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Abstract

We analyze the asymptotic behavior of blowing up solutions for
the SU(3) Toda system in a bounded domain. We prove that there is
no boundary blow-up point, and that the blow-up set can be localized
by the Green function.

1 Introduction

In this paper, we consider the following SU(3) Toda system
∆u1k + 2ρ1k

h1ke
u1k∫

Ω
h1keu1k

− ρ2k
h2ke

u2k∫
Ω
h2keu2k

= 0 in Ω,

∆u2k − ρ1k
h1ke

u1k∫
Ω
h1keu1k

+ 2ρ2k
h2ke

u2k∫
Ω
h2keu2k

= 0 in Ω,

u1k = u2k = 0 on ∂Ω,

(1)

where Ω ⊂ R2 is a bounded domain, ∂Ω is its boundary and ∆ is the Eu-
clidean Laplacian. Here, ρ1k and ρ2k are two positive constants, h1k(x) and
h2k(x) are two positive functions converging to h1(x) and h2(x) respectively
in C2,β(Ω) as k → ∞. We are concerned with the asymptotic behavior of
unbounded sequences of solutions to (1).
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Toda system arises in many physical models. In particular, the Toda
system (1) arises in the study of the non-Abelian non-relativistic Chern-
Simons theory with gauge group SU(3). See, for instance, the books [9], [25]
and the references therein.

The analogous second order single mean-field equation−∆uk = ρk
hke

uk∫
Ω
hkeuk

in Ω ⊂ R2,

uk = 0 on ∂Ω
(2)

has been extensively studied by many authors. We summarize some known
results. Let (uk, ρk) be a blow-up sequence of solutions to (2) with ρk uni-
formly bounded, then it was proved that

(P1) (no boundary bubbles) uk is uniformly bounded near a neighborhood
of ∂Ω (Nagasaki-Suzuki [19], Ma-Wei [18]);

(P2) (bubbles are simple) ρk → 8mπ for some integer m ≥ 1 and (after
taking a subsequence)

uk(x)→ 8π
m∑
j=1

G(·, xj) in C2
loc(Ω \ {x1, ..., xm}),

where G is the Green function of −∆ with Dirichlet boundary condi-
tion. Furthermore, it holds that

∇ lnh(xj) +∇xH(xj, xj) +
∑
i 6=j

∇xG(xi, xj) = 0, j = 1, ...,m (3)

where H(x, y) = G(x, y)− 1
2π

ln 1
|x−y| is the regular part of G(x, y). (See

Brézis-Merle [4], Li-Shafrir [14], Li [13], Nagasaki-Suzuki [19], Ma-Wei
[18].)

On the other hand, given m points satisfying (3), Baraket-Pacard [2]
constructed multiple bubbling solutions to (2) when h(x) = 1, and the bubble
points satisfy nondegeneracy condition. Del Pino, Kowalczyk and Musso [8]
constructed multiple bubbling solutions to (2) when the bubble points are
topologically nontrivial. Furthermore, Chen-Lin [6, 7] obtained the sharp
estimates for the bubbling rate of solutions to (2) as well as the Leray-
Schauder degree of all solutions to (2) for all ρ 6= 8mπ. A related question
connected to physics consists in adding Dirac masses to the nonlinear parts,
and we refer to Bartolucci-Chen-Lin-Tarantello [1] and to Tarantello [23] for
backgrounds, results and asymptotics in this context.
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Going back to the Toda system (1), Jost-Wang [11] first classified the
entire solutions. More precisely, for the following SU(3) system in R2

∆u+ 2eu − ev = 0 in R2,

∆v − eu + 2ev = 0 in R2,∫
R2

eu <∞,
∫

R2

ev <∞,

they showed that (u, v) must be of the form:

u(z) = ln
4 (a2

1a
2
2 + a2

1|2z + c|2 + a2
2|z2 + 2bz + bc− d|2)

(a2
1 + a2

2|z + b|2 + |z2 + cz + d|2)
2 , (4)

v(z) = ln
16a2

1a
2
2 (a2

1 + a2
2|z + b|2 + |z2 + cz + d|2)

(a2
1a

2
2 + a2

1|2z + c|2 + a2
2|z2 + 2bz + bc− d|2)

2 , (5)

where z = x1 +ix2 ∈ C, a1 > 0, a2 > 0 are real numbers and b = b1 +ib2 ∈ C,
c = c1 + ic2 ∈ C, d = d1 + id2 ∈ C. Recently, Wei-Zhao-Zhou [24] obtained
the nondegeneracy of the Jost-Wang’s entire solution.

Jost-Wang [12] and Jost-Lin-Wang [10] studied the SU(3) Toda system
on a two-dimensional manifold M without boundary

∆u1k + 2ρ1k
eu1k∫
M
eu1k
− ρ2k

eu2k∫
M
eu2k

= 0 on M,

∆u2k − ρ1k
eu1k∫
M
eu1k

+ 2ρ2k
eu2k∫
M
eu2k

= 0 on M.
(6)

They proved that the blow-up points of System (6) must be isolated. Further-
more, at each blow-up point, the limits of (ρ1k, ρ2k) must be one of (4π, 0),
(0, 4π), (4π, 8π), (8π, 4π) and (8π, 8π). See also related studies by Ohtsuka-
Suzuki [20].

