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Abstract

We analyze the asymptotic behavior of blowing up solutions for
the SU(3) Toda system in a bounded domain. We prove that there is
no boundary blow-up point, and that the blow-up set can be localized
by the Green function.

1 Introduction

In this paper, we consider the following SU(3) Toda system

( Ry et B U2k
Auyy + 2P1kL - P%L =0 in €2,
Jo harerrs Jo, harevax
hq.e¥ik howe¥2k
Augy, — PlkL + 2p2kL =0 in Q, (1)
Jo hagevs Jo, horetzx
U1k = ugr =0 on 09,

where 0 C R? is a bounded domain, 9 is its boundary and A is the Eu-
clidean Laplacian. Here, p1x and pgy are two positive constants, hyx(x) and
hor(z) are two positive functions converging to hy(z) and ho(x) respectively
in C?#(Q) as k — oo. We are concerned with the asymptotic behavior of
unbounded sequences of solutions to (1).
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Toda system arises in many physical models. In particular, the Toda
system (1) arises in the study of the non-Abelian non-relativistic Chern-
Simons theory with gauge group SU(3). See, for instance, the books [9], [25]
and the references therein.

The analogous second order single mean-field equation

hke“k‘
. A— in Q) C R,
o fQ hyet (2)

up =0 on 0f2

—Auk

has been extensively studied by many authors. We summarize some known
results. Let (ug, pr) be a blow-up sequence of solutions to (2) with py uni-
formly bounded, then it was proved that

(P1) (no boundary bubbles) uy is uniformly bounded near a neighborhood
of 0Q (Nagasaki-Suzuki [19], Ma-Wei [18]);

(P2) (bubbles are simple) p, — 8mm for some integer m > 1 and (after
taking a subsequence)

ug(x) — 87TZG(~,xj) in C2_(Q\ {1, ..., zm}),

where G is the Green function of —A with Dirichlet boundary condi-
tion. Furthermore, it holds that

Vinh(z;) + Vo H(xj2;) + Y VeG(za;) =0, j=1,..m (3)

i#]
where H(z,y) = G(z,y) — 5= In Iwiyl is the regular part of G(z,y). (See
Brézis-Merle [4], Li-Shafrir [14], Li [13], Nagasaki-Suzuki [19], Ma-Wei

[18].)

On the other hand, given m points satisfying (3), Baraket-Pacard [2]
constructed multiple bubbling solutions to (2) when h(z) = 1, and the bubble
points satisfy nondegeneracy condition. Del Pino, Kowalczyk and Musso [§]
constructed multiple bubbling solutions to (2) when the bubble points are
topologically nontrivial. Furthermore, Chen-Lin [6, 7] obtained the sharp
estimates for the bubbling rate of solutions to (2) as well as the Leray-
Schauder degree of all solutions to (2) for all p # 8mm. A related question
connected to physics consists in adding Dirac masses to the nonlinear parts,
and we refer to Bartolucci-Chen-Lin-Tarantello [1] and to Tarantello [23] for
backgrounds, results and asymptotics in this context.
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Going back to the Toda system (1), Jost-Wang [11] first classified the
entire solutions. More precisely, for the following SU(3) system in R?
Au+2e* —e¥ =0 in R?,
Av —e"+2e” =0 in R?,

e < oo, e’ < oo,
R2 R2

they showed that (u,v) must be of the form:

4(a2a3 + a?]2z + c|* + a3|z% + 2bz + be — d|?)
(af + a3z + B2 + |22 + cz + d?)”
16a3a3 (a3 + a3lz + b]* + |22 4+ cz + d|?)
(a2a2 + a2|2z + c|? + 2|22 4 2bz + be — d|?)?

u(z) =1In

: (4)

v(z) =1In

()

where z = x1+1ix9 € C, a; > 0, ay > 0 are real numbers and b = b; +1by € C,
c=c +icy € C,d=d +idy € C. Recently, Wei-Zhao-Zhou [24] obtained
the nondegeneracy of the Jost-Wang’s entire solution.

