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Abstract. We study a reaction-diffusion system with four morphogens which has been suggested

in [23]. This system is a generalization of the Gray-Scott model [10, 11] and allows for multiple

activators and multiple substrates. We construct single-spike solutions on the real line and establish

their stability properties in terms of conditions of connection matrices which describe the interaction

of the components. We use a rigorous analysis for the linearized operator around single-spike solutions

based on nonlocal eigenvalue problems and generalized hypergeometric functions.

The following results are established for two activators and two substrates: Spiky solutions may

be stable or unstable, depending on the type and strength of the interaction of the morphogens. In

particular, it is shown that these patterns are stabilized in the following two cases: Case 1: interaction

of different activators with each other (off-diagonal interaction of activators). Case 2: variation in

strength of interaction of activators with different substrates (e.g. each activator has its preferred

substrate).
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1. Introduction. We consider a reaction-diffusion system with many morphogens
introduced by Takagi and Kaneko in [23] which is a generalization of the Gray-Scott
model [10, 11] to many components. The generalized model in [23] considers the inter-
action of N activators and M substrates for any positive integers N and M , whereas
the Gray-Scott model only includes interactions of one activator and one substrate,
i.e. the special case M = N = 1. It is also a generalization of the hypercycle of Eigen
and Schuster [6, 7, 8, 9] from one substrate (i.e. M = 1 and N any positive integer)
to many substrates.

The interaction between these components is modeled by nonnegative connection
matrices W

(j,k)
i , where the subscript i = 1, . . . , M refers to one substrate and the

superscripts j, k = 1, . . . , N represent two activators. Any combination of i, j, k is
allowed. In particular, it is possible to have j = k (self-interaction of an activator
with itself) or j 6= k (cross-interaction of different activators with each other), where
each of these is mediated by a substrate.

The system can be written as follows:
{

τ ∂ui

∂t = D∆ui + 1− ui − A
ε ui

∑
j,k W

(j,k)
i vjvk, i = 1, 2, . . . , M, x ∈ R,

∂vi

∂t = ε2∆vi − vi + vi

∑
j,k=1 W

(i,k)
j ujvk, i = 1, 2, . . . , N, x ∈ R,

(1.1)

where ui and vi denote the concentrations of the substrates and the activators, re-
spectively. Here 0 < ε2 ¿ 1 and 0 < D are two positive diffusion constants. The
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constants A (positive) and τ (nonnegative) will be treated as parameters since their
choice will distinguish between stability and instability.

We will consider the special case M = N = 2. This restriction is made in order to
obtain explicit conditions for stability or instability which can be linked to biological
applications. Some parts of the analysis are valid for general positive integers M and
N . This will be explained in some remarks below.

We first prove the existence of solutions with a steady-state single spike for which
the activators have the same location and amplitude and the substrates have the same
values at the position of the spike.

Then we investigate the linearized stability of these steady states. We study the
linearized operator around spiky solutions using nonlocal eigenvalue problems and
generalized hypergeometric functions. We will show that the spike may be stable or
unstable and give conditions for both.

These results will be a generalization of properties for the Gray-Scott system.
Let us briefly recall some previous papers on this issue: In [2, 3, 4, 5] the existence
and stability of spike patterns on the real line is proved. In [13, 14] different regimes
for the Gray-Scott systems are considered and the existence and stability of spike
patterns in an interval is shown. In [15, 16] the existence and stability of spikes is
considered using formal asymptotic expansions. In [17, 18, 19] spikes are considered
rigorously for the shadow system. In [20, 21] a skeleton structure and separators for
the Gray-Scott model are established.

The structure of this paper is as follows:
In Section 2 we state and explain the main theorems on existence and stability.
In Section 3, we will prove the existence result, Theorem 2.1.
In Section 4, we provide some preliminary results on stability. In particular, we

study the novel scalar nonlocal eigenvalue problem (NLEP) given in (4.3).
In Section 5, we separate the eigenvalue problem into two cases: small eigenvalues

and large eigenvalues. The case of large eigenvalues is linked to a vectorial NLEP given
in (5.4). This vectorial NLEP is then studied by reducing it to the scalar NLEP given
in Section 4.

Appendix A contains a technical proof, namely that of Part (i) of Theorem 4.1.
Throughout this paper, the letter C will denote various generic constants which

are independent of ε, for ε sufficiently small. The notation A ∼ B means that
limε→0

A
B = 1 and A = O(B) is defined as |A| ≤ C|B| for some C > 0.

2. Main Results: Existence and Stability. We now state the main results
of this paper. We first construct stationary single-spike solutions to (1.1), i.e. single-
spike solutions of the system

{
D∆ui + 1− ui − A

ε ui

∑
j,k W

(j,k)
i vjvk = 0, i = 1, . . . , M x ∈ R,

ε2∆vi − vi + vi

∑
j,k=1 W

(i,k)
j ujvk = 0, i = 1, . . . , N, x ∈ R.

(2.1)

In the case M = N = 2, we will construct solutions of (2.1) which are even:

1− ui = 1− ui(|x|) ∈ H1(R), i = 1, 2,

vi = vi(|x|) ∈ H1(R), i = 1, 2.
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Before stating the results, we need to introduce some assumptions and notations.
Let w be the unique solution of the problem

{
wyy − w + w2 = 0, w > 0 in R,

w(0) = maxy∈R w(y), w(y) → 0 as |y| → +∞.
(2.2)

Note that (2.2) is an ODE problem and we can write w explicitly as

w(y) =
3

2 cosh2 y
2

.(2.3)

For the connection matrices we make the following three assumptions.
Assumption 1:

∑

j,k

W
(i,k)
j = T, i = 1, 2, . . . , N for some T > 0.(2.4)

In particular, (2.4) implies that
∑

j,k W
(i,k)
j is independent of i.

We further assume
Assumption 2:

∑

j,k

W
(j,k)
i = S, i = 1, 2, . . . , M for some S > 0.(2.5)

In particular, (2.5) implies that
∑

j,k W
(j,k)
i is independent of i.

The next assumption is the “transpose” of Assumption 1.
Assumption 3:

∑

i,j

W
(i,k)
j = T.(2.6)

In particular (2.6) implies that
∑

i,j W
(i,k)
j is independent of k.

Remark:
Assumptions 1–3 state in a rigorous way that the interaction terms W

(i,k)
j , each

of which couples two activators and one substrate, are balanced in the sense that the
sum over two of these is independent of the third. For such a balanced system it is
expected that solutions for which all components are non-vanishing do exist and can
be stable. Two important cases are discussed below (see Case 1 and Case 2 on p.5).

We now state the existence result.
Theorem 2.1.