In this paper and the subsequent paper [17], we consider the blow-up anal-
ysis of solutions to (1). A first natural (and inevitable) question is whether
or not there is a boundary bubble. Such a question will not arise in system
(6). In the case of single equation (2), boundary blow-up is excluded by
the method of moving planes and the use of Kelvin’s transform ([18]). This
technique works well for elliptic systems too, provided that the system is
cooperative. More precisely, the elliptic system

∆u+ f(x, u, v) = 0, ∆v + g(x, u, v) = 0 (7)

is cooperative if ∂f(x,u,v)
∂v

≥ 0, ∂g(x,u,v)
∂u

≥ 0. For the definition of cooperative
systems and applications of the method of moving plane to cooperative sys-
tems, we refer to Troy [22] (for bounded domains) and Busca-Sirakov [5] (for
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the whole RN). See also Lin-Zhang [16] for the Liouville system which is
cooperative. Unfortunately, the SU(3) Toda system is not cooperative be-
cause of the negative sign in the “off-diagonal” terms in (1). It is unclear
if one can still use the method of moving planes. Instead, we shall use the
Pohozaev identity and precise information on blow-ups to exclude boundary
bubbles. This idea was introduced first by Robert-Wei [21] in studying the
fourth order mean field equation with Dirichlet boundary conditions.

The purpose of this paper is to establish the corresponding properties
(P1) and (P2) for System (1). Our main results can be stated as follows.

Theorem 1.1. Let (u1k,u2k,ρ1k,ρ2k) be a sequence of solutions to (1) such
that, as k →∞,

0 < ρ1k ≤ Λ, 0 < ρ2k ≤ Λ and max
x∈Ω

max{u1k, u2k} → +∞.

Then the blow-up set of max{u1k, u2k} is finite and in the interior of Ω̄.
Precisely, there exists an m ∈ N∗ (the set of positive integers) and a set
S = {p1, . . . , pm} ⊂ Ω such that (after taking a subsequence)

u1k →
m∑
i=1

(2σ1i − σ2i)G(x, pi), u2k →
m∑
i=1

(2σ2i − σ1i)G(x, pi)

in C2
loc(Ω̄\S), where (σ1i, σ2i) can only be one of (4π, 0), (0, 4π), (4π, 8π),

(8π, 4π) or (8π, 8π). Furthermore, ρ1k →
∑m

i=1 σ1i and ρ2k →
∑m

i=1 σ2i.

This paper is organized as follows. In Section 2 we present some useful
lemma and the Pohozaev identity. Theorem 1.1 is proved in Section 3.

Notation. Throughout this paper, we assume that h1k, h2k are smooth
positive functions converging to h1, h2 in C2,β(Ω̄) respectively. The constant
C will denote various constants which are independent of k. All the conver-
gence results are stated up to the extraction of a subsequence.

2 Preliminary

In this section we give some basic estimates and state the useful Pohozaev
identity.

We first recall the following important estimate which can be found in
[12, Theorem 3.1], [10, Proposition 2.1] and [10, Remark 2.1].

Theorem 2.1. Let Ω be a bounded smooth domain in R2 and (u1k, u2k) be a
sequence of solutions of the following system:{

−∆ũ1k = 2h1ke
ũ1k − h2ke

ũ2k in Ω,

−∆ũ2k = 2h2ke
ũ2k − h1ke

ũ1k in Ω
(8)
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with ∫
Ω

eũ1k ≤ C and

∫
Ω

eũ2k ≤ C. (9)

Set

Sj = {x ∈ Ω : ∃ a sequence yk → x such that ũjk(y
k)→ +∞}.

Then, one of the following possibilities happens (after taking subsequences):

(i) (ũ1k, ũ2k) is uniformly bounded in L∞loc(Ω)× L∞loc(Ω).

(ii) For some j ∈ {1, 2}, uik is uniformly bounded in L∞loc(Ω), but ũjk →
−∞ uniformly in any compact subset of Ω for j 6= i.

(iii) For some i ∈ {1, 2}, Si 6= ∅ but Sj = ∅ for j 6= i. In this case,
ũik → −∞ uniformly in any compact subset of Ω \Si, and either ũjk is
uniformly bounded in L∞loc(Ω) or ũjk → −∞ uniformly in any compact
subset of Ω.

(iv) S1 6= ∅ and S2 6= ∅, then both ũ1k and ũ2k tend to −∞ uniformly in
any compact subset of Ω \ {S1 ∪ S2}.

Remark 2.2. The above theorem does not exclude the existence of boundary
blow-up points. Actually, blow-up points lying on the boundary can exist in
each one of the alternatives.

In what follows, we let

α1k = ln

(∫
Ω
h1ke

u1k

ρ1k

)
, α2k = ln

(∫
Ω
h2ke

u2k

ρ2k

)
and

ũ1k = u1k − α1k, ũ2k = u2k − α2k. (10)

Then we have the following lemma.

Lemma 2.3. There exists a constant C ∈ R independent of k such that
α1k ≥ C and α2k ≥ C for all k.

