θ(𝜆, 𝜃) given by Proposition 3.5, 𝐻2(𝑠, 𝜆, 𝜃) is very close to
a 𝜋-periodic one. This enables us to complete the proof by several steps via the
difference of argument of the map 𝜃 → 𝐻2(𝑠, 𝜆, 𝜃) at 𝜃 = 𝜋 and 𝜃 = 0.
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Lemma 5.3 For 0 < 𝜆 << 1,

𝐻2(𝑠, 𝜆, 𝜃) ∕= 0, 𝜃 ∈ [0, 𝜋], 𝑠 ∈ [0, 1]. (5.12)

Proof. According to Proposition 4.3,

𝑒−2𝑖Θ(𝜆,𝜃)ℱ(𝜆, 𝜃) = (

∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
cos 2𝑥𝑑𝑥,

∫ 2𝜋−Θ

−Θ

𝑎′(𝑥+Θ)

𝑢2(𝑥+Θ)
cos 2𝑥𝑑𝑥)

= (𝐴2(Θ),𝑚2(𝜆, 𝜃)𝐵2(Θ)) + (𝑂(𝜆2∣ log 𝜆∣), 𝑜(𝜆2)).
Thus we get

𝐻2(𝑠, 𝜆, 𝜃) = (𝐴2(Θ), (𝑠𝑚2(𝜆, 𝜃) + (1− 𝑠)𝜆2)𝐵2(Θ)) + (𝑂(𝜆2∣ log 𝜆∣), 𝑜(𝜆2)).

The conclusion follows as in Lemma 5.1. □

For fixed (𝑠, 𝜆), we know that the degree of 𝐻2(𝑠, 𝜆, 𝜃) may not be well-defined,
so instead of the degree we consider

𝑑(𝐻2(𝑠, 𝜆, 𝜃)) =
1

2𝜋

∫ 𝜋

0

−( 𝑑
𝑑𝜃
𝐾1)𝐾2 + ( 𝑑

𝑑𝜃
𝐾2)𝐾1

𝐾2
1 +𝐾2

2

𝑑𝜃.

It is known that the integral on the right-hand side is the difference of argument
of the map 𝜃 → 𝐻2(𝑠, 𝜆, 𝜃) at 𝜃 = 𝜋 and 𝜃 = 0, and 𝑑(𝐻2(𝑠, 𝜆, 𝜃)) is the same
as the degree 𝑑𝑒𝑔(𝐻2(𝑠, 𝜆, 𝜃), 𝕊1

1) if 𝐻2(𝑠, 𝜆, 𝜃) is 𝜋-periodic in 𝜃. It enjoys similar
properties such as homotopy invariance as the degree.

Lemma 5.4 For 0 < 𝜆 << 1, we have

𝑑(𝐻2(1, 𝜆, 𝜃)) = −1 + 𝑑𝑒𝑔(ℱ(𝜆, 𝜃),𝕊1
1) + 𝑜(1). (5.13)

Proof. From the definition we see that

𝑑(𝐻2(1, 𝜆, 𝜃)) = 𝑑(𝑒−2𝑖Θ(𝜆,𝜃)ℱ(𝜆, 𝜃))

= −Θ(𝜆, 𝜋)−Θ(𝜆, 0)

𝜋
+ 𝑑(ℱ(𝜆, 𝜃))

= −1 + 𝑑𝑒𝑔(ℱ(𝜆, 𝜃),𝕊1
1) + 𝑜(1)

(5.14)

thanks to Proposition 3.5 and the fact that ℱ(𝜆, 𝜃) is 𝜋−periodic in 𝜃. □

Lemma 5.5 Let 𝐴2(0) = 𝐴2(𝜋) ∕= 0. Then for 0 < 𝜆 << 1,

𝑑(𝐻2(0, 𝜆, 𝜃)) = 𝑑(𝐻2(1, 𝜆, 𝜃)) + 𝑜(1). (5.15)
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Proof. Let 0 < 𝜆 << 1 be fixed and 𝑅 = {(𝑠, 𝜃)∣𝑠 ∈ [0, 1], 𝜃 ∈ [0, 𝜋]}. By
Lemma 5.3 we have

𝐻2(𝑠, 𝜆, 𝜃) = (𝐾1(𝑠, 𝜆, 𝜃), 𝐾2(𝑠, 𝜆, 𝜃)) ∕= 0, (𝑠, 𝜃) ∈ 𝑅.