Suppose that Assumptions 1–3 hold. Let M = N = 2.
Assume that

ε << 1(2.7)

and

ε <<
12AS√
DT 2

< 1− δ0.(2.8)
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(Expressed more precisely, (2.8) means the following: there are positive numbers δ0

and ε0 such that for all ε with 0 < ε < ε0 we have 12ASD−1/2T−2 < 1− δ0; further,
for all δ1 > 0 there exists ε0 > 0 such that 12ASD−1/2T−2 > εδ1 for all ε with
0 < ε < ε0.)

Then problem (2.1) admits two “single-spike” solutions
(us

ε , v
s
ε ) = (us

ε,1, u
s
ε,2, vs

ε,1, v
s
ε,2) and (ul

ε, v
l
ε) = (ul

ε,1, u
l
ε,2, vl

ε,1, v
l
ε,2) with the following

properties:
(i) all components are even functions.
(ii) us

ε,i(x) → 1 ul
ε,i(x) → 1 as ε → 0 for all x 6= 0 and us

ε,i(0), ul
ε,i(0) satisfy

us
ε,i(0) ∼ us, ul

ε,i(0) ∼ ul, i = 1, 2,

0 < us < 1
2 < ul < 1.

(2.9)

(iii) vs
ε,i = ξs(1 + o(1))w( |x|ε ), vl

ε,i = ξs(1 + o(1))w( |x|ε ), i = 1, 2, as ε → 0
where w is the unique solution of (2.2) and

ξs =
1

Sus
, ξl =

1
Sul

(2.10)

with S defined in (2.5).
(iv) There exist a > 0, b > 0 such that

0 < 1− us
ε,i(x) ≤ Ce−a|x|, 0 < 1− ul

ε,i(x) ≤ Ce−a|x|,
0 < vs

ε,i(x) ≤ Ce−b
|x|
ε , 0 < vl

ε,i(x) ≤ Ce−b
|x|
ε .

(2.11)

Finally, if ε is small enough and 12ASD−1/2T−2 > 1 + δ0 (in the same sense as
in (2.8)) then there are no single-spike solutions which satisfy (i) – (iv).

Theorem 2.1 will be proved in Section 3.
The second main goal of this paper is to study the stability properties of the

spiky solution constructed in Theorem 2.1. We will show that, in agreement with the
Gray-Scott model, the large solutions with uε,i(0) ∼ ul are always unstable [26, 27].
The small solutions with uε,i(0) = us can be linearly stable or unstable, depending
on certain conditions for the parameters of the system (1.1). To elucidate this issue,
we investigate their stability behavior in detail.

We say that a single-spike solution is linearly stable if the spectrum σ(Lε) of
Lε (except for 0) lies in a left half plane {λ ∈ C : Re (λ) < −c0} for some c0 > 0,
and that 0 is a simple eigenvalue. A single-spike solution is called linearly unstable
if there exists an eigenvalue λε of Lε with Re (λε) > 0. Here Lε is the linearized
operator around (uε,i, vε,j) which will be defined in (5.1) below.

We now state our main result on stability.
Theorem 2.2. Suppose that Assumptions 1–3 hold. Let M = N = 2. Assume

that

ε << 1

and

ε <<
12AS√
DST−2

< 1− δ0,
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in the same sense as in (2.8).
Let

(us
ε , v

s
ε ) = (us

ε,1, u
s
ε,2, vs

ε,1, v
s
ε,2) and (ul

ε, v
l
ε) = (ul

ε,1, u
l
ε,2, vl

ε,1, v
l
ε,2) be the solutions

constructed in Theorem 2.1.
Let

a =
1
T

2∑

j=1

(W (1,1)
j −W

(1,2)
j ),

b =
1− u

u
√

1 + τλ + 1− u

2
TS

∑

j′,k′
W

(1,k′)
j′

[
W

(1,1)
j′ −W

(2,2)
j′

]

where u = us or u = ul, respectively. Further, let

b0 =
2(1− u)

TS

∑

j′,k′
W

(1,k′)
j′

[
W

(1,1)
j′ −W

(2,2)
j′

]
.

Then we have the following:
(1) (Stability) Assume that b0 > a. Suppose that 0 ≤ τ < τ0, where τ0 > 0 may

be chosen independently of ε. Then (us
ε , v

s
ε ) = (us

ε,1, u
s
ε,2, vs

ε,1, v
s
ε,2) is linearly stable.

(2) (Instability) Assume that b0 < a. Then (us
ε , v

s
ε ) = (us

ε,1, u
s
ε,2, vs

ε,1, v
s
ε,2) is

linearly unstable for all τ ≥ 0.
(3) (Instability) (ul

ε, v
l
ε) = (ul

ε,1, u
l
ε,2, vl

ε,1, v
l
ε,2) is linearly unstable for all τ ≥ 0.

Theorem 2.2 will be proved in Sections 4 and 5.
There are two important cases for which the conditions of Theorem 2.2 can be

understood and interpreted very clearly in biological terms.
Case 1: Assume that

W
(j,k)
i is independent of i for j, k = 1, 2.(2.12)

which implies

W
(i,k)
j =

c + d

2
+ (−1)i−k c− d

2
for some c > 0, d > 0.

Then the condition b0 > a in Theorem 2.2 takes the form d > c.
This means that the system can be stabilized if the off-diagonal interaction of the

activators is dominated by their self-interaction.
Case 2:
We assume that

W
(j,k)
i = 0 if j 6= k for i, j, k = 1, 2.(2.13)

which implies

W
(i,k)
j =

(
f +

(
f − S

2

)
(−1)i+j

)
δik for some f with S ≥ f > 0.
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Then the condition b0 > a in Theorem 2.2 takes the form

0 ≤ f < S

(
1
2
− 1

2
√

2(1− u)

)
or S ≥ f > S

(
1
2

+
1

2
√

2(1− u)

)
.

This means that the system can be stabilized if each activator has its preferred
substrate with which it interacts more strongly that with the other.

3. Existence: Computation of the amplitudes. We will show the existence
of solutions for which

vε,i(x) = (1 + o(1))ξiw(
x

ε
), ξi > 0, i = 1, 2,(3.1)

where ξi are positive constants. Substituting into (2.1), we see that the amplitudes
ξi necessarily have to satisfy

N∑

j,k=1

W
(i,k)
j uj(0)ξk = 1, i = 1, 2.(3.2)

From now on, we consider the special case ξi = ξ.
Proof of Theorem 2.1: Let uε,i(0) ∼ u, i = 1, 2. From (3.2), we get

∑

j,k

W
(i,k)
j uξ = 1.(3.3)

Together with Assumption 1, (3.3) implies

T =
1
uξ

(3.4)

To determine u = limε→0 uε,i(0), we use the Green’s GD function defined by

DGxx(x, ξ)−G(x, ξ) + δξ = 0 in R

which is explicitly given by

G(x, ξ) =
1

2
√

D
e−|x−ξ|/√D.