Proof. Note that ũ1k, ũ2k satisfy (8)-(9) and ũ1k = −α1k, ũ2k = −α2k on ∂Ω.
Using Green’s representation formula we have

ũ1k(x) =

∫
Ω

G(x, z)
[
2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)

]
dz − α1k, (11)

ũ2k(x) =

∫
Ω

G(x, z)
[
2h2k(z)eũ2k(z) − h1k(z)eũ1k(z)

]
dz − α2k. (12)
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Thus we get

‖ũ1k + α1k‖L1(Ω) ≤ C, ‖ũ2k + α2k‖L1(Ω) ≤ C. (13)

On the other hand, by Theorem 2.1, there exists an at most finite set S1 ⊂ Ω
such that both ũ1k and ũ2k are uniformly bounded from above in any compact
subset of Ω \S1. Therefore, from (13) we see that α1k, α2k cannot go to −∞
as k →∞, which proves the lemma.

Lemma 2.4. Assume that u1k ≤ C and u2k ≤ C. Then there exist u1, u2 ∈
C2(Ω̄) such that (after taking a subsequence) u1k → u1 and u2k → u2 in
C2(Ω).

Proof. It follows from the assumption and Lemma 2.3 that ũ1k ≤ C and
ũ2k ≤ C in Ω. Thus we have that

−∆u1k ∈ O(1), −∆u2k ∈ O(1).

Elliptic regularity then implies the result.

We state a Pohozaev identity at the end of this section, which plays an
important role in the proof of Theorem 1.1.

Lemma 2.5. It holds that, for any bounded domain D ⊂ R2,∫
D

6h1ke
ũ1k +

∫
D

3eũ1k〈x− ξ,∇h1k〉

+

∫
D

6h2ke
ũ2k +

∫
D

3eũ2k〈x− ξ,∇h2k〉

=

∫
∂D

(3h1ke
ũ1k + 3h2ke

ũ2k)〈x− ξ, ν〉

+

∫
∂D

∂(2u1k + u2k)

∂ν
〈x− ξ,∇u1k〉+

∫
∂D

∂(u1k + 2u2k)

∂ν
〈x− ξ,∇u2k〉

−
∫
∂D

[
|∇u1k|2 + 〈∇u1k,∇u2k〉+ |∇u2k|2

]
〈x− ξ, ν〉 (14)

for any ξ ∈ R2.

Proof. We rewrite the system (1) as{
−∆(2u1k + u2k) = 3h1ke

ũ1k ,

−∆(u1k + 2u2k) = 3h2ke
ũ2k .

Multiplying the first equation by 〈x− ξ,∇u1k〉, the second by 〈x− ξ,∇u2k〉,
and integrating by parts, we obtain (14).
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3 Proof of Theorem 1.1

In this section, we give the proof of our main theorem 1.1.
Let

Mk(x) = max{ũ1k(x), ũ2k(x)}, (15)

and pk ∈ Ω be such that

Mk(pk) = max
Ω

Mk(x).

Define µk by
−2 lnµk = Mk(pk).

Note that µk → 0 by our assumption and hence pk /∈ ∂Ω since we know that
Mk(x)|∂Ω ≤ C from Lemma 2.3.

We prove first that the point pk must have some distance from the bound-
ary.

Lemma 3.1. dist(pk, ∂Ω)/µk →∞.

Proof. Otherwise assume that there is a subsequence, still denoted by (pk, µk),
such that dist(pk, ∂Ω) = O(µk). Let Ωk = (Ω − pk)/µk. Then up to a rota-
tion, we may assume that Ωk → (−∞, t0) × R. With no loss of generality,
we assume µk = e−ũ1k(pk)/2 and define

û1k(y) = ũ1k(pk + µky) + 2 lnµk + lnh1k(pk).

Let R > 0 and y ∈ BR(0)∩Ωk. Then we have by the representation formula
(13) that

|∇û1k(y)| = |µk∇ũ1k(pk + µky)|

= µk

∣∣∣∣∫
Ω

∇G(pk + µky, z)
[
2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)

]
dz

∣∣∣∣
≤ Cµk

[∫
B2Rµk

(pk)

+

∫
Ω\B2Rµk

(pk)

] ∣∣2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)
∣∣

|pk + µky − z|
dz.

Using the fact that eũ1k(z), eũ2k(z) ≤ eũ1k(pk) = µ−2
k in B2Rµk(pk), we know that

µk

∫
B2Rµk

(pk)

∣∣2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)
∣∣

|pk + µky − z|
dz ≤ C(R).

Since µk|pk + µky − z| ≤ C(R) for z ∈ Ω \B2Rµk(pk), it is clear that
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∫
Ω\B2Rµk

(pk)

∣∣2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)
∣∣

|pk + µky − z|
dz

≤ C(R)

∫
Ω

∣∣2h1ke
ũ1k − h2ke

ũ2k
∣∣ ≤ C(R).

So we obtain that

|∇û1k| ≤ C(R) in BR(0) ∩ Ωk,

which particularly implies that |û1k(y) − û1k(0)| ≤ C|y| ≤ C for any y ∈
BR(0) ∩ Ωk. For some fixed y0 ∈ ∂Ωk, we obtain that |û1k(y0) − û1k(0)| =
|ũ1k(pk) + α1k| ≤ C. This means that

−2 lnµk + α1k = O(1),

which is a contradiction to Lemma 2.3 and the fact that µk → 0. Thus
dist(pk, ∂Ω)/µk →∞.

