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Abstract We consider the following Toda system

�ui +
n∑

j=1

aij e
uj = 4πγiδ0 in R

2,

∫

R2
eui dx < ∞, ∀ 1 ≤ i ≤ n,

where γi > −1, δ0 is Dirac measure at 0, and the coefficients aij form the
standard tri-diagonal Cartan matrix. In this paper, (i) we completely classify
the solutions and obtain the quantization result:

n∑

j=1

aij

∫

R2
euj dx = 4π(2 + γi + γn+1−i ), ∀ 1 ≤ i ≤ n.

This generalizes the classification result by Jost and Wang for γi = 0, ∀ 1 ≤
i ≤ n. (ii) We prove that if γi +γi+1 +· · ·+γj /∈ Z for all 1 ≤ i ≤ j ≤ n, then
any solution ui is radially symmetric w.r.t. 0. (iii) We prove that the linearized
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equation at any solution is non-degenerate. These are fundamental results in
order to understand the bubbling behavior of the Toda system.

1 Introduction

In this article, we consider the 2-dimensional (open) Toda system for
SU(n + 1):

{�ui +∑n
j=1 aij e

uj = 4π
∑m

j=1 γij δPj
in R

2
∫

R2 eui dx < +∞ (1.1)

for i = 1,2, . . . , n, where γij > −1, Pj are distinct points and A = (aij ) is
the Cartan matrix for SU(n + 1), given by

A := (aij ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 0
...

...
...

0 . . . −1 2 −1
0 . . . −1 2

⎞

⎟⎟⎟⎟⎟⎟⎠
. (1.2)

Here δP denotes the Dirac measure at P . For n = 1, system (1.1) is reduced
to the Liouville equation

�u + 2eu = 4π

m∑

j=1

γj δPj
(1.3)

which has been extensively studied for the past three decades. The Toda sys-
tem (1.1) and the Liouville equation (1.3) arise in many physical and ge-
ometric problems. For example, in the Chern-Simons theory, the Liouville
equation is related to abelian gauge field theory, while the Toda system is
related to nonabelian gauge, see [11, 12, 14, 20, 21, 30–32, 36, 37] and refer-
ences therein. On the geometric side, the Liouville equation with or without
singular sources is related to the problem of prescribing Gaussian curvature
proposed by Nirenberg, or related to the existence of the metrics with conic
singularities. As for the Toda system, there have been a vast literature to dis-
cuss the relationship to holomorphic curves in CP

n, flat SU(n + 1) connec-
tion, complete integrability and harmonic sequences. For example, see [2, 3,
5, 9, 10, 16, 21]. In this paper, we want to study the Toda system from the
analytic viewpoint. For the past thirty years, the Liouville equation has been
extensively studied by the method of nonlinear partial differential equations,
see [4, 6–8, 22, 25, 31, 32, 34] and references therein. Recently, the analytic
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studies of the Toda system can be found in [17–19, 23, 29, 32, 33, 35, 36].
For the generalized Liouville system, see [26] and [27].

From the viewpoint of PDE, we are interested not only in the Toda system
itself, but also in the situation with non-constant coefficients. One of such
examples is the Toda system of mean field type:

�ui(x) +
n∑

j=1

aijρj

(
hje

uj

∫
�

hje
uj

− 1

|�|
)

= 4π

m∑

j=1

γij

(
δPj

− 1

|�|
)

, (1.4)

where Pj are distinct points, γij > −1 and hj are positive smooth functions
in a compact Riemann surface �. When n = 1, the equation becomes the
following mean field equation:

�u(x) + ρ

(
heu

∫
�

heu
− 1

�

)
= 4π

m∑

j=1

γj

(
δPj

− 1

|�|
)

in �. (1.5)

This type of equations has many applications in different areas of research,
and has been extensively investigated. One of main issues for (1.5) is to de-
termine the set of parameter ρ (non-critical parameters) such that the a priori
estimate exists for solutions of (1.5). After establishing a priori estimate, we
then go to compute the topological degree of (1.5) for those non-critical pa-
rameters. In this way, we are able to solve (1.5) and understand the structure
of the solution set. For the past ten years, those projects have been success-
fully carried out for (1.5). See [6–8, 22]. While carrying out those projects for
(1.4), there often appears a sequence of bubbling solutions and the difficult
issue is how to understand the behavior of bubbling solutions near blowup
points. For that purpose, the fundamental question is to completely classify
all entire solutions of the Toda system with a single singular source:

�ui +
n∑

j=1

aij e
uj = 4πγiδ0 in R

2,

∫

R2
eui dx < ∞, 1 ≤ i ≤ n,

(1.6)
where δ0 is the Dirac measure at 0, and γi > −1. When all γi are zero,
the classification has been done by Jost-Wang [18]. However, when γi �= 0
for some i, the classification has not been proved and has remained a long-
standing open problem for many years. It is the purpose of this article to settle
this open problem.

