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Abstract

In this paper, we obtain sharp estimates of fully bubbling solutions
of SU(3) Toda system in a compact Riemann surface. In geometry, the
SU(n+1) Toda system is related to holomorphic curves, harmonic maps or
harmonic sequences of the Riemann surface to CP”. In order to compute
the Leray-Schcuder degree for the Toda system, we have to obtain accurate
approximations of the bubbling solutions. Our main goals in this paper
are (i) to obtain a sharp convergence rate, (ii) to completely determine the
locations, and (iii) to derive the 82 condition, a unexpected and important
geometric constraint.

1 Introduction

Let (M, g) be a compact Riemann surface. Consider the following system of
equations:

m
Auq + 2e¥t — e¥2 = 4x Z’le(sq,-

Tt 1)
Aug + 2e¥2 — eVt =47 Z wjqu].,

j=1

where A = A, stands for the Laplace-Beltrami operator, 7, are nonnegative
integers, ¢; are distinct points in M and §,; are the Dirac measure at g;. The
system (1) is known as the SU(n + 1) Toda system when n = 2. This system
of equations arises from many different research areas in geometry and physics.
In physics, it is related to the relativistic version of non-abelian Chern-Simons
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models, see [9], [28], [36], [37] and references therein. In geometry, the SU(n+1)
Toda system is closely related to holomorphic curves (or harmonic sequence)
of M into CP", see [3], [7], [11], [12]. When M = S2, it was proved that
the solution space of the SU(n + 1) Toda system is identical to the space of
holomorphic curves of S? into CP". In particular, g; are the ramificated points
of the corresponding curve and +y;; represents the total ramificated index at g;,
j=1,2,...,m. See[22]. However, when M isnot S2, the identity of the solution
space of PDE and holomorphic curves might not hold in general. Therefore it is
an interesting issue to clarify their relationship for Riemann surfaces with higher
genus. This is our initial motivation to study the Toda system in a compact
Riemann surface.
Integrating (1), we have

= uy _ 8mmaitdmme
pleMe = 3

- _ 47mm148mm
P2 = fMeuz — 1-}; 23

(2)

m m

where m; = Zwﬂ and ma = ng. Let |M| be the area of M as usual. By
j=1 j=1

introducing the Green function:

AG(z,p) = =0, + ﬁ 3)
Sy Gz, p)dz = 0,
and rewriting v; by
m
ui:/Ui+47TZ’inG(xaqj)a i:1725
Jj=1
we have u; satisfies the following system of equations:
Auy + 2p1(fhﬁf:i1 — ) — Pz(% — ) =0, 4)
et2 e¥1
Aus + 2p2(fh}?,25“2 - ‘lm) - pl(fh};e“1 - ﬁ) =0,

where

hi(z) = exp(= Y_ 47y;:G(z,q;)), i=1,2.

=1

We see that hi(z) > 0in M \ {q1, -+ ,qm}. It is easy to see that if u =
(ug,--+ ,un) is a solution of (4), u+c= (us +eci1,- -+ ,un+cy) is still a solution.
Without loss of generality, we may assume each component u; € H(M), where
H(M) = {u; € HM)| [,, u; = 0}. Obviously, the equation (4) is the Euler-
Lagrange equation of the nonlinear functional ®,:

2 2
1 .
d,(u) = 5/ E a”Vu; - Vu; — E Pi log/ hie",
M Pl M

4,J=1



2 -1
-1 2
u1 = ug, then equation (4) is reduced to the mean field equation:

where (a¥) is the inverse matrix of . If hy = hy, p1 = p2 and

A he” _ly_o mm 5

WA el ) =0 M (5)

Equation (5) arises also in geometry and physics. In conformal geometry, it is

related to the problem of prescribing Gaussian curvature with smooth metrics

or metrics with conic singularity. For the past twenty years, the equation (5)

has been extensively studied because it is closely related to the Abelian Chern-

Simons theory. See [1], [2], [4], [5], [10], [15], [16], [19], [23], [27], [29], [30], [31],
[33] and references therein.

For equation (4), the first main issue is to determine the set of critical pa-
rameters, i.e, those p = (p1, p2) such that the a-priori bounds for solutions of (4)
fail. In [13], Jost-Lin-Wang proved the following a-priori estimates for equation
(4). (We use N* to denote the set of all positive integers.)

Theorem A. Suppose h; are positive smooth solutions, and p; ¢ 47N*, i =1,2.
Then there exists a positive constant ¢ such that for any solution u of equation
(4), there holds:

lui(z)| < e YezeM, i=1,2.

To prove Theorem A, the authors [13] considered a sequence of bubbling
solutions uy = (u1g,uzr) to the equation: for the simplicity, let |[M| =1 and uy,
be a solution of

2
hjpelik
Augg + Y aijpjp(+—2—-——1)=0 in M, i=1,2 (6)
% ng I thjkeu’k
where p;jr, = pj, hjr — h; in C?*T*(M) for some @ > 0 as k — +oo, and
S = {p1,...,pm} is the blowup set of uy. At each p;, the local mass of uy is
assigned by the quantity o:

o B eWik
. . fBr ; pzkhzke
oi(p;) = lim lim (ps) ,
r—0 k—o00 fM hjpetik

j:1727"'7m7 (7)

where B, (p;) is the ball with center p; and radius r. Jost-Lin-Wang [13] proved
that for each p;, there are only four possibility for (o1, 02), i.e., (01,02) could be
one of (4,0), (0,4n), (8,4x), (47, 8x7) and (8, 8w). It is easy to check any one
of the couples could occur for global solutions in R? with constant coefficients.
Thus, it is a natural question to ask whether each of the couples could exist for
a sequence of bubbling solutions in a compact Riemann surface M.

Obviously, (87, 87) is the most interesting case among them. Suppose a se-
quence of bubbling solution u; has the local masses (8, 87) at p. The sequence
of solutions wuy, is called fully bubbling at P, if after a suitable scaling, the



sequence of solutions will converge to (vy,v2) in C7,.(R?) satisfying:

Av; +2e¥t —e¥2 =0 in R?
Avy +2e%2 —e"t =0 in R? (8)
et < +oo, [€¥2 < +o00

More precisely, uy, is said to fully blow up at p if and only if u;, satisfies

<c (9)

Ulk(pk,l) - ln/

hike"™* — uop (Pr,2) +1n/ hape"?*
M

M

for some constant ¢, where py, ; are the local maxima of u;; in B,.(p). We note
that if v = (v1,v2) is an entire solution of (8), then

e’ = e’ = 8r
R2 R2

This quantization result was proved by Jost-Wang [14].
In [13], Jost-Lin-Wang proved that any full bubble is simple, i.e., there exists
a sequence of entire solutions v = (v1,v2) to (5) such that

|ujk(€ky) + 210g €k — U5 (y)| S c, for |y| S 506];17

where ¢, dg are positive constant and

€ = mMax {Ulk(pk,l) - ln/ hike" ™, ugk (pr,2) — 111/ hzl&“”“}
M M

In this paper, we want to study the global behavior for a sequence of bubbling
solution uy to equation (6) and obtain some important information for this
sequence of bubbling solutions. Those information will have very important
applications when we come to construct bubbling solutions, to count the Morse
index for each bubbling solutions and finally to compute the topological degree
for solutions of equation (4). Throughout the paper, we assume that

(H) wy fully blows up at each p;j.

Under the assumption (H), it is proved (see [21]) that p;r — 8mm (m €

m

N*), and uik(z) — ZSWG(.’L’,]),’) and wugg(z) — ZSWG(x,pi) in C2(M \

i=1 i=1
{p1,...,pm}) as k = +o00. Choose small 7y > 0 such that B(p;, 2r9)NB(p;,2r0) =
0 for i # j, denote by pi ; the local maxima of ui; in B(pj,70), 1 < j < m,
and let ey ;, e be defined by (53) and (54). Our main result is the following
sharper estimates of uy.

Theorem 1.1. Let uy, € H(M) be a sequence of blowing up solutions to (6),
such that (H) holds. Then it holds that



(i) Convergence rate:

pik — 8mm = Z Clk’j[A In hlk(pk,j) + 8mm — QK(pk,j)]{;‘i,ﬂ lnek,j| + O(Ei),
(10)

por — 8mm =Y Cop j[A1n hoy (pr;) + 8mm — 2K (pr.5)]ex ;| Inew,5| + O(e}),
(11)

where Cy, (i = 1,2) are constants satisfying 0 < C1 < Cip; < Ca < 0
and K denotes the Gauss curvature of M. Furthermore we have

(ii) Locations of p;:

81V H(pr,j, pr,j) + SWZ V2G(Pr,j, Pe) + VInhig(pr,;) = Oer) (12)
1#]

870 H (Dh,jsPh,j) + 87 Y VaG(Dh,js i) + V10 hop(pr ;) = Oler) (13)
1#]

where H(xz,p) is the reqular part of G(x,p).
(iii) The 8% condition:
67 (011 — O2o)[In hog (pr,;) — In hig(pr. ;)]
+%[A In hag(pr,;) + 8mm — 2K (py,;)] (14)

Tj
+-21[An hoy (pr,j) + 8mm — 2K (pr. ;)] = O(ep)

127001210 hog (pr,;) — In bk (pr ;)]
Tj

+—2[Aln hig(pk,;) + 8mm — 2K (py, ;)] (15)
Tj

+-222[AIn hok (pr,j) + 8mm — 2K (pr.;)] = O(e}),

J J J J ; i
where Tk Togrs Tigo and T, o are four constants defined in Proposition
7.1.

