BOUNDARY CLUSTERED INTERFACES FOR THE ALLEN-CAHN
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ABSTRACT. We consider the Allen-Cahn equation

% =0 on 01,

where Q = B;(0) is the unit ball in R” and € > 0 is a small parameter. We prove the
existence of a radial solution u. which has N interfaces {u.(r) = 0} = U}_, {r = r5}, where
1>7rf>r5 > ... >rf aresuch that 1—rf ~elog £,75_, —r¢ ~elog1,j =2,...,N. Moreover,
the Morse index of u. in H}(f2.) is exactly N.

2Au+u—u®=0 inQ,

1. INTRODUCTION

The aim of this paper is to construct a family of clustered transitional layered solutions to the
Allen-Cahn equation
(1.1)

%20 on 0,

{ e2Au+u—u*=0 in Q,
where A =", 8‘9—; is the Laplace operator, 2 = B;(0) is the unit ball in R”, € > 0 is a small
parameter, and v(x) denotes the unit outer normal at x € 0S).

Problem (1.1) and its parabolic counterpart have been a subject of extensive research for

many years. In order to describe some known results, we define the Allen-Cahn functional (see
[2])
g2 5 1 2\2
Je[u] = [5|Vu| — F(u)], where F(u)= _Z(l —u)”.
Q

The set {z € Q | u(z) = 0} is called the interface of u. Let Perg(A) be the relative perimeter of
the set A C Q. Using I'—convergence techniques (see [15]), Kohn and Sternberg in [13] showed
a general result stating that in a neighborhood of an isolated local minimizer of Perq there
exists a local minimizer to the functional J.. They further used this idea to show the existence
of a stable solution for (1.1) in two dimensional, non-convex domains, such as a dumb-bell.
Since then, the existence of solutions with a single interface intersecting the boundary has been
established and studied by many authors. See [1], [5], [8], [12], [19], [22] and the references
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therein. However, the existence of multiple interfaces is only proved (see [17] and [18]) in the

one-dimensional case for the following Allen-Cahn equation with inhomogeneous terms
(1.2) et +ax)(u—u*)=0,-1<z<1u(£l)=0

and in the higher-dimensional case ([7]) for the following nonlinear equation with bistable
nonlinearity and inhomogeneous term
(1.3) 2Au + u(u — a(lz))(1 —u) = 0 in By (0), g—z — 0 on 9B, (0).
The results of [7] states that if a(r) has a critical point 79 € (0,1) such that a(re) = 3, a (ro) =
0,a" (1) < 0, then there exists a clustered interior layer solutions to (1.3). All the papers
([7], [17], [18]) use the properties of the inhomogeneous terms to construct multiple (interior)
interfaces. (For Allen-Cahn equation with inhomogeneity Au+a(x)(u—u?) = 0 in R?, we refer
to [20] and [21].)

Here, we continue our study, initiated in [14], in the study of clustered layered solutions for
semilinear elliptic equations and show that the homogeneous Allen-Cahn equation itself can
generate multiple clustered interfaces near the boundary. In [14], we showed that the following

singularly perturbed Neumann problem

(1.4) e2Au —u+uP =0 in Q,
’ u >0 in  and g—gzo on 02,

has a clustered layered solution near the boundary. (The existence of one layer solution to (1.4)
near the boundary was first established in [3], [4].) The purpose of this paper is to show that
a similar phenomenon happens to the Allen-Cahn equation. In particular, we establish the
existence of clustered interfaces — the so-called “phantom interfaces” — in higher dimensions.
Moreover we show that for each fixed positive integer N, there exists a solution to (1.1) with
Morse index N (in the space of radial functions).

Our main result is the following.

Theorem 1.1. Let N be a fized positive integer. Then there exists ey > 0 such that for all
e < en, problem (1.1) admits a radially symmetric solution u. with the following properties
(1) the set of interfaces {u.(r) = 0} contains N spheres {r =r},j=1,.., N with

1 1 )
(1.5) 1—Tf~elogg, r;’ffl—rj-rvelogg, j=2,..,N.