This implies GD(0, 0) = 1
2
√

D
.

We compute

1− u = AGD(0, 0)
∑

j,k

W
(j,k)
i ξjξku

∫
w2.

Using Assumption 2, (3.4) and the relation
∫

w2 = 6, we get

1 = u


1 + 6AGD(0, 0)

∑

j,k

W
(j,k)
i ξjξku



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= u

[
1 + 6AGD(0, 0)S

1
uT 2

]
.

This implies

u2 − u + 6AGD(0, 0)
S

T 2
= 0.

The solutions are given by

u =
1
2

(
1±

√
1− 24AGD(0, 0)S

T 2

)
=

1
2
±

√
1
4
− 6AGD(0, 0)S

T 2
.

If 0 < 24AGD(0,0)S
T 2 < 1, then there are two solutions for u which are denoted as us

(with 0 < us < 1
2 ) and ul (with 1

2 < ul < 1).
After us and ul have been computed, the amplitudes ξs and ξl are derived from

(3.2).
The proof of Theorem 2.1 goes along the same lines as in the proof of Theorem

2.1 of [27] or Theorem 1.1 of [28]. For completeness, we sketch the main steps.
First we express ui with 1 − ui ∈ H2(R) in nonlocal form as ui = Ti[v], where

Ti[v] is the unique solution of the following linear equation:

∆Ti[v]− Ti[v]− A

ε
Ti[v]

∑

j,k

W
(j,k)
i vjvk = 0.

Then, to construct a solution of (2.1), we look for functions

vi = u(0)w + φi,ε

which satisfy the second set of equations in (2.1) (beginning with ε2∆vi − vi + . . .),
such that φi,ε has a small norm in H2(R).

To this end, we have to study the linearized operator. The linearized operator
has only the trivial kernel consisting of translation modes and is uniformly invertible
after projections orthogonal to kernel and co-kernel. This result is given Theorem 5.1.

Now we can finish the existence proof by applying the contraction mapping prin-
ciple. 2

4. Stability I: A nonlocal eigenvalue problem (NLEP). In this section,
we will introduce and study a scalar nonlocal eigenvalue problem for later use.

Before stating the NLEP, we collect some known facts about the following eigen-
value problem which will be needed later:

(EVP)
{

∆φ− φ + λwφ = 0,

φ ∈ H1(R).

By Lemma 4.1 of [24], (EVP) admits the following set of eigenvalues

λ1 = 1, λ2 = 2, 2 < λ3 < λ4 ≤ . . . .(4.1)

More precisely, by Appendix A of [29] the eigenvalues λn are explicitly given by

λn =
(1 + n)(2 + n)

6
, n = 1, 2, 3, . . . , .(4.2)
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Theorem 4.1. We consider the nonlocal eigenvalue problem

∆φ− φ + wφ + awφ− b

∫
wφ∫
w2

w2 = λφ.(4.3)

where a > 0 and the complex number b will be specified below.
(i) In the case a > 0 and b ≥ 0, (4.3) is stable (i.e. Re(λ) ≤ −c for some c > 0

independent of λ) if b > a and a < a∗ < 7
3 for a certain constant a∗ > 1. It is unstable

(i.e. there exists an eigenvalue λ with Re(λ) > 0). if b < a.
(ii) In the case a > 0 and b = b0

u
√

1+τλ+1−u
, (4.3) is stable if a < a∗ < 7

3 , b0 > a

and τ is small enough. It is unstable for all τ ≥ 0 if b0 < a .
Remarks:
1. In the case b = 0, then (4.3) is linearly stable if a < 0 and linearly unstable if

a > 0. See Lemma 5.1 (3) of [29].
2. The NLEP (4.3) for a = 1 and

b =
2(1− u)

u
√

1 + τλ + 1− u

has been studied in Lemma 5.3 of [29]. It has been shown that for τ ≥ 0 and 1
2 < u < 1

it has a positive eigenvalue.
3. By the definition of a in Theorem 2.2 we have |a| ≤ 1. Since a∗ > 1, for the

original problem we always have a < a∗, the exact value of a∗ does not matter there.
4. For a∗ < a < 7/3 we have ha(0) < 0 and ha(0) → −∞ as ε → 7/3−. Then

instability depends on the size of b. The further we increase a, the larger b must be
chosen to avoid instability.

5. For a > 7/3 we expect

ha(α) → ±∞ as α → ∓µ3

for some 0 < µ3 < µ1. Then there must be a positive eigenvalue between µ3 and µ1

for any value of b > 0.
Proof:
(i) We consider the linear operator

Laφ := φ′′ − φ + (a + 1)wφ,(4.4)

where 0 < a < 7
3 . Note that for a = 7

3 we get a + 1 = 10
3 = λ3 which is the third

eigenvalue of the eigenvalue problem (EVP) and the second eigenvalue of (EVP) in
the class of even functions.

Then let

ρ(a) =
∫

wL−1
a w(4.5)

Claim 1: ρ(1) > 0.
Proof: If a = 1, then we compute

L1φ = φ′′ − φ + 2wφ
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and, as in [25], we derive

L−1
1 w = w +

xw′

2
.

Hence

ρ(1) =
∫

w

(
w +

xw′

2

)
=

(
1− 1

4

) ∫
w2 > 0.

2

Claim 2: ρ′(a) < 0 for a < 7
3 .

Proof: Let L−1
a w =: φa. Then

φ′′a − φa + (a + 1)wφa = w.(4.6)

Consider ψ = ∂φa

∂a . Taking the derivative w.r.t. a in (4.6), we get

ψ′′ − ψ + (a + 1)wψ + wφa = 0.(4.7)

Multiplying (4.7) by φa and (4.6) by ψ, we get
∫

wψ = −
∫

wφ2
a.

This implies

ρ′(a) =
∫

w
∂φa

∂a
=

∫
wψ = −

∫
wφ2

a < 0.

2

Claim 3: ρ(a) → −∞ as a → 7
3 .

Proof: Let φ0 be the eigenfunction given by

φ′′0 − φ0 + λ3wφ0 = 0.(4.8)

Then we decompose

φa = µφ0 + φ⊥a ,

where
∫

wφ0φ
⊥
a = 0.