To state our result, we should introduce some notations. For any solution
u = (u1, . . . , un) of (1.6), we define U = (U1,U2, . . . ,Un) by

Ui =
n∑

j=1

aijuj , (1.7)
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where (aij ) is the inverse matrix of A. By (1.7), U satisfies

�Ui + eui = 4παiδ0 in R
2, where αi =

n∑

j=1

aij γj . (1.8)

By direct computations, we have

aij = j (n + 1 − i)

n + 1
, ∀ n ≥ i ≥ j ≥ 1 and ui =

n∑

j=1

aijUj .

Our first result is the following classification theorem.

Theorem 1.1 Let γi > −1 for 1 ≤ i ≤ n and U = (U1, . . . ,Un) be defined by
(1.7) via a solution u of (1.6). Then U1 can be expressed by

e−U1 = |z|−2α1

(
λ0 +

n∑

i=1

λi |Pi(z)|2
)

, (1.9)

where

Pi(z) = zμ1+···+μi +
i−1∑

j=0

cij z
μ1+···μj , (1.10)

μi = 1 + γi > 0, cij are complex numbers and λi > 0, 0 ≤ i ≤ n, satisfy

λ0 · · ·λn = 2−n(n+1)
∏

1≤i≤j≤n

⎛

⎝
j∑

k=i

μk

⎞

⎠
−2

. (1.11)

Furthermore, if μj+1 + · · · + μi /∈ N for some j < i, then cij = 0.

In particular, we have the following theorem, generalizing a result by
Prajapat-Tarantello [34] for the singular Liouville equation, n = 1.

Corollary 1.2 Suppose μj + · · · + μi /∈ N for all 1 ≤ j ≤ i ≤ n. Then any
solution of (1.6) is radially symmetric with respect to the origin.

We note that once U1 is known, U2 can be determined uniquely by (1.8),
i.e., e−U2 = e−2U1�U1. In general, Ui+1 can be solved via (1.8) by the in-
duction on i. See the formula (5.16). In the Appendix, we shall apply Theo-
rem 1.1 to give all the explicit solutions in the case of n = 2. Conversely, in
Sect. 5, we will prove any expression of (1.9) satisfying (1.11) can generate a
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solution of (1.6). See Theorem 5.3. Thus, the number of free parameters de-
pends on all the Dirac masses γj . For example if all μj ∈ N, then the number
of free parameters is n(n+2). And if all μi +· · ·+μj /∈ N for 1 ≤ i ≤ j ≤ n,
thus the number of free parameters is n only. We let N(γ ) denote the real
dimension of the solution set of the system (1.6).

Next, we will show the quantization of the integral of eui over R
2 and

the non-degeneracy of the linearized system. For the Liouville equation with
single singular source:

�u + eu = 4πγ δ0,

∫

R2
eudx < +∞, γ > −1,

it was proved in [34] that any solution u satisfies the following quantization:
∫

R2
eudx = 8π(1 + γ ),

and in [13] that for any γ ∈ N, the linearized operator around any solution u is
nondegenerate. Both the quantization and the non-degeneracy are important
when we come to study the Toda system of mean field type. In particular, this
nondegeneracy plays a fundamental role as far as sharp estimates of bubbling
solutions are concerned. See [1] and [8].

Theorem 1.3 Suppose u = (u1, . . . , un) is a solution of (1.6). Then the fol-
lowings hold:

(i) Quantization: we have, for any 1 ≤ i ≤ n,

n∑

j=1

aij

∫

R2
euj dx = 4π(2 + γi + γn+1−i )

and ui(z) = −(4 + 2γn+1−i ) log |z| + O(1) as |z| → ∞.
(ii) Nondegeneracy: The dimension of the null space of the linearized opera-

tor at u is equal to N(γ ).