For the function

û1k(y) = ũ1k(pk + µky) + 2 lnµk + lnh1k(pk),

û2k(y) = ũ2k(pk + µky) + 2 lnµk + lnh2k(pk),

we have the following lemma.

Lemma 3.2. In any compact subset of R2, (after taking a subsequence) either
(a) (û1k, û2k) converges to one of the Jost-Wang’s entire solution (4), (5);
or
(b) one of û1k, û2k converges to a solution of Liouville equation

∆u+ eu = 0 in R2,

∫
R2

eu <∞

and the other converges to −∞ uniformly on compact subsets of R2.

Proof. By Lemma 3.1 we have Ωk = (Ω − pk)/µk → R2. It is easy to check
that {

−∆û1k = 2h1k(pk+µky)
h1k(pk)

eû1k − h2k(pk+µky)
h2k(pk)

eû2k in Ωk,

−∆û2k = 2h2k(pk+µky)
h2k(pk)

eû2k − h1k(pk+µky)
h1k(pk)

eû1k in Ωk.

We can verify that û1k and û2k satisfy the conditions of Theorem 2.1. Since
by definition û1k ≤ C and û2k ≤ C, there are two possibilities (after taking
a subsequence):

1) û1k and û2k are both uniformly locally bounded in R2;

8



2) either û1k or û2k is uniformly locally bounded in R2, while the other
one diverges to −∞ uniformly on compact subset of R2.

For Case 1), one can show that (û1k, û2k) converges in C2
loc(R2) to an entire

solution with finite energy. Now the classification result [11] gives (a).
For Case 2), let û1k be uniformly locally bounded, then it is easy to check
that û1k converges to a solution of the Liouville equation (3.2).

The proof is concluded.

To establish the finiteness of the blow-up points set, we introduce a def-
inition. We say that the property H` holds if there exists (pk,1, . . . , pk,`)
such that, denoting µk,j = e−max{ũ1k(pk,j),ũ2k(pk,j)}/2 → 0, we have that

i) lim
k→∞
|pk,i − pk,j|/µk,j =∞ for any i 6= j;

ii) lim
k→∞

dist(pk,i, ∂Ω)/µk,i =∞ for all i = 1, . . . , `;

iii) for all i = 1, . . . , `, we denote û1k,i(y) = ũ1k(pk,i + µk,iy) + 2 lnµk,i +
lnh1k(pk,i) and û2k,i(y) = ũ2k(pk,i + µk,iy) + 2 lnµk,i + lnh2k(pk,i), then
in any compact subset of R2, either (û1k,i, û2k,i) converges to the Jost-
Wang’s entire solution of Toda system; or one of û1k,i, û2k,i converges
to a solution of Liouville equation (3.2) and the other diverges to −∞
on compact subsets of R2.

We remark that Lemma 3.1 and Lemma 3.2 imply that H1 holds. From iii)
and Fatou’s lemma, we deduce that if H` holds, then for every i = 1, . . . , `,

lim
r→0

lim
k→∞

∫
Br(pk,i)

h1ke
ũ1k + lim

r→0
lim
k→∞

∫
Br(pk,i)

h2ke
ũ2k ≥ 4π. (16)

Lemma 3.3. Assume that H` holds. Then either H`+1 holds, or there exists
C > 0 such that

inf
i=1,...,`

|x− pk,i|2emax{ũ1k(x),ũ2k(x)} ≤ C.

Proof. Let wk(x) = infi=1,...,` |x− pk,i|2eMk(x) where Mk(x) is defined in (15).
Assume that ‖wk‖L∞(Ω) →∞. Note that Mk(x)|∂Ω ≤ C. Now let xk ∈ Ω be
such that wk(xk) = maxΩ wk and γk = e−Mk(xk)/2. Observe that γk → 0 and
wk(xk) = infi=1,...,` |xk − pk,i|2/γ2

k →∞. Thus

|xk − pk,i|
γk

→∞ for all i = 1, . . . , `. (17)
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Assume that there exists some j such that xk − pk,j = O(µk,j). Then we
may write xk = pk,j + µk,jθk,j where θk,j = O(1). Because of the property
(iii), direct computations show that

|xk − pk,j|2eMk(xk) = |θk,j|2eMk(pk,j+µk,jθk,j)+2 lnµk,j → C(θ∞,j) < +∞,

which is a contradiction to the fact that wk(xk)→∞. Thus we have

|xk − pk,i|
µk,i

→∞ for all i = 1, . . . , `. (18)

Let y ∈ BR(0) ∩ Ωk where Ωk = (Ω − xk)/γk and let ε ∈ (0, 1). Then
wk(xk + γky) ≤ wk(xk). That is, infi=1,...,` |xk + γky − pk,i|eMk(xk+γky) ≤
infi=1,...,` |xk − pk,i|eMk(xk). We now define vik(y) = ũik(xk + γky) + 2 ln γk +
lnhik(xk) (i = 1, 2). Then it is easy to check that

emax{v1k(y),v2k(y)} ≤ Q1 infi=1,...,` |xk − pk,i|2

infi=1,...,` |xk + γky − pk,i|2
,

where the constantQ1 > 0 is chosen to satisfy thatQ1 ≥ maxx∈Ω{h1k(x), h2k(x)}
because of the uniform boundedness of h1k and h2k. Let k(R) be such that
|xk − pk,i|/γk ≥ R