We note that for the mean field equation (5), an analogue theorem was
proved by Chen and the first author [4]. However, this type of theorems is
much harder for Toda system than for the mean field equation. In the case of
scalar mean field equation, the local Pohozaev identity is a very powerful tool
in the bubbling analysis since the number of Pohozaev identities equals to the
number of free parameters (both are three) for the Liouville equation. For Toda
system, the local Pohozaev identity only gives three equations, but there are
eight free parameters in the solutions space of Toda system. See (30) and (31)



in section 2. We remark here that (10)-(15) are 8 scalar conditions. Thus, the
Pohozaev identity is much less powerful for equation (6). The key technical
part we use for Toda system is the non-degeneracy of the entire solutions of the
SU(n) Toda system. This has been proved recently by Wei-Zhao-Zhou [35] for
n = 3, and by Lin-Wei-Ye [22] for general n.

The conclusion of Theorem 1.1 is surprising when comparing with other type
of Liouville system. Suppose uy = (u1g, .- .,unk) is a sequence of fully blowing
up solutions to the following system:

hje¥ik 1 .
Augg + Zazgpﬂc hjet M) =0 in M, (16)
j=1

for 1 <4 < n, where h; are positive smooth functions in M, and the matrix
A = (a;5) is a symmetric, irreducible, nonnegative matrix and det A # 0. This
system of equations has been studied by Chanillo-Kiessling [6], Chipot-Shafrir-
Wolansky [8] and recently by Lin-Zhang [24], [25] and [26]. In [26], Lin-Zhang
proved sharper estimates for ug. Suppose u; has only one blowup point p, and
pit — p;- Then they proved:

(i) location of the blow-up point p:
Zp, (log hi(x) + 2mH(z,p))|e=p = 0; (17)

(ii) the convergence rate:

Swzpzk - Z QijPikPik = Z ci(A log hz’(pk) - 2K(pk) + 87{)£i| 10g5k|’
i,j=1 i=1
(18)

where ¢; are positive constants.

From (17) and (18), we see the obvious difference between (16) and Toda system.
The conditions (10)-(15) of Theorem 1.1 already contains a lot of informa-
tions related to the geometry of the flat torus M. To explain it, let us consider
the simplest case of (1),
Avy + 2e"t — e¥? = pdy, .
{ Avy + 2e"? — e¥! = pdy, in M, (19)

where M is a flat torus, g1 # ¢2. By (2), we see p = 87 is the first p where the
fully blowing up may occur. In this case, there is only one blowup point p. If
D € {q1, 2}, i-e., if blow up occures at one of the vortex points, then we can use
the quantization result in [22] and show

/ e"ldx :/ eV?dx = 16m,
M M



a contradiction to p = 8. Therefore we conclude p ¢ {q1,q2}-
By applying Theorem 1.1, conditions (12) and (13) imply

V.G(p,q1) = V.G(p,q2) = 0. (20)

Without loss of generality, one may assume p = 0 (by translation). Let G(x)
denote the Green function with singularity at 0. Then (20) implies VG(q1) =
VG(g2) = 0. Applying a result due to Lin-Wang [17], G(x) has either three
critical points or five critical points. We claim:

the Green function G has five critical points and ¢ = —qs.

Suppose G has three critical points only. Then these three critical points
are all half periods. Hence both ¢, and g are half periods. Let ¢, = % and
Q2 = “’TJ for some i # j, where w;,w; are periods of M. We can compute the

second derivatives of G at % and °J2—J by using the Weierstrass P function:

Wi

2mGoa(3) = Re(Plei) +1m)
27Tny(%) = —Re(P(e;) +m) + 2%
27rGwy(%) = —Im(P(e;) +m),

where 7, is one of quasi-period of £(z) = — [ P.
The 82 condition implies

Gzz(

w; Wj W W
) = Gaa(D), Gay() = Gy .
By using the above formulas, we have P(%:) = P(%), which implies ¢1 = ¢2, a
contradiction to our assumption. Therefore, the claim is proved, furthermore, by
the same computation, we can prove that g; are not half periods and ¢; = —¢s».
As we know, either the Louville equation or the Toda system are closely
related to holomorphic curves of M into CP", and are completely integrable
systems. The integrability of Liouville equations allow us to define the devel-
oping map f defined in M, and one of striking results in [17] is that if f is a
developing map for a solution u of Au+e* = 8wy , then A f is also a developing
for another solution uy, for any A > 0. Thus, once a solution exists, there is a
family of solutions uy and u) blows up at a non-half period critical point of G
as A — +o0o. Based on this phenomenon and the calculation above, we propose
the following conjecture.

wj

) and ny(%) = Gyy()-

Conjecture: Suppose p = 8w, M is a flat torus and q; € M. Then equation
(19) has one solution if and only if the Green function G(z) has five critical
points.

We are also interested in studying equation (1) in a bounded domain € in
R?:

hipe'le hope¥2k

AUlk + 2P1k fn hige®lk P2k fn hore®2k in QO
Atior 4 2 hogeiak dieeuie in Q. (21)
2k p2k fn h2k€u2k plk j‘n h1ke“_1k =



For the Dirichlet problem, it was proved that uy can not blow up on the
boundary of €2, see [21] and related subjects in [18], [19], [20], [29], [32], [34].
Thus, we have the sharper estimates for uy similar to Theorem 1.1.

Theorem 1.2. Suppose h;;, converges to positive functions h; in C?(Q2), and uy
is a sequence of blowup solutions to (21) with homogeneous Dirichlet boundary
conditions and S = {p1,...,pm} s the blowup set. Assume uy, fully blows at
pj, J =1,2,...,m. Then it holds that

m

pik — 8mm =Y CixjAlnhig(pyj)er ;| Inex,;| + O(eR), (22)
j=1
m

par — 8mm =Y Copj Al hok (pr,j)eg, ;| Iner j| + O(eR), (23)
7j=1

where Ci,; (i = 1,2) are constants satisfying 0 < C1 < Ci; < Cy < 00.
Furthermore, we have

87V o H (pr,j, Pk.j) + 8”2 VoG (Pk,j, Pry) + VInhig(prj) = Oler),  (24)
177

87V o H (pr,j, Pk.j) + 8”2 VoG (Pk,j, Pryi) + VInhop(prj) = O(er),  (25)
1#]
and
Tj
671'(811 - 822)[111 h2k(pk,j) —In hlk(pk,j)] + II’IAIII hlk(pk,j)
+72 Aln ho (pr ;) = O(ey),
(26)

i

127012 [In ho (Pr,j) — Inhak(pr,y)]  +—22An hig(pr,s)

Tj
+-22 A1n by (pr,5) = O(eh),

(27)

J J J J ; it
where Tjy, 1, Toy 15 Tig o and Ty, o are four constants defined in Proposition 7.1.

The paper is organized as follows. In section 2, we state and prove two
important properties of entire solutions. For the simplicity of presentation, we
will first prove Theorem 1.2. Hence, we will consider a sequence of blowing
up solutions of (21) from section 3 to section 8. In section 3, we present two
preliminary estimates of the blowing up solutions. Then we approximate the
bubbles using the parameterized entire solutions and obtain inner estimates
in Section 4. Here we need the non-degeneracy of entire solutions. Section
5 to Section 7 contain the computations of the bubbling rate and bubbling
locations. Here we use the eight kernels to test the system locally. We combine
the estimates to prove the main Theorem 1.2 in Section 8. In the final section,
we give a brief account for the proof of Theorem 1.1. Finally the proof of Lemma
4.1 is presented at the appendix.



2 Properties of Entire Solutions

In this section, we collect several useful properties of the entire solution
(v1,v2) to (8). It is more convenient to consider the change of variables

(wl,wg) = (21]1 + v2,v1 + 2’1}2) (28)
which satisfies
Aw; + 36752 =0 in R?,
Aws + 3¢5 =0 in R?, (29)

2wy —wy 2w —wy

Jpae™ 7 <00, [paeT 3 < oo

Explicit formula for (wy,ws) is (see [14] and [35])

256a2a2
wi(y) =l —— % (30)
(ai +a3ly +b|? + |y* + cy + d|?)
1024a%al
wa(y) = In 4193 (31)

(a3a3 + a2|2y + c|? + a3|y? + 2by + be — d|?)*

Observe that (w;,ws) depends on eight parameters (aj,az,b,c,d) € Rt x
Rt x C3.

We first recall some results about the non-degeneracy of the solutions (w1, ws)
to the Toda system (29). The following theorem classifies the kernels of the lin-
earized operator of (29) at (w1, w2). Let 7 € (0,1) be any given number.

Theorem 2.1. (/35]) If ¢, v satisfy

Ap+ e’ (2 — 1) =0 in R?,
A¢+6U2(2¢_¢)=07 mn R27
Il < C(L+1yl"), [¥] <CA+y|7),

then (fZ) belongs to the linear space
() o) (o) o) ) )
spa‘n ? ? b ) ? ?
Bal Wy 6a2 Wa 8b1 Wo 61,2 Wo 861 Wy 602 Wa
(o) (o)
O, w2)’ \Oayw2) |
Our next lemma states that the eight parameters (a1, a2, b, ¢, d) are uniquely

determined by the initial values (w1 (0),w2(0),d,w1(0), 8, w2(0),d,,w1(0)).