More precisely, we have u(r§ + ey) — (—1)7H(y) , where H(y) is the unique heteroclinic

solution of

(1.6) H +H-H>=0, H(0) =0, H(4o00) = +1.
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(2) u. has the following energy bound
(1.7) Je[ue| = wp—1 Nel[H]| + o(e),

where

1t = [ (G- Fm).

and where w,_, denotes the volume of S™ L.
(3) The Morse index of u. in H} () is exactly N, where H}(Q) denotes the space of radial
functions in H'(Q).

Remark: By a simple transformation, Theorem 1.1 readily extends to (1.3) with a(r) = 1.

Our approach is similar to that of [14], where a finite dimensional reduction procedure com-
bined with a variational approach is used. Such a method has been used successfully in many
other papers, see e.g. [3], [4], [6], [9], [10] and [11].

In the rest of section, we introduce some notation which are used later.

By the scaling x = ey, problem (1.1) is reduced to the ODE

' u'(0) = u’(é) =0,
where f(u) = u —u3. From now on, we will work with (1.8).

Let H(y) be the unique solution to (1.6). Set

1 1
(1.9) 0= Bi(0) = By(0), L= (o, g) .
For v € C%(€Q.) and u = u(r), we have
n - ].
(1.10) Au=1u"+ nr .

For k € N, we denote by HF(€),) the space of radial functions in H*(€.). On H}(.), we define
an inner product as follows:

(1.11) (u,v)e = /E(u'v' + 2uv)r™dr.
0

Similarly, the inner product on L?(€2.) can be defined by

1
(1.12) <u,v >5:/ (uv)r™ tdr.
0
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We also introduce a new energy functional which, up to a positive multiplicative constant, is

equivalent to J,

1 [ :
(1.13) el = [T = [T P@r e ),
0 0

Throughout this paper, unless otherwise stated, the letter C will always denote various generic
constants which are independent of ¢, for ¢ sufficiently small. The notation A, >> B, means

that lim,_, % =0, while A, << B, means ALE >> BLE.

Acknowledgments. The first author is supported by MURST, under the project Varia-
tional Methods and Nonlinear Differential Equations. He wishes to thank the Department of
Mathematics, Chinese University of Hong Kong for the hospitality during his stay. The second
author is partially supported by the NSF grant DMS 0400452. The research of the third author
is partially supported by an Earmarked Grant from RGC of Hong Kong.

2. SOME PRELIMINARY ANALYSIS

In this section we introduce a family of approximate solutions to (1.8) and derive some useful
estimates.

Let H be the unique solution of (1.6). It is easy to see that

H(y) — 1= —Age V2l + O(e- V2l for y > 1;
(2.1) H(y)+ 1= Age V2 + O(e- VW) for y < —1;
H'(y) = V2Age™V2W + O(e=@V2IN) for |y| > 1,

where Ay > 0 is a fixed constant.

We state the following well-known lemma on H. For a proof, see Lemma 4.1 of [16].

Lemma 2.1. For the following eigenvalue problem

(2:2) ¢ + [ (H)p=Ap,|¢| <1, inR,
there holds

(2.3) M =0, ¢ =cH ;)\ <0.

For u € H?().), we define the operator

(2.4) S.[u] := upr + - 1ur + f(u).

We introduce the following set

(25) A - {t - (tl, ...,tN)

tn > 1—¢e(log? )2, 11—t >nelogi,
ti—1 —t; >77510g ,J=2,.,N ’
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where 7 € (0, sf) is a fixed number.
Let x(s) be a cut-off function such that x(s) = 1 for s < 1 and x(s) = 0 for s > L. For
te (%, 1), we define

Lot Ba(r) =

(2.6) ) = H'(— 7

and

t

@7 H()=H =), Halr) = (H(r -5)- pg(t)ﬂs(r)> (1= x(e)) = x(er).

Then it is easy to see that for =t >> 1

(2.8) p(t) = V2Ae T £ O(e 2V,
We first assume that N is odd. For t € A, we now define our approximate function:
N
(2.9) He.y(r) =Y (=1)7H.y(r).
j=1
If N is even, we set
N N+1
(210) Z ]Hst 1= Z(_l)sz,tj (7’)
j=1 j=1

where we use the convention H, = 1. So without loss of generality we can assume that N

is odd.