In the absence of singular sources, i.e., γi = 0 for all i, Theorem 1.1 was
obtained by Jost and Wang [18]. By applying the holonomy theory, and iden-
tifying S2 = C ∪ {∞}, they could prove that any solution u can be extended
to be a totally unramified holomorphic curve from S2 to CP

n, and then The-
orem 1.1 can be obtained via a classic result in algebraic geometry, which
says that any totally unramified holomorphic curve of S2 into CP

n is a ratio-
nal normal curve. Our proof does not use the classical result from algebraic
geometry. As a consequence, we give a proof of this classic theorem in alge-
braic geometry by using nonlinear partial differential equations. In fact, our
analytic method can be used to prove a generalization of this classic theorem.
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For a holomorphic curve f of S2 into CP
n, we recall the k-th associated

curve fk : S2 → GL(k, n + 1) for k = 1,2, . . . , n with f1 = f and fk = [f ∧
· · · ∧ f (k−1)]. A point p ∈ S2 is called a ramificated point if the pull-back
metric f ∗

k (ωk) = |z − p|2γkh(z)dz ∧ dz̄ with h > 0 at p for some γk > 0
where

ωk is the Fubini-Study metric on GL(k, n + 1) ⊆ CP
Nk−1, Nk =

(
n + 1

k

)
.

(1.12)
The positive integer γk(p) is called the ramification index of fk at p. See [15].

Corollary 1.4 Let f be a holomorphic curve of S2 into CP
n. Suppose f

has exactly two ramificated points P1 and P2 and γj (Pi) are the ramification
index of fj at Pi , where fj is the j-th associated curve for 1 ≤ j ≤ n. Then
γj (P1) = γn+1−j (P2). Furthermore, if f and g are two such curves with the
same ramificated points and ramification index, then g can be obtained via f

by a linear map of CP
n.

It is well-known that the Liouville equation as well as the Toda system
are completely integrable system, a fact known since Liouville [28]. Roughly
speaking, any solution of (1.1) without singular sources in a simply connected
domain � arises from a holomorphic map from � into CP

n. See [2, 3, 5, 9,
10, 16, 21, 38]. For n = 1, The classic Liouville theorem says that if a smooth
solution u satisfies �u + eu = 0 in a simply connected domain � ⊂ R

2, then
u(z) can be expressed in terms of a holomorphic function f in �:

u(z) = log
8|f ′(z)|2

(1 + |f (z)|2)2
in �. (1.13)

Similarly, system (1.1) has a very close relationship with holomorphic curves
in CP n. Let f be a holomorphic curve from � into CP

n. Lift locally f to
C

n+1 and denote the lift by ν = (ν0, ν1, . . . , νn). The k-th associated curve of
f is defined by

fk : � → G(k,n + 1) ⊂ CP
Nk−1, fk(z) =

[
ν(z) ∧ ν′(z) ∧ · · ·ν(k−1)(z)

]
,

(1.14)
where Nk is given by (1.12), ν(j) stands for the j -th derivative of ν w.r.t. z. Let

k = ν(z)∧· · ·ν(k−1)(z), then the well-known infinitesimal Plücker formulas
(see [15]) is

∂2

∂z∂z̄
log‖
k‖2 = ‖
k−1‖2‖
k+1‖2

‖
k‖4
for k = 1,2, . . . , n, (1.15)
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where conventionally we put ‖
0‖2 = 1. Of course, this formula holds only
for ‖
k‖ > 0, i.e. for all unramificated points. By normalizing ‖
n+1‖ = 1,
and letting

Uk(z) = − log‖
k(z)‖2 + k(n − k + 1) log 2, 1 ≤ k ≤ n (1.16)

at an unramificated point z. Since
∑

1≤k≤n aikk(n − k + 1) = 2, (1.15) gives

−�Ui = exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠ in � \ {P1, . . . ,Pm},

where {P1, . . . ,Pm} are the set of ramificated points of f in �. Since f is
smooth at Pj , we have Ui = −2αij log |z − Pj | + O(1) near Pj . Thus, Ui

satisfies

�Ui + exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠= 4π

n∑

j=1

αij δPj
in �.

The constants αij can be expressed by the total ramification index at Pj by
the following arguments.

By the Plücker formulas (1.15), we have

f ∗
i (ωi) =

√−1

2
exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠dz ∧ dz̄.