Theorem 2.2. Let (71,72,73,7,75) € R X R x C® be given. Then there is a
unique (a1, as,b,c,d) € Rt x Rt x C* such that

(w1(0), w2(0), 0;w1(0), 0:w2(0), 0z, w1(0)) = (v1,72,73,74,75)-  (32)



Proof. A direct computation shows that system (32) is equivalent to

A 2 2
aj + a3lb|* +|d|? = Aja? a3, (33)
4 2
ata3 + aile” + a3lbc — df” = Azafaf, (34)
2 —
azb+cd
: = 35
FraPE (35)
alc+ a2|b|?c — a3bd 1 (36)
a2ai+ a2|c|? + adbc—d? ~ TP
20 1+ ed)? — 2d(a2 + a2|b|2 2
(a3b + &d) d(aj +a2|b|2 +1d*) _ s, (37)
(af + a3[b]* + |d|?)
where
A1:6%4%, A1=e~’T216, A3=—%,A4=—%, A5=_¥_;- (38)

We claim the existence of a1, a2, b, ¢, d with a1, as uniformly bounded above
and below from zero and b, ¢, d bounded. First, by the equations (33)-(37) it is
not difficult to find out that

2 _4 1 1 — 4 2
b= _Al.Agaf Qo 3 — |:Z|.A§ - .A5|2.A%.A3 + 5(./4% — ./45)./42./44 af Qo 3, (39)

As Ay
Aq

1 2 2
d= A (A3 — As)afas. (41)

1 — 2 2
c= [§A1(A§ - A5)A3 + :| afas, (40)

2 2
It remains to determine a; and as. To this end, we let ¢ = a{aj and we solve
in t first. From (33) and (35) we have

azb+ed = Ay Ast, (42)
which implies that
as|b)? + |c[?|d|* + a3bed + a3bed = A3|As|*t2. (43)

Multiplying (42) with cd, we have a3bed + |c||d|* = A1 Asted. Adding it to its
conjugate, we get a3bed + a3bed = —2|c|?|d|? + A1t(Azcd + Ascd). Then (43)
may be rewritten as

a3|b]* = |e|?|d|® + Af| A3 [*t? — A1t(Aszcd + Ased). (44)
Expansion in (34) gives
aja3 + aflc|® + a3(|b?|c|® + |d|* — bed — bed) = Axt>. (45)
Adding (43) and (45) yields
(a3 + le*)(af + a3 [b]” + |d]*) = (A2 + A7[As[*)t? (46)

10



and hence by (65) we have

A
a +|cf? = (A—j + Al A3 ]?)t. (47)

Multiplying (65) by a3 we have
3 + a3 |b|? + a3|d)® = Aital. (48)
Substituting (44) into (48), we obtain
t° +1d* (a3 + |c|?) + Af|As[*t? — Art(Ased + Ased) = Ay tas. (49)

Substituting (47) into (49), we get
2 A 2 A 2y _
t° + (A_|d| + Ai|dAs — ¢|®) = Ast, (50)
1

from which we can solve

4./41./42
A4, + LBA|AZ — As]2 + A2 Au2

(51)

2 2
—_ 373 —
t=ajai =

Obviously ¢ is uniformly bounded above and also below from zero. Therefore b,
¢, d are all O(1)’s. Then by (47) a1, ax can also be solved uniquely

2 _ A 2 2 s _ 1
ay = (7 + Al As )t — e, “u=gg (52)

It is also easy to see that a2 > 0 and we can choose a2 to be uniformly bounded
below from zero. In fact,

ol = (j—j A A P) (AL + A2 A A2 — AsP + 442 A4 2)
1 — AA] 2
— iy (2 A (A — A+ 22 ] T
>44, > C >0,

where we should note that
A2 — A5 |2 + 4] A3 2| Aa|? > 25 A4 (A2 — As) + 24344 (As — As).

Finally we have that a3 = 3 /az2. Therefore the claim holds. O

3 Preliminary Estimates on Blow-ups
In this section we derive two estimates of blowing-up solutions, one is near

blow-up points and the other is far away from them. For simplicity of presenta-
tion, we will first prove Theorem 1.2. From now to section 8, we let (u1g,u2x)

11



be a blowing up sequence of solutions to (21) satisfying (H). For j = 1,...,m,
let pr,; be the local maxima of uix near pj, i.e., uik(pr,;) = maxp;(p;) uir(z)
where ¢ is sufficiently small. (pg,; may not be unique.)

Define
def
—2111819’]- =< Ulk(pk,j) —ln/ hie"® +ln(p1kh1k(pk,j)), (53)
Q
€k = MAX € j. (54)
Set also
ek — / hlkeuu«,, etk — / hzke"“,
Q Q
U1k () = vk (z) — g, Gop(2) = uar(x) — az.

Thus @1y and Gep satisfy
Adyy, + 2p1kh1keﬁ1’° — katheﬁ% =0 in Q,
Aoy, — prehike™ + 2paghare™ =0 in Q.

The following sup + inf estimate plays an important role in later proofs. This
follows from [13, Theorem 1.3].

Lemma 3.1. Under the assumptions of Theorem 1.1 or Theorem 1.2, there
exists a small § > 0 independent of k such that

~ T — ] .
e+ 2t = [os (225 ) ~hnGpuhin )| =00 in Bs(ay) (65)
»J

fori=12andj=1,...,m.

Remark: As in [13], the entire solutions v; are chosen so that they equal to
zero at the origin.

Proof. Letting
1k () = U1 (x) + In(prrhir(Dr,5)), Gk () = Uk (x) + In(parhak (Pr,j)),

we have

_ 2hik(z) 4 hor(z) 4 .
Aty + ——=eth — ——— ¢k = in B;s(p;),
" k(o) hak (P, ) 5(p))

_ hik(z) 2ho(z) 4 .
A'U/ d 76u1k 7611&16 = 0 n B ).
227 hak(or,g) hok (P, ;) 5(p))

Then 1, and 4oy, satisfy the conditions of [13, Theorem 1.3]. So we conclude
that there exist two constants § > 0 and C > 0 independent of k such that

L — Dk,j

)‘ <C in Bs(p;) fori=1,2,
Ek,j

’L_sz(m) + ZlnEk’j — V; <

which is equivalent to (55). O

12



Remark 3.2. By considering @ik (er,;y+pr,j) +21Ineg; (i = 1,2), we have that
the following holds:

eri|Vink(pe )| < C, & IV a1k(prj)| < C, (56)
ek, Viizk(Prg)| < O, €k |V a2k ()| < C. (57)
From Lemma 3.1 we have the following important corollary.
Corollary 3.3. For anyi=1,2 and j =1,...,m, it holds that
air +21lne, ; = 0(1), (58)
C e <ékj < Cepy for any £ # j. (59)

Proof. Noting that v;(*2%%) ~ 4Iney,; on 0Bs(p;), we get (58). (59) follows
directly from (58). O

For a fixed small 6 > 0, we set the local mass p;x,; to be
Pik,j = pik/ hipe®i fori=1,2.
Bs(p;)
By Lemma 3.1 we have
Pik,j = Pik/ hire™* + O(e} ;)-
B;s(pr,j)

Observe that p;r = pik fQ hire®* and it is easy to see that

m

pik =Y pir; + O(er),

j=1

where ¢, is defined in (54). Define again

m
wik(z) = 2ury + gk — 3 Y p1x,;G(2, P ),
i=1

wak(T) = urp + 2uzp — 32 p2k,;G(Z, Pk j)-
Jj=1

Lemma 3.4. It holds that, for i = 1,2,
m
|wik| + |[Vwir| = O(ex) forx € Q \jngé(Pj)-
Proof. Tt is easy to see that

—A(2urg + ugi) = 3p1phage™ in 0,
—A(uig + 2ui) = 3paphore™* in Q.

13



This lemma follows from the Green’s representation formula. In fact, for £ = 0,1
and z € O\ ,GlBa(pj)
j=

0 (2u1k(2) + ugk(x)) = 3/ ‘Gz, 2) prrhup(2)e®* P dz
Q

= 32/ 0'G(x, 2)p1ehir(2)e™**)dz + O(e})
B

j=1"Bg (Pr.;)

- 32/ oGz, 2) - G(xaPk,j)]ﬂlkhm(z)ealk(‘z)dz
j=1 7 Bs(pr,i)

+3 Z/ aeG(a:,pk,j)plkhlk(z)eal’“(z)dz + O(Ei)
B

j=1 %(pk,j)

=3 / 017 = pel)prihne(2)e™ Oz + 33" pri;0°G s i) + O(E2)
B (pr,;)

=1

=3 pir;0'G(w,pr;) + Oler).
j=1

The proof of other estimates is similar and thus omitted. O

4 Sharp approximation of the bubbles
In this section, we give a sharp description of the bubbling behavior of 243+

Uog and dqy + 249 in the ball Bs(pg,;), using the entire solutions of (29).
For simplicity, we set

Guk,j(®) = priH(z,pr ) + > priaG(@, pre),

#j
Gok,j(x) = pokiH (@, prj) + D okt G(2, Pr.e)-
£j
Set also
2
4 (afk,jagk,j +afk; 12y + cril” + a3y ; [y + 2bk ;Y + br ek, — di g )
Vik,j(y) =In 2 ,
(afk,j + a3y ;1Y +brj |2 + [y? + e,y + dyl ) pirhik(pr.;)
16a%k,ja§k,j (a%k,j + a%k,ﬂy +br il + |y2 + ck,jy + di,j |2)
Vor,j(y) =In 5 2\ 2
a3y, ;a5y,; + aly ; 12y + cril” +ady ; [Y? + 2bk,;y + brjck,; — di,l )
— In porhok (Pr5),
and

T — Pr i R
Utk (#) = Vir,g (ﬁ) ;o Usgj(@) = Var,j (ﬂ) ,

€k,j Ek,j

14



where ai j, a2s,j, br,j, ck,; and d ; are chosen such that

(2Uik,j + Uak,j) (Pr,j) = (201k + G2k)(Pr,j) + 61negj, (60)
(Urk,j + 2U2k,5)(Pr,j) = (G1k + 282k) (Pr,;) + 6lneg,j, (61)
Va(2Uik; + Uzk ;) Pr,j) = V(28 + G2k) (0r,;) — 3VaGinj(ors),  (62)
Ve Uik, + 2Usk,)(Pr,;) = V(g + 2iok) (k) — 3VeGonj(Dr;),  (63)
Vs (2Uik,j + Usk ) (k) = Viz(2biak + ti2k) (Pr.j) — 3VazGin,j (Prj)-  (64)