Jost-Wang [12] and Jost-Lin-Wang [10] studied the SU(3) Toda system
on a two-dimensional manifold M without boundary

Uk eu2k
Auyy, + 2;01kf v szf e on M,
]‘7{11@ MUQk (6)
e e
AUQk — plk—ulk + 2p2k—u2k =0 on M.
Jue Jue

They proved that the blow-up points of System (6) must be isolated. Further-
more, at each blow-up point, the limits of (p1x, por) must be one of (47,0),
(0,4m), (47, 87), (8m,4m) and (87, 8m). See also related studies by Ohtsuka-
Suzuki [20].

In this paper and the subsequent paper [17], we consider the blow-up anal-
ysis of solutions to (1). A first natural (and inevitable) question is whether
or not there is a boundary bubble. Such a question will not arise in system
(6). In the case of single equation (2), boundary blow-up is excluded by
the method of moving planes and the use of Kelvin’s transform ([18]). This
technique works well for elliptic systems too, provided that the system is
cooperative. More precisely, the elliptic system

Au+ f(x,u,v) =0, Av + g(x,u,v) =0 (7)

is cooperative if 2 (m;)“’”) >0, % (gf’”) > (. For the definition of cooperative

systems and applications of the method of moving plane to cooperative sys-
tems, we refer to Troy [22] (for bounded domains) and Busca-Sirakov [5] (for
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the whole RY). See also Lin-Zhang [16] for the Liouville system which is
cooperative. Unfortunately, the SU(3) Toda system is not cooperative be-
cause of the negative sign in the “off-diagonal” terms in (1). It is unclear
if one can still use the method of moving planes. Instead, we shall use the
Pohozaev identity and precise information on blow-ups to exclude boundary
bubbles. This idea was introduced first by Robert-Wei [21] in studying the
fourth order mean field equation with Dirichlet boundary conditions.

The purpose of this paper is to establish the corresponding properties
(P1) and (P2) for System (1). Our main results can be stated as follows.

Theorem 1.1. Let (uyg,usk,pix,por) be a sequence of solutions to (1) such
that, as k — oo,

0<pu <A, 0<py <A and magmax{ulk,ugk} — +00.
fAS

Then the blow-up set of max{uig, usx} is finite and in the interior of Q.
Precisely, there exists an m € N* (the set of positive integers) and a set
S =A{p1,...,pm} C Q such that (after taking a subsequence)

U — Z(QO’U — agi)G(x,pi), Ul — Z(ZO’QZ' — Oli)G(.ﬁL',pi)
i=1

i=1

in C% (Q\S), where (01;,09;) can only be one of (47,0), (0,4xn), (4w, 8x),

loc
(8m,4x) or (8w, 8w ). Furthermore, p1, — Y oo 01; and pay, — Y 1oy 0.
This paper is organized as follows. In Section 2 we present some useful
lemma and the Pohozaev identity. Theorem 1.1 is proved in Section 3.
Notation. Throughout this paper, we assume that hiy, hop are smooth
positive functions converging to hy, hy in C%#(Q2) respectively. The constant
C will denote various constants which are independent of k. All the conver-
gence results are stated up to the extraction of a subsequence.

2 Preliminary

In this section we give some basic estimates and state the useful Pohozaev
identity.

We first recall the following important estimate which can be found in
[12, Theorem 3.1], [10, Proposition 2.1] and [10, Remark 2.1].

Theorem 2.1. Let Q be a bounded smooth domain in R* and (uyg, usy) be a
sequence of solutions of the following system:

—Aﬂlk = 2h1kea1’€ — thean m Q,
{ (8)

—Aﬂgk = 2h2keﬁ2k — hlkealk mn
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with

Set
S; = {x € Q: 3 a sequence y* — x such that i.(y") — +oo}.

Then, one of the following possibilities happens (after taking subsequences):
(1) (g, Usk) is uniformly bounded in L3S () x LS. (€2).

loc

(it) For some j € {1,2}, uy, is uniformly bounded in L35.(SY), but @, —

loc
—oo uniformly in any compact subset of Q for j # i.

(iii) For some i € {1,2}, S; # 0 but S; = 0 for j # i. In this case,
Ui — —oo uniformly in any compact subset of Q\ S;, and either @y, is
uniformly bounded in L35 (Q2) or i, — —oo uniformly in any compact
subset of €.

(iv) Sy # O and Sy # 0, then both Gy and Uy, tend to —oo uniformly in
any compact subset of Q\ {S1 U Sy}.

