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Abstract

We consider the existence of multi-vortex solutions to the Ginzburg-
Landau equations with external potential on R2. These equations model
equilibrium states of superconductors and stationary states of U(1)
Higgs model of particle physics. In the former case, the external po-
tential models impurities and defects. We show that if the external
potential is small enough and the magnetic vortices are widely spaced,
then one can pin one or an arbitrary number of vortices in the vicinity
of a critical point of the potential. In addition, one can pin an arbitrary
number of vortices near infinity if the potential is radially symmetric
and of algebraic order near infinity.

Keywords: Ginzburg-Landau equations, magnetic vortices, external poten-
tial, superconductivity, multi-vortex solutions, existence, pinning, reduced en-
ergy.

1 Introduction

In this section, we the introduce the physical phenomena in superconductors
we are considering: the pinning phenomena in superconductors. We also re-
view some facts about Ginzburg-Landau equations with and without external
potential on all of R2 and some previous results on pinning a single vortex
from [43].
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1.1 Pinning phenomena in superconductors

In this section, we introduce the pinning phenomena in superconductors.
When a superconductor of Type II is placed in an external magnetic field,

the field penetrates the superconductor in thin tubes of magnetic flux called
magnetic vortices. To date, superconductors of Type II have been used to
produce large and steady magnetic fields over 100,000 Gauss. It is well known
that one major obstacle in producing larger magnetic fields is the dissipation
of energy due to creeping or flow of magnetic vortices [47]. One way to resolve
this is to pin vortices down.

The Ginzburg-Landau equations with external potential models a super-
conductor with inhomogeneities, impurities or point defects. It is known that
magnetic vortices get pinned down to the sites of the impurities [47, 40]. In
[43], it is shown, within the standard macroscopic theory of superconductivity,
that this indeed happens. Namely, it is shown that a vortex solution exists
which is localized near a critical point of the potential. In this paper, we prove
that under suitable assumptions on the potential, then multi-vortex configu-
rations will be localized near multiple critical points of the impurity potential.
In addition, we show that one can pin an arbitrary number of vortices to one
critical point and pin an arbitrary number of vortices near infinity.

1.2 Ginzburg-Landau equations with and without po-
tential

In this section, we review some facts about Ginzburg-Landau equations with
and without external potential on all of R2.

The standard macroscopic (or mean field) theory of superconductivity is
due to Ginzburg and Landau. Stationary states of superconductors occupying
(for simplicity) the plane R2, are described by pairs (ψ,A), where ψ : R2 → C
is the order parameter and A : R2 → R2 is the magnetic potential. These
states satisfy the system of equations

−∆Aψ + λ(|ψ|2 − 1)ψ = 0 (1)

∇×∇× A+ Im(ψ̄∇Aψ) = 0 (2)

called the Ginzburg-Landau (GL) equations. Here λ > 0 is a constant depend-
ing on the material in question: when λ < 1/2 or > 1/2, the material is of type
I or II superconductor, respectively; ∇A = ∇ − iA is the covariant gradient,
and ∆A = ∇A · ∇A. For a vector field A, ∇×A is the scalar ∂1A2− ∂2A1 and
for scalar ξ, ∇×ξ is the vector (−∂2ξ, ∂1ξ). Equation (2) is the static Maxwell
equation for the magnetic field B = curl A and supercurrent Im(ψ̄∇Aψ). We
consider here configurations satisfying the superconducting boundary condi-
tion

|ψ(x)| → 1 as |x| → ∞.

2



The Ginzburg-Landau equations on the plane model superconductors which
are spatially homogeneous in one direction, when neglecting boundary effects.
They also describe equilibrium states of the U(1) Higgs model of particle
physics [27].

Equations (1) and (2) are Euler-Lagrange equations for the Ginzburg-
Landau energy functional

E(ψ,A) =
1

2

∫
R2

|∇Aψ|2 + (∇× A)2 +
λ

2
(|ψ|2 − 1)2,

i.e., solutions of (1) and (2) are critical points of E : E ′(ψ,A) = 0. Here E ′(u)
denotes the L2 gradient of the functional E at a point u := (ψ,A).

Define the vorticity or the winding number of the vector field ψ : R2 → C
at infinity as deg ψ := deg

(
ψ
|ψ| ||x|=R

)
= 1

2π

∫
|x|=R d(argψ) for R sufficiently

large. Assuming a pair (ψ,A) has finite energy, then the degree of the vector
field ψ is related to the flux of the magnetic field B = curl A as follows:∫

R2

B = 2π(deg ψ).

The only non-trivial, finite energy, rigorously known solutions to equations
(1)-(2) in R2 are the radially symmetric, equivariant solutions of the form
u = (ψ(n), A(n)), with

ψ(n)(x) = fn(r)einθ and A(n)(x) = an(r)∇(nθ) (3)

called n− vortices. Here (r, θ) are the polar coordinates of the vector x ∈ R2

and n = deg ψn is an integer. Existence of n-vortex solutions of the form (3)
was proved in [37, 5] using variational methods. The stability and instability
properties of n-vortices were established in [23], [22]. More specifically, in [23],
they showed that for λ < 1/2, any integer degree vortex is stable; for λ > 1/2,
only n = ±1 vortices are stable. When λ = 1/2, all integer degree vortices
are stable [9]. Recently [48], there have been new developments in finding
non-radial solutions to (1) and (2).

One has the following information on the vortex profiles fn and an (see
[37, 5]): 0 < fn < 1, 0 < an < 1 on (0,∞); f ′n, a

′
n > 0; and 1− fn, 1− an → 0

as r →∞ with exponential rates of decay. In fact,

fn(r) = 1 +O(e−mλr) and

an(r) = 1 +O(e−r) with

mλ := min(
√

2λ, 2).

At the origin, fn ∼ crn, an ∼ dr2 (c > 0, d > 0 are constants) as r → 0.
In addition, we have the asymptotics of the field components as established
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in [37] as r = |x| → ∞:

j(n)(r) = nβnK1(r)[1 + o(e−mλ|x|)]Jx̂

B(n)(r) = nβnK1(r)[1− 1

2r
+O(1/r2)] (4)

|f ′n(r)| ≤ ce−mλr.

Here j(n) = Im(ψ(n)(∇Aψ)(n) is the n-vortex supercurrent, βn > 0 is a constant,
and K1(r) the order one Bessel’s function of the second kind which behaves
like e−r/

√
r as r →∞.

Equations (1) and (2), in addition to being rotationally invariant, have
translational and gauge symmetries: solutions are mapped to solutions under
the transformations

ψ(x) 7→ ψ(x− z), A(x) 7→ A(x− z)

for any z ∈ R2, and
ψ 7→ eiγψ, A 7→ A+∇γ

for twice differentiable γ : R2 → R. Consequently, solutions (3) lead to the
following families of solutions

ψnzγ(x) = eiγ(x)ψ(n)(x− z) Anzγ(x) = A(n)(x− z) +∇γ(x) (5)

where n is an integer, z ∈ R2 and γ : R2 → R.
A superconductor with impurities can be modelled (see for e.g., [1, 12, 13,

43]) by modified GL equations:

−∆Aψ + λ(|ψ|2 − 1)ψ +W (x)ψ = 0 (6)

∇×∇× A+ Im(ψ̄∇Aψ) = 0 (7)

where W : R2 → R is a potential of impurities. These are Euler-Lagrange
equations for the (Ginzburg-Landau) energy functional with external potential

EW (ψ,A) =
1

2

∫
R2

|∇Aψ|2 + (∇× A)2 +
λ

2
(|ψ|2 − 1)2 +W (x)(|ψ|2 − 1). (8)

We note here that E0(ψ,A) is the usual G-L energy functional with W = 0,
i.e., the Euler-Lagrange equations for E0(ψ,A) are (1) and (2).

This type of model has been analyzed frequently in the applied mathemat-
ics literature (see, eg., [1, 12, 13, 43]), having appeared earlier in the physics
literature (references can be found in the above-mentioned papers). The model
considered here differs slightly from those in [1, 3, 12, 13] since we are consid-
ering the whole space R2 and there is no external applied field. In addition, we
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would like to emphasize that in the present work, we do not consider a point-
vortex limit (i.e. λ → ∞) – indeed our results are valid for any λ > 0 and
this is an important difference between our analysis and much of the previous
work.

Existence and uniqueness of ±1 fundamental vortex-type solutions of the
Ginzburg-Landau system (6)-(7) with small external potential W was shown
in [43]. These solutions, which are near the vortex solutions (5), are called
pinned fundamental vortices.

Notation: For the rest of the paper, when we write L2 and Hs, we mean
scalar/vector L2 spaces and scalar/vector Sobolev spaces or order s. We denote
the real inner product on L2(R2;C× R2) to be〈(

ξ
α

)
,

(
%
β

)〉
:=

∫
R2

{Re(ξ̄%) + α · β}.

We will denote Lp norms as ‖ · ‖p = ‖ · ‖Lp and Hs norms as ‖ · ‖Hs . When we
write b << c for real numbers b and c, we mean b < ac for some small constant
0 < a < 1. Finally, we will denote the letter c or C for generic constants that
do not depend on any small parameters present.

1.3 Pinning a single vortex

In this section, we review the existence result of Theorem 2.1 in [43]: pinning of
a single vortex to one critical point. We modify and expand the conditions for
existence of a pinned fundamental vortex in [43] to suit our present purposes.
In particular, we state the Theorem in terms of the potential W instead of
the effective potential Weff ; we extend the existence result to higher degree
vortices for λ < 1/2. The same analysis follows through as in [43].

Theorem 1.1. Let parameters µ and ν be taken to be small and c > 0 is fixed.
Assume the external potential W (x) satisfies

• (A) ‖W‖L2 ≤ µ;

• (B) supx∈R2 |∂αxW (x)| ≤ µν |α|+1 for 0 ≤ |α| ≤ 3;

• (C) ∇W (z0) = 0 for some z0 ∈ R2 and

• (D) W (z0) is invertible and satisfies ‖W ′′(z0)−1‖ ≤ c(µν3)−1.

Then for µ > 0 and ν > 0 sufficiently small, ν � 1 and µ� ν4, equations
(6)-(7) with external potential W satisfying conditions (A) through (D) has a
solution of the form

upv := (ψpv, Apv),
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where

ψpv(x) = eiγ(x)ψ(n)(x− z) + ξ(x)

Apv(x) = A(n)(x− z) + γ(x) + β(x) (9)

with z = z0+O
(
max

(
ν, µ

ν3

))
, γ(x) ∈ H1(R2;R), and ξ(x) and β(x) of O(µ) in

H2(R2;C) and H2(R2;R2), respectively. Here, n is any integer if 0 < λ < 1/2,
and n = ±1 if λ > 1/2.

Examples of potentials satisfying these conditions for some c, and for ar-
bitrarily small µ and ν, are given by W (x) := µ̃ν̃V (ν̃(x − z0)) for V ∈
L2(R2) ∩ C3(R2) with a non-degenerate critical point at the origin, with µ̃
and ν̃ sufficiently small.

2 Problem and results

In this section, we state our main results on existence of multi-vortex solutions
to the Ginzburg-Landau equations with external potential in the macroscopic
model of superconductivity and the Abelian Higgs model of particle physics.

Consider test functions describing m ≥ 2 number of vortices glued to-
gether with centers at z1, z2, ..., zm, and degrees n1, n2, ..., nm. More specif-
ically, let m ∈ Z+ denote the number of vortices with topological degrees
(n1, n2, ..., nm) ∈ Zm, nj ∈ Z \ {0}; denote the location of the center of each
of these m vortices by z = (z1, z2, ..., zm) ∈ R2m, and let χ : R2 → R denote a
gauge transformation. We associate with each z and χ, a function

vzχ := (ψzχ, Azχ) (10)

where

ψzχ = eiχ(x)

m∏
j=1

ψ(nj)(x− zj) (11)

and

Azχ =
m∑
j=1

A(nj)(x− zj) +∇χ(x). (12)

For a given z ∈ R2m, we take our gauge transformations to be of the form

χ(x) =
m∑
j=1

zj · A(nj)(x− zj) + χ̃(x) (13)

with χ̃ ∈ H2(R2;R). Equivalently,

χ ∈ H2
z (R2;R) := {χ ∈ H2(R2;R) | χ−

m∑
j=1

zj · A(nj)(x− zj) ∈ H2(R2;R)}
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to ensure that vzχ ∈ X(n), where

X(n) := {(ψ,A) : R2 → C× R2 | (ψ,A)− (ψ(n), A(n)) ∈ H1(R2;C× R2)}

is the affine space of degree n configurations (see (A.15) and (A.16) in the
Appendix). The pair (z, χ) (or sometimes just z) is called a multi-vortex
configuration.