We remark that (60)-(64) can be solved in the coefficients a1y, ;, ask,j, bk.j,
ck,; and dy ;. In fact, a direct computation shows that

1

2Vig,; + Vopj =In 3
a3y ; + a5y ly + bkl + [y + crgy + di )
25643, ;a3 ;

+1In ,
P h3 (D, 5) P2k hak (Pr,5)

Vikj +2Var,; =

1
In

3
2 2 2 |2 2 2 ) o 12
(a1k,ja2k,j +afy ;i 12y +ergl” +azy ;Y2 + 2bejy + bejcrj — di,jl )
4 4
1024a1k,ja2k,j

prihin (k) P35 h3y (Prj)

+In

We omit the subscript j for simplicity. System (60)—(64) is then rewritten as

2 2 2 2 3 32
aiy + az|bk|” + |di|® = Airafiady, (65)

4 4
aipady, + alple|” + adplbrer — di|” = Aspadialy, (66)

agkbk + ¢rdy,

PR NINCEFACIR (67)
acr, + a2, |b|?ck, — a2, brdy AL (68)
aipayy +afylex|? + a3 brek — di|? ’
(a3xbe + Crdr)? — 2di a7y + a3y [bx|* + |dkl®) _ Ask, (69)

2
(aly + ady [bl* + |di ?)

where 0 < C < A1 € R, 0 < C < Ao € R, Az, Ask, Asi, € C are uniquely
decided by the terms on the right hand side of (60)—(64). Because of the def-
inition of ey ;, the assumption in the main theorem and (56), (57), all of A;
(1 =1,...,5) are uniformly of order O(1).

By the same proof as in Theorem 2.2, we obtain the existences of a1y, asy, b,
Ck, dr, with aqg, asg uniformly bounded away from zero and by, ¢y, di bounded.
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In what follows, we define for « € Bs(px,;)

Mk, (@) = b1k + tiog + 6Ineg; — 2U1k,j — Uskj — 3G1r,j(2) + 3G1r,; (Pr.),
Mok j (%) = g, + bk + 61neg; — Utk j — 2Uak,; — 3Gar.j (@) + 3Gar,; (pr.5)-

In Bs(pr,;) \B% (pr,j), by a Taylor expansion, it is easy to see that

2Uit,5 + Usgp,j —61ney;

2 4 2 2 2
—3In [alk,jek,j + a5y, j€k,;1(T = Pr,j) + €k, bk, ;]

+ |(-’17 —pk’j)2 + Ek,jck,j(m' _Pk,j) + Ei,jdk,jp
25603y, ;05 ik,
P33 (Dr,5) parhar (Dk,5)

256a2, .a2, .
S 1k,772k,j + O(sk,j)a
Piehir (k) P2k hok (Pk,5)

+In

- 12ln|.77 —pk,j| + 61n6k7j +1In

and
Ulk,j + 2U2k’j - Glnsk’j
_ 2 2 4 2 2 . 2
=—-3In [a1k,ja2k,j5k,j + @iy j€k,j12(2 — Pr,j) + €k,jCh gl

+ a3y (@ — Prg)? + 268,500, (% — Prg) + €k (B crg — dlw')|2]
1024a3,, ;a3 ;€5
prichik(pr,;)p3,h3y, (Dk,5)
1024a‘fk’ja;k2’j
prkhik(Dr,;) P53k h3y (P,5)

Thus we have, in Bs(p,;) \ Bz (pr,;), that

+ In

—12ln|z —pk,j| +6lneg; +1n

+ O(Ek’j).

Mk,j = Wik + 3p1k,;G(z, pr ;) — 200k — a2k — 3p1k; H(2, pr,j) + 3élk,j(pk,j)
256ay, ;34,5
Pk (Pr,) p2rhak (Pr,5)

+12ln|$—pk,j|—61n8k,j—ln +O(Ek)

3
= %(SW—PM,J‘)IHW—M,H + Ai,; + O(er), (70)

where Ay, ; is a constant given by
25643, ;a3 ;
P33 (Dk,5) parhok (Dr,5)

Alk,j = 21 — Qop — 61n€k,j + 3élk,j(pk,j) —1In

From Corollary 3.3 we derive that Ay, = O(1). Moreover Lemma 3.4 also
indicates that (70) holds for V1, ;. Analogously, in Bs(pk) \ B;s (pr),

Nok,j =Wak + 3p2k,;G (X, Pr,j) — Q1x — 202k — 3pok, i H(x, pr ;) + 35%,3‘ (Pr,5)
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1024aj,, Jazk j
plkhlk (k. 3) p2rhok (k)
3

= %(SW — pak,j) In |z — py ;| + Aog; + Oler), (71)

where A2k,j = O(].) and

+12In|x — pg,;| —6lneg; — + O(er)

1024a1k Ja% j
plkhlk (k,j) P21 ok (Pr,5)

Aop ;= —aip — 2095 — 61neyg ; + 3é2k,j(pk,j)

Also we have that (71) holds for Vs ;.
In order to estimate 7;,; in the whole B;(pg,;), let us define, for |y| < %

Tk, (Y) = Mk Pk +Ex5Y)s T2k () = Mok,i Pk, +€x,5y)-  (72)
By the definition of 71 ; and sy ;, it is easy to see that they satisfy

—Afjig,; = 3p1khin(Pr,j)eV 7 D1y ;(y) inB_s,
—Afjo,j = 3parhar(pr,;)€"? Doy ;(y) in BE%;
2J
ik, = O(1), far,; = O(1) on 335%,
where
1, -
Dy, ;(y) = exp [5(277119,1' — Tak,j) + Quk,; (€k,jY + Pr,j) — Quk,j (pk,j)] -1
(73)
1, -
Dy j(y) = exp [5(277219,1' — Tk,;) + Q2,5 (Ek,jY + Pr,j) — Q2k,j (pk,j)] -1
(74)
n (73) and (74), Q1x,;(x) and Q2 ;(x) denote
Qirj = 2G1k; — Gapj + Inhyy, (75)
Qokj = 2Gok j — Gikj + In hoy. (76)
Since Qir,j (k.Y + Pk,j) — Qik,j (Pr,;) = VQik,j(r.j)er,;y + O(exlyl?), we have
in B_s that
Ek’j
( - o @Ay —iak, )
—Afk,; = prrhik(pr,j)e V““’“%(ka,] 77219,])
IVQik,j (Prj)le
+0 (Bl ) 4+ 0(cf),
_ e @Ak )
§ — Aok, = P2kh2k(10k,j)ev“”3%(2’7%,1 771k J) (77)

+() g2k,f Pk,j)|Ek
nlk 6(1)7”2]9 - 0(1) on (?B 5 .

€k,j

The following lemma plays an important role in all the subsequent estimates.
The proof is lengthy and we delay it to the appendix.
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Lemma 4.1. Suppose |VQik ;j(pk,j)| = O(s‘,:?j) for some 0 < o9 < 1. Then for
any 7 € (0,1) and 7 < 19 = H—;Q, in B_s_ there holds that

€k,j
Tk, < Cr (14 |y|™) 5?; + €k,j sup |1k, |
B_s <|y/<B_s_
2Ek,j €k,j
[7ia,j| < Cr(L+[y[7) | iy + ek sup |72k, 5]
B_s <|y<B_s_
25k.j €k,j

Remark 4.2. We will prove o9 = 1 later. Hence Lemma 4.1 holds for any
7€ (0,1).

Lemma 4.3. For any % <71 < 19, we have

, . .
Ak =0 | ex + e sup (k5] + |Fi2k,51) | 5
B s <|yI<B s
25k,j Ek,j
- _ _
Askj =0 | e+ sup (17,51 + Fi2k,5])
B_s <|ylI<B_s
Ek,j Ek!j

Proof. By Green’s formula,

2u1k (pr,j) + v2k (Pk,5)

m

=3 Z/ prrhik(z)e™ P G(py, 5, 7) dw + O(e})
=1 7/ Bs(pr,e)

- 1 1
=3 / prichig(z)e® (@) [— In — + H(ps, ,:1:)] dz + O(e})
Z Bs(pr.e) LRI 2 |pk,j — iEl J k

—1
- 3 - 1
— 3G (o) + — / pixh ()@ In +0@E).  (78)
27 Bs(pk,;) |pk’j - $|
Note that
i Lo Vik i (=Ekd T — Pk,j
prihike™ = pixhig(pr,j)ey e (e [1 + D1, 6pk])]

where D1y ;(y) is given by (73). Thus we obtain, recalling (72) and using the
fact that % <7<,

3

- — pirhige®™® In |pr,; — z| dz
27 JBs(pr.s)
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3 )
= - = lnsk,j/ prihir (Pr,;)e" ™ (1 + Diyj)
B_s

21
Ek’j
3 Vie s
~ 5 p1khak(Pr,j)e ™ (1 + D1y, ;) In|y|
T™JB 5
Ek,j

1
= —12Ingg; +1n
’ (a%k,j + a%k,j|bk,j|2 + |k, [?)3

+ O | ek + ek, sup (k.| + |Ti2k,5]) | - (79)
B_s <|y|I<B_s_
2Ek’]' €k,j
In fact, a direct computation shows that, for % <7 <19,
/ prihik (i)™ = 8m + O(3 ),
B
E:,j
/ prihik(pr,j)e’ I Dy
B_;
Ek)j
- / pirhak (pr,;)e” 3 [0k ;| + |72k,51) + Oer,jly))]
B
E:,j
=0 | ek,j + ¢, sup (I7k5] + 1M2k.51) | 5
B s <|yI<B_ s
2Ek’j €k,j
and
—or [ pwe)e = o [ ARV +Var) Iy
27T B ’ 27T B s 2] )
€k,j €k,j
= 2Vik,;(0) + Vax,; (0)
1 O(2Vir,; + Var,j) dln |y
. 1 sJ sJ _ 2V . V )
+ mr 9B [n|y| 61/ ( 1k,j + 2k,]) 61/
Ek’]‘
1 12 25642, .a2, . 1
= — —Inly|—= — [In 5— Lk, 2k.j —12ln|y| | —
2 0B _5 ly| plkhm(pk,j)p%h%(pk,j) |y|
Ek’j
25642, .a2, .
+In — 2 D) 1162’9322” 2 + O(ek,5)
(auw' +a2k,j|bk,j| + |dk,j| ) p1kh1k(pk,j)P2kh2k(pk,j)
1
=In 3 T O(Ek’j).