Remark 2.2. The above theorem does not exclude the existence of boundary
blow-up points. Actually, blow-up points lying on the boundary can exist in
each one of the alternatives.

In what follows, we let

h Uk h U2k
o = In (—fQ 1k ) , Qo = In <—fQ 2k€ )

Pk P2k

and
Uy = Uty — g, U = U — Q- (10)

Then we have the following lemma.

Lemma 2.3. There exists a constant C € R independent of k such that
ay > C and ag, > C for all k.

Proof. Note that iy, Gox, satisfy (8)-(9) and 1 = —aqg, Uox = —ang on OL).
Using Green’s representation formula we have

k() = / G(z,2) [thk(z)eﬁl’“(z) — hgk(z)eﬂ%(z)} dz — aqy, (11)
Q

Uk () = / G(z, 2) [thk(z)eﬂ%(z) — hlk(z)ea“ﬂ(z)} dz — agy. (12)
Q

b}



Thus we get
|t1r, + gl 1) < C, | tior, + cvorl| 1) < C. (13)

On the other hand, by Theorem 2.1, there exists an at most finite set S; C §2
such that both ; and w9, are uniformly bounded from above in any compact
subset of 2\ S;. Therefore, from (13) we see that oy, ag, cannot go to —oo
as k — oo, which proves the lemma. O

Len}ma 2.4. Assume that uy, < C and ug, < C. Then there exist uy,us €
C?(Q) such that (after taking a subsequence) uy, — uy and ug, — U in

C2(9).

Proof. 1t follows from the assumption and Lemma 2.3 that uy, < C and
w9, < C in . Thus we have that

—Aulk € O(l), —AUQk € 0(1)
Elliptic regularity then implies the result. O]

We state a Pohozaev identity at the end of this section, which plays an
important role in the proof of Theorem 1.1.

Lemma 2.5. [t holds that, for any bounded domain D C R?,
/ 6hype™t + / 3™k (x — &, Vhyy)
D D
+ / 6hope™ + / 3" (x — &, Vhay)
D D
= / <3h1k€alk + 3h2k€a2k)<;€ — f, V)
oD
0(2 0 2
—l—/ OQ2un + uze) u1g+ k) (x — &, Vugyg) —|—/ Oy + 2uze) (x — &, Vug)
oD v oD v

— /8 [|Vu1k|2 + <VU1k, Vu%) + |Vu2k|2] <.T — 5, I/> (14)
D

for any & € R2.

Proof. We rewrite the system (1) as

—A(Zulk + u2k) = 3h1k€ﬁ1k,
—A(ng + 2u2k) = 3h2k€ﬂ2k.

Multiplying the first equation by (x — &, Vuyy), the second by (x — &, Vuay),
and integrating by parts, we obtain (14). O



3 Proof of Theorem 1.1

In this section, we give the proof of our main theorem 1.1.
Let

My.(z) = max{ (), tox ()}, (15)
and py, € Q be such that

My.(pr) = mﬁax My (z).

Define puy; by
—21n p; = My, (p)-

Note that g — 0 by our assumption and hence p; ¢ 0 since we know that
Mi.(z)]9q < C from Lemma 2.3.

We prove first that the point p, must have some distance from the bound-
ary.

Lemma 3.1. dist(pg, 9Q) /. — oo.

Proof. Otherwise assume that there is a subsequence, still denoted by (pg, ix),
such that dist(px, 0Q) = O(ug). Let Qp = (2 — pr)/px. Then up to a rota-
tion, we may assume that 2 — (—o00,ty) x R. With no loss of generality,
we assume ju, = e~ “#(Px)/2 and define

ftlk(y) = ﬁlk(pk + uky) +2 In M + In hlk(pk)-

Let R > 0 and y € Br(0) N€2. Then we have by the representation formula
(13) that

(Vi (y)| = [ Vi (pr + pxy)|
/ VG (pr + iy, 2) [2har(2)e™ 5 — hoy(2)e™ )] dz
Q

2hin(2)e®r(2) — hoy (2)et2r(2)
/ +/ ’ 14(2) 24(2) |dz.
Boryu, (o) J0\Bary, (1) Pk + piry — 2|

Using the fact that e%() e@2v(z) < ¢@k®r) = ;72 in Byp,, (pi), we know that

< Cug

dz < C(R).