Note that for r < = %

BEN+1

there holds
(2.11) [Heog(r) — (=1)N| + [H. ()| + [HL(r)] < e ce.

Observe also that, by construction, H,; satisfies the Neumann boundary condition, namely

7

H_,(0) = H.,(1) = 0. Furthermore, H.; depends smoothly on t as a map with values in

¢ ([0.)).

The following lemma shows that H, 4 is a good approximate function to (1.8).

Lemma 2.2. For ¢ sufficiently small and t € A, one has

% N f|t —t;
(2.12) |8 Heg]llpoe + €™ / |S[Hegllr™ Hdr < Cle+ Y (p(t)?+> e = |.

0 j=1 1#£]

Proof . Using (1.6) it is easy to see that

(218) S.lHed] = " LHL 4 f(Heg) — S F(H)) —22 )\ pelt)5:(r) + O (e %) .
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The first term in right hand side of (2.13) can be estimated as follows
/ a1
- —Z H{J — pe(t; )ﬁg(r))—i-O(e Os) i

From the decay of H and (3. we deduce that

(2.14) H%Hé’t . +e / —|H] |r"'dr < Ce.
Next, we note that
F(Ho0) = 37 F(-1)'H,) - 2%(—1)%41&»@@) < S+ S,
where - -
Si = ‘f(i(—l)jﬂtj) - if((—l)%) ;
N = N "~ N
S, = f(;—l)jm,t,.) f(]Z; LY H,) ~ 22 pe(r)]-

To estimate S; and Sy, we divide the domain I, = (0, ;) into the N intervals I.,,...,I. n
defined by

(2.15)
ti 4+t 1 i+t tj+11 . IN +in-1
I = — I .= R s :2,...,N—1,I = 0,7 .
&l [ 2 e) T [ 2 2 J e 2
Let us choose tg = 2 — t1,ty41 = —ty so that
t;+1t; i+t .
(216) Is;j = { : -;5]+1’ E 2€J 1> ) .7 = 1a "'7N1 IE = U;'Vzlfffjj'

For r € I, ;, we note that for j <,
.
Hy(r) =1+ 0(e V2=
while for j > [,
.
Hy(r) = =1+ 0(e V?"*)).

Since N is odd, we see that

(2.17) S (1) Hy =D (1) (Hy + 1) + > _(-1)'(H, - 1).

I#j I<j >3

Thus we can rewrite S; as:

Sy = f(Z(—l)l(Htl + 1)+ (=1 Hy + Y (=1)'(Hy, - 1) ) (=1 f(Hy,) =Y (=1)'f(Hy,)

I<j I>j I#7
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= f'((-1YHy) (Z( (Hy + 1)+ () (H, 1) ) > (1) (Hy)

I<j >j l#j

+O(Z(th + 1)2 + Z(Htl - 1)2>

I<j I>j
This quantity can also be written in the following way

51 = [fl((_l)thj) - f’(l)] (Z( ) (Hy +1) + Z )'(Hy, — 1 )

I<j I>j

+O(Z(Ht1 + 1)2 + Z(‘Htl - 1)2>

I<j I>j
= O(min{H,, +1, H,, —1}) (Z(Htl +1)+ ) (Hy, — 1)) +O(Z(Ht, +1)2 4+ (H, — 1)2> :
1<j 1>j 1<j 1>
Then with some elementary computations one finds
\/§|ti—t‘\
(2.18) ISullzqr, ) + €™ / S tar <0y e
Lo i#j
It remains to estimate S,. To this purpose, we note that for r € I, ;,7 > 2, we have
- 1
pe(t;)Be(r) = O(e™? ),
from which it follows that
N
n—1 n—1 —2\/51 tl .
ISalimy +2 [ IS0l = O OOt i22
I p
Therefore, we just need to consider the case r € I, ;. But since f’(:l:l) = —2, we have
N N N
52 = f(Z Htl Z ps tl ﬂs )) f(Z(_l)lHtl) - f (_1) (—1)lp5(tl)ﬂ5(’l‘)
=1 1=1 =1 1=1
N N N
- [0t - ] S +o S awracr)
1=1 =1 1=1
N . N N
= O(Z eﬂ‘r?g (Zpa(tl)ﬂg(r) +0 Z pe(t)%B.(r)? ].
1=1 =1 1=1
Hence we also get
(2.19) el oeqry + €™ [ 1Sa(r) " dr < Cp2(11)-
I

The proof of the next lemma is postponed to the appendix.
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Lemma 2.3. Lett € A. Then for ¢ sufficiently small we have

Eg[i(—l)ng,tj] = I[H]é (tg)_l B (%)n_l (VBAZ + of1))e- VA
(2.20) - ZN: (%)n_l (VZAZ + o(1))e~V22 4 0(e27m),

Jj=2

where Ay > 0 is defined in (2.1).