(afy; + a3y 16k 1% + Idk 51%)
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In the above estimate, we used the fact that on B _s

Ek,j
256a3), a3, ; 1
2Vig,j +Vop,j =1In =) —12In|y| + O(—),
IE Vo = o ook (ong) 2+ Ol
O2Vik.i + Vag.i 12 3 Y + Cr i 1
(2Vir,; + Var,s) __ 1 (ck,jY +30k,3y) + O(_3)
ov ly] |yl |yl

On the other hand, by our choice we have

2u1k(Pr,j) + w2k (Pr,j) = 201k (Pr,;) + G2k (Pr,j) + 201k + 2k
256a3; ;a5 ;

= 204 + agp —6lneg; +1n
! P33 (k) P2k haw (D)

1

+In - —
(aiy,; + a3y ;1bk,[? + |di,;]?)®

(80)

Combining (78), (79) and (80), we get the estimate of Ay ;. Ay ; can be
dealt with similarly. The proof is complete. O

Using Lemma 4.3, we have from (70) and (71) that in Bs(ps,;) \B% (Pr.j),

3 ~ .
Mg = 5 (87 = prig) In |z —prj| + O | ex +ef sup (1,51 + 1Ti2k,50) | 5
m B s <|y[<B_s_
Ek’j Ek’j
3 . i i
Mokg = 5= (87 = pag) In |2 = il + O | ex +ef sup (11,51 + [Fl2k,5])
a B_s <|y|<B_s
Ek,j Ek,j

We then have

sup (17k,5] + |fi2k,51) < C (|p1k,; — 87| + |p2k,; — 87[) + O(ex)-
B s <|ylI<B_s _

ZE)C’J' €k,j
Hence Lemma 4.1 can be refined as follows.

Proposition 4.4. It holds in B_s_ that

€k, j

< CQA+ YD) [68 + ek (lprkg — 87| + |par,; — 87)]

|T1k,| + T2k,

where $ <7 <.

5 Estimates of VQ;; and VQsy

In this section we estimate the gradients of the functions Q1x,; and Qs ;
defined in (75) and (76).
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Proposition 5.1. For 1 <7 <7 and any j =1,...,m, we have

VQik,; = Olex|Inex|)(|p1r,; — 87| + |pax,; — 8])
+ 0" ) |p1r,; — 87[* + |pak,; — 871[°) + O(en),
VQax,; = Olex|Iner|)(|p1r,; — 87| + |pax,; — 8])
+0(er" ) (Ip1k,g = 87 + |p2r,j = 87%) + Oey).-
Since the problem is considered locally, for simplicity of notations we omit

the subscript j if there is no confusion. Similarly we use p,, p3, to denote piy,;
and P2k,j-

Proof. We set

Vi1 (y) = Bb, + 85,)Vir(y), V1Y) = (b, + F5,)Var (),
Tr2(¥) = i(Bb, — 85,)Vik (), 5,2 (y) = i(Bb, — 85, )Var(y),
T2 () = (Oc, + 0 )Vir(v), 5k1(Y) = (e, + e, ) Var (y),

Yik,2(Y) = (e, — Oz ) Vir(v), V5x,2(Y) = 1(0c,, — 0z, ) Vor (y)-

It is easy to check that, on B s ,
€k

¢i’k,1=|2%+0(ﬁ), aﬂg_lf;e,l:_(ly%jm(ﬁ),
¢3m=—|8y%+0(#), 3’12_%,1:%+0(ﬁ)’
¥lka = s + O Dha _ -+ 0
7#31;,2 = _Ej% + 0(@)7 %%,2 _ E/% n O(#L
Vi = —fy% 0(#), % _ %JFO(#),
¢§k,1=|2y%+0(#), %:_%jLo(ﬁ),
R I TR Rt

Integrating by parts, we have

/B (—Afe) YT 1 + (—Afjak )5k 1
5

€k
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Cc ~ Cc ~ ~ azpc C 6~
= /BL(_A"plk,l)nlk + (— A5y, 1 )72k +/8B (Thk 81;’1 —¢1k,1%>

5
£

_ OY5 e Of2g
+ /335 (772197 — Yok, W) - (81)

€k

k

By the previous estimate on 0B s , (70) and (71), a straightforward calculation
€k
shows that

/ oy, 4 _ Ofji ¢
8B ;5 61/ ik 61/ ik,1

€k

= O(ek|ner|)(|ply — 87| + |p3y — 87]) + O(ei),  i=1,2. (82)

where cancelation occurs due to the radial symmetry of In|y|. On the other
hand, we note that, by (73) and (74),

3D1k(y) = (2f1k — fior) + 3VQ1k (pr)ery + Oty + 7iag) + O(ex|y[?),
3Da(y) = (272k — 7i1k) + 3V Qar (pr)ery + O(Tsy, + 73) + O(ex|y]?).-

Then

/ 3pirhik (pr)e* ™ Dig(y)¥iy +/ 3parhak (pr)e"™ Dok (y) ¢S5y 1
BL Bi
€k €k

= / prihar (pr)e" ™ (2d1k — T2 Y5y 1 +/ paihak(Pr)e"* 202k — k) P5k 1
B

5
€k €k

+3VQ1x(pr)er / prehi(pr)e" ™y 4
B
€k

+3VQar (pk)Ek/ paihak (pr)e > Y15, |
B

+O0(x") (1ot — 8 + |p2e — 87*) + O(e}),  (83)

where Proposition 4.4 is used to estimate 7%, + 7j3,. The equations of 75 and
7ok, (81), (82) and (83) give us that

3VQ1k(Pk)6k/ piehik(pr)e ™ yiiy
B

+ 3VQ2k(pk)Ek/ p2rhok (pk)ev2’“y¢§k,1
B

= O(ek|nex ) (|phy — 8| + [p3; — 8)
+O0(ei") (o1, — 87| + |05y — 87*) + O(ef).  (84)
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c b b
Similarly, the above procedure can also be applied to (1/’1“), (¢1’“’1) and (w““’g)

b b
¢§k,2 /"/)2k:,1 ¢2k,2

and then other three equalities can be gotten, which have the same form as (84)
just by replacing (1/)““ 1) by (z/’“c 2) etc.

Now we are in posmon to ﬁnish the proof of Proposition 5.1. We need to
show that the corresponding coefficient matrix is non-degenerate, from which
the proposition follows. Since A(2¢5; | + 5y 1) +3p1xhir(pr)e” ¥, ; = 0, one
has

3/ prrhik(pe)e” yi gy, = — A2¢k1 + V510
BL BL
£ €k
Oy (2¢fk 1+ wgk 1)
— 2 ) k)
/8B5 61/( Yika +Y5k1) — E® Y1
k y2
- _12/ L4 O(ey) = —127 + O(ew),
8B 5 |y|
ek
and
3/ prihak(pr)eV yatfy , = — A(2¢1g,1 + V3k1)Y2
B B
Ek Ek
0y O(2¢fy 1 + ¥5y1)
_ 9 , 1
~/E)Bg 61/( Yie1 + Voka) — E® Y2
€k
= O(Ek)

Similarly we can prove that

/ parhar (pr)e Y195, 1 = O(ex), / parhar(pr)e ™ Y2105, . = O(ew),
B

k

/ prehik(pr)e" ™  y195y o = Olex),
L
/ Plkh1k(Pk)eV1ky2¢fk,2 = _12/ y23 + O(ex) = —127 + O(ex),
B a8 [l
€k €k
/ parhok (Pr)e > Y195, » = O(ex), /B parhok (pr)e Y2105, » = O(er),
ha —
/ prehik(Pr)e ™ y197, 1 = O(ex), /B prehie(pr)e" ™  y20ty 1 = Olex),
By %
/ p2kh2k(pk)ev%y1¢'12)k,l = _24/ |yi3 + O(eg) = =247 + O(ex,),
8B ;5

L
€k €k
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/ P2kh2k(pk)ev2ky2'¢'3k,1 = O(ex),
B

€k

/ prihar(pr)e Y19ty o = Ole), / prehik(pe)e ™ Y2ty 5 = O(er),
BL BL

€k €k

/ paehak(pr)e"? y19hy o = O(ex),
B

€k

2
/ parhar (pr)e * Y213y » = —24/ _y23 + O(e) = =247 + O(eg).

€k €k

The above computation obviously implies the non-degeneracy of the coefficient
matrix. The proof is thus completed. O

6 Estimates of p;;; — 87

In this section we estimate the convergence rate of p1,; — 87 and pag,; — 8w
in terms of the blow-up values.