/ ’2h1k(z)eﬂ1k(z) _ h2k(2)6ﬂ2k(z)|
M
Baruy (i) [pr + iy — 2|

Since pug|pr + pry — 2| < C(R) for z € Q\ Bagy, (pr), it is clear that



dz

/ ‘2h1k(2)eﬂlk(z) _ h%(Z)eﬂzk(Z)’
N\ Baruy, (br) i+ by — 2|

S O(R)/ ‘2h1k€a1k — hgkea%’ S C(R)
Q

So we obtain that

which particularly implies that |G14(y) — @1x(0)] < Cly| < C for any y €
Br(0) N 2. For some fixed yg € 0§, we obtain that |t1x(yo) — u1x(0)| =
U1k (pr) + 1] < C. This means that

—21In py, + agr = O(1),

which is a contradiction to Lemma 2.3 and the fact that px — 0. Thus
dist(pg, 0Q) / g, — 0. O

For the function

U1k (y) = Uik (pr + pay) + 210y, 4+ Inhyg(pr),
Uok(Y) = Uk (Pr + pey) + 210 g + In hoy (pr),

we have the following lemma.

Lemma 3.2. In any compact subset of R?, (after taking a subsequence) either
(a) (g, Usr) converges to one of the Jost-Wang’s entire solution (4), (5);
or

(b) one of Gy, tog converges to a solution of Liouville equation

Au+e* =0 in R?, /e“<oo
]RQ

and the other converges to —oo uniformly on compact subsets of R2.

Proof. By Lemma 3.1 we have Q; = (2 — pi)/ux — R% Tt is easy to check
that

- hig(Petury) a hok (PE+H1EY) G :
— Al = QBE\PETHEY) purp . 2k\PkTHEEY) pU2k in O
1k . h(lk(pk) | . h(2k(pk) ) ks
—Adlon = 202k Pe+1EY ea% _ hig(Petpry eﬂlk in Q..
2k ha (pr) h1x (pr) k

We can verify that uy; and g satisfy the conditions of Theorem 2.1. Since
by definition w1, < C and g, < C, there are two possibilities (after taking
a subsequence):

1) Gy and gy are both uniformly locally bounded in R?;
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2) either 4y, or dgy, is uniformly locally bounded in R?, while the other
one diverges to —oo uniformly on compact subset of R2.

For Case 1), one can show that (4, ) converges in C2_(R?) to an entire
solution with finite energy. Now the classification result [11] gives (a).

For Case 2), let 11 be uniformly locally bounded, then it is easy to check
that ay), converges to a solution of the Liouville equation (3.2).

The proof is concluded. n

To establish the finiteness of the blow-up points set, we introduce a def-
inition. We say that the property H, holds if there exists (pg1,. .., Pre)
such that, denoting puy ; = e~ m{@kPrs) 2k (Pei)}/2 — () we have that

i) I}Lffolo \Dki — Drjl/pk; = oo for any i # j;
i) klim dist(pr,i, 0Q2)/pr; = oo for all i = 1,...,(;

itg) for all ¢ = 1,...,¢, we denote Uk, (y) = Uk(Pri + piy) + 21 pug; +
In hag(pri) and diog(y) = tok (Pri + priy) + 210 g + In hog (pri), then
in any compact subset of R2, either (Q1g 4, Usok,;) converges to the Jost-
Wang’s entire solution of Toda system; or one of Uy ;, lgr; converges
to a solution of Liouville equation (3.2) and the other diverges to —oo
on compact subsets of R2.

We remark that Lemma 3.1 and Lemma 3.2 imply that H; holds. From i)

and Fatou’s lemma, we deduce that if H, holds, then for every i =1,...,¢,
lim lim hype™ + lim lim hope®r > 4. (16)
r—0 k—oo BT‘ (Pk,z) r—0 k—oo Br (pk,z)

Lemma 3.3. Assume that H, holds. Then either Hyy1 holds, or there exists
C > 0 such that

2emax{ﬁ1k(m):ﬂ2k(m)} < C.