We make the following definitions:

For m ≥ 2 arbitrary points x1, ..., xm ∈ R2, define the configuration of
x = (x1, ..., xm) ∈ R2m and the separation of configuration x ∈ R2m as

R(x) = min
i 6=j
|xi − xj|.

For a configuration x ∈ R2m, define

Rλ(x) =

{
e−R(x)√
R(x)

, λ > 1/2,

e−mλR(x), λ < 1/2.
(14)

For z = (z1, ..., zm) ∈ R2m denoting the centers of m vortices in a vortex
configuration, R(z) = mini 6=j |zi−zj| is called the inter-vortex separation. Note
that if R(z) is taken to be large enough, then the multi-vortex configurations
are approximate solutions to the Ginzburg-Landau equations (see Theorem
3.1(a) below).

For real positive numbers e, f, g, h and ε, µ small, define error functions

Γe,f,g,hλ (ε) =

{
εe logf (1/ε), λ > 1/2,

εg logh(1/εqλ), λ < 1/2.
(15)

with qλ := 2
mλ

and

Γe,f,g,hλ,µ (ε) = O(max(Γe,f,g,hλ (ε), µ)). (16)

Note that the definition of qλ here is different from the one in [46] since Rλ(z) =
e−mλR(z)R(z)3/4 in [46] while Rλ(z) = e−mλR(z) here for λ < 1/2.

Let

vzjχ =

(
eiχψ(nj)(x− zj)

A(nj)(x− zj) +∇χ

)
, (17)

and the self-energy of the jth vortex (ψ(nj), A(nj)) as

E(nj) := E0(vzjχ).

Define inter-vortex/interaction energy as

Vint(z) := E0(vzχ)−
m∑
j=1

E(nj) (18)
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and the effective external potential as

Wext(z) :=
1

2

m∑
j=1

∫
R2

W (x)(|ψ(nj)(x− zj)|2 − 1)dx. (19)

Note that if our multi-vortex configuration z satisfies the large separation con-
dition

Rλ(z) < ε

for ε sufficiently small (see (14)), then the strength of the inter-vortex inter-
action energy is

|Vint(z)| = O(Γ1,0,1,0
λ (ε)) = O(ε) (20)

by Lemma 6.1 below.

We now consider the Ginzburg-Landau equations with external potential
W satisfying the following conditions below for some µ, ν > 0 small parame-
ters.

• (A) (Strength of external potential W )

W ∈ L2(R2), with ‖W‖L2 ≤ µ.

• (B) (Smallness of derivatives of W )

supx∈R2 |∂αxW (x)| ≤ µν |α|+1 for 0 ≤ |α| ≤ 3.

We will see in the theorems below that we can pin one vortex to one criti-
cal point if the strength of the external potential W (x) (roughly µ) is stronger
than the strength of the inter-vortex energy given in (20). If the strength of
the external potential and inter-vortex potential are ”comparable”, then one
can pin several vortices and pin vortices near infinity.

We begin with the following crucial reduction result and existence of a
reduced energy.

Theorem 2.1 (Reduced Energy). Suppose λ > 0 and W satisfies condition
(A). Then there exists a constant ε0 > 0 such that for ε and µ satisfying

Γ
1, 1

4
,1, 3

4
λ,µ (ε) < ε0, there exists a constant δ0 > 0 and a C1 function ΦW : R2m →

R such that there is a one-to-one correspondence between critical points of EW
in the tube {v ∈ X(n) | ||v − vzχ||H2 ≤ δ0 for some z with Rλ(z) < ε and χ ∈
H2
z (R2;R)} and critical points of ΦW in the open set {z ∈ R2m | Rλ(z) < ε }.

With the existence of a reduced energy, we are left to find critical points
of a real valued finite dimensional function ΦW (z) in the open set {z ∈
R2m | Rλ(z) < ε }. The next four theorems give sufficient conditions for
existence of critical points in {z ∈ R2m | Rλ(z) < ε }.
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Theorem 2.2 (Pinning one vortex to one critical point). Suppose λ >
1/2 (λ < 1/2) and nj = +1 or −1 (nj is any positive or negative integer) for
j = 1, ...,m. Suppose the external potential W satisfies conditions (A) and
(B) above with extra conditions (C) and (D) below for some µ, ν > 0.

• (C) (Widely spaced critical points)

W has m critical points widely spaced apart, i.e., ∇W (bj) = 0 for some
bj ∈ R2, j = 1, ...,m with critical point separation R(b) = minj 6=k|bj−bk|
satisfying

Rλ(b) < ε. (21)

Here b := (b1, ..., bm) is the configuration of critical points.

• (D) (Non-degeneracy of critical points)

The critical points b1, b2, ..., bm of W are non-degenerate in the following
sense: For all j = 1, ...,m, W ′′(bj) is invertible with bound ||W ′′(bj)

−1|| ≤
c(µν3)−1.

Then there exists a constant ε0 > 0 such that for ε, µ and ν satisfying

Γ
1, 1

4
,1, 3

4
λ,µ (ε) < ε0,

Γ
1, 1

2
,1, 3

2
λ (ε) << µν4, µ << ν4 and ν << 1, (22)

(6) and (7) has solutions of the form

ψmvp(x) = eiχ(x)

m∏
j=1

ψ(nj)(x− aj) + ξ(x)

Amvp(x) =
m∑
j=1

A(nj)(x− aj) +∇χ(x) + β(x)

where aj = bj +O (ν) ∈ R2, j = 1, ...,m; χ ∈ H1(R2;R) is an arbitrary gauge
function and (ξ(x), β(x)) are of O(µ) in H2(R2;C×R2). The pair (ψmvp, Amvp)
is called a multi-vortex pinned solution.

Theorem 2.3 (Pinning several vortices to a maximum/minimum).
Suppose λ > 1/2 (λ < 1/2) and all the vortices have degree nj = +1 or
all nj = −1 (any degree vortex). Suppose the external potential W satisfies
condition (A) and (B) with µ = O(εr) for some r satisfying 1 < r < 2 and
ν << 1. If x = 0 is a strict local maximum (minimum) of W , then there

exists a constant ε0 > 0 such that for ε and µ satisfying Γ
1, 1

4
,1, 3

4
λ,µ (ε) < ε0 and

for every integer 2 ≤ m <∞, there exists a vortex configuration z̃m containing
m number of vortices and a solution of (6) and (7) of the form

um(x) = vz̃mχ + ηz̃mχε

with Rλ(z̃m) < ε, χ ∈ H1(R2;R) is an arbitrary gauge function and ηz̃mχε is

of O(Γ
1, 1

4
,1, 3

4
λ (ε)) in H2(R2;C× R2).

9



Theorem 2.4 (Pinning vortices near infinity). Suppose λ > 1/2 (λ <
1/2) and all the vortices have degree nj = +1 or all nj = −1 (any degree
vortex). Suppose W satisfies condition (A) with µ = O(ε). If W is radially
symmetric of the form

W (r) = µ

(
1

rq
+O

(
1

rq+ς

))
as r →∞ (23)

for some q > 1 and ς > 0 (for λ < 1/2, take the negative of (23)), then there

exists a constant ε0 > 0 such that for ε and µ satisfying Γ
1, 1

4
,1, 3

4
λ,µ (ε) < ε0, there

exists an integer k0 such that for all k > k0, there exists a solution of (6) and
(7) of the form

uk(x) = vz̃kχ + ηz̃kχε

where z̃k is a vortex configuration containing k vortices equally spaced out on a
circle of radius r̃k ∈ (

(
q−β
2π

)
k ln k,

(
q+β
2π

)
k ln k) for β = o(1) small (for λ < 1/2,

the denominator 2π in the interval is replaced by 2πmλ), ηz̃kχε = O(Γ
1, 1

4
,1, 3

4
λ (ε))

and uk has energy

EW (uk) = kEW (v±1) +O

(
e−R(z̃k)√
R(z̃k)

)

where v±1 is the ±1 degree vortices.

Remarks:

1. All the theorems above are valid for both type I (λ < 1/2) and type II
(λ > 1/2) superconductors.

2. Theorems 2.1 and 2.2 are the multi-vortex analogs of Theorems 2.3 and
2.1 in [43], respectively.

3. By Theorem 2.2, if the strength of the external potentials W is larger
than the inter-vortex energy, i.e., for ε << µ (by (22)), and for widely
spaced critical points of W , vortices get pinned near the critical points
of W . Note that pinning still occurs for vortex-antivortex pairs. This
confirms numerical evidence that if the pinning force is strong enough
and the distance between the vortex-antivortex is large enough, then
pinning occurs [29].

4. Theorems 2.3 and 2.4 says that we can pin an arbitrary number of
vortices at an inhomogeneity and near infinity when the magnitude of
the external potential is ”comparable” to the inter-vortex energy, i.e.,
µ = O(εr) for 1 < r < 2 for Theorem 2.3 and µ = O(ε) for Theorem 2.4.
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5. For type II superconductors (λ > 1/2), the multi-vortex solutions found
in Theorems 2.3 and 2.4 are all local energy minimizers (see proof of these
theorems in Section 6.2). Therefore, there exists an infinite number of
stable states for (6) and (7).

Previous results for magnetic vortices (A 6= 0) include Aftalion, Sandier and
Serfaty [1] and Andre, Bauman and Phillips [3] who have shown existence of
stable configurations/minima of the energy functional correspond to maxima of
W (x) in the λ→∞ regime, for applied external magnetic fields, and bounded
domains. In their model, W (x) = 1

ε2
(1 − aε(x)), and the vortex centers are

pinned near minima of aε as ε → 0. These are all static (time-independent)
results, which consider the singular limit λ → ∞ and vortices as zeros of
ψ. Our results describe the vortex structure of the solutions and hold for all
λ > 0, non-degenerate critical points and hold on all of R2.

Numerical evidence that fundamental magnetic vortices of the same degree
are attracted to maxima of W (x) can be found in works by Chapman, et. al.,
[12] Du, et. al., [19] and Kim [29]. Ting and Gustafson [25] have shown
dynamic stability/instability of single pinned fundamental vortices. Sigal and
Strauss [42] have derived the effective dynamics of the magnetic vortex in a
local potential. Ting [46] has studied the effective dynamics of multi-vortices in
an external potential for the strength of external potential µ = εp for 0 < p < 1
and p > 1 (strong and weak external potentials).

Work has also been done on non-magnetic vortices (A = 0) with pinning
(see [4, 6]). For example, in the model considered by [4], a weight function
p(x) is introduced into the energy Eλ(u) = 1

2

∫
Ω
p|∇u|2 + λ(1 − |u|2)2 with Ω

a bounded domain and λ → ∞. They show that non-magnetic vortices are
localized near minima of p(x).

For review articles on Ginzburg-Landau theory, see [8, 10, 11, 27, 38, 39, 40].
We mention briefly the numerous work on dynamics of (unpinned) vortices
in the λ → ∞ limit. For non-magnetic vortices (A = 0), dynamics were
rigorously derived in [14, 32, 7, 28]; for magnetic vortices by [44, 41]. Dynamics
were derived non-rigorously by [36, 20] for widely separated vortices and for
λ >> 1/2; and rigorously for λ > 1/2 by [24]. Our work uses many crucial
results from [24]. Dynamics for λ ≈ 1/2 were derived in the gradient case by
[17], and in the Hamiltonian case by [45].

Much work has been done on the nonlinear Schrödinger equation in an
external potential beginning with the seminal paper by Floer and Weinstein
[21]. Also, existence of single soliton solutions to single ”well” potential for the
Schrödinger equation was considered under various assumptions on the exter-
nal potential by Ambrosetti et. al., [2], Oh [33] and Del Pino and Felmer [15].
In addition, Oh [35], Del Pino and Felmer [16], and Gui [26] have shown multi-
soliton solutions to multi-well potential and Oh [34] has considered stability of
a single pinned soliton. Lin, Ni and Wei have found multi-spike solutions for a
singularly perturbed Neumann problem and Wei and Winter [49] have shown
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multi-bump solutions to the Gierer-Meinhardt System. In the work by Kang
and Wei [30], they showed that arbitrary number of bumps can be pinned at a
local maximum point for the non-linear Schrödinger equation. In [50], Wei and
Yan showed that infinitely many non-radial positive solutions can be pinned
at infinity if the potential has algebraic order at infinity. Theorems 2.3 and
2.4 were motivated by the latter two works [30] and [50], respectively. In most
of these papers, they use Lyapunov-Schmidt reduction to prove existence of
these multi-bump solutions, a method which we’ll employ here too.