3. LYAPUNOV-SCHMIDT PROCESS: FINITE-DIMENSIONAL REDUCTION

In this section we outline the so-called Lyapunov-Schmidt reduction process. Since this can be
proved along the same ideas of Sections 3 of [14], we skip some of the details.

. . . OHct, .
Fix t € A. Integrating by parts, one can show that orthogonality to Y in H!(Q,),

8tj
j=1,..., N, is equivalent to orthogonality in L?(€).) to the following functions
O0H, ;. 0H, ;.
3.1 Z., = A(Z8ty ol g N
(3.1 o= AT -2t

By elementary computations, differentiating (1.6) we obtain

aH&tj L

1 1, 1—t )
(3-2) ot —H(r =)+ ZH (—— D) B.(r) + O(e™ee),

€

aHE,tj n—1 aHg,tj ! . 1 ’ ’ ’ 1
ot () = ) =f ) (1),

(33) Zeyy = (f (Hyy) = f (£1)) -

where O(e~@%) and o(1) are intended both in the C' and H}! sense.
We consider first the following linear problem. Given h € L*(£),), find a function ¢ satisfying

) (L= 0 0= S
' P0)=¢'(1)=0, <¢,Zy >=0, j=1,.,N,

for some constants c¢j,j = 1,..., N. To this purpose, define the norm

(3.5) 6]« = sup [o(r)].

re(0,1)

‘e

Assuming a solution to (3.4) exists, we have the following estimate on ¢:

Proposition 3.1. Let ¢ satisfy (3.4). Then for ¢ sufficiently small, we have
(3.6) 18]l < CllR].,

where C s a positive constant independent of € and t € A.
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Proof : The proof is similar in spirit of that of Proposition 3.1 of [14]. For sake of completeness,
we include a proof here.

Arguing by contradiction, assume that

(3.7) I8l =1; [[A][« = o(1).
We multiply (3.4) by al;;tj and integrate over €2, to obtain
ic- <Z OH.y > = —<h OHey, >
. ) et 8tj g - ’ atj £
=1
O0H. ;.
(3.8) + < A¢+ fl(Hop)p—2 >, .

ot;

From the exponential decay of H' one finds
1

OH. ,. Y OOH., . )
EAd ] €: v n d — O h X n .
< h, o, > /0 hi@tj r r (II1r]|«e™™)

Moreover, integrating by parts, using (3.2) and (3.3) we deduce

! 8H5,t] 12 aHE,t]
< A¢+ f (Hs,t)¢a at >€ = < Ze,tj + f (Ha,t) at 7¢ >£
J J
= oe™"[|olls)-

From (3.2) and (3.3), we also see that
O0H, ;.
Zegy 2L >p= —e™1 t?_15ij/f'(H)(H')2+0(1) :
0t R
where 0;; denotes the Kronecker symbol. Note that, using the equation H" + f'(H)H' = 0 we
find

(3.9) <

[ ranary = [ >o

R R

This shows that the left hand side of the equation (3.8) is diagonally dominant in the indexes
i, 7, and hence by (3.7) we have

(3.10) ci = O(E||hll,) + o(e]ldll.) = o(e),  i=1,..,N.

Also, since we are assuming that [|h||. = o(1) and since || Z. ||, = O (%), there holds

N
(3.11) b+ i Zey |l = o0(1).
7j=1

Thus (3.4) yields

(3.12) { ¢+ 221! + f(1) + (f'(Her) — f (1)) = o(1);
' FO)=¢(1)=0; <@, Zey >=0, j=1,.,N,

where o(1) is in the sense of L>(0, 1).
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We show that (3.12) is incompatible with our assumption ||¢||. = 1. First we claim that

N
t; t;
(3.13) |¢| -0 on yEU(;J—R,EJ-I-R) as € — 0,

j=1
where R is any fixed positive constant.