Thus, the ramification index γij at fi at Pj is

γij =
n∑

k=1

aikαkj . (1.17)

Set

ui =
n∑

j=1

aijUj . (1.18)

Then it is easy to see that ui satisfies (1.1) with γij the total ramification index
of fi at Pj .

Conversely, suppose u = (u1, . . . , un) is a smooth solution of (1.1) in a
simply connected domain �. We introduce wj (0 ≤ j ≤ n) by

ui = 2(wi − wi−1),

n∑

i=0

wi = 0. (1.19)
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Obviously, wi can be uniquely determined by u and satisfies

⎛

⎜⎜⎜⎜⎜⎝

w0
...

wi

...

wn

⎞

⎟⎟⎟⎟⎟⎠

zz̄

= 1

8

⎛

⎜⎜⎜⎜⎜⎜⎝

e2(w1−w0)

...

e2(wi+1−wi) − e2(wi−wi−1)

...

−e2(wn−wn−1)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (1.20)

For a solution (wi), we set

U =

⎛

⎜⎜⎜⎝

w0,z 0 . . . 0
0 w1,z 0
...

. . .
...

0 0 . . . wn,z

⎞

⎟⎟⎟⎠+ 1

2

⎛

⎜⎜⎜⎝

0 0 . . . 0
ew1−w0 0 0

...
. . .

. . .
...

0 . . . ewn−wn−1 0

⎞

⎟⎟⎟⎠

and

V = −

⎛

⎜⎜⎜⎝

w0,z̄ 0 . . . 0
0 w1,z̄ 0
...

. . .
...

0 0 . . . wn,z̄

⎞

⎟⎟⎟⎠− 1

2

⎛

⎜⎜⎜⎝

0 ew1−w0 . . . 0
0 0 0
...

. . .
. . . ewn−wn−1

0 0 . . . 0

⎞

⎟⎟⎟⎠ ,

where

wz = 1

2

(
∂w

∂x
− i

∂w

∂y

)
and wz̄ = 1

2

(
∂w

∂x
+ i

∂w

∂y

)
with z = x + iy.

A straightforward computation shows that (wi) is a solution of (1.20) if and
only if U , V satisfy the Lax pair condition: Uz̄ − Vz − [U,V ] = 0. Fur-
thermore, this integrability condition implies the existence of a smooth map
� : � → SU(n + 1,C) satisfying

�z = �U, �z̄ = �V (1.21)

or equivalently, � satisfies �−1d� = Udz+V dz̄. Let � = (�0,�1, . . . ,�n).
By (1.21),

d�0 =
(

w0,z�0 + 1

2
ew1−w0�1

)
dz − w0,z̄�0dz̄,

which implies

d(ew0�0) = ew0d�0 + ew0�0dw0 =
(

2w0,ze
w0�0 + 1

2
ew1�1

)
dz. (1.22)
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Therefore, ew0�0 is a holomorphic map from � to C
n+1. We let ν(z) =

2
n
2 ew0�0. By using (1.21), we have ν(k)(z) = 2

n
2 −kewk�k for k = 1,2, . . . , n.

Since w0 + · · · + wn = 0, we have ‖ν ∧ ν′ ∧ · · ·ν(n)(z)‖ = 1. Note that

w0 = −1

2

n∑

j=1

(n − j + 1)

n + 1
uj = −U1

2
,

hence we have e−U1 = e2w0 = 2−n‖ν‖2. Thus, (1.16) implies U1 is identi-
cal to the solution deriving from the holomorphic curve ν(z). Therefore, the
space of smooth solutions of the system (1.1) (without singular sources) in a
simply connected domain � is identical to the space of unramificated holo-
morphic curves from � into CP

n.
However, if the system (1.1) has singular sources, then R

2 \ {P1, . . . ,Pm}
is not simply connected. So, it is natural to ask whether in the case γij ∈ N,
the space of solutions u of (1.1) can be identical to the space of holomor-
phic curves of R

2 into CP
n which ramificates at P1, . . . ,Pm, with the given

ramification index γij at Pj . The following theorem answers this question
affirmatively.