We are now going to show that µ = c(a − 7
3 )−1 for some c > 0 and φ⊥a = O(1) in

H2
r (R). To this end, we derive the PDE for φ⊥a from (4.6) and (4.8):

Laφ⊥a = w

[
1 + µ

(
7
3
− a

)
φ0

]
.(4.9)

Multiplying (4.9) by φ0 and integrating, we get the solvability condition
(

a− 7
3

) ∫
wφ0φ

⊥
a =

∫
wφ0 −

(
a− 7

3

)
µ

∫
wφ2

0.
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Using the definition of φ⊥a , the l.h.s. in (4.10) vanishes. This implies

µ =
∫

wφ0

(a− 7
3 )

∫
wφ2

0

.(4.10)

Using the invertibility of La, we derive

φ⊥a = O

(
1 +

∣∣∣∣
7
3
− a

∣∣∣∣ µ

)
in H2

r (R).

From (4.10), we get φ⊥a = O(1) in H2
r (R). We further derive

ρ(a) =
∫

wφa = µ

∫
wφ0 +

∫
wφ⊥a

=
(
∫

wφ0)2

(a− 7
3 )

∫
wφ2

0

+
∫

wφ⊥a
︸ ︷︷ ︸
=O(1)

< 0

if
∫

wφ0 6= 0, 0 < a < 7
3 and a is sufficiently close to 7/3.

We now show that in fact
∫

wφ0 6= 0. Suppose not, then
∫

wφ0 = 0. But then we
also have

∫
wφ2

0 = 0 which is impossible. This is a contradiction and Claim 3 follows.
2

From Claim 1 – Claim 3, we conclude that there exists a unique a∗ ∈ (1, 7
3 )

such that

∫
wL−1

a w





> 0 if a < a∗,
= 0 if a = a∗,
< 0 if a > a∗.

(4.11)

The rest of the proof of Theorem 4.1 (i) follows the argument in [25]. For the
convenience of the reader it is given in Appendix A.

Now we show Part (ii) of Theorem 4.1 following the proof of Lemma 5.3 of [29].
We show the stability part by a perturbation argument with respect to τ starting

from τ = 0. We set λ = λR +
√−1λI . We have show that |λ| ≤ C for some generic

constant C if λR ≥ 0 and 0 < τ < 1. Multiplying (4.3) by the complex conjugate φ̄

of the eigenfunction and integrating, we can show that

|λI | ≤ C1

∣∣∣∣
b0

u
√

1 + τλ + 1− u

∣∣∣∣ ≤ 2C1|b0|.

by considering the imaginary part of the resulting equation, where C1 is independent
of τ . Taking the real part of the resulting equation, we get λR ≤ C2, where C2

is independent of τ . Therefore |λ| ≤ C3, where C3 is independent of τ , and the
perturbation argument can be completed which implies stability.

To show the instability if b0 < a, we consider the function

ha(α) =
∫

R
((La − α)−1w)w, 0 < α < µ1.(4.12)
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It is easy to see that

d

dα
ha(α) =

∫

R
((La − α)−2w)w =

∫

R
[(La − α)−1w]2 > 0,

and

lim
α→µ1−

ha(α) = +∞,

where µ1 is the unique positive eigenvalue of La . Next we consider the function

ga(λ) =
u
√

1 + τλ + 1− u

b0
− 1

a
− λ

a
∫

R
w2

ha(λ).(4.13)

Note that

ga(0) =
1
b0
− 1

a
> 0.

On the other hand,

lim
λ→µ1−

ga(λ) = −∞.

Hence there must exist an λ0 ∈ (0, µ1) such that ga(λ0) = 0. This λ0 > 0 is an
eigenvalue of (4.3) which proves Part (ii) of Theorem 4.1.

2

5. Stability II: Derivation of a vectorial NLEP and rigorous reduction.
Linearizing (1.1) around the single-spike solution uε,i +ψε,ie

λt, vε,j +φε,je
λt, we study

the eigenvalue problem of the linearized operator around (uε,i, vε,j). We begin with
the case of general positive integers M and N .

The eigenvalue problem becomes

Lε

(
ψε,j

φε,i

)
=

(
λετψε,j

λεφε,i

)
, i = 1, . . . , N, j = 1, . . . ,M,(5.1)

where λε ∈ C, the set of complex numbers.
By taking derivatives of (2.1) it follows that 0 is an eigenvalue of Lε with eigen-

fuction u′ε,i, v
′
ε,j .

To prove Theorem 2.2, we first derive from (5.1) that
{

∆φε,i − φε,i + φε,i

∑
j,k W

(i,k)
j uε,jvε,k + vε,i

∑
j,k W

(i,k)
j (uε,jφε,k + ψε,jvε,k) = λεφε,i,

∆ψε,i − ψε,i − A
ε ψε,i

∑
j,k W

(j,k)
i vε,jvε,k − A

ε uε,i

∑
j,k W

(j,k)
i (φε,jvε,k + vε,jφε,k) = τλεψε,i.

(5.2)
We assume that the domain of Lε is (H2(R))N . This is possible since we can ex-
press ψε,i ∈ H2(R) in nonlocal form as ψε,i = T ′i [vε, φε], where T ′i [vε, φε] satisfies the
following linear equation, which has a unique solution:

∆T ′i [vε, φε]− (1 + τλε)T ′i [vε, φε]− A

ε
T ′i [vε, φε]

∑

j,k

W
(j,k)
i vε,jvε,k
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−A

ε
uε,i

∑

j,k

W
(j,k)
i (φε,jvε,k + vε,jφε,k) = 0.

The eigenvalue problem (5.2) implies (from now on dropping the index ε)

ψi(0) = −AG∗D(0, 0)ψi(0)
∑

j,k

W
(j,k)
i ξ2

∫
w2

−AG∗D(0, 0)uξ
∑

j,k

W
(j,k)
i

∫
(φj + φk)w + o(2),

where

GD(0, 0) =
θ

2
, G∗D(0, 0) =

θ

2
√

1 + τλ
.

This implies

ψi(0) = −AG∗D(0, 0)uξ
∑

j,k W
(j,k)
i

∫
(φj + φk)w

1 + 6AG∗D(0, 0)ξ2
∑

j,k W
(j,k)
i

+ o(1)

= −Au θ
2ξ2

∑
j,k W

(j,k)
i

∫
(φj + φk)w

(
√

1 + τλ− 1) + 1
u + o(1)

.

Taking the limit ε → 0, this leads to the NLEP

∆φi − φi + φiw +

∑
k φk

∑
j W

(i,k)
j∑

j,k W
(i,k)
j

w

− 1− u

u
√

1 + τλ + 1− u

∑
j′,k′ W

(i,k′)
j′

∑
j,k W

(j,k)
j′

∫
(φj + φk)w

∑
j′,k′ W

(i,k′)
j′

∑
j,k W

(j,k)
j′

w2

∫
w2

= λφi, i = 1, . . . , N.