Indeed, assuming the contrary, there exist 6y > 0, j € {1,..., N} and sequences e, ¢, Yx €
(t—j - R, t;” + R) such that ¢ satisfies (3.4) and

€

(3.14) |%(yk)| = do-

Let ¢ = op(y— zik) Then using (3.12) and |||, = 1, as &, — 0 ¢y, converges weakly in H2 (R)

and strongly in C} (R) to a bounded function ¢y which satisfies

loc
dg + f'(H)po =0 in R, |¢o| < C.

By Lemma 2.1, there holds ¢, = cH' for some c. Since qgk 1 Z., we conclude that
Ju dof'(H)(H")*(y) = 0, which yields ¢ = 0. Hence ¢y = 0 and ¢, — 0 in Bog(0). This
contradicts (3.14), so (3.13) holds true.

Given § > 0, the decay of f'(H) — f (£1) and (3.13) (with R sufficiently large) imply

(3.15) 17 (He) — £ D)6 < 5+ 29l

Using (3.12) and the Maximum Principle one finds

N
I8l < N(F'(Hep) = £ ED)SI + D leill1 Ze N1« + l1Al.
j=1

1
< 2%+l
and hence
o]l <46 <1

if we choose 6 < 1. This contradicts (3.7). O

Next, we consider the following nonlinear problem: find a function ¢ such that for some con-

stants c;,j = 1, ..., N, the following equation holds true

A(Hep+ )+ f(Hep + ¢) = Z;vzl CjZey; in Q,
(3.16)
¢'(0)=¢'(}) =0,< ¢, Z.y, >=0,j=1,...,N.

We have the following result, whose proof follows the same lines of Proposition 4.2 of [14].
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Proposition 3.2. Fort € A and ¢ sufficiently small, there ezxists a unique ¢ = ¢4 such that
(3.16) holds. Moreover, t — ¢4 is of class C' as a map into H} (), and we have

n 3./
_3. 5t _ aV2lti—tl
*30(5+§eﬂ/§¥+§:€ )
=1

i

(3.17) |G ]

4. ENERGY COMPUTATION FOR REDUCED ENERGY FUNCTIONAL

In this section we expand the quantity
(4.1) M (t) =" "E[Ho s + ben) : A > R

in € and t, where ¢, is given by Proposition 3.2. Up to negligible error terms, the same

expansion of Lemma 2.3 holds true.
Lemma 4.1. Fort € A and ¢ sufficiently small, we have
Ms(t) = En_lgg [Hs,t -+ ¢E,t]
N 1—t
= I[H]Y 17! = (V2A] +o(1))e 2=
j=1

N

(4.2) — (V2424 o(1) S e le VR L ().

J
=2

Proof. It is sufficient to show that

N
1—t; [ti—tl
M.(t) = e TE[Ho ] + 0 (Z eV L3 eV ) L0,

J=1 i#]

and to apply Lemma 2.3. In order to do this, we write
El_nMs = gs[Hs,t] + K+ K, — K37

where
1

K, = /E [Hé,tqsls,t - f(HE,t)¢E,t] Tn_ldr;
0

1
1 [
KQZ—/
20
1 2

F(Heg+ ¢ep) — F(He) — f(Heg)Pe — §f,(Hs,t) s,t] r"Ldr.

[

> — f'(H.y) gt] "

1
K3:/
0
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Integrating by parts, using Lemmas 2.2 and Proposition 3.1, we find

1 1
|K1| - / SE[HEat]qu,trn_ldr < C||¢E,t| */ |85[H5,t] Tn_ldT
0 0
N 3 7
(43 < oo ( DINEEDS fl/) |
j=1 i
To estimate Ky, we note that ¢, ¢ satisfies
N
(44) A(bs,t + f(He,t + ¢s,t) - f(Hs,t) + Sg[wg’t] = Z CjZE,tj .
j=1
Multiplying (4.4) by ¢. "' and integrating over I, we obtain
/ S.[H. g]pepr™ 'dr = / (|gLel” = f'(Heg)$2,) v 'dr
I I.
(4.5) + / [f(Hs,t + ¢ep) — f(Hep) — f’(Hs,t)¢s,t] (/5g,t7“"_1dr.
I