Lemma 6.1. There holds

1 8771]9]’ 2
plk,'—SW:——/ ——= 4+ 0O(ey), 85
i 3 om0V (ek) (85)

1 N2k, 2
p%,—&r:——/ Ok | (2. (86)

! 3 JoBs(pr.;) v ¢

Proof. By the definition of pix,; and ni,;, we have

3p1k,j 2/ 3p1khige™ = —/ A(2d1 + o)
Bs(pr,;) Bs(pr)

= —/ A, —/ A (2Urk,j + Uar,j)
B;s(pk,;) Bs(pk,;)

Ok, i .
= —/ _7(79119,] +/ 3p1rhik(pr)e’ ™
9Bs(pr,;) 9V B_;

:2471'—/ OMki | o2).
OBs(pr,;) v

(86) can be proved similarly. O

Proposition 6.2. We have
prij — 8™ = Cik j A Qur.j(pr.j)er ;| Iner j| + O(e}),
pak,j — 8™ = Caop jAs Qo j (Pr i)k ;| In e | + O(e}),

where Cyy,; and Cor ; are positive constants uniformly bounded below from 0
and above from oo.
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Proof. We omit the subscript j as in the previous section. Define

1k(y) Oari, Vik (¥), 2k ¢ (¥) = Oayi Vor (y), (87)
1Y) = 0z Vi (), 2k () = Oaz, Var (y)- (88)

A Taylor expansion gives us that, for |y| — oo,

th =0, Tk — (1),
5t = e+ 0, Ohk = 0(15),
ft = o+ Olor), Tk~ 0()
5t =~ + O, Tk = 0(cs).

It is then easy to check that

/ <6¢1k ~ 877119 )
8B 5 31/

€k

O(ei|Inex])(|pYy — 8| + [p3), — 87) + O(ex),

and
/ 6¢2kﬁ _ 677219 a1
8B 5 ov 2k ov 2k
€k
2 Ok
== [ T O nerl) (o — 87| + |68 — 7)) + O(D).
ajg BBL 14
€k
So we have

/B (= A% + (~ Adfoi )02

- /B (= AT Vi + (= AYEL )i
5

iy - 0Nk  a, / sy 0ok 4,
+/BBJ ( ov M v 1k + 8B 5 ov 2k ov 2k

€k k

o 2 o7
= [ cavm cauim - o [ o
B 9B s 9V

a1k
3 Sk

+O(ei | nex]) (| — 8 + |p3y, — 8)). (89)

25



On the other hand, using Proposition 5.1, we obtain that
. - 3 o
3Dwk(y) = (2 — 7hak) + 5V Qui(pr)eiy” + 91.(y), (90)

- - 3 . B
3Dak(y) = (272 — k) + §VZQ2k(pk)5iy2 + g2(y), (91)

where

gily) =0 (|ink(pk,j)|5k|y| + Ty, + Tlag, + 6i+ﬁ|y|2+ﬁ)

= O™ Iy (1o — 8] + |63, — 87)) + O lyl) (168, — 872 + |0, — 87%)
+0 (3 lyl + T + T + 37y )
= O(})(1+ [y]) + 0T Iy*+) + OEF ) (1 + [y)* (|63, — 8| + [, — 8.

It is easy to see that

/B €'y gi = O(ei") (I} = 87| + 03y — 87) + O(eR)-
5

€k

By the equations of ;5 and fj2g, it holds that

/B (= Ag)$ + (— Aok )22
5
€k

=/ 3p1rhik (pr)e”™ Dighis + 3pahor (pr)e'? Dogtpst.  (92)
B

ck

From (90) we have that, since ¢} = O(+15

/ 3p1rhik(pr)e" ™ Digpt = / piehik(pr)eV ™ it (2fr — far) + O(e})
B il
€k €k

+ 0" )(|p1 — 87| + |93y — 8l).  (93)
From (91) we know that

/ 3parhak (pr)e"? Dophs;
B
<k
= / pakhak (pr)e Y5k 272k — fik) + O(ex” ) (Ip3x — 87| + |p9y — 8x])
B
%
2

1) a1
+ Ek /B 3parhor(pe)e V5 ViQak(pr)y? + O(e}).  (94)
5

We next claim that
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/ 3parhak (pr)e > Y5t V2Q2k (Pr)y?
B

= %’M‘/ 3parhak (p)e ™ Piily” + O(1).  (95)
B 5

£k

Indeed, direct calculations show that

/B 3p2kh2k(pk)e"2’“¢§,;(yf—y§)=—/ AT + 205 (47 — v3)
i

B
€k €k
B(y% - y%) a a / a( (11119 + 2'¢gllc) 2 2
= ——— (Y1 T 2¢5;) — — 5 Wi~y
I e
Ery €k
= 0(1) (96)

/ 3parhar (pr)e Y5t y1ys = —/ Aty + 295, )y192
B

B
0W1y2) , a1 / oY1k + 2¢351)
— a + 2 a1y __ _ N1k = T T4AR7
/8Bi o ( 1k ¢2k) 0B 5 o Y2
= 0(1). (97)

The claim (95) follows from (96) and (97). Therefore (94) implies that

/ parhok (pr)e"?* Doy
B

€k

= /B p2ihak () e 5k (2h12r, — k) + O(er") (193 — 87| + |0 — 87])
b
€k

2A
+ %%(pk) / 3parhak (pr)e > Piily[* + O(eR)- (98)
Bs

k

Finally combing (89), (92), (93) and (98), we obtain that

2 Aok _ €3 Az Qa1 (pr) / V. 2
- — 3 h 2k /,@1
arr Jon , O 4 B, parhok (pr)e ¢2k|y|
€k €k
+ 0@ (190, — 87| + |pSy, — 87)) + O(e})- (99)

Furthermore we perform a similar procedure by replacing (¢{;,%5;) by

(Y17, ¥sr)- It is easy to see that
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/ (=Afjk) Y17 + (—Afjar)P3i :/ (=AY ik + (—AYSE )Tk
B B

o

ey €k
2 o7j 2 on
_ Ulk + 772k _'_O(Ei),
ax Jop, OV axk Jop s Ov
€k €k

/ 3p1rhik(pr)e" ™ D12
B

€k

= / prehik(pr)e" ™ 12 (201 — 2r) + O(ex7) (193 — 87| + |p9) — 87])
B
€k

e2A, ol
+ RO [ gy ezl +0(ED)
B

€k

and

/ 3parhak (pr)e"™ Dayps?
B

€k

= /B p2ihak (pr)e"? W52 (2fiar, — k) + O(ex”) (192 — 87| + |pYy — 87])
5
€k

EQA;,; a
+ ExBaQui(pr) / 3pakhar (pi)e Y22y 2 + O(2).
B

4
€k
So we get that
2 G 2 [ O
ask Jop s Ov ask Jop s OV
g g
2A
— €k «Q1r(Pr) / 3p1kh1k(pk)€vlk¢ﬁ|y|2
4 B
€k
e2A u
+ M/ 3pzkh2k(pk)eV2’°¢2,§|y|2
4 B
ek
+O0(eX) (1% — 87| + [Py, — 87]) + O(e})- (100)

It follows from (99) and (100) that

2 Ok EiAzQw(pk)/ \%
__c = 3p1kh Teqy@2 |2
izt Jos . O 1 - pirhik(pr)e YLyl
Ers €k
e2A a
N %%(pk) / 3pahak (pr )€ (—”“ ;,;w;g) ly|?
BL a2k

€k
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+O0(ex7) (1% — 87| + |p3 — 87) + O(e})

2A
_ %ﬂm) / 3p1khak(pr)e % [y
B

k

+O0(ei")(|1p1 — 87| + |p3y — 87]) + O(e}), (101)

where ZEqpol + ohof = O(Jy|=2) as |y| — oo is used in the last equality.
Since e"1+, eV2k ~ |y|~* for |y| large, Lemma 6.1, (99) and (101) give that

Pl — 8m = CreAp Qui (pr)ei| Inek| + O(er” ) (|93 — 8n| + |3y, — 87) + O(e3),
P2y, — 8T = Cor Ap Qi (pr)er| Inek| + O(e37) (1Y — 8| + [p3), — 87|) + O(er),

where Cyy, is a constant such that 0 < C7 < Ci < C2 < 00 (i = 1,2). Obviously
we also have that

P(l)k — 8 = ClkAlek(pk)Eil 1n5k| + 0(52)7
P — 8T = Cop Ay Qar(pr)er|Iney| + O(e3).
The proof is complete. |

By Proposition 6.2, we now have a sharper estimate for VQ; ;(pr,;):

IVQ1k,; (k)| + |V Q2r,; (k,;)| = Oler)-

Hence Lemma 4.1, Lemma 4.3 and Proposition 4.4 hold for any 7 € (0,1).

7 Estimates for V?Qq;,; and V?Qoy

In this section we make use of the remaining two kernel elements to obtain
the estimates on the second derivatives of the Q;1,;’s. For convenience we still
omit the subscript j.

Proposition 7.1. It holds that

67(011 — 022)[Q2r (Pr) — Qur(pr)] + Tl:’l AQ1x(pr) + Tif’l AQax(pr) = O(e),

127910[ Qo (pk) — Que(pi)] + 52 AQui(pi) + 22 AQuk () = O,

where Thg.1, Tor1, Tik2 and Toy o are four constants defined by
Tigy = /23P1kh1k(pk)evlk¢fk,1|y|2>
R
Topy = /23P2kh2k(Pk)6V2k¢gk,1|Z/|2a
R

Tk = /23p1kh1k(19k)6v1k¢idk,2|Z/|2a
R
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Topo = / 3parhar (pr)e > S oyl
R2
and
Y1 (y) = (04, + 03,)Vik(y), V31 () = (84, + 0,)Var (v),
Yo (y) = (04, — 0,)Vik (y), V52 (y) = i(0a, — 0y, ) Var (y)-

Remark 7.2. These constants Tiy j,4,5 = 1,2 may be nonzero. See the remark
at the end of this section.