Theorem 1.5 Let γij ∈ N and Pj ∈ R
2. Then for any solution u of (1.1),

there exists a holomorphic curve f of C into CP
n with ramificated points Pj

and the total ramification index γij at Pj such that for 1 ≤ k ≤ n,

e−Uk = 2−k(n+1−k)
∥∥∥ν(z) ∧ · · · ∧ ν(k−1)(z)

∥∥∥
2

in C \ {P1, . . . ,Pm},

where ν(z) is a lift of f in C
n+1 satisfying

∥∥∥ν(z) ∧ · · · ∧ ν(n)(z)

∥∥∥= 1.

Furthermore, f can be extended smoothly to a holomorphic curve of S2 into
CP

n.

We note that if (1.1) is defined in a Riemann surface rather than C or S2,
then the identity of the solution space of (1.1) with holomorphic curves in
CP

n generally does not hold. For example, if (1.1) is defined on a torus, then
even for n = 1, a solution of (1.1) would be not necessarily associated with a
holomorphic curve from the torus into CP

1. See [24].
The paper is organized as follows. In Sect. 2, we will show some invariants

associated with a solution of the Toda system. Those invariants allow us to
classify all the solutions of (1.6) without singular sources, thus it gives an-
other proof of the classification due to Jost and Wang. In Sect. 5, those invari-
ants can be extended to be meromorphic invariants for the case with singular
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sources. By using those invariants, we can prove e−U1 satisfies an ODE in
C

∗ := C \ {0}, the proof will be given in Sect. 5. In Sect. 4 and Sect. 6, we
will prove the quantization and the non-degeneracy of the linearized equation
of (1.6) for the case without or with singular sources. In the final section, we
give a proof of Theorem 1.5. Explicits solutions in the case of SU(3) are given
in the Appendix.

2 Invariants for solutions of Toda system

In this section, we derive some invariants for the Toda system. Denote A−1 =
(ajk), the inverse matrix of A. Let

Uj =
n∑

k=1

ajkuk, ∀ 1 ≤ j ≤ n. (2.1)

Since � = 4∂zz̄, it is easy to see that the system (1.6) is equivalent to for all
1 ≤ i ≤ n,

−4Ui,zz̄ = exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠− 4παiδ0 in R
2,

∫

R2
exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠dx < ∞,

where αi =∑1≤j≤n aij γj for 1 ≤ i ≤ n. Define

W
j

1 = −eU1
(
e−U1

)(j+1)

for 1 ≤ j ≤ n and

W
j

k+1 = − W
j
k,z̄

Uk,zz̄

for 1 ≤ k ≤ j − 1.

(2.2)

We will prove that all these quantities W
j
k , 1 ≤ k ≤ j ≤ n, are invariants

for solutions of SU(n + 1), more precisely, W
j
k are a part of some specific

holomorphic or meromorphic functions, which are determined explicitly by
the Toda system.

Lemma 2.1 For any classical solution of (1.1), there holds:

Wk
k =

k∑

i=1

(Ui,zz − U2
i,z) +

k−1∑

i=1

Ui,zUi+1,z for 1 ≤ k ≤ n, (2.3)
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Wk
k,z̄ = −Uk,zz̄Uk+1,z for 1 ≤ k ≤ n − 1, (2.4)

W
j
k = (Uk−1,z − Uk,z)W

j−1
k + W

j−1
k,z + W

j−1
k−1 for 1 ≤ k < j ≤ n, (2.5)

where for convenience U0 = 0 and W
j

0 = 0 for all j .

Proof First, we show that (2.3) implies (2.4). By the equation for Uj ,

Uj,zz̄z = Uj,zz̄(2Uj,z − Uj+1,z − Uj−1,z), ∀ 1 ≤ j ≤ n, (2.6)

where for the convenience, Un+1 = 0 is also used. Thus,

−Uj,zz̄Uj+1,z + Uj−1,zz̄Uj,z

= Uj,zz̄z − Uj,zz̄

(
2Uj,z − Uj−1,z

)+ Uj−1,zz̄Uj,z

=
(
Uj,zz − U2

j,z + Uj,zUj−1,z

)

z̄
. (2.7)