Hence we find

2K2 - _/ !f(He,t + ¢s,t) - f(Hs,t) - fI(HE,t)¢5,t] ¢57t7“n_1d7" + SE[HE,t](ﬁs,tTn_ldr.
I

I

From the Taylor’s formula, we get

|f(Hs,t + ¢s,t) — f(Hs,t) - f’(Hs,t)¢e,t| < C|¢s,t|2,
so we deduce

K, < C / |7 Ldr + C||be t| / S.[H.4)r™ 'dr.
1. I

From the exponential decay of H(+y) — %1 one finds that ¢, ¢(r) satisfies

Brot TG F(He + 600) — F(H)

3

N Va|r—ti ) r 1
- O (Z 6_ 2|T_? ) ’¢5,t(0) = ¢s,t(_) =0.

=1
From (4.4) and a comparison principle, we obtain

N

(4.6) |pee(r)] < Cze‘%“%

i=1

for some C < 1.
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Using Proposition 3.2 and (4.6), we get

(4.7) K| < Gt <e2 + D (pe(t))’ + e VPl ) :

J=1 i£]
From the Holder continuity of f’ we deduce

1

F(Hs,t + ¢E,t) - F(He,t) - f(Hs,t)¢s,t - §f’(H€,t) g,t S C‘¢s,t‘3a

so, again, it follows that

(48) ‘K?:‘ S Cgl_n (82 -+ Z(ps(t]))?’ + Z e_Qﬁti_thE) .

j=1 7]

Combining with (2.20) of Lemma 2.2, we obtain the conclusion. O

5. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. Fix t € A and let ¢4 be given by Proposition 3.2. Let
also M_(t) denote the reduced energy functional defined by (4.1).

Proposition 5.1. For e small, the following mazimization problem
(5.1) sup{M.(t) : t € A}
has a solution t° in the interior of A.

Proof: Since M,(t) is continuous in t, it achieves a maximum in A. Let t° be a maximum
point. We claim that t¢ € A.

Let us argue by contradiction and assume that t* € 0A. Then from the definition of A, there
are three possibilities: either 1—%; = nelog é, or there exists j > 2 such that t;_; —?; = nelog %,
orty =1—¢(log )2

In the first case, we have

_ 1 n—1
IHI! — (V242 + o(1))e 225 = I[H] (1 — e log g) — V2AZeVEIOR T | 2V

IN

I[H] — A2V,
Since n < z;lﬁ’ we obtain

(5.2) M, (t°) < NI[H] — A2>V?n,
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In the second case, there holds
N
M(t°) < I[H]Y 071 = (V242 + o(1))eV21r !
j=1

(5.3) < NI[H] — A%V,

In the latter case, we have ty =1 —(log 1)?, and therefore
1
(5.4) M(t°) < I[H](N =1+ t%") + O(e) < I[H|(N — (n — 1)e(log g)z) + O(e).

On the other hand, choosing t; =1 — %elog%,j =1,..., N, we obtain

N

Z _ N(N+1)(n—-1) 1 \ 1,
i =1- elog = 4+ O(e*(log =)?%);
ji=1 ’ 2\/§ gg ( ( gé_))
(5.5) e V2T g2, VRl ..

and we find

M. (t5) > NI[H] - N(N +1)(n —1)?

1
¢log . + O(e)

2v2
which contradicts either (5.2), or (5.3), or (5.4). This completes the proof of Proposition
5.1. 0
Remark: The above argument also shows that
£ l 1 £ g 1 1
(5.6) 1—1ti~e g, ti g —t;~e 0g

Finally, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 3.2, there exists ey such that for ¢ < ey we have a
C! map t +— ¢, from A into C%(1.) such that

N
(57) Ss[Hs,t + ¢s,t] = Z chE,tj

j=1
for some constants {c;} C R, which also are of class C' in t.