(5.3)
Considering this NLEP, we see that the factors

∑
j W

(i,k)
j∑

j,k W
(i,k)
j

, k = 1, . . . , N

and
∑

j′,k′ W
(i,k′)
j′ W

(j,k)
j′∑

j′,k′ W
(i,k′)
j′

∑
j,k W

(j,k)
j′

, j, k = 1, . . . , N

are both weighted averages. Using the notation T and S, introduced in (2.4) and
(2.5), respectively, these factors can be rewritten as

1
T

∑

j

W
(i,k)
j , k = 1, . . . , N
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and

1
ST

∑

j′,k′
W

(i,k′)
j′ W

(j,k)
j′ , j, k = 1, . . . , N.

Then the NLEP (5.3) becomes

∆φi − φi + φiw +
1
T

∑

k

φk

∑

j

W
(i,k)
j w

− 1− u

u
√

1 + τλ + 1− u

1
ST

∑

j′,k′
W

(i,k′)
j′

∑

j,k

W
(j,k)
j′ w2

∫
(φj + φk)w∫

w2
= λφi, i = 1, . . . , N.

(5.4)
Although the derivations given above are formal, we can rigorously prove the

following separation of eigenvalues in the special case M = N = 2. We set

a =
1
T

2∑

j,k=1

(−1)k+1W
(1,k)
j

=
1
T

2∑

j=1

(W (1,1)
j −W

(1,2)
j ),(5.5)

b =
1− u

u
√

1 + τλ + 1− u

1
TS

2∑

j′=1

2∑

k′=1

W
(1,k′)
j′




2∑

j=1

2∑

k=1

W
(j,k)
j′ ((−1)j + (−1)k)




=
1− u

u
√

1 + τλ + 1− u

2
TS

2∑

j′=1

2∑

k′=1

W
(1,k′)
j′

[
W

(1,1)
j′ −W

(2,2)
j′

]
.(5.6)

Theorem 5.1. Let M = N = 2. Suppose that 0 < a < a∗ and b 6= a.
Let λε be an eigenvalue of (5.2) for which Re(λε) > −a0.
(1) Suppose that (for suitable sequences εn → 0) we have λεn → 0 as n → ∞.

Then for n sufficiently large, it follows that λεn = 0 and

(φεn,1, φεn,2, ψεn,1, ψεn,2) ∈ span {u′εn,1, u
′
εn,2, v

′
εn,1, v

′
εn,2}.

The operator Lε is invertible if restricted as follows

Lε : K⊥,1
ε → K⊥,2

ε ,

where

K⊥,1
ε = {u ∈ (H2(R))2|

∫

R
uiu

′
εn,i = 0, i = 1, 2} ⊕ (H2(R))2,

K⊥,2
ε = {u ∈ (L2(R))2|

∫

R
uiu

′
εn,i = 0, i = 1, 2} ⊕ (H2(R))2,
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where ⊕ is used to denote the direct product of two spaces.
(2) Suppose that (for suitable sequences εn → 0) we have λεn

→ λ0 6= 0. Then λ0

is an eigenvalue of the NLEP given in (5.4).
(3) Let λ0 6= 0 be an eigenvalue of the NLEP given in (5.4). Then for ε sufficiently

small, there is an eigenvalue λε of (5.2) with λε → λ0 as ε → 0.
From Theorem 5.1 we see rigorously that the eigenvalue problem (5.2) is reduced

to the study of the vectorial NLEP (5.4).
Now we prove Theorem 5.1.

Proof of Theorem 5.1:
For the proof of (1), we proceed as in the proof of Theorem 2.2 (3) in [27], where

existence and stability of single-spike states for the Gray-Scott system in 2-D are
studied. The proof can be adapted to our system by considering the 1-D situation
as in [29]. Then Theorem 5.1 (1) follows from Lemma 5.2, by the same proof as for
Theorem 2.2 (3) of [27]. Next we state and prove Lemma 5.2 which concludes the
proof of Theorem 5.1 (1).

Let us denote the linear operator on the left hand side of (5.4) as L, where
L : (H2(R))2 → (L2(R))2. Then we have

Lemma 5.2.

Assume that 0 < a < a∗ and b 6= a.
(1). Let φ be an eigenfunction of (5.4) with λ0 = 0. Then we have

φ ∈ K0 := span {w′
(y)~e0},(5.7)

where ~e0 = (1, 1)τ . (This implies that Ker (L) = K0.)
(2). The operator L is invertible if restricted as follows

L : K⊥,1
0 → K⊥,2

0 ,

where

K⊥,1
0 = {u ∈ (H2(R))2|

∫

R
uw

′
(y)~e0 = 0},

K⊥,2
0 = {u ∈ (L2(R))2|

∫

R
uw

′
(y)~e0 = 0}.

Proof:
The proof of Lemma 5.2 (1) follows by adding the equations and integrating which

implies that φ1+φ2 = 0. Then, integrating the equation for φ1, it follows that φ1 = 0.
The proof of Lemma 5.2 (2) is based on showing that the adjoint operator has

only the trivial kernel (translation modes). This is done by multiplication with w

followed by integration and then using the same arguments as before.
For the details we refer to [32].
2

Theorem 5.1 (2) is a consequence of the asymptotic analysis performed at the
beginning of this section.

To prove Theorem 5.1 (3), we follow the argument given in Section 2 of [1] to
show that if λ0 6= 0 is an unstable eigenvalue of a limiting eigenvalue problem, then,
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for ε small enough, there exists an eigenvalue λε of the finite ε problem such that
λε → λ0. We now adapt that argument to the current problem.

Let λ0 6= 0 be an eigenvalue of problem (5.4) with Re(λ0) > 0. We first note that
from the linear equations for ψε,i, we can express ψε,i in terms of (φε,1, φε,2). Then
we write the equation for φε,i as follows:

φε,i = Rε(λε)

[
φε,i

∑

j,k

W
(i,k)
j ujvk + vi

∑

j,k

W
(i,k)
j (ujφε,k + ψε,jvk)

]
,(5.8)

where i = 1, ..., N and Rε(λ) is the inverse of −∆ + (1 + λε) in H2(R) (which exists
if Re(λε) > −1 or Im(λε) 6= 0). The crucial fact is that Rε(λε) is a compact operator
if ε is sufficiently small. The rest of the proof follows that in [1] and the details are
omitted.

The proof of Theorem 5.1 is completed.
2

We now conclude the proof of Theorem 2.1.
Adding the equations in (5.4), we get the following NLEP for φ =

∑
k φk:

∆φ− φ + 2wφ− 2
1− u

u
√

1 + τλ + 1− u

∫
wφ∫
w2

w2 = λφ.(5.9)

The nonlocal term in (5.9) has been derived as follows: We computed the first
sum

∑
i,k′ W

(i,k′)
j′ = S. The second sum gives

∑

j′,j,k

W
(j,k)
j′

∫
(φj + φk)w

=
∑

j′,j,k

W
(j,k)
j′

∫
φjw +

∑

j′,j,k

W
(j,k)
j′

∫
φkw

=
∑

j

∑

j′,k

W
(j,k)
j′

∫
φjw +

∑

k

∑

j′,j

W
(j,k)
j′

∫
φkw

=
∑

j

T

∫
φjw +

∑

k

T

∫
φkw

= 2T

∫
φw.