ε
for all i = 1, . . . , ` and k ≥ k(R) in view of (17). Thus for

all i we have |xk + γky − pk,i| ≥ |xk − pk,i|(1− ε), which yields that

max{v1k(y), v2k(y)} ≤ ln
Q1

(1− ε)2
for any y ∈ BR(0) ∩ Ωk, k ≥ k(R),

eMk(xk+γky) ≤ Q1

Q2(1− ε)2
γ−2
k for any y ∈ BR(0) ∩ Ωk, k ≥ k(R),

where the constantQ2 > 0 is chosen to satisfy thatQ2 ≤ minx∈Ω{h1k(x), h2k(x)}.
Substituting û1k, û2k, µk by v1k, v2k, γk in the proof of Lemma 3.1, we obtain
that

dist(xk, ∂Ω)

γk
→∞.

Similarly, Lemma 3.2 also holds for (v1k, v2k). Let pk,`+1 = xk, µk,`+1 = γk.
Combining (17), (18) and the above remark, we conclude thatH`+1 holds.

Lemma 3.4. There exists some m ∈ N∗ such that Hm holds and

inf
i=1,...,m

|x− pk,i|2emax{ũ1k(x),ũ2k(x)} ≤ C for any x ∈ Ω. (19)
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Proof. Suppose not. Since H1 holds, H` holds for all ` ≥ 1 by the above
lemma. From the property (i), givenR > 0, we haveBRµk,i(pk,i)∩BRµk,j(pk,j) =
∅ for all i 6= j, k ≥ k(R). Recall the assumption that ρ1k, ρ2k ≤ Λ. By (16),
it is easy to check that

2Λ ≥ lim
k→∞

(ρ1k + ρ2k) = lim
k→∞

∫
Ω

h1ke
ũ1k + lim

k→∞

∫
Ω

h2ke
ũ2k

≥ lim
k→∞

∑̀
i=1

∫
BRµk,i (pk,i)

h1ke
ũ1k + h2ke

ũ2k

≥ 4π`,

which implies that ` ≤ Λ/(2π) and leads to a contradiction. The proof is
complete.

Lemma 3.5. There exists a C > 0 such that

inf
i=1,...,m

|x− pk,i||∇ũ1k(x)| ≤ C, inf
i=1,...,m

|x− pk,i||∇ũ2k(x)| ≤ C,

for all x ∈ Ω.

Proof. By Green’s representation formula (11), we have

|∇ũ1k| ≤ C

∫
Ω

1

|x− z|
[
2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)

]
dz. (20)

Let Rk(x) = infi=1,...,m |x − pk,i| and Ωk,i = {x ∈ Ω : |x− pk,i| = Rk(x)} for

i = 1, . . . ,m. Note that Ω =
m
∪
i=1

Ωk,i for each k. Then for x ∈ Ω,

∫
Ωk,i

h1k(z)eũ1k(z)

|x− z|
dz =

∫
Ωk,i∩B|x−pk,i|/2(pk,i)

h1k(z)eũ1k(z)

|x− z|
dz

+

∫
Ωk,i\B|x−pk,i|/2(pk,i)

h1k(z)eũ1k(z)

|x− z|
dz. (21)

Using (19), we note that for z ∈ Ωk,i \B|x−pk,i|/2(pk,i),

h1k(z)eũ1k(z)

|x− z|
≤ C

|x− z||z − pk,i|2
≤ C

|x− z||x− pk,i|2
.

Simple computation then shows that∫
Ωk,i\B|x−pk,i|/2(pk,i)

h1k(z)eũ1k(z)

|x− z|
dz ≤ C

|x− pk,i|
. (22)

11



On the other hand, for z ∈ Ωk,i∩B|x−pk,i|/2(pk,i), we have |x− z| ≥ 1
2
|x−pk,i|

and hence ∫
Ωk,i∩B|x−pk,i|/2(pk,i)

h1k(z)eũ1k(z)

|x− z|
dz ≤ C

|x− pk,i|
. (23)

By (21)–(23), it holds that∫
Ωk,i

h1k(z)eũ1k(z)

|x− z|
dz ≤ C

|x− pk,i|
.

Similarly, it also holds that∫
Ωk,i

h2k(z)eũ2k(z)

|x− z|
dz ≤ C

|x− pk,i|
.

Finally we obtain that, from (20),

inf
i=1,...,m

|x− pk,i||∇ũ1k(x)| ≤ C.

The estimate for ∇ũ2k may be proved analogously. The proof is finished.

Denote pi = limk→∞ pk,i ∈ Ω for all i = 1, . . . ,m and S = {p1, . . . , pm}.

Lemma 3.6. u1k and u2k are uniformly bounded in any compact subset of
Ω \ S.