3 Main Steps of Proof of Theorems 2.1 to 2.4

In this section, we outline the main steps of the proof of Theorems 2.1 to 2.4.
First, define our infinite dimensional manifold of widely spaced multi-vortex

configurations
Mmv,ε = {vzχ | (z, χ) ∈ Σε}

parameterized by the set of all centers of vortices and gauge transformations

Σε = {(z, χ) | Rλ(z) < ε and χ ∈ H2
z (R2;R)}.

With abuse of notation, we will also denote Σε as the open subset {z ∈
R2m |Rλ(z) < ε} of R2m without the gauge part. The tangent space to point
vzχ ∈Mmv,ε is

TvzχMmv,ε = span

{
〈γ, ∂χ〉vzχ, ∂

A
(j)
k

zjk vzχ | j = 1, ...,m; k = 1, 2; γ ∈ H2(R2;R)

}
.

consisting of the ”almost zero-modes” defined by (10) to (13) as follows: the
gauge-tangent ”almost zero-modes” are

Gzχ
γ := ∂χvzχ|γ := 〈γ, ∂χ〉vzχ =

(
iγψzχ
∇γ

)
(24)

for γ : R2 → R. Here, the notation ∂χvzχ|γ := 〈γ, ∂χ〉vzχ denotes the Fréchet
derivative of the map χ → (eiχψ,A +∇χ) evaluated at χ in the direction of
γ. The (gauge-invariant) translational-tangent ”almost zero-modes” are

T zχjk := ∂
A

(j)
k

zjk vzχ =
(
∂zjk + 〈A(nj)

k (· − zj), ∂χ〉
)
vzχ (25)

=

(
eiχ(x)

∏
l 6=j ψ

(nl)(x− zl)[∂xjk − i(A(nj)(x− zj))k]ψ(nj)(x− zj)
B(nj)(x− zj)e⊥k

)
where A

(j)
k := [A(nj)(·−zj)]k, B(n) = ∇×A(n) and e⊥1 = (0, 1) and e⊥2 = (−1, 0).

Note that T zχjk are defined by covariant differentiation to ensure that ∂
A

(j)
k

zjk vzχ ∈
H1 × L2, while ∂zjkvzχ is not. These tangent vectors are called almost zero
modes since they ”almost solve” E ′′0 (vzχ)η = 0 (see Theorem 3.1(c) below).
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Let u = (ψ,A), and denote FW (u) = E ′W (u), defined as a map from H2 to
L2. Explicitly,

FW (u) =

(
−∆Aψ + λ

2
(|ψ|2 − 1)ψ +W (x)ψ

−∇×∇× A− Im(ψ̄∇Aψ)

)
(26)

Thus, equations (6) and (7) can be written as FW (u) = 0.
Define orthogonal projections

πzχ := L2 − projection onto span{T zχjk , G
zχ
γ | j = 1, ...,m, k = 1, 2, γ ∈ H2(R2;R)}

π⊥zχ := 1− πzχ.
(27)

The operator π⊥zχ projects onto the L2 orthogonal complement of Ran(πzχ),

i.e., π⊥zχ : L2 → [Ran(πzχ)]⊥.
Denote πgzχ and πtzχ the L2-orthogonal projections onto the gauge and trans-

lational ”almost” tangent vectors, respectively (see (67) and (68) below for
explicit expressions). By definition, we have

πzχ = πgzχ + πtzχ (28)

and from (24), (25) and (27), we see that

TvzχMmv,ε = Ranπzχ.

The proof of existence of multi-vortex solutions to (6) and (7) relies on the
following three steps:

1. Liapunov-Schmidt Reduction and Solution in the Orthogonal
Direction. We use Liapunov-Schmidt reduction to break the problem
up into its tangential and orthogonal components. We will show there
exists a solution in the orthogonal direction using an implicit function
type argument. More specifically, we will show that for all widely spaced
multi-vortex configurations (z, χ) ∈ Σε with ε > 0 small enough and for
W satisfying condition (A) for µ > 0 small enough, there exists a unique
ηzχε ∈ Ran(π⊥zχ) such that

π⊥zχFW (vzχ + ηzχε) = 0. (29)

2. Equivalent Reduced Problems and Solution in the Tangential
Direction. We will solve the corresponding problem in the tangential
direction

πzχFW (vzχ + ηzχε) = 0 (30)

in two ways:

13



(a) By showing that there exists a one to one correspondence between
critical points of the reduced energy functional ΦW : Σε ⊂ R2m → R
defined by

ΦW (z) := EW (vzχ + ηzχε)

and critical points of the full energy functional EW . More precisely, we
show that ΦW (z) attains a critical point at multi-vortex configuration
zp ∈ Σε if and only if (30) has z = zp as a solution. This is precisely the
statement of Theorem 2.1. Therefore, we are reduced to finding critical
points of ΦW (z) to solve for (30) for z ∈ Σε ⊂ R2m.

(b) First, we note that solving (30) for z and χ is equivalent to solving
the two equations

πgzχFW (vzχ + ηzχε) = 0 and (31)

πtzχFW (vzχ + ηzχε) = 0 (32)

for χ and z ∈ Σε ⊂ R2m, respectively. We will show that (31) is true for
all gauge functions χ (see Proposition 5.3(i)), and hence we are reduced
to solving (32) for zp ∈ Σε ⊂ R2m.

Both reductions in steps 2a and 2b exist due to the gauge invariance of
the reduced energy functional ΦW (z, χ) := EW (vzχ + ηzχε) (see Proposi-
tion 5.2).

3. Solution to the reduced problem. We use the reduced methods in
steps 2a and 2b above to show that the given conditions on the potential
W imply that (a) the reduced energy ΦW attains a critical point at some
multi-vortex configuration zp ∈ Σε or (b) (32) has a solution at zp ∈ Σε

using an implicit function argument. The method in step 2a will be
used to prove Theorem 2.3 and 2.4; the method in step 2b will be used
to prove Theorem 2.2.

Steps 1 and 2 will imply Theorem 2.1 and steps 1 to 3 imply FW (vzpχ+ηzpχε) =
0 and hence Theorems 2.2 to Theorem 2.4 follows. Step 1, 2 and 3 will be
carried out in Sections 4, 5 and 6 respectively. Theorem 2.1 will be proven
in Section 5, and Theorem 2.2 to Theorem 2.4 will be proven in Section 6.
Technical lemmas and estimates will be proven in the Appendix.

For the rest of the section, we will state a theorem from [24] which is crucial
in our analysis: Theorem 3.1. From Theorem 3.1, we’ll be able to prove the
main result in step 1 above. More precisely, using Theorem 3.1, we’ll be able to
obtain two corollaries from which we can construct a solution in the orthogonal
direction (see Theorem 3.2).

Now we state Theorem 3.1 below which is proven for λ > 1/2 and λ < 1/2
in [24] and Appendix A in [46], respectively.

Theorem 3.1. For ε > 0 sufficiently small and for (z, χ) ∈ Σε,

14



(a) (Almost solution)

‖E ′0(vzχ)‖L2 = O(Γ
1, 1

4
,1, 3

4
λ (ε)); (33)

(b) (Almost Orthogonality)

〈T zχjk , T
zχ
lm 〉 = γ(nj)δjlδkm +O(Γ

1, 1
2
,1, 3

2
λ (ε)), (34)

where

γ(nj) =
1

2
‖∇

A(nj)ψ
(nj)‖2

2 + ‖curlA(nj)‖2
2, (35)

and
〈T zχjk , G

zχ
γ 〉 = O(Γ

1, 1
4
,1,0

λ (ε))‖γ‖L2 . (36)

(c) (Almost zero modes) Write

Lzχ := E ′′0 (vzχ).

Then
‖LzχT zχjk ‖L2 = O(Γ

1, 1
2
,1,0

λ (ε)) and (37)

‖LzχGzχ
γ ‖L2 ≤ cΓ

1, 1
4
,1,0

λ (ε)‖γ‖L2 . (38)

Therefore, from (27), (37) and (38), it follows that

Lzχπzχ = O(Γ
1, 1

2
,1,0

λ (ε)) in L2. (39)

(d) (Coercivity of Hessian) There exists an ε̃0 > 0 such that for 0 < ε < ε̃0,
(z, χ) ∈ Σε and η ∈ Ran(π⊥zχ),

〈η, Lzχη〉 ≥ c1‖η‖2
H1 ≥ c2‖η‖2

2. (40)

(e) (Invertibility of Hessian) There exists an ε̃0 such that for all 0 < ε < ε̃0,
(z, χ) ∈ Σε and η ∈ Ran(π⊥zχ), we have

‖Lzχη‖L2 ≥ ω‖η‖H2

for some ω > 0.

We draw attention to two essential results from [24]: Theorem 3.1 (a) and
(e), i.e., any widely spaced multivortex configuration is almost a solution to the
Ginzburg-Landau equations and the linearized operator F ′0(vzχ) is invertible
on the L2 orthogonal complement of TvzχMmv,ε. From the above two results,
we have the following two corollaries.

15



Corollary 3.1.1. Suppose W (x) satisfies condition (A). Then for ε > 0 suf-
ficiently small and (z, χ) ∈ Σε,

E ′W (vzχ) = FW (vzχ) = O(Γ
1, 1

4
,1, 3

4
λ,µ (ε)) in L2. (41)

Proof. We use FW (vzχ) = F0(vzχ)+

(
Wψzχ

0

)
, ||F0(vzχ)||L2 ≤ cΓ

1, 1
4
,1, 3

4
λ (ε) (by

Theorem 3.1 (a)) and ‖Wψzχ‖L2 = O(µ) (by Condition (A) and since |ψzχ| ≤
1) to obtain ‖FW (vzχ)‖L2 ≤ c1Γ

1, 1
4
,1, 3

4
λ (ε) + µ. Therefore, ‖FW (vzχ)‖L2 =

O(Γ
1, 1

4
,1, 3

4
λ,µ (ε)).

Corollary 3.1.2. Suppose W (x) satisfies condition (A). Define

LzχW = π⊥zχF
′
W (vzχ) |Ran(π⊥zχ)∩H2 (42)

and let ω, ε̃0 be constants in Theorem 3.1(e). For ε and µ satisfying 0 < ε < ε̃0
and 0 < µ < ω, (z, χ) ∈ Σε, and η ∈ Ran(π⊥zχ) ∩H2,

‖LzχWη‖L2 ≥ β‖η‖H2

where β := ω − µ > 0 is a positive constant.

Proof. Since LzχW = Lzχ +

(
W 0
0 0

)
, then by Theorem 3.1(e) and ε < ε̃0,

‖LzχWη‖2 ≥ ‖Lzχη‖2 − ‖Wη‖2 ≥ (ω − ‖W‖2)‖η‖H2 ≥ (ω − µ)‖η‖H2 , and
our result follows by condition (A) on our potential, ε < C1 and with β :=
ω − µ.

Next, we will state precisely what we will show in Step 1 above. Denote
BX(z, r) as the open ball in a Banach space X of radius r centered at z.

Theorem 3.2. Suppose W (x) satisfies condition (A). Then there exist positive

constants ε0 and δ0 such that for every ε and µ satisfying 0 < Γ
1, 1

4
,1, 3

4
λ,µ (ε) < ε0

and for every (z, χ) ∈ Σε, there exists a unique element ηzχε in BH2(0, δ0) ∩
Ran(π⊥zχ) such that equation (29) is satisfied.