We now study the stability properties of (5.9).
Assuming that Re(λ) > 0 and u = us, then for τ = 0 or τ small enough, it follows

from Theorem 4.1 (i) that φ = φ1 + φ2 + · · ·+ φN = 0.
We now consider the special case M = N = 2, i.e. we assume that there are two

activators and two substrates. Then we get φ1 = −φ2, where φ1 has to satisfy the
eigenvalue problem

∆φ1 − φ1 + wφ1 + awφ1 − b

∫
wφ1∫
w2

w2 = λφ1,
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introduced in (4.3), where

a =
1
T

2∑

j,k=1

(−1)k+1W
(1,k)
j

=
1
T

2∑

j=1

(W (1,1)
j −W

(1,2)
j ),

b =
1− u

u
√

1 + τλ + 1− u

1
TS

2∑

j′=1

2∑

k′=1

W
(1,k′)
j′




2∑

j=1

2∑

k=1

W
(j,k)
j′ ((−1)j + (−1)k)




=
1− u

u
√

1 + τλ + 1− u

2
TS

2∑

j′=1

2∑

k′=1

W
(1,k′)
j′

[
W

(1,1)
j′ −W

(2,2)
j′

]
.

(Recall that a and b have been defined in (5.5) and (5.6), respectively.)
Remark: For general M and N , NLEP (4.3) is replaced by the vectorial NLEP

∆φi − φi + φiw +
1
T

N−1∑

k=1

φk

M∑

j=1

(W (i,k)
j −W

(i,N)
j )w

− 1− u

u
√

1 + τλ + 1− u

1
ST

N∑

k′=1

M∑

j′=1

W
(i,k′)
j′

N−1∑

k=1




N−1∑

j=1

(W (j,k)
j′ + W

(k,j)
j′ )−

∑

j 6=k,N

(W (j,N)
j′ + W

(N,j)
j′ )− 2W

(N,N)
j′




∫
φkw∫
w2

w2

= λφi, i = 1, . . . , N − 1.(5.10)

Again, invoking Theorem 4.1, in the case of real constants a > 0 and b ≥ 0,
(4.3) is stable if a < a∗ < 7

3 and b > a for a certain constant a∗. In the case a > 0
and b = b0

u
√

1+τλ+1−u
, (4.3) is stable if a < a∗ < 7

3 , b0 > a and τ is small enough.
Therefore, under either of these sets of conditions, we derive φ1 = φ2 = 0. This proves
that stability.

To prove the instability, we have to construct pairs (φ1, φ2) of unstable eigenfunc-
tions for (5.4).

If b < a or b = b0
u
√

1+τλ+1−u
with b0 < a, we set (φ1, φ2) = (φ0,−φ0), where φ0

is the eigenfunction of (4.3) with largest (positive) eigenvalue. Then (φ1, φ2) is an
unstable eigenfunction of (5.4) which has the same eigenvalue.

If u = ul, where 1
2 < ul < 1, then we set (φ1, φ2) = (φ0, 0), where φ0 is the

eigenfunction of (4.3) with a = 1 and b = 1 − u or b0 = 1 − u which has the largest
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(positive) eigenvalue. The eigenfunction φ0 exists by Remark 2 after Theorem 4.1.
Then (φ1, φ2) is an unstable eigenfunction (5.4) which has the same eigenvalue.

This concludes the proof of Theorem 2.2.
2

We now consider the stability in some important special situations.
First, in the case of real constants a and b, we study if the main condition b > a

in Theorem 2.2 is true in the following two important cases:
Case 1:
We assume as in (2.12) that

W
(j,k)
i is independent of i for j, k = 1, 2.

The four conditions in (2.12) imply that Assumption 2, given in (2.5), holds. Using
Assumption 1 (2.4) and Assumption 3 (2.6), we get

W
(i,k)
j =

c + d

2
+ (−1)i−k c− d

2
for some c > 0, d > 0.

Note that W
(i,k)
j is symmetric in i, k. Further, c are the diagonal terms and d the

off-diagonal terms of W
(i,k)
j in i, k. Then for the constants in Theorem 2.2 we get

a =
c− d

c + d
, b = 0.

Then the condition b > a holds iff d > c.
Note that for d > c the NLEP (4.3) is stable even for any τ ≥ 0. However, to

prove the stability of (5.4), we have to take into account an extra threshold for τ

coming from (5.9). We will come back to this issue below and indicate a numerical
method to compute this threshold based on hypergeometric functions.

This means that we have stability if the off-diagonal interactions for the activators
dominate.

A similar behavior has been observed in the special case M = 1. In particular, for
the hypercycle, for which in the connection matrix the only non-vanishing elements
are W 1,N

1 and W k,k−1
1 (k = 2, . . . , N), it has been shown that stable spikes are possible

[28, 29].
Case 2:
We assume as in (2.13) that

W
(j,k)
i = 0 if j 6= k for i, j, k = 1, 2.

These four conditions together with Assumption 1 (2.4) and Assumption 2 (2.5) imply

W
(i,k)
j =

(
f +

(
f − S

2

)
(−1)i+j

)
δik for some f with S ≥ f > 0.

We further derive that in this case we necessarily have S = T and that Assumption
3 (2.6) is satisfied.

We note that in contrast to Case 1 there are no off-diagonal terms with j 6= k

for the connection matrices. This means that the activators do not show any cross-
interaction, only self-interaction is allowed. Our goal now is to find out if the self-
interaction terms alone are able to stabilize the system leading to stable configurations
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of spikes. This is a new effect which has not been considered in any previous work.
Now the case τ > 0 can only be considered numerically, whereas the case τ = 0 is
easier and allows a closed analytical solution. Therefore we consider τ = 0 first.

For τ = 0 we get the NLEP in (4.3) with a = 1 and

b =
2

ST
[W (1,1)

1 (W (1,1)
1 −W

(2,2)
1 ) + W

(1,1)
2 (W (1,1)

2 −W
(2,2)
2 )](1− u)

= 2
(

1− 2f

S

)2

(1− u).

We have stability iff b > 1 which is equivalent to

0 ≤ f < S

(
1
2
− 1

2
√

2(1− u)

)
or S ≥ f > S

(
1
2

+
1

2
√

2(1− u)

)
.