Proof. We just prove the result for u1k. The proof is similar for u2k. Let

δ > 0 be small enough such that Ωδ = Ω\
m
∪
i=1
Bδ(pi) is connected. So we have

infi=1,...,m |x− pk,i| ≥ δ
2

for all x ∈ Ωδ as long as k large enough. Thus we get
from Lemma 3.5 that |∇ũ1k| ≤ C(δ). Then |∇u1k| = |∇ũ1k| ≤ C(δ) in Ωδ.
Thus for some xδ ∈ ∂Ωδ ∩ ∂Ω, we have

|u1k(x)| = |u1k(x)− u1k(xδ)| ≤ C(δ)

for all x ∈ Ωδ. The proof is completed.

Remark 3.7. The blow-up set of max{u1k, u2k} is exactly S. In fact, Lemma
3.6 says that it must be contained in S. On the other hand, since S is the
blow-up set of max{ũ1k, ũ2k} and α1k, α2k ≥ C, max{u1k, u2k} also blows up
at S.
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Lemma 3.8. Assume that one of α1k, α2k is uniformly bounded. Then
S ⊂ ∂Ω. Moreover, assume that α1k → α1∞ and α2k → α2∞ (up to a
subsequence), then there exists u1∞, u2∞ ∈ C2(Ω) such that

−∆u1∞ = 2h1e
u1∞−α1∞ − h2e

u2∞−α2∞ in Ω,

−∆u2∞ = 2h2e
u2∞−α2∞ − h1e

u1∞−α1∞ in Ω,

u1∞ = u2∞ = 0 on ∂Ω

and
u1k → u1∞, u2k → u2∞ in C2

loc(Ω \ S). (24)

(Here eui∞−αi∞ = 0 if αi∞ = +∞ (i = 1, 2).)

Proof. First we prove that S ⊂ ∂Ω. Note that there exist two possibilities:

1) α1k, α2k are both uniformly bounded;

2) (up to a subsequence) α1k → +∞, α2k → α2∞ < +∞ or α1k → α1∞ <
+∞, α2k → +∞.

For Case 1 ), from (13) it holds that ‖ũ1k‖L1(Ω) ≤ C and ‖ũ2k‖L1(Ω) ≤ C.
According to Theorem 2.1, we have that ũ1k and ũ2k must be both uniformly
bounded in L∞loc(Ω). Since S is the blow-up set, we conclude that S ⊂ ∂Ω.

For Case 2 ), without loss of generality, we assume that α1k → +∞,
α2k → α2∞ < +∞. Since ‖ũ2k‖L1(Ω) ≤ C, by Theorem 2.1, we know that
ũ2k is uniformly bounded in L∞loc(Ω). Lemma 3.6 and the fact that |α2k| ≤ C
further imply that

both u2k and ũ2k are uniformly bounded in L∞loc(Ω \ (S ∩ ∂Ω)). (25)

Thus standard elliptic theory implies that u1k+2u2k is uniformly bounded in
C1

loc(Ω \ (S ∩ ∂Ω)). Therefore u1k is uniformly bounded in L∞loc(Ω \ (S ∩ ∂Ω))
and, because α1k → +∞,

ũ1k → −∞ uniformly in any compact subset of Ω \ (S ∩ ∂Ω). (26)

Since S is the blow-up set, we again conclude that S ⊂ ∂Ω by (25) and (26).
It follows from Lemma 3.4 and standard elliptic theory that there exist

u1∞, u2∞ ∈ C2(Ω \ S) such that

u1k → u1∞, u2k → u2∞ in C2
loc(Ω \ S). (27)

Thus, passing to the limit k →∞ in Lemma 3.5, we get that

inf
i=1,...,m

|x− pi||∇u1∞(x)| ≤ C for all x ∈ Ω \ S,
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inf
i=1,...,m

|x− pi||∇u2∞(x)| ≤ C for all x ∈ Ω \ S.

It remains to prove that u1∞, u2∞ can be smoothly extended to S. We fix
some pj ∈ S ⊂ ∂Ω and let δ > 0 small enough such that

|x− pj||∇u1∞(x)| ≤ C ∀ x ∈ Ω ∩Bδ(pj) \ {pj}.

Therefore, there exists C ′ > 0 such that for all x, z ∈ Ω ∩Bδ(pj) \ {pj} such
that |x− pj| = |z − pj|, we have that

|u1∞(x)− u1∞(z)| ≤ C ′.

Taking z ∈ ∂Ω ∩ Bδ(pj) \ {pj}, we then get |u1∞(x)| ≤ C ′ for all x ∈
Ω ∩ Bδ(pj) \ {pj}. Recalling that S ⊂ ∂Ω and taking the similar procedure
for all the points of S, we get that there exists C > 0 such that |u1∞(x)| ≤ C
for all x ∈ Ω\S. Similarly we also obtain that |u2∞(x)| ≤ C for all x ∈ Ω\S.

Let w ∈ H1
0 (Ω) such that −∆w = 2h1∞e

u1∞−α1∞ − h2∞e
u2∞−α2∞ in Ω. It

follows from standard elliptic theory that w ∈ C1(Ω) and

w(x) =

∫
Ω

G(x, z)
[
2h1∞(z)eu1∞(z)−α1∞ − h2∞(z)eu2∞(z)−α2∞

]
dz.