=
Proof. Let wi(z) = inf;—y |2 —pk,¢|2€M’“(x) where My (x) is defined in (15).
Assume that ||wg|| =) — 0o. Note that My (x)|sn < C. Now let 2, € Q be
such that wy(zy) = maxgw, and v, = e~ Me(@)/2 Observe that v, — 0 and
wi(z) = infi—1 g |2k — pril?/7i — oo. Thus

|-’1‘3k - pk,i‘

— 00 foralli=1,... ¢ (17)
Tk



Assume that there exists some j such that xj, — pg; = O(ug ;). Then we
may write x = pg; + fu,;0k; where 6;; = O(1). Because of the property
(1i1), direct computations show that

|xk _pk’j|26Mk($k) _ |9k’j|26Mk(pk,j+ﬂk,j9k,j)+2lnHk,j N O(Qoo,j) < +00,
which is a contradiction to the fact that wy(xy) — oco. Thus we have

|$k - pk,i|

— 00 foralli=1,..., ¢ (18)
227K

Let y € Bg(0) N where Q = (Q — zx)/v, and let € € (0,1). Then
wi(xp + My) < wi(xy). That is, inf,y g|zr + Wy — pk7,~|eM’c(x’€+7ky) <
inf,_y |z — pk,i\eMk(f”k). We now define vy, (y) = ik (xr + yey) + 2Iny, +

In hi(xr) (¢ =1,2). Then it is easy to check that

emax{vlk(y),vgk(y)} < Ql infi:l ----- £ ’[Bk — Pk

where the constant )1 > 0 is chosen to satisfy that @1 > max,g{hix(2), hor(x)}
because of the uniform boundedness of hy; and hgy. Let k(R) be such that
2k — pril/7e > B foralli=1,...,0 and k > k(R) in view of (17). Thus for
all i we have |zy + Yy — Pl > |2k — pri|(1 — €), which yields that

max{vx(y), var(y)} < lIn i 6_216)2 for any y € Br(0) N, k> k(R),
eMr@etney) < ﬁ’yf for any y € Br(0) N Q, k> k(R),

where the constant Q2 > 0 is chosen to satisfy that Qo < min  g{hix(z), hor()}.
Substituting ty, tok, pr Y v1g, Vo, Y in the proof of Lemma 3.1, we obtain
that
dist(xy, 0)
Tk
Similarly, Lemma 3.2 also holds for (vig, vag). Let pges1 = Tk, fk 11 = V-
Combining (17), (18) and the above remark, we conclude that H,.; holds. [J

— OQ.

Lemma 3.4. There exists some m € N* such that 'H,, holds and

'_ilnf |z — ppi|Pemetin@ian@} < ¢ for any x € Q. (19)

Ly
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Proof. Suppose not. Since H; holds, H, holds for all £ > 1 by the above
lemma. From the property (i), given R > 0, we have Bry, , (D) \Bru, , (Pr.j) =
() for all i # j, k > k(R). Recall the assumption that pix, por < A. By (16),
it is easy to check that

2A > lim (pyg + por) = lim [ hype™ + lim [ hope®*
k—o0 k—o0 Q k—o0 Q

l
> lim Z/ hlkealk + hgkea%
koo iTT Bry,, ; (Pr,i)
> 47l

which implies that ¢ < A/(27) and leads to a contradiction. The proof is
complete. n

Lemma 3.5. There exists a C > 0 such that

i_ilnfm |z — pril|Vie(x)| < C, i_ilnfm |z — pri|| Vi (z)| < C,

=1,... e

for all x € €.
Proof. By Green’s representation formula (11), we have

1 i )
Vi < C / = P — (e b (20)
Ry

Let Ri(z) = infi—y |z — prs| and Q. = {v € Q: |z — prs| = Ri(z)} for
1=1,...,m. Note that 2 = T_L)lekz for each k. Then for z € ),

U15(2) h 1k (2)
/ hlk(z)e dz — / 1k(z)€ dz
Qi |:B - Z| Q,iNBla—py, ;1/2(Pk,i) |{E o Z|

h U1(2)
+ / —1’](2)6 dz. (21)
Qe,i\Blo—py, ;1/2(Pk,i) €T = Z‘

Using (19), we note that for z € Qp; \ Bla—p, ,1/2(Pri),

1k (2)
hig(2)e < C < C N
|z — 2| |z = zl[z = pral® T |z = 2w = prl

Simple computation then shows that

h U1k (2) C
/ ey o C (22)
Q,i\Bjo—py, ;1/2(Pk,i) ‘SL‘ o Z’ ’SU o pk:i’