Hence
1

2𝜋

∫
∂𝑅

−𝑑𝐾1𝐾2 + 𝑑𝐾2𝐾1

𝐾2
1 +𝐾2

2

= 0, (5.16)

the differentials in (5.16) are w.r.t. the variables 𝑠 and 𝜃. It follows from (5.16) that

𝑑(𝐻2(0, 𝜆, 𝜃))− 𝑑(𝐻2(1, 𝜆, 𝜃))

=
1

2𝜋

∫ 1

0

−𝑑𝐾1(𝑠, 𝜆, 0)𝐾2(𝑠, 𝜆, 0) + 𝑑𝐾2(𝑠, 𝜆, 0)𝐾1(𝑠, 𝜆, 0)

𝐾2
1 +𝐾2

2

− 1

2𝜋

∫ 1

0

−𝑑𝐾1(𝑠, 𝜆, 𝜋)𝐾2(𝑠, 𝜆, 𝜋) + 𝑑𝐾2(𝑠, 𝜆, 𝜋)𝐾1(𝑠, 𝜆, 𝜋)

𝐾2
1 +𝐾2

2

=𝐼 + 𝐼𝐼.

(5.17)

By Proposition 4.3 and Θ(𝜆, 𝜋) = 𝜋 + 𝑜(1) we see that for 𝑠 ∈ [0, 1],

∣ 𝑑
𝑑𝑠
𝐾1(𝑠, 𝜆, 0)∣2 + ∣ 𝑑

𝑑𝑠
𝐾2(𝑠, 𝜆, 0)∣2

=∣𝐻2(1, 𝜆, 0)−𝐻2(0, 𝜆, 0)∣2
=∣𝑒−2𝑖Θ(𝜆,𝜋)ℱ(𝜆, 𝜋)−ℱ2(𝜆, 𝜋)∣2 = 𝑜(𝜆4 log2 𝜆)

and
𝐾2

1(𝑠, 𝜆, 0) +𝐾2
2(𝑠, 𝜆, 0) = 𝐴2(0)

2 + 𝑜(1).

Therefore,

∣𝐼∣ ≤
∫ 1

0

(∣ 𝑑
𝑑𝑠
𝐾1∣2 + ∣ 𝑑

𝑑𝑠
𝐾2∣2) 1

2

(𝐾2
1 +𝐾2

2)
1
2

𝑑𝑠 = 𝑜(1). (5.18)

Similarly,
∣𝐼𝐼∣ = 𝑜(1). (5.19)

Now plug (5.18) and (5.19) into (5.17) we obtain (5.15). □

Lemma 5.6 Let 𝐴2(0) = 𝐴2(𝜋) ∕= 0. Then for 0 < 𝜆 << 1, the following holds:

𝑑(𝐻2(0, 𝜆, 𝜃)) = 𝑑𝑒𝑔(𝐺(𝜃),𝕊1
1) + 𝑜(1), (5.20)

where 𝐺(𝜃) = (𝐴2(𝜃), 𝐵2(𝜃)).
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Proof. From the definition we have

𝑑(𝐻2(0, 𝜆, 𝜃)) = 𝑑(ℱ2(𝜆, 𝜃))

=
𝜆2

2𝜋

∫ 𝜋

0

𝑑
𝑑𝜃
𝐴2(Θ) ⋅𝐵2(Θ)− 𝑑

𝑑𝜃
𝐵2(Θ) ⋅ 𝐴2(Θ)

𝐴2(Θ)2 + 𝜆4𝐵2(Θ)2
𝑑𝜃

=
𝜆2

2𝜋

∫ Θ(𝜆,𝜋)

0

𝑑
𝑑Θ
𝐴2(Θ) ⋅𝐵2(Θ)− 𝑑

𝑑Θ
𝐵2(Θ) ⋅ 𝐴2(Θ)

𝐴2(Θ)2 + 𝜆4𝐵2(Θ)2
𝑑Θ

=
𝜆2

2𝜋
[

∫ 𝜋

0

−
∫ 𝜋

Θ(𝜆,𝜋)

]
𝑑
𝑑Θ
𝐴2(Θ) ⋅𝐵2(Θ)− 𝑑

𝑑Θ
𝐵2(Θ) ⋅ 𝐴2(Θ)