This result can be interpreted as follows: The spike is stable if each of the activators
has its own preferred substrate. In particular, this is true in the following two extreme
cases:

In the first extreme case, f = 1, the first activator interacts only with the first
substrate and the second activator only with the second substrate.

In the second extreme case, f = 0, the first activator interacts only with the
second substrate and the second activator only with the first substrate.

In both of these extreme cases the system is decomposed into two separate Gray-
Scott systems for which stability has been shown before [13, 14, 30, 31].

The result in this case shows that the preference of activators towards their own
substrates must be above a certain threshold to imply stability of the spike.

The result can be interpreted as the robustness of the stability of several cou-
pled Gray-Scott systems which are stable individually under the assumption that the
coupling is not too strong.

Such an effect does not occur for hypercycles since for them there is only one
substrate.

Finally, we consider Case 2 with general τ > 0. We get (4.3) with a = 1 and

b =
2

ST
[W (1,1)

1 (W (1,1)
1 −W

(2,2)
1 ) + W

(1,1)
2 (W (1,1)

2 −W
(2,2)
2 )]

1− u

u
√

1 + τλ + 1− u

= 2
(

1− 2f

S

)2 1− u

u
√

1 + τλ + 1− u
.(5.11)

Using the strategy in [29], we derive the following result which will allows us to
compute the eigenvalue of (4.3) numerically for τ > 0.

Let us first introduce the so-called generalized Gauss function. Let a1, a2, ..., aA

and b1, b2, ..., bB be two sequences of numbers. Consider the series

1 +
a1a2...aA

b1b2...bB

z

1!
+

(a1 + 1)(a2 + 1)...(aA + 1)
(b1 + 1)(b2 + 1)...(bB + 1)

z2

2!
+ ...(5.12)
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≡ AFB





a1, a2, ..., aA ;
z

b1, b2, ..., bB ;





AFB is called generalized Gauss function or generalized hypergeometric function. For
more details on such functions, we refer to [22].

Then we have the following lemma.
Lemma 5.3. Let λ be an eigenvalue of problem (4.3) with b given by (5.11) and

Re(λ) ≥ 0. Then λ is a solution of the algebraic equation

u
√

1 + τλ + 1− u

2(1− 2f/S)2(1− u)
a− 1

= −4F3





1, 3, − 1
2 , 2 ;

1
2 + γ, 2− γ, 5

2 ;





+
λ

3
B1

Γ(1 + γ)Γ(5
2 )

Γ(γ + 3
2 ) 3F2





2 + γ, γ − 3
2 , 1 + γ ;

1
1 + 2γ, 3

2 + γ ;



(5.13)

where γ =
√

1 + λ and B1 is given by (5.16) below.
Proof: We give a sketch of the proof. For more details, we refer to [29] and [12]. Let
φ be the unique solution of

∆φ− γ2φ + (1 + a)wφ = w, φ′(0) = 0, φ ∈ H1(R).(5.14)

Then it is easy to see that (4.3) is equivalent to (compare (4.13):

λ

∫
wφ∫
w2

=
a

b
− 1,(5.15)

where

b =
2(1− 2f/S)2(1− u)
u
√

1 + τλ + 1− u
.

Now we compute φ. As in [29], we make a change of dependent variables: Let

z =
2
3
w(y).

Note that z(y) is one-to-one with z → 0 as y →∞ and z → 1 as y → 0.

Then by the results of [29] and [12], we obtain

φ(y) = B1z
γ

2F1





2 + γ, γ − 3
2 ;

z

1 + 2γ ;





+
3
2

1
1− γ2

z 3F2





1, 3, − 1
2 ;

z

2 + γ, 2− γ ;



 ,
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where the constant B1 is given by

B1 = −3
2

1
1− γ2

(Γ (2 + γ))2

Γ (3) Γ (1 + 2γ)
Γ

(
γ − 3

2

)
Γ (2− γ)

Γ
(− 1

2

)
Γ (1)

.(5.16)

Using the following integral property, whose proof can be found in [22]:

A+1FB+1





a1, a2, ..., aA, c, ;
z

b1, b2, ..., bB , d ;



(5.17)

=
Γ(d)

Γ(c)Γ(d− c)

∫ 1

0

tc−1(1− t)d−c−1
AFB





a1, a2, ..., aA ;
tz

b1, b2, ..., bB ;



 dt

we compute that

∫ +∞

0

wφdt =
3
2
B1

∫ 1

0

zγ(1− z)−1/2
2F1





2 + γ, γ − 3
2 ;

z

1 + 2γ ;



 dz

+
(

3
2

)2 1
1− γ2

∫ 1

0

z(1− z)−1/2
3F2





1, 3, − 1
2 ;

z

2 + γ, 2− γ ;



 dz

=
3
2
B1

Γ(1 + γ)Γ(1
2 )

Γ( 3
2 + γ) 3F2





2 + γ, γ − 3
2 , 1 + γ ;

1
1 + 2γ, 3

2 + γ ;





+
(

3
2

)2 1
1− γ2

Γ(2)Γ( 1
2 )

Γ( 5
2 ) 4F3





1, 3, − 1
2 , 2 ;

1
2 + γ, 2− γ, 5

2 ;



 .(5.18)

Finally, using the formula
∫ +∞

0

w2dt = (
3
2
)2

∫ 1

0

z2(1− z)−
1
2 dz = (

3
2
)2

Γ(2)Γ(1
2 )

Γ( 5
2 )

(5.19)

and substituting into (5.15), we obtain (5.13).
2

By Lemma 5.3, problem (4.3) can be solved by using Mathematica. This method
can also be adapted to study the stability in Case 1 for τ > 0. We will not produce
any numerical results here. The readers are referred to [2] for some numerical results
in the case M = N = 1.
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6. Appendix A: Proof of Part (i) of Theorem 4.1. Note that the operator
Ln defined by

Lnφ = Laφ− a

∫
wφ∫
w2

w2, φ ∈ H1
r (R)

is not self-adjoint, where H1
r (R) is the linear subspace of even functions within H1(R).

Let 0 < a < 7
3 . (The case a = 1 has been studied in [25].) Then we have Xa :=

kernel(La) ∩H1
r (R) = {0}. Further,

Law = aw2.(6.1)

Since Ln is not self-adjoint, we introduce a new operator L which is defined as follows:

Lφ := Laφ− a

∫
R wφ∫
R w2

w2 − a

∫
R w2φ∫
R w2

w + a

∫
R w3

∫
R wφ

(
∫
R w2)2

w.(6.2)

We have the following important lemma.
Lemma 6.1. (1) The operator L is self-adjoint and the kernel X of L within

H1
r (R) is given by X = span{w}.