11



On the other hand, for z € ;N Bjy—p, ,/2(Pr,i), We have [z — z| > %|x — Dkl

and hence o)
h U1k(z C
/ ”C(Z)—edz < (23)
Q,iNBlo—p,, ;1/2(Pk.q) |JJ - Z| |(L’ - pkﬂ"
By (21)—(23), it holds that

h U1k (2)
/ 1(2)e dz < )
Q. T — 2| |z — pr,il

Similarly, it also holds that

/ Rok (2)et2+(?) & < C
Qi

|z — 2| = |z = pral

Finally we obtain that, from (20),

it = pl V() < €

The estimate for Vg, may be proved analogously. The proof is finished. [
Denote p; = limy oo pr; € Qforalli=1,...,mand S = {p1,...,pm}-

Lemma 3.6. uy; and ug, are uniformly bounded in any compact subset of

a\s.

Proof. We just prove the result for ujx. The proof is similar for ug. Let
§ > 0 be small enough such that 5 = Q\ f_le(; (p;) is connected. So we have

.....

from Lemma 3.5 that |V < C(d). Then |Vuy| = |V < C(0) in Q.
Thus for some x5 € 05 N OS2, we have

[ui ()] = Ju(x) — uk(xs)| < C(9)
for all x € €25. The proof is completed. ]

Remark 3.7. The blow-up set of max{uy, uox} is exactly S. In fact, Lemma
3.6 says that it must be contained in S. On the other hand, since S is the
blow-up set of max{tg, Uor} and ayy, ag, > C, max{ug, us,} also blows up
at S.

12



Lemma 3.8. Assume that one of oy, aor is uniformly bounded. Then
S C 09. Moreover, assume that oy, — Qi and Qo — Qo (Up to a
subsequence), then there exists Uiso, Usso € C*(Q) such that

_Auloo — 2hleuloo_aloo _ h2eu2m_a2m m Q’
_AUQOO — 2h26’u2oo*012oo _ hleuloo*aloo ZTL 97
Ul = Uz = 0 on 00)
and
Utk — Uloo, Usk — Useo 1 Cho(Q\S). (24)

(Here e"iee= % = () if a0 = +00 (1 =1,2).)
Proof. First we prove that S C 9). Note that there exist two possibilities:
1) ik, agi are both uniformly bounded;

2) (up to a subsequence) ajp — +00, Qo — Mone < +00 OF A1 — Moo <
+00, g — +00.

For Case 1), from (13) it holds that |[tk||1 o) < C and |[tg|| 1) < C.
According to Theorem 2.1, we have that w1, and 9, must be both uniformly
bounded in L3, (€2). Since S is the blow-up set, we conclude that S C 09Q.

loc
For Case 2), without loss of generality, we assume that o — o0,

Qo — Qae < +00. Since ||tgk|[11) < C, by Theorem 2.1, we know that
Tgy, is uniformly bounded in L2 (2). Lemma 3.6 and the fact that |ag| < C
further imply that

both ug, and iy are uniformly bounded in L2 (Q\ (S N oQ)). (25)

loc

Thus _standard elliptic theory implies that w4+ 2uqs is uniformll bounded in
CL.(Q\ (SNIN)). Therefore uyy, is uniformly bounded in L2 (Q\ (S NON))
and, because aqp — 00,

@i, — —oo uniformly in any compact subset of Q\ (SN 99Q). (26)

Since S is the blow-up set, we again conclude that S C 09 by (25) and (26).
It follows from Lemma 3.4 and standard elliptic theory that there exist
Uloo, Uzee € C%(Q\ S) such that

Ul = Uloo, U2k =7 U2c0 in C’fx(ﬁ\ S)- (27)
Thus, passing to the limit £ — oo in Lemma 3.5, we get that

'_ilnf |z — pi| [Vuieo(z)| < C forallz € Q\ S,

e

13



4_ilnf |z — pil|[ Vg (z)| < € forallz € Q\ S.

=1,..,

It remains to prove that w1, Uss can be smoothly extended to S. We fix
some p; € .S C 0N and let 0 > 0 small enough such that

|z — pj||Vuio(z)| < C Vo eQnBsp)\ {p;}-

Therefore, there exists C’ > 0 such that for all x, z € QN Bs(p;) \ {p;} such
that |x — p;| = |z — p;|, we have that

(U100 () — U100 (2)] < C.