In addition, we have the following:

a)‖ηzχε‖H2 ≤ DΓ
1, 1

4
,1, 3

4
λ,µ (ε) with a positive constant D = D(κ, β) where

κ := sup
ε>0,µ>0

1

Γ
1, 1

4
,1, 3

4
λ,µ (ε)

||FW (vzχ)||L2 <∞ (43)

and β is defined in Corollary 3.1.2.

b) ηzχε is C1 in z and ||∂zjkηzχε||L2 ≤ cΓ
1, 1

2
,1, 3

4
λ,µ (ε) for j = 1, ...,m and k = 1, 2.
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4 Solution in the Orthogonal direction

In this section, we prove Theorem 3.2 and complete step 1 in Section 3. More
precisely, we prove that for µ, ε > 0 sufficiently small, W satisfying condition
(A) and (z, χ) ∈ Σε, the equation π⊥zχFW (vzχ + η) = 0 has a unique solution

for η ∈ [Ran(π⊥zχ)].
To this end we use an implicit function type argument. We begin with the

following definitions. Let v = vzχ + η, where vzχ =

(
ψzχ
Azχ

)
∈ Mmv,ε, and

η =

(
ξ
B

)
∈ H2 with η ⊥ TvzχMmv,ε. Using Taylor expansion, we have

FW (vzχ + η) = FW (vzχ) + F ′W (vzχ)η +NW (vzχ, η), (44)

where

F ′W (vzχ)η = (45)(
[−∆Azχ + λ

2
(2|ψzχ|2 − 1)]ξ + λ

2
ψ2
zχξ̄ + i[2∇Azχψzχ + ψzχ∇] ·B

Im([∇Azχψzχ − ψzχ∇Azχ ]ξ) + (−∆ +∇∇+ |ψzχ|2) ·B

)
and

NW (vzχ, η) =

(
λ(2ψξ̄ + ψ̄ξ + |ξ|2)ξ + ||B||2(ψ + ξ) + [i(∇ ·B +B · ∇) + 2A ·Bηξ

−Im(ξ̄∇Aξ) + B(2Re(ψ̄ξ) + |ξ|2)

)
.

(46)
We need the following lemma:

Lemma 4.1. There exist positive constants C2, C3, C4 independent of z, χ, ε
such that for all η ∈ H2 with ‖η‖H2 ≤ C2,

‖NW (vzχ, η)‖
L2 ≤ C3 ‖η‖2

H2 , (47)

and

||∂ηNW (vzχ, η)||H2→L2 ≤ C4||η||H2 . (48)

Proof. Lemma 4.1 follows directly from Sobolev embedding theorems and the
mean value theorem (see [43]).

Let ε and µ satisfy 0 < ε < ε̃0 and 0 < µ < ω so that LzχW is invertible by
Corollary 3.1.2. Using the Taylor expansion (44) and abbreviating π⊥zχFW (vzχ)

to F⊥zχW and π⊥zχNW (vzχ, η) to N⊥zχW (η), we rewrite equation (29) as a fixed
point equation η = SzχW (η) for the map SzχW defined on H2 by

SzχW (η) = −L−1
zχW

[
N⊥zχW (η) + F⊥zχW

]
. (49)

Let β, C2, C3 and C4 be the constants in Corollary 3.1.2 and Lemma 4.1. Set
δ0 = min(C2,

β
2C3

, β
2C4

) and ε0 = min(ε̃0, ω,
δ0
2κ
β), where κ is defined in (43).
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We will show that for ε satisfying 0 < Γ
1, 1

4
,1, 3

4
λ,µ (ε) < ε0, SzχW maps the ball

B⊥δ0 = BH2(0, δ0) ∩ [Ran(π⊥zχ)] continuously into itself. Let η ∈ B⊥δ0 . Then for

ε and µ satisfying Γ
1, 1

4
,1, 3

4
λ,µ (ε) < ε0 and ||η|| ≤ δ0 ≤ C2, we have by Corollary

3.1.2 and Lemma 4.1

‖SzχW (η)‖
H2 ≤

1

β

∥∥N⊥zχW (η) + F⊥zχW
∥∥
L2

≤ 1

β

(
C3 ‖η‖2

H2 +
∥∥F⊥zχW∥∥L2

)
≤ 1

β

(
C3δ

2
0 + κΓ

1, 1
4
,1, 3

4
λ,µ (ε)

)
≤ δ0,

where in the second last inequality, we used (43), and in the last inequality,
we used the definition of δ0 and ε0. Therefore SzχW (η) is in B⊥δ0 too.

In addition, for η and η′ in B⊥δ0 , we have from (48) and the mean value
theorem that

‖NW (vzχ, η) − NW (vzχ, η
′)‖

L2 ≤ C4δ0 ‖η − η′‖H2 . (50)

Hence, (50) and our choice of δ0 imply

‖SzχW (η)− SzχW (η′)‖
H2 =

∥∥∥L−1
zχW (N⊥zχW (η)−N⊥zχW (η′))

∥∥∥
L2

≤ C4δ0

β
‖η − η′‖H2 ≤

1

2
‖η − η′‖H2 .

Therefore, SzχW is a contraction map and so SzχW has a unique fixed point
ηzχε in B⊥δ0 . By the definition of the map SzχW , this fixed point solves (29)
which proves the first part of Theorem 3.2.

For part a) of the second part of Theorem 3.2, we note that

‖SzχW (0)‖
H2 =

∥∥∥L−1
zχWF

⊥
zχW

∥∥∥
H2
≤ β−1 ‖FW (vzχ)‖

L2 .

But for the fixed point ηzχε, we have

ηzχε = SzχW (ηzχε) = SzχW (0) + SzχW (ηzχε)− SzχW (0).

Consequently,

‖ηzχε‖H2 ≤ ‖SzχW (0)‖
H2 + ‖SzχW (ηzχε)− SzχW (0)‖

H2

≤ β−1 ‖FW (vzχ)‖
L2 +

1

2
‖ηzχε‖H2 .

Since ||FW (vzχ)||L2 ≤ κΓ
1, 1

4
,1, 3

4
λ,µ (ε) by (43), the last inequality implies part a)

with D = 2β−1κ:
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||ηzχε||H2 ≤ 2β−1κΓ
1, 1

4
,1, 3

4
λ,µ (ε). (51)

To prove part b), we proceed in a standard way. Define F⊥ : R2m ×
(Ran(πzχ)⊥ ∩H2)→ (Ran(πzχ)⊥ ∩ L2) by

F⊥(z, η) = π⊥zχFW (vzχ + η), (52)

where we have suppressed the dependence of F⊥ on W and χ for brevity. By

part a), we have shown that for ε and µ satisfying 0 < Γ
1, 1

4
,1, 3

4
λ,µ (ε) < ε0 and

χ ∈ H2, there exists η = η(z) ∈ Ran(π⊥zχ) ∩H2 such that

F⊥(z, η(z)) = 0 ∀ z ∈ R2m with Rλ(z) < ε. (53)

Fix j and k for some j = 1, ...,m, k = 1, 2. It is standard to show that η(z)
in (53) is C1 in zjk (see [18, 43]) and that ∂zjkη(z) is given by the expression

∂zjkη(z) = −∂ηF⊥(z, η(z))−1∂zjkF
⊥(z, η(z)). (54)

Now we prove that ||∂zjkη(z)||H2 ≤ cΓ
1, 1

2
,1, 3

4
λ,µ (ε). Fix z ∈ R2m with Rλ(z) < ε

and write for convenience η = η(z). We estimate the r.h.s of (54). By (53)
and the implicit function theorem, we know that ∂ηF

⊥(z, η) is invertible and
hence ||∂ηF⊥(z, η)−1|| ≤ C. Hence, it suffices to show that ||∂zjkF⊥(z, η)|| =

O(Γ
1, 1

2
,1, 3

4
λ,µ (ε)) as ε→ 0. Now by (52), we have

∂zjkF
⊥(z, η) = (∂zjkπ

⊥
zχ)FW (vzχ + η) + π⊥zχ∂zjkFW (vzχ + η). (55)

By explicit expressions for πzχ = πtzχ+πgzχ in (67) and (68) below, ||π⊥zχ|| ≤
C. Similarly one shows that ||∂zjkπ⊥zχ|| ≤ C. By (44), we have

||FW (vzχ + η)||L2 ≤ ||FW (vzχ)||L2 +C||η||H2 +C||η||2H2 = O(Γ
1, 1

4
,1, 3

4
λ,µ (ε)), (56)

as ||η||H2 = O(Γ
1, 1

4
,1, 3

4
λ,µ (ε)) by (51). In the above, we have used equation (41),

for the first term, FW is C1 for the second term, and Lemma 4.1 for the last
term. Now, recall that

F ′W (vzχ)η = F ′0(vzχ)η +

(
W (x) 0
0 0

)
η. (57)

By (57) and the fact that F ′0(vzχ)∂zjkvzχ = LzχT
zχ
jk = O(Γ

1, 1
2
,1,0

λ (ε)) (by Theo-
rem 3.1 (c)), we have

||∂zjkFW (vzχ + η)||L2 = ||F ′W (vzχ + η)∂zjkvzχ||L2

≤ ||(F ′W (vzχ + η)− F ′W (vzχ))∂zjkvzχ||L2 + ||F ′W (vzχ)∂zjkvzχ||L2

≤ C ·max(||∂zjkvzχ||∞, ||∂2
zjk
vzχ||∞)||η||H2 +

||F ′0(vzχ)∂zjkvzχ||L2 + ||W ||L2||∂zjkvzχ||∞ = O(Γ
1, 1

2
,1, 3

4
λ,µ (ε))

(58)
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since FW is C2, ‖η‖H2 = O(Γ
1, 1

4
,1, 3

4
λ,µ (ε)), W = O(µ) in L2 and ||∂zjkvzχ||∞,

||∂2
zjk
vzχ||∞ < ∞ (by the explicit form of T zχjk = ∂zjkvzχ in (25)). Equations

(55), (56) and (58) show that ||∂zjkηzχε||L2 ≤ cΓ
1, 1

2
,1, 3

4
λ,µ (ε) and we are done with

the proof of the estimates in Theorem 3.2(b). �

5 Equivalent reduced problems and solution

in the tangential direction

In this section, we show that the problem in the tangential direction (30) can
be solved by the reduction methods described in steps 2a and 2b in Section 3.

For the method in step 2a, we prove Theorem 2.1: a critical point of reduced
energy is equivalent to a critical point of full energy. The proof of Theorem 2.1
is a straight forward modification of the proof of Theorem 2.3 in [43], Section
5. Therefore, we will just outline the proof here in section 5.1. Theorem 2.1
will be used to prove Theorem 2.3 and 2.4 in Section 6.2.

However, we will prove one fact in the proof of Theorem 2.1 (or equivalently,
in the proof of Theorem 2.3 in [43] (Section 5, equation (5.2))) which is not
as obvious: that the reduced energy ΦW (z) = EW (vzχ + ηzχε) is independent
of the gauge function χ. This will be stated and proved in Proposition 5.2 in
Section 5.2.

For the method in step 2b, we will show that the statement (31) is true for
any χ ∈ H2(R2,R) is equivalent to the independence of the reduced energy
ΦW on gauge χ. This will be stated and proved in Proposition 5.3 in Section
5.3. Proposition 5.3 will be used to prove Theorem 2.2 in Section 6.1.

5.1 Proof of Theorem 2.1: General Argument

In this section, we outline the proof of Theorem 2.1 and show that a critical
point of reduced energy is equivalent to critical point of full energy. More
precisely, we show that if (29) is true, then the reduced energy ΦW (z) :=
EW (vzχε), where vzχε := vzχ + ηzχε has a critical point at zp if and only if
E ′W (vzpχε) = 0.

Equation (29) implies for any (z, χ) ∈ Σε,

E ′W (vzχε) ∈ TvzχMmv,ε. (59)

By Proposition 5.2 below, the energy functional is independent of gauge and
hence

0 = ∂χΦW (z) =< ∂χvzχε, E ′W (vzχε) > . (60)

We claim that, given (59) and (60),

∂zΦW (z)|z=zp = 0 ⇐⇒ E ′W (vzχε|z=zp) = 0, (61)

20



where we have used the direct sum notation

∂z =
m⊕
j=1

2⊕
k=1

∂zjk = (∂z11 , ∂z12 , ..., ∂zj1 , ∂zj2 , ..., ∂zm1 , ∂zm2). (62)

Note that statement (61) is equivalent to the statement in Theorem 2.1. The
(⇐) part of statement (61) is trivial: if E ′W (vzχε|z=zp) = 0, then

∂zΦW (z)|z=zp =< ∂zvzχε, E ′W (vzχε) > |z=zp =< ∂zvzχε|z=zp , E
′
W (vzχε)|z=zp >= 0.