For any fixed x ∈ Ω \ S and any fixed δ > 0 small enough,

u1k(x) =

∫
Ω

G(x, z)
[
2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)

]
dz

=

∫
Ω\

m
∪
i=1

Bδ(pi)

G(x, z)
[
2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)

]
dz

+

∫
m
∪
i=1

Bδ(pi)∩Ω

G(x, z)
[
2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)

]
dz.

Note that G(x, pi) = 0 for pi ∈ ∂Ω and x 6= pi. Using (27) and passing to
the limit (first in k and then in δ) in the above equality, we achieve that

u1∞(x) =

∫
Ω

G(x, z)
[
2h1∞(z)eũ1∞(z) − h2∞(z)eũ2∞(z)

]
dz,

which means that u1∞ ≡ w in Ω \ S and therefore u1∞ can be extended as a
C1(Ω) function. Coming back to the equation of w, we get that w is C2(Ω)
and then u1∞ ∈ C2(Ω).

Similar procedure may be applied to u2∞. The proof is accomplished.
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Lemma 3.9. We have that (up to a subsequence)

α1k → +∞ and α2k → +∞.

Proof. Otherwise we know that S ⊂ ∂Ω by Lemma 3.8. Choose x0 ∈ S and
r > 0 small enough such that S ∩ Br(x0) = {x0}. Let zk = x0 + ϑk,rν(x0)
with

ϑk,r =

∫
∂Ω∩Br(x0)

〈x− x0, ν〉
[
|∂u1k

∂ν
|2 + ∂u1k

∂ν
∂u2k

∂ν
+ |∂u2k

∂ν
|2
]∫

∂Ω∩Br(x0)
〈ν(x0), ν〉

[
|∂u1k

∂ν
|2 + ∂u1k

∂ν
∂u2k

∂ν
+ |∂u2k

∂ν
|2
]

where r is small such that 1
2
≤ 〈ν(x0), ν〉 ≤ 1 for x ∈ ∂Ω∩Br(x0). Here ν(x)

is the unit outer normal at x ∈ ∂Ω. It is then easy to check that |ϑk,r| ≤ 2r
for |〈x− x0, ν〉| ≤ r. Observing x− zk = x− x0 − ϑk,rν(x0), we know that∫

∂Ω∩Br(x0)

〈x− zk, ν〉
[
|∂u1k

∂ν
|2 +

∂u1k

∂ν

∂u2k

∂ν
+ |∂u2k

∂ν
|2
]

= 0. (28)

Now applying Pohozaev identity (14) in Ω ∩ Br(x0) with ξ = zk, we have
that∫

Ω∩Br(x0)

6h1ke
u1k−α1k +

∫
Ω∩Br(x0)

3eu1k−α1k〈x− zk,∇h1k〉

+

∫
Ω∩Br(x0)

6h2ke
u2k−α2k +

∫
Ω∩Br(x0)

3eu2k−α2k〈x− zk,∇h2k〉

=

∫
∂(Ω∩Br(x0))

(3h1ke
u1k−α1k + 3h2ke

u2k−α2k)〈x− zk, ν〉

+

∫
∂(Ω∩Br(x0))

∂(2u1k + u2k)

∂ν
〈x− zk,∇u1k〉+

∂(u1k + 2u2k)

∂ν
〈x− zk,∇u2k〉

−
∫
∂(Ω∩Br(x0))

[
|∇u1k|2 + 〈∇u1k,∇u2k〉+ |∇u2k|2

]
〈x− zk, ν〉. (29)

In view of the boundary conditions and Lemma 2.3, it is easy to see that

lim
k→∞

∫
∂Ω∩Br(x0)

(3h1ke
u1k−α1k + 3h2ke

u2k−α2k)〈x− zk, ν〉 = O(r2)

and, by (28),∫
∂Ω∩Br(x0)

∂(2u1k + u2k)

∂ν
〈x− zk,∇u1k〉+

∂(u1k + 2u2k)

∂ν
〈x− zk,∇u2k〉

−
∫
∂Ω∩Br(x0)

[
|∇u1k|2 + 〈∇u1k,∇u2k〉+ |∇u2k|2

]
〈x− zk, ν〉
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=

∫
∂Ω∩Br(x0)

〈x− zk, ν〉
[
|∂u1k

∂ν
|2 +

∂u1k

∂ν

∂u2k

∂ν
+ |∂u2k

∂ν
|2
]

= 0.

From (24) of Lemma 3.8, we have ‖u1k‖C2(Ω∩∂Br(x0)) ≤ C (independent of r).
(Similar estimates hold for u2k.) We obtain that

lim
k→∞

∫
Ω∩∂Br(x0)

(3h1ke
u1k−α1k + 3h2ke

u2k−α2k)〈x− zk, ν〉 = O(r2),

and

lim
k→∞

∫
Ω∩∂Br(x0)

∂(2u1k + u2k)

∂ν
〈x− zk,∇u1k〉+

∂(u1k + 2u2k)

∂ν
〈x− zk,∇u2k〉

− lim
k→∞

∫
Ω∩∂Br(x0)

[
|∇u1k|2 + 〈∇u1k,∇u2k〉+ |∇u2k|2

]
〈x− zk, ν〉

=O(r2).