Taking z € 0Q N Bs(p;) \ {p;}, we then get |uio(z)| < C’ for all x €
QN Bs(p;) \ {p;}. Recalling that S C 9 and taking the similar procedure
for all the points of S, we get that there exists C' > 0 such that |uj(z)] < C
for all z € 2\ S. Similarly we also obtain that |uy.. ()] < C for all z € Q\ S.

Let w € H}(Q) such that —Aw = 2hyy,e"10 %% — hy 20072 in Q). Tt
follows from standard elliptic theory that w € C'*(Q) and

w(x) = / G(x7z) [thoo(z)euwc(z)*mco o h200(2>€U,200(z)—04200] d=.
Q
For any fixed z € \ S and any fixed 6 > 0 small enough,
U1k<3§'> = / G(ZE',Z) [thk(z)eﬁl’“(z) — hzk(z)efmk(z)} dz
Q

- / G(z, 2) [2h1k(2)6ﬁ1’“(z) - th(Z)eﬂ%(Z)} dz
o\ U Bs(p)
=1

—l—/ G(z, z) |:2h1k<z)€ﬁlk(z) _ h%(z)ea%(z)} ds.
U Bs(pne

1=

Note that G(x,p;) = 0 for p; € 02 and = # p;. Using (27) and passing to
the limit (first in &£ and then in §) in the above equality, we achieve that

Uloo(T) = / G(z,2) [thoo(z)eam(z) _ hzoo(z)eﬁm(z)] dz,
Q

which means that ujec = w in Q\ S and therefore 1), can be extended as a
C*(Q) function. Coming back to the equation of w, we get that w is C*(Q)

and then u;o, € C?(9).
Similar procedure may be applied to us,,. The proof is accomplished. [
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Lemma 3.9. We have that (up to a subsequence)
oy — +00 and Qg — —+00.

Proof. Otherwise we know that S C 02 by Lemma 3.8. Choose zy € S and
r > 0 small enough such that SN B,(zg) = {xo}. Let 2z = x¢ + Vi, v (o)
with

 Joonm e (& — w0, V) [|5G 17 + Tk Oz + | %5 ]
- f <I/(:L“ ) l/> [|3U1k|2 + Ouyy OQuoy + |8U2k|2j|
00N B, (o) 0/ v dv  Ov ov

where 7 is small such that § < (v(xo),v) < 1 for € IQN B, (x0). Here v(x)
is the unit outer normal at x € 09Q. It is then easy to check that |[J,| < 2r
for |(x — xg,v)| < r. Observing x — z;, = x — xg — Vg,V (xg), we know that

0 Ouyy 0 0
GQﬁBr(mo)

19]6,7’

ov ov v | ov

Now applying Pohozaev identity (14) in Q N B,.(zo) with £ = 2, we have
that

/ 6h1k€u1k*a1k + / etk %1k <:U — Zs Vh1k>
QNBy(xo)

QNBy(x0)

-+ / 6h2k€u2k_a2k + / 3€u2k_a2k <.T — Zk, Vh2k>
QN By (z0) QN By (z0)

= / (Bhype o~k 4 Bhope* TR ) (1 — 2k, V)
O(QNBr(z0))

o2 Oy +2
(N B (z0)) v ’

- / [|VU1k|2 + <Vu1k, Vu2k> + |Vu2k|2] <:IJ — Zk, I/>. (29)
O(QNBy(z0))

In view of the boundary conditions and Lemma 2.3, it is easy to see that

B R
o0 NBr(xo
and, by (28),
0(2 0 2
O0NBy (z0) v v

= [ [V (Fu, V) + V] o - 2,0)
8QﬂBr(Io)

15



0u1k 2 aulk 8u2k 8u2k 2
- - =0.
/amBT(mo)@ V) {' v "+ ov v *| ov |

From (24) of Lemma 3.8, we have [|uix || c2@nos, 2y < C (independent of r).
(Similar estimates hold for ugg.) We obtain that

lim (Bhype k= 1k 4 Bhype 2k 2% ) (1 — 2z V) = O(r?),
k=00 JanaB, (zo)
and
0(2 0 2
lim OQuue ) gy et 20) G
k—o0 QﬂaBr(xo) 8V al/
— lim [|Vu1k|2 + <VU1k, Vqu> + ‘VU%‘Q} (x — 2k, l/>
k—oo JanaB, (z0)
=0(r?).
Since [, hire™* < C, it holds that
lim etk Tk (x — 2z, Vhig) = O(r) i=1,2.