Hence, it remains to prove the (⇒) part of statement (61). First, we
observe that the relation

< ∂zvzχε, E ′W (vzχε) > |z=zp = ∂zΦW (z)|z=zp = 0 (63)

together with (60) implies

E ′W (vzpχε) ⊥ TvzpχεM
W
mv,ε, (64)

where MW
mv,ε := {vzχε = vzχ + ηzχε|(z, χ) ∈ Σε}. Thus it remains to show that

(59) and (64) imply E ′W (vzχε)|z=zp = 0. Denote fW = E ′W (vzpχε) and

π = L2 − orthogonal projection onto TvzpχMmv,ε,

πW = L2 − orthogonal projection onto TvzpχεM
W
mv,ε.

Then equations (59) and (64) can be written as

πfW = fW and πWfW = 0. (65)

We want to show fW = 0.
But by (65),

fW = πfW = (π − πW )fW . (66)

Now by Proposition 5.1 below, we have

||fW || ≤ ||π − πW ||||fW || ≤ CΓ
1, 1

2
,1, 3

4
λ,µ (ε)||fW ||.

This implies that fW = 0 which completes the proof of the sufficient part of
(61), modulo the proof of Proposition 5.1.

Proposition 5.1. The operators π and πW are bounded and ||π − πW || =

O(Γ
1, 1

2
,1, 3

4
λ,µ (ε)).
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The proposition follows from the explicit expressions for the projections
π = πtzχ + πgzχ and πW = (πW )tzχ + (πW )gzχ in Dirac notation (see [43]):

πtzχ

(
ξ
B

)
=

∑
jk

∑
rs

|T zχjk >
[
(βzχ)−1

]
(jk)(rs)

〈
T zχrs |

(
ξ
B

)〉
(67)

(πW )tzχ

(
ξ
B

)
=

∑
jk

∑
rs

|T zχεjk >
[
(βzχε)−1

]
(jk)(rs)

〈
T zχεrs |

(
ξ
B

)〉
πgzχ

(
ξ
B

)
=

(
iψzχJ [Im(ψ̄zχξ)−∇ ·B]
∇J [Im(ψ̄zχξ)−∇ ·B]

)
(68)

(πW )gzχ

(
ξ
B

)
=

(
iψzχεJ ε[Im(ψ̄zχεξ)−∇ ·B]
∇J ε[Im(ψ̄zχεξ)−∇ ·B]

)
.

Here, [βzχ](jk)(rs) = 〈T zχjk |T zχrs 〉 is invertible by (34) and J = (−∆ + |ψzχ|2)−1.
In addition, T zχεjk := ∂zjkvzχε and [βzχε](jk)(rs) = 〈T zχεjk |T zχεrs 〉 is invertible by
(34) and Theorem 3.2(b) and J ε = (−∆ + |ψzχε|2)−1.

One then proves the above Proposition 5.1 with analogs of Lemmas 5.4
and 5.5 in [43] for multi-vortices. �

5.2 Independence of the reduced energy functional on
gauge

In this section, we prove Proposition 5.2 below which states that the reduced
energy functional ΦW is independent of gauge χ. Proposition 5.2 was required
in the general argument in proving Theorem 2.1 in the previous section 5.1
(see (60)). In addition, the validity of Proposition 5.2 below will establish the
validity of Proposition 5.3(i) in Section 5.3 below.

We are ready to state our main result of this section.

Proposition 5.2. For (z, χ) ∈ Σε, define the reduced energy by

ΦW (z, χ) := EW (vzχ + ηzχε).

Then ΦW is independent of gauge χ.

Before we prove Proposition 5.2, we need some definitions and a lemma.
Define the symmetry action of gχ on the vortex v0 = (ψ,A) as

gχv0 =

(
eiχψ

A+∇χ

)
=: vχ :=

(
ψχ

Aχ

)
, (69)

where we have dropped (or equivalently fixed) the dependance on z everywhere
for clarity.
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Lemma 5.1. (a) The explicit action of a gauge χ on fixed point vectors η =(
ξ
B

)
in a tube of radius δ0 (defined in Theorem 3.2) about the manifold

Mmv,ε is

gχη =

(
eiχξ
B

)
. (70)

(b) Set ηzχε = gχηz0ε for some ηz0ε ∈ Ran(π⊥z0) ∩BH2(δ0). Then

∂χηzχε|γ = 〈γ, ∂χ〉ηzχε =

(
iγξzχε

0

)
. (71)

Therefore, the action of gauge χ on vortices v and fixed point vectors η in a
tube of radius δ0 around the multi-vortex manifold Mmv,ε differ.

Proof. Part (b) immediately follows from part (a) and notation used in (24).
From Theorem 3.2, we know that for all (z, χ) ∈ Σε and ηzχε ∈ Ran(π⊥zχ)∩

BH2(δ0), ηzχε is a fixed point of map Szχ defined in (49). Dropping the z and
ε dependance everywhere (equivalently, fixing z and ε), we have

ηχ = Sχ(ηχ) ∀ηχ ∈ Ran(π⊥zχ) ∩BH2(δ0). (72)

For η0 =

(
ξ
B

)
∈ Ran(π⊥z0) ∩BH2(δ0) a fixed point of the map S0, set

ηχ := gχη0 :=

(
eiχξ
B

)
for any χ ∈ H2. (73)

Then, given (69) and (73), one can show that

(i)π⊥χ (gχη0) = gχπ
⊥
0 (η0);

(ii)FW (gχv0) = gχFW (v0);

(iii)NW (vχ, ηχ) = gχNW (v0, η0);

(iv)Lχ = gχL0g
−1
χ for Lχ := F ′W (vzχ) =⇒ (L⊥χ )−1 = π⊥χL

−1
χ π⊥χ .

Indeed, (i) comes from (28), the explicit expressions for πtχ and πgχ in (67) and

(68), |T χjk >=

(
eiχ
∏

l 6=j ψ
(l)[∇Aψ]

(j)
k

(∇× A)e⊥j

)
= gχ|T 0

jk >, [βχ](jk)(lm) = 〈T χjk|T
χ
lm〉 =

〈T 0
jk|T 0

lm〉 and J = (−∆ + |ψχ|2)−1. Now, (ii) to (iv) comes from the explicit
expressions for FW , Lχ and NW from (26), (45) and (46), respectively. One
can show using facts (i) to (iv) and (49) that for η0 and ηχ given in (73),

Sχ(ηχ) = gχS0(η0).

Therefore,
Sχ(ηχ) = gχS0(η0) = gχη0 = ηχ,

where in the 2nd and 3rd inequalities, we used that η0 is a fixed point and
(73), respectively. Since (72) is true for any χ, then the action of χ on the
fixed point η0 is given by (73).
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From the above lemma, we are ready to prove the main proposition 5.2
above.

Proof of Proposition 5.2. By Lemma 5.1a, we have for vzχ =

(
ψzχ
Azχ

)
:=(

eiχψz0
Az0 +∇χ

)
and ηzχε =

(
ξzχε
Bzχε

)
=

(
eiχξz0ε
Bz0ε

)
, we have

ΦW (z, χ) = EW (vzχ + ηzχε)

= EW (g0χvz0 + g0χηz0ε)

= EW
((

eiχψz0
Az0 +∇χ

)
+

(
eiχξz0ε
Bz0ε

))
= EW

((
eiχ(ψz0 + ξz0ε)

(Az0 +Bz0ε) +∇χ

))
= EW

((
ψz0 + ξz0ε
Az0 +Bz0ε

))
= EW (vz0 + ηz0ε)

= ΦW (z, 0)

where in the fifth equality, we used (70) and gauge invariance of the G-L+W
energy functional (8), respectively.

5.3 Step 2b: Independence of tangential problem on
gauge

In this section, we prove Proposition 5.3 below which states that (31) is true
for every χ is equivalent to the independence of the reduced energy ΦW on
gauge χ. By Proposition 5.2, the latter is true and hence the former is true
too. Proposition 5.3(i) will be used to prove Theorem 2.2 in the next Section
6.1.

We are now ready to state our main proposition of this section.

Proposition 5.3. For ε > 0 sufficiently small and (z, χ) ∈ Σε, the following
statements are equivalent:

(i) (31) is true for all χ ∈ H2(R2;R).
(ii) The reduced energy ΦW (z, χ) = EW (vzχ + ηzχε) is independent of gauge

χ.
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Proof. Indeed, by chain rule, we have for any γ0 (using the notation in (24)),

∂χΦ(z, χ)|γ0 = ∂χEW (vzχ + ηzχε)|γ0
= 〈E ′W (vzχ + ηzχε), ∂χ(vzχ + ηzχε)〉|γ0
= 〈FW (vzχ + ηzχε), 〈γ0, ∂χ〉(vzχ + ηzχε)〉

=

〈
FW (vzχ + ηzχε),

(
iγ0ψzχ
∇γ0

)
+

(
iγ0ξzχε

0

)〉
=

〈
FW (vzχ + ηzχε),

(
iγ0ψzχε
∇γ0

)〉
, (74)

where we have let

vzχε := vzχ + ηzχε =: (ψzχε, Azχε) :=

(
ψzχ + ξzχε
Azχ +Bzχε

)
. (75)

Observe that (31) is true for any χ if and only if the following statement
is true:

FW (vzχ + ηzχε) =

(
iγ0ψzχ
∇γ0

)
=⇒ γ0 ≡ 0. (76)

Now, taking the inner product of the first equation in the first part of (76)

with

(
iγ0ψzχε
∇γ0

)
and using (74) and (75), we obtain

∂χΦ(z, χ)|γ0 =

〈(
iγ0ψzχε
∇γ0

)
,

(
iγ0ψzχ
∇γ0

)〉
(77)

=

∫
γ0[−∆ + |ψzχ|2 +Re(ψzχξzχε)]γ0 dx.

If (i) were true, the statement in (76) is true and hence γ0 = 0. Therefore,
(77) implies that ∂χΦ(z, χ)|γ0 = 0 and hence (ii) follows.

If (ii) were true, then ∂χΦ(z, χ)|γ0 = 0 in (77). Since [−∆ + |ψzχ|2 +
Re(ψzχξzχε)] is a positive operator for ε sufficiently small (by Theorem 3.2(a)
and using Lemma 5.1 in [25]), then γ0 ≡ 0, which proves (76), and therefore
(i) is true.

6 Solution to the reduced problem

In this section, we prove Theorem 2.2 in section 6.1 and Theorems 2.3 and 2.4
in section 6.2.

6.1 Proof of Theorem 2.2: Pinning one vortex to one
critical point

In this section, we prove Theorem 2.2. Note that by Proposition 5.3(i) and
Proposition 5.2, (31) is true for any χ ∈ H2(R2;R) and hence we are reduced
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to finding a z ∈ Σε ⊂ R2m to solve (32) directly. To find z ∈ Σε ⊂ R2m to
solve (32), we show by implicit function argument that for λ > 1/2(λ < 1/2)
and external potential W satisfying conditions (A) to (D) (plus some technical
assumptions), there exists a multi-vortex configuration a is close to b such that
(32) is true. Therefore, πaχFW (vaχ + ηaχε) = 0 and Theorem 3.2 will imply
that FW (vaχ + ηaχε) = 0 and hence there exists a solution to (6) and (7) of the
form given in Theorem 2.2.

First, define functions H,G : Σε → R2m on the open set Σε ⊂ R2m with
component functions Hj, Gj : Σε → R2 by

Hj(z) := 〈FW (vzχ + ηzχε), ~T
zχ
j 〉 for j = 1, . . . ,m (78)

Gj(z) :=

〈(
Wψzχ

0

)
, ~T zχj

〉
for j = 1, . . . ,m (79)

where
~T zχj = (T zχj1 , T

zχ
j2 )T .