Since
∫

Ω
hike

ũik ≤ C, it holds that

lim
k→∞

∫
Ω∩Br(x0)

3euik−αik〈x− zk,∇hik〉 = O(r) i = 1, 2.

Then we have, by taking the limit to (29) first in k and then in r,

lim
r→0

lim
k→∞

∫
Ω∩Br(x0)

h1ke
u1k−α1k + lim

r→0
lim
k→∞

∫
Ω∩Br(x0)

h2ke
u2k−α2k = 0,

which is a contradiction to (16).

Lemma 3.10. There exist (σ1i, σ2i) satisfying σ1i + σ2i ≥ 4π (i=1,. . . ,m)
such that (up to a subsequence)

u1k(x)→
m∑
i=1

(2σ1i − σ2i)G(x, pi) in C2
loc(Ω \ S),

u2k(x)→
m∑
i=1

(2σ2i − σ1i)G(x, pi) in C2
loc(Ω \ S).

Proof. Note that ũ1k, ũ2k → −∞ uniformly in any compact subset of Ω \ S.
For any fixed x ∈ Ω \ S and any fixed δ > 0 small enough,

lim
k→∞

u1k(x) = lim
k→∞

∫
Ω

G(x, z)
[
2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)

]
dz

16



= lim
k→∞

m∑
i=1

∫
Bδ(pi)∩Ω

G(x, z)
[
2h1k(z)eũ1k(z) − h2k(z)eũ2k(z)

]
dz.

Since G(x, ·) is continuous in Ω \ {x}, we pass the limit in δ → 0 and get
that

lim
k→∞

u1k(x) =
m∑
i=1

(2σ1i − σ2i)G(x, pi),

where σ1i = lim
δ→0

lim
k→∞

∫
Bδ(pi)∩Ω

h1ke
ũ1k and σ2i = lim

δ→0
lim
k→∞

∫
Bδ(pi)∩Ω

h2ke
ũ2k and

σ1i + σ2i ≥ 4π from (16). Similarly, we also have

lim
k→∞

u2k(x) =
m∑
i=1

(2σ2i − σ1i)G(x, pi).

Finally, standard elliptic theory shows that the convergence is of C2
loc(Ω \

S).

Lemma 3.11. S ∩ ∂Ω = ∅.

Proof. We argue by contradiction. Let x0 ∈ S ∩∂Ω. We may assume further
that S ∩Bδ(x0) = {x0}. Arguing as in Lemma 3.9, we get that∫

Ω∩Br(x0)

6h1ke
u1k−α1k +

∫
Ω∩Br(x0)

3eu1k−α1k〈x− zk,∇h1k〉

+

∫
Ω∩Br(x0)

6h2ke
u2k−α2k +

∫
Ω∩Br(x0)

3eu2k−α2k〈x− zk,∇h2k〉

=

∫
∂(Ω∩Br(x0))

(3h1ke
u1k−α1k + 3h2ke

u2k−α2k)〈x− zk, ν〉

+

∫
∂(Ω∩Br(x0))

∂(2u1k + u2k)

∂ν
〈x− zk,∇u1k〉+

∂(u1k + 2u2k)

∂ν
〈x− zk,∇u2k〉

−
∫
∂(Ω∩Br(x0))

[
|∇u1k|2 + 〈∇u1k,∇u2k〉+ |∇u2k|2

]
〈x− zk, ν〉.

Using Lemma 3.10 and noting that G(x, x0) = 0 for any x ∈ Ω ∩ ∂Br(x0),
we obtain that

lim
k→∞

∫
Ω∩∂Br(x0)

(3h1ke
u1k−α1k + 3h2ke

u2k−α2k)〈x− zk, ν〉 = O(r2),

and
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lim
k→∞

∫
Ω∩∂Br(x0)

∂(2u1k + u2k)

∂ν
〈x− zk,∇u1k〉+

∂(u1k + 2u2k)

∂ν
〈x− zk,∇u2k〉

− lim
k→∞

∫
Ω∩∂Br(x0)

[
|∇u1k|2 + 〈∇u1k,∇u2k〉+ |∇u2k|2

]
〈x− zk, ν〉 = O(r2).

This implies then

lim
r→0

lim
k→∞

∫
Ω∩Br(x0)

6h1ke
u1k−α1k + lim

r→0
lim
k→∞

∫
Ω∩Br(x0)

6h2ke
u2k−α2k = 0,

which is a contradiction.

So far we have proved that S ⊂ Ω and α1k → +∞ and α2k → +∞. Thus
Proposition 2.4 of [10] shows that (σ1i, σ2i) of Lemma 3.10 can only be one of
(4π, 0), (0, 4π), (4π, 8π), (8π, 4π) or (8π, 8π). Finally, since ũ1k → −∞ and
ũ2k → −∞ locally in Ω \ S,

lim
k→∞

ρ1k = lim
k→∞

∫
Ω

h1ke
ũ1k = lim

r→0
lim
k→∞

m∑
i=1

∫
Br(pi)

h1ke
ũ1k =

m∑
i=1

σ1i.

Similarly we have ρ2k →
∑m

i=1 σ2i. This completes the proof of Theorem 1.1.
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