By Proposition 5.1, there exists t© € A achieving the maximum of K, : ¢t — E[H: ¢ + ¢e -
Let Ue = fo\il(_l)zHE,tf + ¢€,t5 = Hg,ts + ¢E,t€' Then we have

O lt=te Me(t*) =0,i=1,..., N,
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and hence

J

Therefore, by (5.7) we find

r"ldr = 0.

t=te

vusvati (Hs,t + ¢s,t) + U'eati (Hs,t + ¢s,t) - f(us)atl( g,t + (bs t)

N
(5.8) ch / (Ze;01,(Hep + ¢e)) v Hdr = 0.
I.

7j=1
Differentiating the equation < ¢, Z, ;. >.= 0 with respect to t;, we get

<040 Zeyy >e= — < 6,0, Zcy; >e= O(||o]].)e ™

Using (3.3), we see that (5.8) is diagonally dominant in the coefficients {c¢;}, which implies
¢j=0for j=1,..,N. Hence u. = H. - + ¢, is a solution of (1.1).

By our construction, one can easily check that e" '€ (u.) — NI[H] as ¢ — 0, and u, has
only N zeroes ?, oy % By the structure of u. we see that (up to a permutation) s —t5 = o(1).
This proves (1) and (2) of Theorem 1.1.

It remains to prove (3). First we note that u_ satisfies
(5.9 A+ f (e, = "
By our construction, at each interval (g, JE:) for 7 = 2,..., N, there exists a point SJEE—‘I €
(%, %=1) such that u ( L) = 0. Now we set

_Jou(r)forre (%,1),
r(r) = { 0, otherwise;

e

o L), frreE By, o, o
#i(r) { 0, otherwise, o J Y ’
u_(r), forre (25’ =),
(PN(T) = QE(T - E)ua(r)a 416 S T:ES %7
S

0, forr<—or7">

€
Next we define a quadratic functional

(5.10) Qigl = [ (V67 - F ()™ dr.
I
It is easy to check that
(5.11) / wip;r™ 'dr = 0 for i # j.
I

Using equation (5.9), we obtain

(5.12) Qlpi] = —/ O™ dr < 0,i=1,..,N — 1.
I
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When ¢ = N, we have
(5.13) Qlen] = —/ " dr + O(e’é) < 0.
Ie
(5.12) and (5.13) imply that the Morse index of u, in H!(€,) is at least N.
Finally we also show that the Morse index of u. in H!(€),.) is at most N. In fact, let us define

!

er —t%
(5.14) Z5(r) = H, tgx(73> j=1,..,.N
by 1
e(y/[log 2 1)
and consider the following minimization problem
. S (V6P = f (u)d?)rm"dr
(5.15) w5 = inf = Cy— :
¢EH1(Is,j),fIE,j $z5rm=Ldr=0 fls,j ¢?r=Ldr

Assume that p; < 0. By standard regularity theory, u; is attained by a function ¢% which

satisfies
(516) A6+ (o5 = —d5 + 6%, (8o, =0, / G ldr = 0

where ¢ is a constant.

First, we notice that c; = o(||¢5|.), which follows by reasoning as for (3.10) of Proposition
3.1. Then from Lemma 2.1 we deduce that y; — 0 and moreover the same argument leading
to Proposition 3.1 shows that ¢ = 0.

Thus p5 > 0. Let ¢ = ¢(r) be such that f[ ¢z5r" ' =0, =1,..., N, which is equivalent to
f Nt 1= 0. This then implies

(5.17) /I (VP = F (u)d?)r="dr > “j/f 62" Ydr, i =1,... N,
and hence N K
(5.18)

/I(|V¢|2—f (ue)p™)r™ ldr—z i (VeI = f (ue)d*)r™ 1d7“> _min MJ/ 6| dr.

€ €,J
This yields
Vul2 — F (u.)$2)rn—1

(5.19) ANyl = 7]ls,uBN Py 11nf0,J o f15(| |fIE ¢J;r(n_1)¢ ) > I{un 4> 0

and hence the Morse index of u. in H}(£).) is at most N.
Combining the upper and lower bound for the Morse index, we see that the Morse index of
u. in H!(€,) is exactly N. This proves (3) of Theorem 1.1.
O
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Appendix
In this appendix we expand the quantity &, [Zj.vzl(—l)j H. ;] as a function of ¢ and t. Several
facts will be used repeatedly:
H(y)=1- Age V2l 4 O(e‘QﬁM), for y > 1;
H(y) = =14 Age V2¥ + O(e 2V2)), for y < —1;
H'(y) = V2402 4 O(e=2V2), for |y > 1;
pe(t1) = V2(Ao + 0(1))e ™2
pe(tj) = o(p:(t1)) for j > 2.