k=oo JonB, (z0)

Then we have, by taking the limit to (29) first in & and then in r,

lim lim hipe®* Y% + lim lim hopet 2k ™2k = (),
r—0 k—oo QN B, (x0) r—0 k—oo QN B, (x0)
which is a contradiction to (16). O

Lemma 3.10. There exist (04;,09;) satisfying o1; + 09y > 4w (i=1,...,m)
such that (up to a subsequence)

(201, — 02:)G(x, p;) in Ch (Q\ 9),

M

uy(x) —

=1

(209; — 01;)G(x, p;) in Ch(Q\ S).

uop () —

VL

1

7

Proof. Note that Uy, gy — —00 uniformly in any compact subset of Q\S.
For any fixed x € 2\ S and any fixed § > 0 small enough,

lim Ulk(l‘) = lim G(gj’ Z) [thk(Z)ealk(Z) _ h2k(z)eﬁ2k(z)] dz

k—o0 k—o0 Q

16



= lim / ) [2h1x(2)e™+ &) — hop(2)e™+ )] dz.
imd [ G R o (2)e" )]

Since G(z,-) is continuous in Q \ {z}, we pass the limit in  — 0 and get
that

Jim () = 2(2% — 09)G (2, pi),
where 01; = hir(l) khqngo fBa( hlke e and gy = hi% kh_)rgo fB&(pi)mQ hore™*+ and
01; + 09; > 4m from (16). Similarly, we also have

Jim ugy(z) = 2(20% — 01)G(7,pi).

Finally, standard elliptic theory shows that the convergence is of C2 _(Q

\
S). O
Lemma 3.11. SN oQ = (.

Proof. We argue by contradiction. Let xq € SN 0. We may assume further
that S N Bs(zo) = {xo}. Arguing as in Lemma 3.9, we get that

/ 6h1k6u1k_alk +/ 31k~ 1k <$ — 2, Vh1k>
QN By (z0)

QN By (z0)

—l—/ Ol 2k 2k +/ 3e 2Tk (1 — 2z Vo)
QﬂBT(xo) QﬂBr(mo)

= / (Bhype v TNk 4 Bhope T2k ) (1 — g, V)
O(QNBy(z0))

0(2uqir +u O(uq, + 2u
+ / M<x — Zka Vu1k> + M<x — Zk; Vu2k>
A(QN B, (z0)) v ov

— / [\Vulk\Q + <Vu1k, Vugk) + |Vu2k|2} <33 — Zk, V>.
A(QNBr(x0))

Using Lemma 3.10 and noting that G(z,zo) = 0 for any = € Q N 0B, (zo),
we obtain that

lim (Bhype™ k™ 1k 4 Bhype 2k 2% ) (1 — 2z V) = O(r?),
k=00 JanaB, (zo)

and

17



2 2
im OCuvetum) gy Qe £ 20) Gy

k=20 JOnaB, (z0) v v
— lim [\Vulk\z + (Vuyy, Vug) + |Vu2k\2] (x — 2z, v) = O(r?).
k=00 JanaB, (zo)
This implies then
lim lim 6hye "% + lim lim Ghape? ™2k = (),
r—0 k—oo QN B, (z0) r—0 k—oo QN B (z0)
which is a contradiction. O

So far we have proved that S C 2 and oy, — +00 and ag, — 400. Thus
Proposition 2.4 of [10] shows that (o4, 02;) of Lemma 3.10 can only be one of
(47,0), (0,4m), (4m,87), (8m,4m) or (8w, 8x). Finally, since a1, — —oo and

U, — —oo locally in Q\ S,

m m

lim pyp = lim hipe“"* = lim lim E hqpettt = E o1

k—o0 k—oo Jq r—0k—o0 4 7 (0:) —
i= r\Pi i=

Similarly we have po, — Z;L 09;. This completes the proof of Theorem 1.1.
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