Taking the sum of (2.7) for j from 1 to k, we get

−Uk,zz̄Uk+1,z =
k∑

j=1

(
Uj,zz − U2

j,z + Uj,zUj−1,z

)

z̄
= Wk

k,z̄,

where (2.3) is used.
Next, we will prove (2.3)–(2.5) by the induction on k. Obviously, (2.3)

holds for k = 1. By the definition of W
j

1 , for j ≥ 2, we have

W
j

1 = −eU1(e−U1)(j+1) = eU1
(
e−U1W

j−1
1

)

z
= W

j−1
1,z − W

j−1
1 U1,z,

which is (2.5) for k = 1. To compute Wk+1
k+1 , (2.5) with index k implies

−Uk,zz̄W
k+1
k+1 = Wk+1

k,z̄ = (Uk−1,zz̄ − Uk,zz̄)W
k
k + (Uk−1,z − Uk,z)W

k
k,z̄

+ Wk
k,zz̄ + Wk

k−1,z̄.

Since Uk−1,zz̄W
k
k +Wk

k−1,z̄ = 0, the above identity leads by (2.4) with index k,

Wk+1
k,z̄ = −Uk,zz̄W

k
k − (Uk−1,z − Uk,z)Uk,zz̄Uk+1,z − (Uk,zz̄Uk+1,z)z

= −Uk,zz̄W
k
k − (Uk−1,z − Uk,z)Uk,zz̄Uk+1,z − Uk,zz̄(2Uk,z − Uk+1,z

− Uk−1,z)Uk+1,z − Uk,zz̄Uk+1,zz

= −Uk,zz̄

(
Wk

k + Uk+1,zz − U2
k+1,z + Uk+1,zUk,z

)
,
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where (2.6) is used. Hence

Wk+1
k+1 = Wk

k + Uk+1,zz − U2
k+1,z + Uk+1,zUk,z,

and then (2.3) is proved for k + 1.
To compute W

j

k+1 for j ≥ k + 2, we have j − 1 ≥ k + 1 and by similar
calculations:

W
j
k,z̄ = (Uk−1,zz̄ − Uk,zz̄)W

j−1
k + (Uk−1,z − Uk,z)W

j−1
k,z̄ + W

j−1
k,zz̄ + W

j−1
k−1,z̄

= −Uk,zz̄W
j−1
k − (Uk−1,z − Uk,z)Uk,zz̄W

j−1
k+1 −

(
Uk,zz̄W

j−1
k+1

)

z

= −Uk,zz̄W
j−1
k − (Uk−1,z − Uk,z)Uk,zz̄W

j−1
k+1 − Uk,zz̄(2Uk,z̄

− Uk+1,z − Uk−1,z)W
j−1
k − Uk,zz̄W

j−1
k+1,z

= −Uk,zz̄

[
(Uk,z − Uk+1,z)W

j−1
k+1 + W

j−1
k+1,zW

j−1
k

]
,

which leads to

W
j

k+1 = (Uk,z − Uk+1,z)W
j−1
k+1 + W

j−1
k+1,z + W

j−1
k .

Therefore, Lemma 2.1 is proved. �

3 Classification of solutions of SU(n + 1) with m = 0

Here we show a new proof of the classification result of Jost-Wang [18]. That
is, all classical solutions of (1.1) with m = 0 is given by a n(n + 2) manifold
M. Our idea is to use the invariants Wn

j for solutions of SU(n+ 1). Consider

−�ui =
n∑

j=1

aij e
uj in R

2,

∫

R2
eui dx < ∞, ∀ 1 ≤ i ≤ n. (3.1)

Theorem 3.1 For any classical solution of (3.1), let Uj , Wn
j be defined by

(2.1) and (2.2), then

Wn
j ≡ 0 in R

2,∀ 1 ≤ j ≤ n.

Remark 3.2 The fact Wn
n = 0 has been proved by Jost and Wang in an equiv-

alent form, which is just the function f in the proof of Proposition 2.2 in [18].

Proof The proof is based on the following observation:

Wn
n,z̄ = 0 in R

2 for any solution of (3.1). (3.2)
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In fact, using formula (2.3) and the equations of Ui ,

Wn
n,z̄ =

n∑

i=1

(Ui,zz̄)z − 2
n∑

i=1

Ui,zUi,zz̄ +
n−1∑

i=1

(
Ui,zz̄Ui+1,z + Ui,zUi+1,zz̄

)

=
n∑

i=1

Ui,zz̄

⎡

⎣
n∑

j=1

(
aijUj,z

)− 2Ui,z + Ui+1,z + Ui−1,z

⎤

⎦

= 0. (3.3)

Here we used again the convention U0 = Un+1 = 0 for SU(n + 1).
Furthermore, eui ∈ L1(R2) implies that for any ε > 0, there exists Rε > 0

such that ∫

R2\BRε

eui dz ≤ ε, 1 ≤ i ≤ n.