(2) There exists a positive constant a1 > 0 such that

Q[φ] := −
∫

R
φ(Lφ) =

∫

R
(|∇φ|2 + φ2 − (a + 1)wφ2)

+
2a

∫
R wφ

∫
R w2φ∫

R w2
− a

∫
R w3

(
∫
R w2)2

(
∫

R
wφ)2

≥ a1d
2
L2(R)(φ,X)

for all φ ∈ H1
r (R), where dL2(R) means the distance in L2-norm.

Proof of Lemma 6.1:
By (6.2), L is self-adjoint.
Next we compute the kernel of L. It is easy to see that w ∈ kernel(L).
On the other hand, if φ ∈ kernel(L), then by (6.1)

Laφ = c1(φ)w + c2(φ)w2 = c1(φ)w + c2(φ)L0(
w

a
)

where

c1(φ) = a

∫
R w2φ∫
R w2

− a

∫
R w3

∫
R wφ

(∫
R w2

)2 , c2(φ) = a

∫
R wφ∫
R w2

.(6.3)

Hence

φ− c1(φ)L−1
a w − c2(φ)

1
a
w ∈ kernel(La).(6.4)

Substituting (6.4) into (6.3), we derive

c1(φ) = ac1(φ)

∫
R w2L−1

a w∫
R w2

− ac1(φ)

∫
R w3

∫
R wL−1

a w

(
∫
R w2)2
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= ac1(φ)

∫
R(L

−1
a w2)w∫
R w2

− ac1(φ)

∫
R w3

∫
R wL−1

a w

(
∫
R w2)2

= c1(φ)− ac1(φ)

∫
R w3

∫
R wL−1

a w

(
∫
R w2)2

.

This implies that c1(φ) = 0. By (6.4) and since kernel(La) = {0}, Part (1) follows.
It remains to prove Part (2). Suppose Part (2) is not true. Then, by Part (1),

there exists (α, φ) such that (i) α is real and positive, (ii) φ ∈ H1
r (R), φ ⊥ w, and (ii)

Lφ = αφ.
We show that this is impossible. From (ii) and (iii), we have

(La − α)φ = a

∫
R w2φ∫
R w2

w.(6.5)

We first claim that
∫
R w2φ 6= 0. In fact if

∫
R w2φ = 0, then α > 0 is an eigenvalue

of La. By the properties of La, α = µ1 is the principle eigenvalue of La and φ has
constant sign. This contradicts the fact that φ ⊥ w. Therefore α 6= µ1, and hence
La − α is invertible in H1

r (R). So (6.5) implies

φ = a

∫
R w2φ∫
R w2

(La − α)−1w.

Thus
∫

R
w2φ = a

∫
R w2φ∫
R w2

∫

R
((La − α)−1w)w2,

∫

R
w2 = a

∫

R
((La − α)−1w)w2,

∫

R
w2 =

∫

R
((La − α)−1w)((La − α)w + αw),

0 =
∫

R
((La − α)−1w)w.(6.6)

Let ha(α) =
∫
R((La − α)−1w)w. Then ha(0) = ρ(a) =

∫
R(L

−1
a w)w > 0 if 0 < a < a∗.

Moreover h
′
a(α) =

∫
R((La − α)−2w)w =

∫
R((La − α)−1w)2 > 0. This implies

ha(α) > 0 for all α ∈ (0, µ1). Clearly, also ha(α) < 0 for α ∈ (µ1,∞) (since
limα→+∞ ha(α) = 0). Therefore there can be no solution of ha(α) = 0. This is a
contradiction to (6.6). This finishes the proof of Lemma 6.1. 2

Now we finish the proof of Theorem 4.1 (i).
Let α0 = αR + iαI and φ = φR + iφI be an eigenvalue and an eigenfunction of

the NLEP (4.3). Then we obtain the two equations

LaφR − b

∫
R wφR∫
R w2

w2 = αRφR − αIφI ,(6.7)
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LaφI − b

∫
R wφI∫
R w2

w2 = αRφI + αIφR.(6.8)

Multiplying (6.7) by φR and (6.8) by φI , integrating and adding the two equations,
we get

−αR

∫

R
(φR + φ2

I) = Q[φR] + Q[φI ]

+(b− 2a)

∫
R wφR

∫
R w2φR +

∫
R wφI

∫
R w2φI∫

R w2

+a

∫
R w3

(
∫
R w2)2

[(
∫

R
wφR)2 + (

∫

R
wφI)2].

Multiplying both (6.7) and (6.8) by w, we obtain after integration

a

∫

R
w2φR − b

∫
R wφR∫
R w2

∫

R
w3 = αR

∫

R
wφR − αI

∫

R
wφI ,(6.9)

a

∫

R
w2φI − b

∫
R wφI∫
R w2

∫

R
w3 = αR

∫

R
wφI + αI

∫

R
wφR.(6.10)

Multiplying (6.9) by
∫
R wφR and (6.10) by

∫
R wφI and adding the equations, we

get

a

∫

R
wφR

∫

R
w2φR + a

∫

R
wφI

∫

R
w2φI

= (αR + b

∫
R w3

∫
R w2

)((
∫

R
wφR)2 + (

∫

R
wφI)2).

This implies

−αR

∫

R
(φR + φ2

I) = Q[φR] + Q[φI ]

+(b− 2a)(
1
a
αR +

b

a

∫
R w3

∫
R w2

)
(
∫
R wφR)2 + (

∫
R wφI)2∫

R w2

+a

∫
R w3

(
∫
R w2)2

[(
∫

R
wφR)2 + (

∫

R
wφI)2].

Set

φR = cRw + φ⊥R, φ⊥R ⊥ w, φI = cIw + φ⊥I , φ⊥I ⊥ w.
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Then
∫

R
wφR = cR

∫

R
w2,

∫

R
wφI = cI

∫

R
w2,

d2
L2(R)(φR, X) = ‖φ⊥R‖2L2(R), d2

L2(R)(φI , X) = ‖φ⊥I ‖2L2(R).

After some elementary computations, we get

Q[φR] + Q[φI ]

+(
b

a
− 1)αR(c2

R + c2
I)

∫

R
w2 + a(

b

a
− 1)2(c2

R + c2
I)

∫

R
w3 + αR(‖φ⊥R‖2L2 + ‖φ⊥I ‖2L2) = 0.

By Lemma 6.1 (2), we have
(

b

a
− 1

)
αR(c2

R + c2
I)

∫

R
w2

+a

(
b

a
− 1

)2

(c2
R + c2

I)
∫

R
w3 + (αR + a1)(‖φ⊥R‖2L2 + ‖φ⊥I ‖2L2) ≤ 0.

Since b
a > 1, we must have αR < 0. This proves Part (i) of Theorem 4.1.

2
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