Note that from the expression for πtzχ = πtχ in (67),

H(z) = 0 ⇐⇒ (32) is true. (80)

Writing ~T zχ =
[
~T zχj

]m
j=1

and Taylor expanding FW (vzχ + ηzχε) about vzχ, we

have

H(z) = G(z) + 〈F0(vzχ), ~T zχ〉+ 〈F ′W (vzχ)ηzχε, ~T
zχ〉+ 〈NW (vzχ, ηzχε), ~T

zχ〉

= G(z) +O(Γ
1, 1

4
,1, 3

4
λ (ε)) +O(Γ

1, 1
2
,1,0

λ,µ (ε) · Γ1, 1
4
,1, 3

4
λ,µ (ε)) +O((Γ

1, 1
4
,1, 3

4
λ,µ (ε))2)

= G(z) +O(Γ
1, 1

4
,1, 3

4
λ (ε)) +O(µ2) (81)

where we used (22) in the last equality. Indeed, the second term in the

first equation is of O(Γ
1, 1

4
,1, 3

4
λ (ε)) due to Theorem 3.1a and the last term is

O(Γ
1, 1

4
,1, 3

4
λ,µ (ε))2 due to (47) and Theorem 3.2(a). Also, we can estimate the

third term in the first equation by

〈T zχjk , F
′
W (vzχ)ηzχε〉 = 〈F ′W (vzχ)T zχjk , ηzχε〉 (82)

≤ ‖F ′W (vzχ)T zχjk ‖L2‖ηzχε‖L2 = O(Γ
1, 1

2
,1,0

λ,µ (ε) · Γ1, 1
4
,1, 3

4
λ,µ (ε))

where we used self-adjointness of F ′W (vzχ) in the first equality, Theorem 3.2(a)
and

‖F ′W (vzχ)T zχjk ‖L2 = O(Γ
1, 1

2
,1,0

λ,µ (ε)) (83)

(by (37) and (57)) in the last estimate.
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Using the definition of T zχjk in (25) and condition (B) on W , we compute

Gj(z) =

∫
R2

W (x+ zj)[Re(ψ̄∇Aψ)(nj)](x) dx

+

∫
R2

W (x+ zj)

(∏
l 6=j

|ψ(nl)(x− zl)|2 − 1

)
[Re(ψ̄∇Aψ)(nj)](x) dx

=

∫
R2

W (x+ zj)[Re(ψ̄∇Aψ)(nj)](x) dx+O(µνe−mλR(z)R(z)3/2) dx

=

∫
R2

∇W (x+ zj)(1− |ψ(nj)(x)|2) dx+O(µνe−mλR(z)R(z)3/2) (84)

=

∫
R2

(
∇W (zj) +W ′′(zj)x+O(µν4x2)

)
(1− |ψ(nj)(x)|2) dx+O(µνΓ

1,0,1, 3
2

λ (ε))

where in the second equality, we used (4), (A.3), and Lemma A.1 in the Ap-
pendix (with α = β = mλ, γ = δ = 0). In the third and fourth equalities, we
used integration by parts and expansion of ∇W (x+ zj) about zj.

Now, by (84), condition (C) on W , vanishing of integrals of the form∫
R2 xf(r)dx and since b ∈ Σε = Dom(G) = Dom(F ) by (21), we have

Gj(b) = O(µν4) (85)

for all j = 1, . . . ,m by (22). Therefore, by (81), (85) and (22),

H(b) = O(max(µν4,Γ
1, 1

4
,1, 3

4
λ (ε) + µ2)) = O(µν4). (86)

Using (84) and condition (B) on W ,

∇ziGj(b) = δij

∫
R2

(
W ′′(bj) +O(µν5x2)

)
(1− |ψ(x)|2) dx+O(µν2Γ

1,0,1, 3
2

λ (ε))

(87)

where zi = (zi1, zi2). By condition (D) on W , (87) and (22), the 2× 2 matrix
∇ziGj(b) is invertible with bound

‖(∇ziGj(b))
−1‖ ≤ c(µν3)−1. (88)

Therefore, by (87) and (88), the 2m×2m matrix G′(b) is invertible with bound

‖G′(b)−1‖ ≤ c(µν3)−1. (89)

Since ηzχε is C1 in z by Theorem 3.2(b), then H : Σε → R2m defined in
(78) is also C1 in z and hence, by (81)

H ′(b) = G′(b) + ∂z[H(z)−G(z)]|z=b
= G′(b) + ∂z〈F0(vzχ) + F ′W (vzχ)ηzχε +NW (vzχ, ηzχε), ~T

zχ〉|z=b
= G′(b) +O(Γ

1, 1
2
,1, 3

4
λ (ε)) +O(µ2) (90)
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where we have used the notation ∂z in (62). Indeed (90) is true since ‖∂z ~T zχ‖L2 <
∞ (by explicit form of T zχjk in (25)) and

∂z〈F0(vzχ), ~T zχ〉 = 〈F ′0(vzχ)~T zχ, ~T zχ〉+ 〈F0(vzχ), ∂z ~T
zχ〉

= O(Γ
1, 1

2
,1,0

λ (ε)) +O(Γ
1, 1

4
,1, 3

4
λ (ε))

= O(Γ
1, 1

2
,1, 3

4
λ (ε)) (91)

by Theorem 3.1(a) and (c). Also,

∂z〈F ′W (vzχ)ηzχε, ~T
zχ〉 = ∂z〈ηzχε, F ′W (vzχ)~T zχ〉

= 〈∂zηzχε, F ′W (vzχ)~T zχ〉+ 〈ηzχε, ∂z(F ′W (vzχ)~T zχ)〉

= O(Γ
1, 1

4
,1, 3

4
λ,µ (ε) · Γ1, 1

2
,1,0

λ,µ (ε))

+O(Γ
1, 1

4
,1, 3

4
λ,µ (ε) · (Γ1, 1

2
,1,0

λ,µ (ε)))

= O(µ2) (92)

where in the first equality, we use self-adjointness of F ′W (vzχ); in the first term
in the third equality, we used Theorem 3.2(b) and (83); in the second term in
the third equality, we used Theorem 3.2(a) and Lemma A.3 in the Appendix;
and in the fourth equality, we used (22). Finally,

∂z〈NW (vzχ, ηzχε), ~T
zχ〉 = O((Γ

1, 1
4
,1, 3

4
λ,µ (ε))2) = O(µ2) (93)

by (46) to (48), Theorem 3.2(a) and (b) and (22). Therefore, (90) is proven.
By (89), (90) and (22), H ′(b) is invertible with bound

‖H ′(b)−1‖ ≤ c(µν3)−1. (94)

Therefore, by (86) and (94) and a standard implicit function argument (see
e.g., [43]), there exists a solution to H(z) = 0 at some z = a where

a = b+O(ν). (95)

By (80) and Proposition 5.3(i), we have shown that (30) is true for z = a
and any χ ∈ H2(R2;R). Combined with Theorem 3.2, we have shown that

FW (vaχ + ηaχε) = 0 with ηaχε = (ξ, β) = O(Γ
1, 1

4
,1, 3

4
λ,µ (ε)) = O(µ) (by (22)), and

hence we have proven Theorem 2.2.
As a final note, by (95) and since b ∈ Σε and Rλ(z) is a continuous function,

then a ∈ Σε for ν sufficiently small.

6.2 Proof of Theorems 2.3 and 2.4

In this section, we prove theorems 2.3 and 2.4. To prove Theorems 2.3 and
2.4, we show that if the potential W satisfies the given assumptions of these
theorems, then there exists a critical point z ∈ Σε for the reduced energy ΦW .
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Then using Theorem 2.1, these critical points z ∈ Σε of the reduced energy
are also critical points of the full energy functional EW , and hence solutions to
(6) and (7).

First, we begin with a very important lemma analyzing the reduced energy
ΦW (z), which will be proven in the Appendix.

Lemma 6.1. For ε > 0 sufficiently small and (z, χ) ∈ Σε,

ΦW (z) = Cm
se + Vint(z) + Wext(z) +Wext,Rem(z) +RW (z) (96)

where

Cm
se :=

m∑
j=1

E(nj) with E(nj) = E0(vzjχ) is constant;

Vint(z) is defined in (18);

Wext(z) :=
m∑
j=1

Wext,j(zj) as defined in (19) with

Wext,j(zj) :=
1

2

∫
R2

W (x)(|ψ(nj)(x− zj)|2 − 1)dx; (97)

Wext, Rem(z) :=
1

2

m∑
j<l

∫
R2

W (x)(f 2
j − 1)(f 2

l − 1)dx (98)

+
1

2

m∑
j<l<k

∫
R2

W (x)(f 2
j − 1)(f 2

l − 1)(f 2
k − 1)dx+ ... and

RW (z) := EW (vzχ + ηzχε)− EW (vzχ). (99)

In addition, suppose W satisfies condition (A) and (z, χ) ∈ Σε. We have
the following estimates on each term in (96).

(a) For λ > 1/2,

Vint(z) =
∑
l 6=k

nlnkΨ
λ>1/2(|zl − zk|) where as R(z)→∞

Ψλ>1/2(|zl − zk|) = c
λ>1/2
lk

e−|zl−zk|√
|zl − zk|

(
1 +O

(
1

|zj − zk|

))
(100)

= O(ε) and

c
λ>1/2
lk =

1

2
βl

∫
R2

ex·(zl−zk)/|zl−zk|(−∆ + 1)B(nk) dx

is a positive constant independent of l and k and

βl is a the constant in (4);

Wext(z) = O(µ); (101)

Wext,Rem(z) = O
(
µ
(
e−R(z)/

√
R(z)

))
= O(µε) (102)

RW (z) = O(Γ
2, 1

2
,2, 3

2
λ,µ (ε)∗) (103)
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where
Γ

2, 1
2
,2, 3

2
λ,µ (ε)∗ = O((max(Γ

1, 1
4
,1, 3

4
λ (ε), µ))2)

(b) For λ < 1/2, estimates on Wext(z) and RW (z) remain the same as for
the λ > 1/2 case, i.e., (101) and (103) still hold true for λ < 1/2, respectively.
However, for Vint(z) and Wext,Rem(z), we have

Vint(z) = −
∑
l 6=k

Ψλ<1/2(|zl − zk|) where as R(z)→∞

Ψλ<1/2(|zl − zk|) = c
λ<1/2
lk

e−mλ|zl−zk|√
mλ|zl − zk|

(1 +O(e−mλ|zl−zk|))

= O(ε) (104)

and c
λ<1/2
lk = c1

∫
R2

e
mλx·

zl−zk
|zl−zk|

[
λ(1− f 2

l )2 + |(∇Aψ)l|2
]
dx

Wext,Rem(z) = O(µe−mλR(z)R(z)3/4). (105)

We are now ready to prove Theorems 2.3 and 2.4.

6.3 Proof of Theorem 2.3: Pinning several vortices to
a maximum/minimum

In this section, we prove Theorem 2.3.

Proof of Theorem 2.3. We prove this theorem for λ > 1/2 and mention
the modifications in the proof for λ < 1/2 at the end.

Expanding Wext,j(zj) around the strict local maximum point 0 of W and
using condition (B) on W , we obtain

Wext,j(zj) =
1

2

∫
R2

W (x+ zj)(|ψ(nj)(x)|2 − 1)dx

=
1

2

∫
R2

W (0) +W ′(0)︸ ︷︷ ︸
=0

(x+ zj) +W ′′(0)(x+ zj)
2

 (|ψ(nj)(x)|2 − 1)dx

+
1

2

∫
R2

O(µν4|x+ zj|3)(|ψ(nj)(x)|2 − 1)dx

= cj +
1

2

∫
R2

[
W ′′(0)z2

j +O(µν4|x+ zj|3)
]

(|ψ(nj)(x)|2 − 1)dx

where cj =
∫

[W (0) +W ′′(0)x2](|ψ(nj)(x)|2 − 1)dx is a constant. For any fixed
positive integer m ≥ 2 and any configuration with m vortices zm,

Wext(zm) = Cm
ext − C̃

m∑
j=1

〈zj,W ′′(0)zj〉+O(µν4) (106)
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by (97) where Cm
ext = 1

2

∑m
j=1 cj and C̃ = 1

2

∫
R2(1 − |ψ(nj)(x)|2)dx > 0 are

constants.
From Lemma 6.1(a), we see that for Cm = Cm

se + Cm
ext constant,

ΦW (zm) = Cm − C̃
m∑
j=1

〈zj,W ′′(0)zj〉+O(µν4) (107)

+
m∑
l 6=k

nknlΨ
λ>1/2(|zk − zl|) +O (εµ) +O(Γ

2, 1
2
,2, 3

2
λ,µ (ε)∗)

= Cm − C̃
m∑
j=1

〈zj,W ′′(0)zj〉+
m∑
l 6=k

Ψλ>1/2(|zk − zl|) + o(εr)

since µ = O(εr), ν << 1 and nknl = 1 by assumption of Theorem 2.3.
Choose positive real numbers

s, t > 0 with 1 < t < r < s < 2 (108)

and define the set containing m-vortices in the configuration by Σs
ε,m by

Σs
ε,m := {zm |R(zm) > log(1/ε) and |zj| < ε−s/2 ∀j}. (109)

Note that Σs
ε,m ⊂ Σε since if zm ∈ Σs

ε,m, then R(zm) > log(1/ε) > log(1/ε) −
1
2

logR(zm) and therefore, e−R(zm)√
R(zm)

< ε, i.e., zm ∈ Σε. The boundary of Σs
ε,m is

∂Σs
ε,m = {zm |R(zm) = log(1/ε) or |zj| = ε−s/2 for some j}. (110)

We will show that there exists a critical point of the reduced energy ΦW in
the interior of the set Σs

ε,m.
Consider a test configuration ztm with R(ztm) = t log(1/ε). Certainly, ztm ∈

Σs
ε,m since t > 1 by (108). An example of such a configuration would be

the m equilateral polygon with sides of equal length R(ztm) = t log(1/ε) and
center at the origin. For this configuration, the vortex centers are located at

zj =
R(ztm)√

2(1−cos( 2π
m ))

ej where ej = (cos(2πj/m), sin(2πj/m)) for j = 1, . . . ,m,

and hence by (100) and (107),

ΦW (ztm) = Cm − C̃
m∑
j=1

t2 log2(1/ε)

2
(
1− cos

(
2π
m

))〈ej,W ′′(0)ej〉+ c(t log(1/ε))−1/2εt + o(εr)

= O(εt) (111)

by assumption that ‖W ′′(0)‖ = O(µ) = O(εr) for λ > 1/2 and 1 < t < r by
(108).