Proof. As |y| — o0, a Taylor expansion gives that

6(y? — y3) 1 ik 12053 — 4 1
d  _ 1= Y3 A 1~ Y3
wlk,l - |y|4 +O(W)7 v - |y|5 +O(W)7
6(y} — 3) 1 Py, 12(y7 — 43) 1
wgk,l = Ty|4 : + O(W)? 621/ ! = - |;|5 2 + O(W)7
12y1y2 1 6¢iik,2 24912 1
wiik,z =——1"+0(—3) = 5 ()5
|yl |yl ov |y |yl
129192 1 O3y o 249192 1
ol = 22 o Ly 2 _ _ +O(—).
2 = Ty +Olp) ov PR

Then using the estimate (70) and (71), we have

/B (_Aﬁlk)¢iik,1 + (_Aﬁ2k)¢gk,1
%
- /B (= A itk + (—AYZ, )iiok + O(ED). (102)
5
€k

Since hyj and hgy are of C?P(9Q), it holds that

- . 3Vv?
3Dux = (s — o) + SV Qu(pr)ery + 2ok ) 2 | (21 4 )2,

3V2Q2k(17k) 2.2

3Dy, = (272 — T1k) + 3VQ2k(Pr)ery + epy” + 0(5i+ﬁ)(1 + [y))*t7.

2
Since
/ Spuchie(or)e it 1y = — [ AQ@UH + vt )y
BL BL
Oy 6(2¢dk, +¢dk, )
= [, s v+ - TEEEERS 0,

€k
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and clearly
/ 3P2kh2k(Pk)eV2k¢gk,1y = O(ex),
B

€k

a direct computation shows that

/ 3p1kh1k(pk)evlkle(y)wllik,l
B

€k

= / prihar (pr)e" ™ (20, — flo )i 1
B
€k

VZ
+ Q+Wsi/ 3pikhik(pr)e ™ Y20l + 0™,
B

€k

and

/ 3parhark (pr)e" Dok (y) 1 4

B

%

_ Vak (95 _ = Vol

—/ parhak (Pr)e"* 272k — k) Yox 1
B

€k

v2
+ Q+(pk)ei/ 3p2rhar (Pk)eV%yQngk,l + O(EiJrﬂ)'
Bs

€k

It is obviously that

1 1
V2Quk(pr)y® = 5(511 — 022)Quk(pr) W3 — ¥3) + = AQ1k(Pr)y|* + 2012Q 1k (Pr) Y172,

2
1 1
V2Qak(pr)y? = 50 - 022) Q21 (pr) (¥5 — y3) + 5AQ2k () [yl + 2012Q2k (Pr)y1y2-
We can further check that
/B 3p1kh1k(pk)evm¢fk,1(y% —y3) =— i A(%f}m + ¢gk,1)(y% —y3)
3 &
oy? —y3 (2pty | + ¥ 1)
= [, P et s vt - T 0
ek
2 ov2
- - 24/ % +0(ex) = —247 + O(ex) (103)
8B 5

€k

and similarly

/ 3P1kh1k(17k)ev”°¢fk,1yly2 = —/ A(Zwiikg + ¢gk,1)ylyz
B B
g €k
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0241 + ¥ 1)

29192 1o 1d d
= 29192 9 -
/aBi iv] (2971 + Y5k 1) v Y1y2
€k
= O(ep). (104)
Furthermore, Ty 1 is such that
/ 3pirhak(pr)e iy 1y = Tk + O(eR). (105)
B

€k

Thus, (103), (105) and (104) imply that, by symmetry,

2
Msi/ 3pukhur(pr)e¥  y* 9 4
B

€k

1
= —6m(d11 — B22) Qi (pr)e) + ZAQlk(pk)le,lfi + O(g}).
Analogously, we have

V2 :
Q+k(pk)5i/B 3parhak (pk)evzky2¢gk’1
S

€k

1
= 6m(d11 — B22) Q2r (i )e) + ZAQ%(Pk)Tzk,lEi + 0(e}),

where the constant T5y,; satisfies that

/ 3parhan(pr)e ™ Y5y 1 [y1> = Tory + O(eR)-
B
<k

We conclude that

/ 3P1kh1k(Pk)evl’lek(yWiim+/ 3parhak (Pr)e">* Doy () 1
B

.

€k k
= / prihar (pr)e"™ (2iuk — flok )i, 4 +/ parhar (pr)e"™ (2far — 1) Y5y 1
B% B%
T T:
+ 67 (011 — 22)[Qk (k) — Qui(pe)lef + H“AQM(pk) + 2" AQuu(pr) | €k
+0(ET). (106)

Using (102) and (106), we get that

Tiga
4

Top
4

67 (D11 — Ba9)[Qar (k) — Qui (k)] + =2 AQuk (Pr) + =22 AQak(pr) = O(eR).
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Repeating the above procedure and using

/B 3puhik(Pr)e 0, (42 — 42) = Ofex),
5

€k

/ 3p1ehak(pr)e ™ iy olyl® = T2 + O(eR),
B

€k

/ 3pikhik (pr)e ¢ty sy1y2 = =121 + O(ew),
B

€k

/B 3pakha (Pr)e 9y (42 — 42) = Ofex),
)

€k
/ 3pakhar(pr)e Sy olyl* = Tar2 + O(e}),
B
%
/ 3parhok (Pr)eV** U5y yy1y2 = 127 + O(ey),
B
€k

we obtain that

/B (= A s + (~ Ao
%
- /B (= A )ik + (A )ion + O(eD),
5

and

/ 3pukhak(pr)e’™ Dik(y) iy 2 +/ 3parhak (pr)e"** Dok (y) Y5y -
BL B

o
€k €k

= / pirhik (pr)e¥™ (20ik — Tiok) i 2 +/ parhok (pr)e"™ (2ijar — fiik) sy 2
B

8
€k €k

+ 127812[Q2k (Pr) — Qi (pr)e] + [Tlm AQ1k(pr) + %AQ%@U £

4
+0().

Therefore we have

Lok AQak(pr) = O(e}).

T
lk’2AQ1k(pk)+ ;

12#612[@2];(}719) - Qlk(pk)] + 4

The proof is concluded. O
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Remark 7.3. The coefficients Ti,,; may be nonzero. Assuming b=c =0 and
d € R, we compute Tiy1 for |d| small. We drop the dependence on k an d.
Then ) )

yi —y3 +d
ai +a3lyl® + |y* +d?

211 F o1 =

Then it is easy to see that

Ty~ / epralyl* = lim (—A2¢1,1 + ¢¥2,0)) |yl
R2 R=t00 JBR(0)
=—4 lim (2¢11 + 92,1),
R—+o0 Bgr(0)
where
2 .9
Y1 — Y2 1 2
(2¢1,1+921) =/ +d/ +0(d?)
/BR(O) Br(0) @1 +a3ly]® + |y +dJ? Br(0) 01 + a3ly? + |y|*
Bro) @ +a3lyl2+1y? +d? o +a3lyl? + [y|* Br(0) @1 +a3ly|* + [y[*
—2d(yf — y3)° 1
=/1 (i >nm 242+d/ 5+ 0@d)
Bgr(0) (af + a3ly|* + |y|*) Bg(0) 1 + aslyl* + |y

a2 + adly]?
:d/ T +0(d).
oato) @ a2l + 2Py T 0@

T
Thus =3+ approaches a nonzero constant as d — 0.

8 Proof of Theorem 1.2
Applying Proposition 6.2 to Proposition 5.1 leads to

VQik,j(Pr,j) = O(er),  VQar,j(pr,;) = Oler),
which implies that
87V o H (pr j, i j) + 87 Y Vo G(pk s Pre) + VI ha(prj) = Olex),
j=1

87V H (pr,j, Pr,j) + 87 Y VaG(pr js Phe) + VIn hok (pr,;) = Olex).
j=1

This proves (24)-(25).
Similarly from Proposition 7.1 we have

67 (011 — O22) [In hok (pr,;) — Inhigk (pr,;)]
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Tn T}
+ T’Alnhlk(;ﬂk,j) = Aln hoy,(pr ;) = O(eD),

127012 [In hok (Pk,;) — In hag(pr,j)]
j j
1

T T
Z’zAln hik(pr,j) + 2:’2A1n hak(pr,j) = O(e}),

+

which proves (26)-(27).
It remains to estimate p1x — 8mm and par — 8mar. Recall that

m
pik = Zpik,j +0(3) fori=1,2.
=1
Noting that Ay Qik,;(pk,;) = Alnhi(pk,;) (i = 1,2) and using Proposition 6.2,

we easily have that

m
Pk — 8mm = ZC’lk,jAln hlk(pk7j)5ﬁ’j| Ineg ;| + O(e3),

=1

m
pok — 8mm =Y Cop jAIn hoy(prj)ei ;| nen 5| + O(7)-

i=1

Hence (22)-(23) are established.
This completes the proof of Theorem 1.1.

9 The Case on a Surface: Proof of Theorem 1.1

In this section, we consider the following Toda system of SU(3)

h Uik h U2k
—Agurg = 2p1 (L - 1) ~ pa (L - 1) on M,

hevtk f hopev2k
fﬁ;;keuzk Azlmew (107)
=2 (5 =) = (i =) on

where (M, g) is a closed Riemann surface, A, is the Laplace-Beltrami operator.
Here we normalize the volume as |M| = 1. In this system, p1; and pa, are two
constants, hix(z) and haog(z) are two positive functions converging to h(z) and
ha(z) respectively in C2# (M) as k — oo.

Let @1y, tok, €k,; and other symbols be defined as before. Set

m
wig = 2u1g + U2k — 3 Z Pik,eG (@, Pr,j) — 2U1k — Usk,
i=1

m
Wag = Uik + 2ug — 3 Z P2k,0G (2, pr,j) — Uik — 2Usk,
=1
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where @1y, Uay are the averages of ui, usk, and G(z,p) is the Green function of
Ay on M with singularity at p. Then by the same method, we have the similar
estimates as in Lemma, 3.4.

Lemma 9.1. It holds that, for i = 1,2,
m
lwir| + [Vwix| = O(ex)  for @ € M\ U Bs(p;).