For sufficient small ε > 0, applying Brezis-Merle’s argument [4] to the sys-
tem ui , we can prove ui(z) ≤ C for |z| ≥ Rε , i.e. ui is bounded from the above
over C. Thus, ui can be represented by the following integral formulas:

ui(z) = 1

2π

∫

R2
log

|z′|
|z − z′|

n∑

j=1

aij e
uj (z′)dz′ + ci, ∀ 1 ≤ i ≤ n, (3.4)

for some real constants ci .
This gives us the asymptotic behavior of ui and their derivatives at in-

finity. In particular, for any k ≥ 1, ∇kui = O(|z|−k) as |z| goes to ∞. So
∇kUi = O(|z|−k) as |z| → ∞, for k ≥ 1. Therefore, Wn

n is a entire holomor-
phic function, which tends to zero at infinity, so Wn

n ≡ 0 in R
2 by classical

Liouville theorem. As Wn
n−1,z̄ = −Un−1,zz̄W

n
n , we obtain Wn

n−1,z̄ = 0 in R
2.

By (2.3) and (2.5), it is not difficult to see that for 1 ≤ i ≤ n − 1, Wn
i are also

polynomials of ∇kUi with k ≥ 1, so they tend to 0 at infinity, hence Wn
n−1 = 0

in R
2. We can complete the proof of Theorem 3.1 by induction. �

Furthermore, we know that e−U1 can be computed as a square of some
holomorphic curves in CP

n, see the Introduction. Thus, there is a holomor-
phic map ν(z) = (ν0(z), . . . , νn(z)) from C into C

n+1 satisfying

∥∥∥ν ∧ ν′ · · · ∧ ν(n)(z)

∥∥∥= 1 and e−U1(z) =
n∑

i=0

|νi(z)|2 in C.

Since Wn
1 ≡ 0 in R

2 yields (e−U1)(n+1) = 0, we have ν
(n+1)
i (z) = 0. By the

asymptotic behavior of ui , we know that e−U1 is of polynomial growth as
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|z| → ∞. Hence νi(z) is a polynomial and ν0, . . . , νn is a set of fundamental
holomorphic solutions of f (n+1) = 0. Thus

νi(z) =
n∑

j=0

cij z
j with det(cij ) �= 0. (3.5)

By a linear transformation, we have

ν(z) = λ(1, z, z2, . . . , zn), λ ∈ C

and [ν] is the rational normal curve of S2 into CP
n. Hence we have proved

the classification theorem of Jost and Wang.

Remark 3.3 Here we use the integrability of the Toda system. In Sect. 5, we
actually prove the classification theorem without use of the integrability.

Remark 3.4 The invariants Wn
j are called W -symmetries or conservation

laws, see [21]. It is claimed that for the Cartan matrix there are n linearly
independent W -symmetries, see [38]. However, as far as we are aware, we
cannot find the explicit formulas in the literature (except for n = 2 [35]).
Here we give explicit formula for the n invariants.

4 Nondegeneracy of solutions of SU(n + 1) without sources

Let M be the collection of entire solutions of (3.1). In the previous section,
we know that M is a smooth manifold of n(n + 2) dimension. Fixing a solu-
tion u = (u1, . . . , un) of (3.1), we consider LSU(n+ 1), the linearized system
of (3.1) at u:

�φi +
n∑

j=1

aij e
uj φj = 0 in R

2. (4.1)

Let s ∈ R be any parameter appearing in (3.5) and u(z; s) be a solution of
(3.1) continuously depending on s such that u(z;0) = u(z). Thus φ(z) =
∂
∂s

u(z; s)|s=0 is a solution of (4.1) satisfying φ ∈ L∞(R2). Let TuM denote
the tangent space of M at u. The nondegeneracy of the linearized system is
equivalent to showing that any bounded solution φ = (φ1, . . . , φn) of (4.1)
belongs to this space.