Now, consider configurations on the boundary of Σs
ε,m. Suppose zbc1m ∈

∂Σs
ε,m is a configuration with R(zbc1m ) = log(1/ε). Using the fact that x = 0 is
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a strict maximum of W , we have

ΦW (zbc1m ) ≥ Cm + C̃‖W ′′(0)‖
m∑
j=1

|zj|2 + c(log(1/ε))−1/2ε+ o(εr)

≥ Cm +mC̃‖W ′′(0)‖
(

min
j=1,...,m

|zj|2
)

+ c(log(1/ε))−1/2ε+ o(εr)

= O(ε) (112)

by (100), (107), (108) and ‖W ′′(0)‖ = O(εr).
Suppose zbc2m ∈ ∂Σs

ε,m is a configuration with |zi| = ε−s/2 for some i =

1, ...,m. W.L.O.G., assume R(zbc2m ) = t̃ log(1/ε) with 1 < s < t̃. Then by
(107),

ΦW (zbc2m ) ≥ C + C̃‖W ′′(0)‖ 1

εs
+ (m− 1)‖W ′′(0)‖

(
min

j 6=i, j=1,...,m
|zj|2

)
+c(t̃ log(1/ε))−1/2εt̃ + o(εr) = O(εr−s) (113)

where we used r − s < 0 by (108) and the fact that ‖W‖ = O(εr).
Comparing (111), (112) and (113), we see that

ΦW (ztm) < ΦW (zbc1,bc2m )

by (108) and therefore, the minimum of ΦW cannot be reached on the boundary
of Σs

ε,m. Hence, the minimum must be attained in the interior of Σs
ε,m. There-

fore, there exists a local minimum (and hence a critical point) z̃m ∈ Σs
ε,m ⊂ Σε

of the reduced energy ΦW . By Theorem 2.1, there exists a vortex configuration
z̃m containing m number of vortices and a solution of (6) and (7) of the form

um(x) = vz̃mχ + ηz̃mχε.

Note that by Theorem 3.2(a), ηz̃mχε = O(Γ
1, 1

4
,1, 3

4
λ,µ (ε)) = O(Γ

1, 1
4
,1, 3

4
λ (ε)) in H2

since µ = O(εr) for 1 < r < 2. Hence we have proven Theorem 2.3 for λ > 1/2.

For λ < 1/2, the interaction energy is of the form −
∑

k 6=l
e−mλ|zj−zk|√
mλ|zj−zk|

by

(104) in Lemma 6.1(b) and since W ′′(0) > 0, we are looking for a maximum
of the reduced energy ΦW (z). The only differences are that the configuration
set is Σs

ε,m = {zm |R(zm) > 1
mλ
log(1/ε) and |zj| < ε−s/2 ∀j} and that s, t > 0

in (108) satisfies 1 < mλt < r < s < 2. Using the fact that for λ < 1/2,
‖W ′′(0)‖ = O(µ) = O(εr) to control the errors in the remainders, one can show
using (104) in Lemma 6.1 that ΦW (ztm) = −O(εmλt), ΦW (zbc1m ) ≤ −O(ε) and
ΦW (zbc2m ) ≤ −O(εr−s). Since 1 < mλt < r < s, then ΦW (ztm) > ΦW (zbc1,bc2m )
and there exists a maximum in the interior of Σs

ε,m.

As a final note in this section, for λ > 1/2, z̃m is local minimum of the
reduced energy ΦW (z). Therefore, um(x) is a local minimizer of the full energy
EW by Theorem 2.1. Hence, um(x) is a stable solution for every m and so there
exists an infinite number of stable state solutions for (6) and (7) (see Remark
5 in Section 2).
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6.4 Proof of Theorem 2.4: Pinning near infinity

In this section, we prove Theorem 2.4.

Proof of Theorem 2.4. First, we note that condition (A) on the potential
W implies that q > 1 in the radial algebraic behavior of W at infinity. Again,
we will prove it for λ > 1/2 only. The modification in the proof for λ < 1/2
will be outlined in the end.

Fix a positive integer k > 0 and let zrkk be a vortex configuration with k
vortices equally spaced on a circle of radius rk > 0. More precisely, we place
the centers of the vortices in configuration zrkk := (zrk1 , ..., z

rk
k ) at

zrkj = rk(cos θj, sin θj) where θj =
2(j − 1)π

k
, j = 1, ..., k

with rk ∈ Sk :=

[(
q − β

2π

)
k ln k,

(
q + β

2π

)
k ln k

]
,

for some small constant β > 0. Note that by placing the k vortices equally
spaced on a circle of radius rk, we can identify the circular vortex configuration
zrkk ∈ R2k with the real variable rk, i.e.,

k− vortex circular configuration zrkk ∈ R2k ⇐⇒ rk ∈ Sk ⊂ R.

This will simplify our reduced problem of finding a critical point of ΦW (z) in
R2k to a critical point rk ∈ Sk ⊂ R.

By assumption on the radially symmetric form of W in Theorem 2.4 and
since |zrkj | = rk is large for every j, we can expand W (x+zrkj ) = µ|x+zrkj |−q +

O(µ|x+zrkj |−(q+ς)), |x+zrkj |−q = |zrkj |−q+O(|zrkj |−(q+2)) and write the function
Wext,j(z

rk
j ) as a function of rk as follows:

Wext,j(z
rk
j ) =

1

2

∫
R2

W (x+ zrkj )(|ψ(nj)(x)|2 − 1)dx

=
1

2

∫
R2

[
µ

|x+ zrkj |q
+O

(
µ

|x+ zrkj |q+ς

)]
(|ψ(nj)(x)|2 − 1)dx

=
1

2

∫
R2

[
µ

|zrkj |q
+O

(
µ

|zrkj |q+min(2,ς)

)]
(|ψ(nj)(x)|2 − 1)dx

= −1

2

∫
R2

[
µ

rqk
+O

(
µ

r
q+min(2,ς)
k

)]
(1− |ψ(nj)(x)|2)dx

= −cj
µ

rqk
+O

(
µ

r
q+min(2,ς)
k

)
= Wext,j(rk). (114)

Here cj =
∫
R2(1− |ψ(nj)(x)|2)dx > 0 is a constant by assumption that all the

degrees are nj = 1 or all nj = −1 in Theorem 2.4. Therefore, Wext(zrkk ) =
Wext(rk) and

Wext(rk) =
k∑
j=1

Wext,j(rk) = −k

[
cj
µ

rqk
+O

(
µ

r
q+min(2,ς)
k

)]
. (115)
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Similarly, we can write Vint(zrkk ) = Vint(rk) and sinceR(zrkk ) = 2πrk
k

(1−O(k−2)),
then by (100), nlnk = 1 for all l, k, and nearest neighbor interactions, we have

Vint(zrkk ) =
k∑
j=1

(
Ψλ>1/2

(
2πrk
k

(
1−O

(
k−2
)))

+O
(
e−2πrk(1+δ)/k

))
= k

[
Ψλ>1/2

(
2πrk
k

(
1−O

(
k−2
)))

+O
(
e−2πrk(1+δ)/k

)]
= Vint(rk) (116)

for some δ > 0. Combining (96), Lemma 6.1(a), (115) and (116), we have for
ΦW (zrkk ) = ΦW (rk),

ΦW (rk) = k

[
Ck
se/k −

cjµ

rqk
+ Ψλ>1/2

(
2πrk
k

(
1−O

(
k−2
)))]

+k

[
O
(
e−2πrk(1+δ)/k

)
+O

(
µ

r
q+min(2,ς)
k

)]
+O (µε) +O(Γ

2, 1
2
,2, 3

2
λ,µ (ε)∗)

= k

[
C̃ − cjε

rqk
+ Ψλ>1/2

(
2πrk
k

(
1−O

(
k−2
)))]

+k

[
O
(
e−2πrk(1+δ)/k

)
+O

(
ε

(k ln k)q+min(2,ς)

)]
+ o(ε)

by assumption thatW = O(µ) = O(ε) for λ > 1/2 and since r ∈ [r0k ln k, r1k ln k],
and where C̃ = Ck

se/k. By the form of the interaction function Ψλ>1/2 (d) as
d → ∞ in (100), there exists an integer k0 > 0 such that for all k > k0, C̃ −
cjε

rqk
+ Ψλ>1/2

(
2πrk
k

(1 +O(k−2))
)

has a minimum point at r̃k =
(
q+o(1)

2π

)
k ln k

which is in the interior of Sk. Therefore, we have proven that ΦW (rk) has
a critical point at r̃k ∈ Sk which is equivalent to saying that ΦW (zrkk ) has a
critical point at the k−vortex circular configuration z̃k ∈ R2k. By Theorem
2.1, (6) and (7) has a solution of the form

uk(x) = vz̃kχ + ηz̃kχε

where by Theorem 3.2(a), ηz̃kχε = O(Γ
1, 1

4
,1, 3

4
λ,µ (ε)) = O(Γ

1, 1
4
,1, 3

4
λ (ε)) in H2 since

µ = O(ε). In addition, observing that Cm
se +Wext(z) =

∑m
j=1 EW (vzjχ) by (96)

and (97), then uk has energy

EW (uk) = kEW (v±1) +O

(
e−R(z̃k)√
R(z̃k)

)
where v±1 is the ±1 degree vortices. Therefore, we have proven Theorem 2.4
for λ > 1/2.

For λ < 1/2, the proof is exactly the same except that the form of ΦW (rk)

is C̃+ c̃kε
rqk
−Ψλ<1/2

(
2πrk
k

)
and attains a maximum point at r̃k =

(
q+o(1)
2πmλ

)
k ln k.

Here, c̃k = 1
k

∑k
j=1 cj where the constant cj is defined under (114).
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Again, as a final note, for λ > 1/2, z̃k is a local minimizer of the reduced
energy ΦW (z), and hence uk(x) is a local minimizer of the full energy EW by
Theorem 2.1. Therefore, uk(x) is a stable solution for every k and so there
exists an infinite number of stable state solutions for (6) and (7) (see Remark
5 in Section 2).

A Appendix

In this Appendix, we prove Lemma 6.1 and a technical estimate required
in Section 6.1. We will prove Lemma 6.1 first and then leave the technical
estimate to the end.

We will use the subindex j to denote vortex component functions which
have degree nj and is centered at zj. For example, 1− f 2

j = 1− |ψ(nj)(· − zj)|2
or (∇Aψ)j = ∇

A(nj)(·−zj)
ψ(nj)(· − zj), etc... We will also denote [u]ψ,A as the

complex and vector components of u ∈ L2(R2;C× R2).
To prove Lemma 6.1, we need the following two technical lemmas.

Lemma A.1. For 0 < α ≤ β, 0 ≤ δ, γ < 3/2, we have∫
R2

e−α|x|e−β|x−a|

|x|γ|x− a|δ
dx ≤ c

e−α|a|

|a|γ+δ−2

{
|a|−1/2, α = β
|a|δ−2, α < β.

Lemma A.2. Suppose 0 < m1 < m2 and functions b(x), e(x) satisfy |b(x)| ≤
ce−m2|x| and e(x) = c1

e−m1|x|√
m1|x|

(1+O(e−m1|x|)) as as |x| → ∞. Then as |z| → ∞,

I(z) :=

∫
R2

b(x)e(x− z) dx = c1
e−m1|x|√
m1|x|

∫
R2

em1x· z|z| b(x) dx(1 +O(e−m1|z|)).