𝐴2(Θ)2 + 𝜆4𝐵2(Θ)2
𝑑Θ

= 𝑑𝑒𝑔(𝐺(𝜆, 𝜃),𝕊1
1) + 𝑜(1)

= 𝑑𝑒𝑔(𝐺(𝜃), 𝕊1
1) + 𝑜(1),

(5.21)

where 𝐺(𝜆, 𝜃) = (𝐴2(𝜃), 𝜆
2𝐵2(𝜃)), since 𝐺(𝜆, 𝜃) is 𝜋−periodic in 𝜃. (5.21) is a

consequence of
𝑑𝑒𝑔(𝐺(𝜆, 𝜃), 𝕊1

1) = 𝑑𝑒𝑔(𝐺(𝜃), 𝕊1
1)

and

𝜆2∣
∫ 𝜋

Θ(𝜆,𝜋)

( 𝑑
𝑑Θ
𝐴2(Θ))𝐵2(Θ)− ( 𝑑

𝑑Θ
(𝐵2(Θ))𝐴2(Θ)

𝐴2(Θ)2 + 𝜆4𝐵2(Θ)2
𝑑Θ∣ = 𝑜(1)

due to Θ(𝜆, 𝜋) = 𝜋 + 𝑜(1) and 𝐴2(𝜋) ∕= 0. □

Proof of Proposition 5.2: the case 𝐴2(𝜃) ∕≡ 0.
We assume that 𝐴2(𝜋) ∕= 0. From Lemma 5.1, for 𝜆 << 1 we know ℱ(𝜆, 𝜃) ∕=

(0, 0) and 𝑑𝑒𝑔(ℱ(𝜆, 𝜃), 𝕊1
1) is well-defined. Combining Lemmas 5.4-5.6 we arrive at

𝑑𝑒𝑔(ℱ(𝜆, 𝜃), 𝕊1
1) =𝑑(𝐻(1, 𝜆, 𝜃)) + 1 + 𝑜(1)

=𝑑(𝐻(0, 𝜆, 𝜃)) + 1 = 𝑜(1)

=𝑑𝑒𝑔(𝐺(𝜃), 𝕊1
1) + 1 + 𝑜(1).

(5.22)

But both 𝑑𝑒𝑔(ℱ(𝜆, 𝜃), 𝕊1
1) and 𝑑𝑒𝑔(𝐺(𝜃),𝕊1

1) are integers, there must hold

𝑑𝑒𝑔(ℱ(𝜆, 𝜃),𝕊1
1) = 𝑑𝑒𝑔(𝐺(𝜃),𝕊1

1) + 1. (5.23)

This finishes the proof. □

Proof of Theorem 1.2: Set Λ = 1− 𝜆. Then as Λ → 1, the degree 𝑑𝑒𝑔(ℱ(1−
Λ, 𝜃);𝕊1

1, 0) is well-defined. We define a continuous map from 𝐷(Λ) = {(𝑋, 𝑌 ) ∈
ℝ2∣𝑋2 + 𝑌 2 ≤ Λ2} to ℝ2 as

𝒢(𝑋,𝑌 ) = (𝐴(1− Λ, 𝜃), 𝐵(1− Λ, 𝜃)) = ℱ(1− Λ, 𝜃),

where (𝑋, 𝑌 ) = (Λ cos 𝜃,Λ sin 𝜃). This is a well-defined and continuous map due to
the fact that ℱ(𝜆, 𝜃) is independent of 𝜃 when 𝜆 = 1 or Λ = 0. It follows from the
assumption of Theorem 1.2, 𝑑𝑒𝑔(ℱ(1−Λ, 𝜃);𝕊1

1, 0) ∕= 0, hence by the basic property
of degree, see [14], ℱ(1− Λ, 𝜃) = 0 has a solution (Λ, 𝜃). The proof is finished. □

The following result, which was proved by a different approach in [21], is an
immediate consequence of Theorem 1.2.

23



Corollary 5.7 Let 𝑎 be a positive, 𝐶2 and 2𝜋-periodic and B-nondegenerate func-
tion. Suppose that

min
𝐴2(𝜃)=0

𝐵2(𝜃) > 0, or max
𝐴2(𝜃)=0

𝐵2(𝜃) < 0, (5.24)

then equation

𝑢′′ + 𝑢 =
𝑎(𝑥)

𝑢3
(5.25)

has a 2𝜋-periodic solution.