From a Taylor’s expansion we find

E[Hey) =1 + L + I; + O(e" "p2(t1)),

where

=&, [Z 1) H,),

13:1(2( 1) p:(t)) /1 !|ﬂ;|2 ’(Z(—l)]Ht]) 52]7”1

Recalling that f'(£1) = —2, the term I3 can be estimated by

E= 20w [ l? - f'<z<—1>fﬂtj>] G0 dr + o2 (01)

= ()" [ Bt ol 1)) = St (1)) + ofe e2(0)

_ (ABto1)) iy oyt

V2
Next we estimate the integral in I,. There holds
N N
/ ( > (-1YH, 8 - f(Z(—l)th,-)ﬁs) r"dr

I \ j=1 j=1

N N

:/I (ﬁZ(—nth’j _ f(Z(—l)thj)) Brnldr
e j=1 j=1

!

_ /I (—V2H,, — f(—Hy,))Br" " dr + o(e' " p.(t1))
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=5 P [(Va — ) Py ol ()

V2
= —Age VN Byt ofel g (1),
since )
[ RH — ey = (1)1 = Vo
Thus

—(V2AZ + o(1))e 2 (Byn1 o617, (1)) + (27,

€
which implies

620 hr =AW By gty )+ 0

since &1 = 1+ O(e(log 2)?).

It remains to consider I;. For this purpose, we decompose it in the following way

N
L = Z Es,ja
j=1

where
1 N N
LD A SE A
€,j =1
:/ ! Hy, + > (-1 H, P — F(H;+ Y (-1/"H,) ] "Ldr
Ie I#j I#j
=L+L+I+oEe™) e G
(Z}
with

r"’ldr,

1,
I = / [§|Htj\2 — F(H,)
I ;

[Héj > (V)" H, — f(Hy) Z(—l)l“Htl] rLdr,

]5:/
I,

i oz 1]
Iy = _/ SO (1), P2 — £ (=1 Hy)r
Ted 1

Using the fact that |H [ = 2F(H), for I, we find
I = / |H, [>r™"dr
L;

&,]

+o(1 ltj—tj—1l it t
= [ 18 Payliyr - 222D )(e—ﬁe+ vt )<§)n—1+o<52—n>.
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For j > 2, I5 can be estimated as (recalling the exponential decaying property of H(y) £ 1)

Tis, 10 :
I = (L)~ H, (<) H,
1

+O(62_”)
ol ;

Itj—tj_1l It —tj41l t;
_(Ag+o(1))\/§(eﬁs e V2 >(g)"1+0(52n).

For 7 =1, we have

+0(e*™)
ol 1

(A% 4 0(1))\/§(e—ﬁ"1?2') E

g o
Iy = (L), Y (-1

>1

)n—l + O(EZ—n)_

2
€
I can be estimated similarly: for 7 > 2 we have

Iy = 2/ |Z(—1)j+lHt,|2T"_1dr
I

i I

Af+o(1) [ _ jplti-ti-al valtitivill \ i,y 2
= ——> eV = eV () +0@ET,
o {2yt 4 o)

while for j =1

Iy = 2/ | Z(—l)l+lﬂt,|27“”_1d7“
Is,l

>1

_ A% + 0(1) 6_\/5@ t_l n—1 82—n
== ( )(8) +0(e™™™).

Combining the estimates of I, I5, and I, we obtain

I, = I[H] Z A2+0( ) Z (eﬁlt’_tjll> (%)nl_’%%;)(l)em@l—stl _l_O(EQ—n)

j=2

= Y (2 = Va(Ad+o(1) Y2 o (L

j=2

_ (A5 + 0(1))6—2\/5% byt g2-n
o &y + o)

Adding the estimates in (5.21) and (5.20), we obtain the asymptotic expansion (2.20) of

E[> 2 (~ 1)V Heyy)-

(5.21)
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