Lemma A.1 was proven in [24] in Appendix A.3. Lemma A.2 is a straight
forward modification of Lemma 13 in [24] with similar proof so we won’t prove
it here. Now we are ready to prove Lemma 6.1.

Proof of Lemma 6.1. We prove (96) first. Write

EW (vzχ + ηzχε) = EW (vzχ) +RW (z), (A.1)

where RW (z) is defined by this relation. But

EW (vzχ) = E0(vzχ) +
1

2

∫
R2

W (x)(|ψzχ(x)|2 − 1)dx (A.2)

= Cm
se + Vint(z) +

∫
R2

W (x)(|ψzχ(x)|2 − 1)dx

by definition of Vint(z) in (18). From the fact that we can write
m∏
j=1

f 2
j − 1 =

m∑
j=1

(f 2
j − 1) +

m∑
j<l

(f 2
j − 1)(f 2

l − 1)

+
m∑

j<l<k

(f 2
j − 1)(f 2

l − 1)(f 2
k − 1) + ..., (A.3)
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we have

1

2

∫
R2

W (x)(|ψzχ(x)|2 − 1)dx = Wext(z) +Wext,Rem(z). (A.4)

Now we prove part (a) for λ > 1/2. Firstly, (101) and (102) follows from
(97) and (98) and application of Lemma A.1, (4), and conditions (A) and (B)
on potential W . For example, for (102), by (4), we have

|Wext,Rem(z)| ≤ ‖W‖L2

∑
l<j

‖e−mλ(|x−zj |+|x−zl|)‖L2 ≤ µe−mλR(z)R(z)3/4

� µ
e−R(z)√
R(z)

= O(µε) (A.5)

where in the second last inequality, we used condition (A) of Lemma 6.1 and
applied Lemma A.1 with α = β = 2mλ > 1, δ = γ = 0.

Next, equation (100) follows directly from Lemma 7 in [24].
For (103), we have

RW (z) = EW (vzχ + ηzχε)− EW (vzχ) = 〈E ′W (vzχ), ηzχε〉︸ ︷︷ ︸
O(Γ

1, 14 ,1,
3
4

λ,µ (ε)Γ
1, 14 ,1,

3
4

λ,µ (ε))

+ O(‖ηzχε‖2)︸ ︷︷ ︸
O(Γ

1, 14 ,1,
3
4

λ,µ (ε))2

= O(Γ
2, 1

2
,2, 3

2
λ,µ (ε))∗

by Corollary 3.1.1 and Theorem 3.1a).
Now we prove part (b) for λ < 1/2. We prove (104) first. A straight

forward computation (see Lemma 7 in [24]) gives

Vint(z) = E0(vzχ)−
m∑
j=1

E(nj) = LOλ>1/2 + A+B + C +D

= LOλ>1/2 + (A1 + A2) + (B1 +B2) + C + (D1 +D2)

where by (3) and (4),

LOλ>1/2 =
1

2

m∑
l 6=k

∫
R2

jl · jk +BlBk ≤ c

m∑
l 6=k

∫
R2

e−|x−zl|√
|x− zl|

e−|x−zk|√
|x− zk|

;

A =
1

2

m∑
j=1

∫
R2

(∏
k 6=j

f 2
k − 1

)
|(∇Aψ)j|2 =: A1 + A2 where (A.6)

A1 :=
1

2

m∑
k 6=j

∫
R2

(f 2
k − 1)|(∇Aψ)j|2 ≤ c

m∑
j 6=k

∫
R2

e−mλ|x−zk|e−2mλ|x−zj | and

A2 :=
1

2

m∑
i,k 6=j

∫
R2

(f 2
k − 1)(f 2

i − 1)|(∇Aψ)j|2 + · · ·

≤ c

m∑
i,k 6=j

∫
R2

e−mλ|x−zk|e−mλ|x−zi|e−2mλ|x−zj |;
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B =
1

2

m∑
j 6=l

∫
R2

(∏
k 6=j,l

f 2
k

)
[Re(ψ̄∇Aψ)]j[Re(ψ̄∇Aψ)]l =: B1 +B2 where

B1 :=
1

2

m∑
j 6=l

∫
R2

(∏
k 6=j,l

f 2
k − 1

)
[Re(ψ̄∇Aψ)]j[Re(ψ̄∇Aψ)]l

≤ c

m∑
j 6=l 6=k

∫
R2

e−mλ|x−zk|e−mλ|x−zj |e−mλ|x−zl| and (A.7)

B2 :=
1

2

m∑
j 6=l

∫
R2

[Re(ψ̄∇Aψ)]j[Re(ψ̄∇Aψ)]l ≤ c
m∑
l 6=j

∫
R2

e−mλ|x−zl|e−mλ|x−zj |;

C =
1

2

m∑
j 6=l

∫
R2

(∏
k 6=j

f 2
k − 1

)
jj · jl ≤ c

m∑
j 6=l 6=k

∫
R2

e−mλ|x−zk|e−|x−zj |e−|x−zl|

D =
λ

4

∫
R2

[
m∑
j=1

(f 2
j − 1) +

m∑
l<j

(f 2
l − 1)(f 2

j − 1) + · · ·

]2

dx =: D1 +D2 where

D1 :=
λ

4

m∑
l 6=j

∫
R2

(f 2
l − 1)(f 2

j − 1)dx+
λ

2

m∑
l 6=j

∫
R2

(f 2
l − 1)2(f 2

j − 1)dx (A.8)

≤ c

∫
R2

[
m∑
l 6=j

e−mλ|x−zl|e−mλ|x−zj | +
m∑
l 6=j

e−2mλ|x−zl|e−mλ|x−zj |

]
dx and

D2 =
λ

4

∫
R2

[
m∑

j 6=l 6=k

(f 2
j − 1)(f 2

l − 1)(f 2
k − 1) +

m∑
j 6=l

(f 2
j − 1)2(f 2

l − 1)2 · · ·

]
dx

≤ c

∫
R2

[
m∑

j 6=l 6=k

e−mλ|x−zj |e−mλ|x−zl|e−mλ|x−zk| +
m∑
j 6=l

e−2mλ|x−zj |e−2mλ|x−zl| · · ·

]
dx.

In (A.6), we used |∇Aψ|2 = (f ′)2+ n2f2

r2
(1−a)2 and in terms A = A1+A2, B1, C

and D, we used (A.3).
Since mλ < 1 for λ < 1/2, then the leading order terms of Vint come from

terms B2 and D1. But, we claim that B2 + D1 has the same order as A1.
Indeed, by (A.7),

B2 =
1

2

m∑
l 6=j

∫
R2

(fl(∇xfl)) · (fj(∇xfj)) dx =
1

4

m∑
l 6=j

∫
R2

(fl(∇xfl)) · ∇x(f
2
j − 1) dx

= −1

4

m∑
l 6=j

∫
R2

[
|∇xfl|2 + fl∆xfl

]
(f 2
j − 1) dx

=
1

4

m∑
l 6=j

∫
R2

[
|(∇Aψ)l|2 + λ(f 2

l − 1)2 + λ(f 2
l − 1)

]
(1− f 2

j )dx (A.9)
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where we used integration by parts in the second last equality and the equation

−∆rfn + n2 (1− an)2

r2
fn + λ(f 2

n − 1)fn = 0

(by (1), (3) and ∆xf = ∆rf) in the last equality. Therefore by (A.8) and
(A.9), we obtain

B2 +D1 =
1

4

m∑
l 6=j

∫
R2

[
|(∇Aψ)l|2 − λ(f 2

l − 1)2
]

(1− f 2
j ) dx

≤ c

∫
R2

e−2mλ|x−zl|e−mλ|x−zj | dx. (A.10)

By (A.6) and (A.10), B2 + D1 has the same order as A1, and therefore, the
leading order term in Vint for λ < 1/2 comes from the addition of terms
A1 +B2 +D1. Computing

A1 +B2 +D1 = −1

4

m∑
l 6=j

∫
R2

[
λ(1− f 2

l )2 + |(∇Aψ)l|2
]

(1− f 2
j ) dx < 0,

we see that to leading order, Vint(z) is negative for λ < 1/2. Now, using the
asymptotic expression

1− f = c̃1
e−mλr
√
mλr

(1 + o(e−mλr)) as r →∞

(see [37], Theorem II.5.3) for λ < 1/2, then 1 − f 2 = (2 − (1 − f))(1 − f)
has the same asymptotic behavior as r →∞ with the constant c̃1 replaced by
c1 = 2c̃1. Therefore, by Lemma A.2,

Vint(z) = −
∑
l>j

Ψλ<1/2(|zl − zj|) where

Ψλ<1/2(|zl − zj|) = c
λ<1/2
lj

e−mλ|zl−zj |√
mλ|zl − zj|

(1 +O(e−mλ|zl−zj |)) with (A.11)

c
λ<1/2
lj = c1

∫
R2

e
mλx·

zl−zj
|zl−zj |

[
λ(1− f 2

l )2 + |(∇Aψ)l|2
]
dx > 0

and (104) follows.
For (105), we use the same estimate as in (A.5) for λ > 1/2 to obtain the

result for λ < 1/2.

Now, we state a prove a technical estimate required in Section 6.1.

Lemma A.3. Suppose W (x) satisfies condition (A). Then

‖∂zi(F ′W (vzχ)T zχjk )‖L2 = O(Γ
1, 1

2
,1,0

λ,µ (ε)). (A.12)
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Proof. Recall that for every j = 1, ...,m, we can decompose

F ′W (vzχ) = Lzχ +

(
W 0
0 0

)
(A.13)

= Lj + L
1/2
(j) + V(j) +

(
W 0
0 0

)
with

Lj := E ′′GL(gχ(j)
u(nj)(x− zj)),

L
1/2
(j) is a first order differential operator at gχ(j)

u(nj)(x− zj) given by

L
1/2
(j) (gχ(j)

u(nj)(x−zj))
(

ξ
B

)
=

(
−2i

[
Θ(j)

]
A
· ∇

[gχ(j)u
(nj)(x−zj)]A

ξ +
[
Θ(j)

]
ψ
∇ ·B[

Θ(j)

]
ψ
∇

[gχ(j)u
(nj)(x−zj)]A

ξ

)
(A.14)

and
Θj(x) := vzχ − gχ(j)

u(nj)(x− zj) (A.15)

with χ(j) := χ +
∑

k 6=j θ(· − zk) and V(j), Θ(j) are multiplication operators
satisfying

‖V(j)‖∞, ‖Θ(j)‖∞ ≤
∑
k 6=j

e−min(1,mλ)|x−zk| (A.16)

(see [24] or [48]). Since we can write

T zχjk =: T
zjχ(j)

jk + TRemjk (A.17)

:=

(
eiχ(j)(∇Aψ)

(j)
k

B(j)e⊥k

)
+

(
eiχ(j)

(∏
l 6=j f

(l) − 1
)

(∇Aψ)
(j)
k

0

)
,

then

‖∂zi(LjT
zχ
jk )‖L2 ≤ c‖LjT

zjχ(j)

jk + LjT
Rem
jk ‖H1

= c‖LjTRemjk ‖H1

≤ ce−min(1,mλ)R(z) (A.18)

since 1 − f, f ′, f ′′, f ′′′ ≤ e−mλ|x| and 1 − a, a′, a′′ ≤ e−|x|. Now due to gauge
equivariance of L

1/2
(j) in (A.14), we have

‖∂zi(L
1/2
(j) T

zχ
jk )‖L2 ≤ ce−min(1,mλ)R(z) (A.19)

by (A.15) to (A.17). Now

‖∂zi(V(j)T
zχ
jk )‖L2 ≤ ce−min(1,mλ)R(z) (A.20)

by (A.16) and∥∥∥∥∂zi ( W 0
0 0

)
T zχjk

∥∥∥∥
L2

=

∥∥∥∥( W 0
0 0

)
∂ziT

zχ
jk

∥∥∥∥
L2

≤ ‖W‖L2‖∂ziT
zχ
jk ‖∞ ≤ cµ

(A.21)

39



where we used condition (A) on W and ‖∂ziT
zχ
jk ‖∞ <∞ (by explicit expression

of T zχjk in (25)). Therefore, by (A.13) and (A.18) to (A.21), we have proven
estimate (A.12).
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[38] T. Riviére, Ginzburg-Landau vortices: the static model, Séminaire Bour-
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