Proof: Let (5.24) be satisfied. Then it is rather straightforward to see

𝑑𝑒𝑔(𝐺(𝜃),𝕊1
1) = 0. (5.26)

Consequently, Theorem 1.2 can be applied, and equation (5.25) has a 2𝜋-periodic
solution. □

We conclude with a generalization of Theorem 1.2. Consider 𝑛𝜋-periodic solution
of equation (5.25), where 𝑎 is a positive, 𝐶2 and 𝑛𝜋-periodic function. The same
argument works for this case. To state the result, as in 2𝜋-periodic case, we need
two functions 𝐴𝑛 and 𝐵𝑛 given by

𝐴𝑛(𝜃) =
𝑛∑

𝑗=1

𝑎
′
(𝜃 + (𝑗 − 1)𝜋)√
𝑎(𝜃 + (𝑗 − 1)𝜋)

(5.27)

and

𝐵𝑛(𝜃) =

∫ 𝜋
2

−𝜋
2

(∑𝑛
𝑗=1 𝑎

′
(𝜃 + 𝑡+ (𝑗 − 1)𝜋)−∑𝑛

𝑗=1 𝑎
′
(𝜃 + (𝑗 − 1)𝜋)

)
sin 2𝑡

sin2 𝑡
𝑑𝑡. (5.28)

They are 𝜋−periodic. A function 𝑎 is called 𝐵-nondegenerate if 𝐵𝑛(𝜃) does not
vanish whenever 𝐴𝑛(𝜃) = 0. Let 𝐺 : 𝕊1

1 → ℝ2, 𝐺(𝜃) = (𝐴𝑛(𝜃), 𝐵𝑛(𝜃)), 𝜃 ∈ 𝕊1
1. We

know that 𝑑𝑒𝑔(𝐺,𝕊1
1) if 𝑎 is 𝐵-nondegenerate. Then we have

Theorem 5.8 Let 𝑎 be a positive, 𝐶2 and 𝑛𝜋-periodic and B-nondegenerate func-
tion. Then equation (5.25) has an 𝑛𝜋−periodic solution provided that 𝑑𝑒𝑔(𝐺, 𝕊1

1) ∕=
−1.
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[11] M. del Pino, R. Manásevich, A. Montero, 𝑇 -periodic solutions for some second
order differential equation with singularities, Proc. Roy. Soc. Edinburgh, Sect.
A, 120(1992), 231-243.

[12] C. Dohmen, Y. Giga, Self-similar shrinking curves for anisotropic curvature
flow equations, Proc. Japan Acad., Ser. A, 70(1994), 252-255.

[13] C. Dohmen, Y. Giga, N. Mizoguchi, Existence of self-similar shrinking curves
for anisotropic curvature flow equations, Calc. Var., 4(1996), 103-119.

[14] I. Fonseca and W. Gangbo, Degree theory in analysis and applications, Oxford
Science Publications, 1995.

[15] M. E. Gage, Evolving plane curve by curvature in relative geometries, Duke
Math. J., 72(1993), 441-466.

25



[16] M. E. Gage, R. Hamilton, The heat equation shrinking convex plane curves, J.
Diff. Geom. 23(1996), 69-96.

[17] M. E. Gage, Y. Li, Evolving plane curve by curvature in relative geometries
II, Duke Math. J. 75(1994),79-98.

[18] M. Grayson, The heat equation shrinking embedded curves to round points, J.
Diff. Geom., 26(1987), 285-314.

[19] M. E. Gurtin, Thermodynamics of evolving phase boundaries in the plane,
Clarendon Press, Oxford 1993.

[20] M.-Y. Jiang, Remarks on the 2-dimensional 𝐿𝑝-Minkowski problem, Advanced
Nonlinear Studies, 10(2010), 297-313.

[21] M.-Y. Jiang, L. Wang, J. Wei, 2𝜋-periodic self-similar solutions for the
anisotropic affine curve shortening problem, Calc. Var., 41(2011), 535-565.

[22] H. Matano, J. Wei, On anisotropic curvature flow equations, preprint.

[23] G. Sapiro, A. Tannenbaum, On affine plane curve evolution, J. Funct. Anal.,
119(1994), 79-120.

26