Recall that

{Agﬁm + 21k (Pare™ — 1) — pay, (hare™ —1) =0 on M, (108)

Agiiog, — pri (hike™ — 1) + 2pop, (hore™ —1) =0 on M.
Since the computation from Section 4 to Section 8 is local. We introduce some
notation for local computation. Note that isothermal coordinates always exist on
Riemann surfaces. When (108) is considered locally, it is convenient to introduce
a local coordinate z (still denoted by x) such that pj ; has the coordinate 0 and
the metric g;; = e?8;; with ¢(0) = 0 and V¢(0) = 0. In this case, (108) is
reduced to

Aalk + 2p1k6¢ (hlkealk — ]_) - pgked) (hzkea% - ]_) =0 in B(s(O),

Adioy, — plke¢ (hlkef‘”c - 1) + 2p2ke¢ (hgkeﬁ% — 1) =0 in Bs(0),
where A stands for the Laplacian in R2.

Furthermore, we set

U1k () = U1k — (2p1% — p2r) fr(T) and  Uor(x) = Gok — (2p2k — p1k) fr (),

where the function f} is defined by

Afy=e? for |z < &,
fr(0) =0, Vfi(0)=0.

Clearly (i1, liax) satisfies that

Adqy + 2p1ki11kea1’c - kaEleﬁzk =0 for |z| < do, (109)
Adia, — pirhige®™* + 2pophope®r =0 for |z| < do,

where
]Ahk(x) — e¢h1ke(2’)1’“_p2’“)f’“, fl2k(x) — e¢h2ke(2p2’°_pl’°)f’°.

Thus the similar proceeding from Section 4 to Section 8 can be carried out to
(109). Note that now

Q1 (@) = 2G4, () — Gap () + Inhyy
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= Zélk,j(.’ll') — ézk’j(x) +Inhyp + ¢ + (2P1k - ka)fk;
Qo (x) = 2Gop j () — Gip,j(x) + Inhog + ¢ + (2par, — p1x) fi-

Using

Vo(pr,;) = Vfr(pr,;) =0,
A¢(pr,;) = —2K(pr,;) where K is the Gauss curvature,
(2p1k — p2r) Afr(Pr,5) = 8mm + 2(p1x — 8mm) — (p2r, — 8m),
(2p2k — 1) Afr(Pr,;) = 8mm + 2(p2r, — 8mm) — (p1y, — 8m),
(011 — 022) [(2p1k — p2r) f — (2p2k — p11) fx] = O(|p1x — 8mr| + |por — 8mir]),
012 [(2p1k — p2k) fr — (2p2k — p1k) fr] = O(|p1x — 8ma| + |pax — 8mar|),

we therefore obtain Theorem 1.1.

Appendix: Proof of Lemma 4.1

Here we give the proof of Lemma 4.1. We shall follow the proof in [4]. Several
key ingredients needed already exist: first of all, we have the non-degeneracy
of entire solution; secondly, each 7);;, ; satisfies a linear equation with potential
decaying like |2|~*:

C; 1

|Z|4+0(——) i=1,2. (110)

Vir,i(2) —
‘ EE

Lastly, we have two bounded (non decaying) kernels (7},%3;) (as defined at
(87)-(88)).
For 0 < 7 < 79, let

0

R=—, a=¢gT+e; sup (k| + 7ri])
Ek.j £<|zI<R

and |

i Nik,j .

N} = sup ——>——, i=1,2.

k lz2l<r a(1 + |2])7

We claim that _
Ni<C (111)

for some constant C. To prove (111), we follow the proof in [4] and divide it
into several steps. We prove it by contradiction. Without loss of generality, we
may assume that N := N} > N2. Assume that

N = 400 as k = 4o00. (112)
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Step 1 |71k, (y)| + |72k, (¥)| = o(aNy) in any compact set.

Let

_ Tk, (Y)

Ulk,'(y) = = =~ )
! X+ [y =7 (k5| + |Fl2k,i Dl _5 )

Ek’j

~ Tok,; (Y)

nzk,'(y) = = =~ :
! X+ [y =7 (11k,5] + 172k, Dl 5 )

Ek,j
Clearly 71x,; and fjax,; are locally bounded. Recall that a1y j, ak,j, br,j, ck.j
and dy, ; are determined by (60)—(64) such that 0 < C1 < @1,j, G2k,; < C2 < 00
and the other coefficients are of order O(1) in k. Recall the system (77) for
fjik,; and we find that the inhomogeneous terms in the equations of 7 ; are
27 27
(0] (#jlylg) . Obviously, % — 0 as k goes to infinity, so the inhomoge-
neous terms tend to zero. Standard elliptic regularity then implies that there

exist fjoo such that 7ik,; = fico in C2 (R?) and

—Afo = e (27_7100 - 77200)7 —Affpee = €2 (27_7200 - 7_7100)7 (113)

where (vy,v9) is the entire solution with the parameters determined by the
convergence. Since fioo = O(1 + |y|7), T2co = O(1 + |y|7), by Theorem 2.1 we

8
oo\ _ _ (Ba _ (Ba .
deduce that (g;w) = 1321 veZ; where Z; = (aaﬁ;), Zy = ((%Zz;), .... Since the
choices of A1k,j, Q2k,5, bk,]‘, Ck,j and dk,j imply that

Vzﬁloo(o) = vlﬁ2oo(0) =0 for £=0,1,

0111100 (0) = 022710 (0), 0127100 (0) = 0,

we deduce that v, = 0 and hence 100 = faco = 0. S0 7sr,; = 0 as k — oo for
i = 1,2. This concludes Step 1.

Step 2 There exists C; such that

lyl|Viji,; ()] < C1 sup (|7, ()| + Ik, (2)]) + €3
13l <z <2ly|

This is the standard gradient estimates. We omit the proof (see [4]).
Step 3 It holds that

‘ |7ik, (2) — Tlik 5 (2')] ,
5 1= sup sup . : = o(Ny), i=1,2. (114)
zk |21<R |2|=|2'| a(l+|z])"

We prove it by contradiction. Assume that N, > coNp for some c¢g > 0.
Without loss of generality, we might assume Nj5 = max(N7,, N5.). Let z;, and
z; be such that |z;| = |z;/| and

N = kg () = T, (2]
1k = =
a(l + |z|)
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As in [4], we can prove |z}| = |2}/| < £ and the angle between O_zk) and @

0 > 6y > 0. This follows from the gradient estimate of Step 2 and 7 < 7p.
Without loss of generality, we may assume z;, and z;] are symmetric with respect
to z-axis and 7ix,5(2;,) > Tk, (25)-

Set
wi(2) = ik,j(2) — T, (27)  for 22 >0,
where z = (21, 22) and 2~ = (21, —22), and set
o = wi(2)
@i (2) = a(l+ zp2)7"

Let z; be the maximum of |@4(z)| in Bf = {|z| < R,22 > 0} and denote the
maximum of |0 (z)| by N;j*. Then by the assumption, N;* > ¢ Ny, > c2 Ny, for
some positive constants ¢, and ¢z, due to 6 > 6y > 0. In particular, N;* — +oo
as k — +oo. By (70), (71) and Step 1,1 << |z}| < £.

Straightforward computations show that wy(2) satisfies, for |z| > 1,

T1-7) _
1+ z)2 "

270
= 0 (= (el + i) ) +0 (ot
B alz|*(1 + 2z2)7 Mk, | T 112k, alz|2(1+ 22)7 )’

At z = z;;, we have Vo = 0, Aw, <0 and thus we obtain

Aog(2) + 27V 1og(1 + 29)Viog, —

_ (1+ 29)?
N, < N** = *) < o1t
o S N =) < Oy

< CNglzi| 2 +C,

(17k,5] + |i2k,51)) + C

which clearly gives a contradiction. This proves Step 3.

Step 4  Set the radial average of 7;x,; as

1

27
Pik,j(r) = %/0 fiik,; (re?®)dd,  i=1,2.

By Step 3, Max sup|. < g % > ¢3N;, for some positive constant c¢3. Let

us assume that “ai’sis)’i) = SuPIZISR% > CaN;. By Step 3, we have

1 <<s < %. Then multiplying the equations for 7j; ; by the kernel functions
(Y1, ¥s1) (as defined at (87)-(88)) respectively, we obtain, as in the proof of
Estimate C of [4] and also as in the proof of (99), that

/Z:r [%(ﬁlk,j(@)ﬁi - %(@bﬁ)ﬁlk’j(z)]

o Lo = g 5t s ()]
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= / [plkhlk(pk,j)ev““”¢fé0(\ﬁ1k,j 2+ |ﬁ2k,jl2)]
[z|<7

+/ [ﬂzkhzk(Pk,j)GV“’j¢§é0(|ﬁ1k,j|2 + |72k, 2)] +O0(e77).
|z|<r

Using the asymptotic expansion of (47}, 15;) (see (88))

1 o2 1
@ — ) , 1k _ o) )
1 (IyIQ) v (IyIS)
2 1 o 1
M= +0(—5), 2k — O(—),
%= ot (|y|2) ov (Iy|3)

we obtain, similar to [4], that

alNy, L In(r + 2 _
loge ()] < ¢ (T2T + &2 ( : ) + (aNy)?r 1) .

Similarly, using the kernel (¢77,%57), we may further obtain

alN In(r 4+ 2 _
() <o Sk + et 20D (o).

Note that s (2)
Mk, j\2

alNp = sup —=—=

zl<r (1+2])?

because jiy,; is uniformly bounded and 7j14,;(2) — 0 uniformly in any compact
set. Hence

-0 as k — oo,

Sk
aNe(1+51)" < |re(s0)] < c/ |0t () [dr < C(ln s)2(€7 +aNg) 475 aN,
o

where 7 is a fixed but large positive number. Since s, — 0o, we get that

2 27
N, < C(lnsg)® g§”

SAts) o =o(1) as k — oo,

which yields a contradiction. This completes the proof of Lemma 4.1.
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