Theorem 4.1 Suppose u is a solution of (3.1) and φ is a bounded solution of
(4.1). Then φ ∈ TuM.
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Proof For any solution φ = (φ1, . . . , φn) of (4.1), we define

�j =
n∑

k=1

ajkφk, ∀ 1 ≤ j ≤ n. (4.2)

We have readily that bounded (φi) solves (4.1) if and only if (�i) is a solution
of

−4�i,zz̄ = exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠×
n∑

j=1

aij�j in R
2,�i ∈ L∞(R2)∀ 1 ≤ i ≤ n.

(4.3)
Our idea is also to find some invariants which characterize all solutions of
(4.3). Indeed, we find them by linearizing the above quantities Wn

k for Ui .
Let

Yn
1 = eU1

[(
e−U1�1

)(n+1) −
(
e−U1

)(n+1)

�1

]

and

Yn
k+1 = −Yn

k,z̄ + Wn
k+1�k,zz̄

Uk,zz̄

for 1 ≤ k ≤ n − 1.

The quantities Yn
k are well defined and we can prove by induction the follow-

ing formula: With any solution of LSU(n + 1), there hold

Yn
1 = Yn−1

1,z − Yn−1
1 U1,z − Wn−1

1 �1,z,

Y n
k = (Uk−1,z − Uk,z

)
Yn−1

k + Yn−1
k,z + Yn−1

k−1 + (�k−1,z − �k,z

)
Wn−1

k

for 2 ≤ k ≤ n.

Moreover, for any solution of (4.3), we have

Yn
n =

n∑

i=1

�i,zz − 2
n∑

i=1

Ui,z�i,z +
n−1∑

i=1

(
�i,zUi+1,z + Ui,z�i+1,z

)
. (4.4)

The proof is very similar as above for Wn
j , since each quantity Yn

j is just
the linearized version of Wn

j with respect to (Ui), as well as the involved
equations, so we leave the details for interested readers.

Applying (4.3), it can be checked easily that

Yn
n,z̄ = 0 in R

2, for any solution of LSU(n + 1) (4.1).
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Using the classification of ui in Sect. 3 (see also [18]), we know that eui =
O(z−4) at ∞. Since φi ∈ L∞(R2), the function

∑
1≤j≤n aij e

uj φj ∈ L1(R2).
As before, we can express φi by integral representation and prove that
lim|z|→∞ ∇kφi = 0 for any k ≥ 1. Hence lim|z|→∞ ∇k�i = 0 for any k ≥ 1.

By similar argument as above, this implies that Yn
n = 0 in R

2 for any so-
lution of (4.3), and we get successively Yn

k = 0 in R
2 for 1 ≤ k ≤ n − 1,

recalling just Yn
k,z̄ = −Uk,zz̄Y

n
k+1 − �k,zz̄W

n
k+1 and Wn

j = 0 in R
2 for any

classical solution of (3.1). Since

0 = Yn
1 = eU1

(
e−U1�1

)(n+1) + Wn
1 �1 = eU1

(
e−U1�1

)(n+1)

,

we conclude then (e−U1�1)
(n+1) = 0 in R

2. As e−U1�1 is a real smooth
function, we get

e−U1�1 =
n∑

i,j=0

bij z
i z̄j

with bij = bji for all 0 ≤ i, j ≤ n. This yields

�1 ∈ L =
⎧
⎨

⎩eU1

⎡

⎣
n∑

i,j=0

bij z
i z̄j

⎤

⎦ , bij ∈ C, bij = bji, ∀ 0 ≤ i, j ≤ n

⎫
⎬

⎭ ,

a linear space of dimension (n + 1)2. Once �1 is fixed, as −��1 =
eu1(2�1 − �2) in R

2, �2 is uniquely determined, successively all �i are
uniquely determined, so is φi .

Moreover, the expression of e−U1 given by the last section yields that the
constant functions belong to L. If �1 ≡ �1 ∈ R, by (4.3), successively we
obtain �i ≡ �i ∈ R for all 2 ≤ i ≤ n. Using again the system (4.3), we must
have

n∑

j=1

aij �j = 0, ∀ 1 ≤ i ≤ n,

which implies �j = 0 for any 1 ≤ j ≤ n, hence (�i) can only be the trivial
solution. Therefore, we need only to consider �1 belonging to the algebraic
complementary of R in L, a linear subspace of dimension n(n + 2).

Finally, it is known that TuM, the tangent space of u = (ui) to the solution
manifold M provides us a n(n+ 2) dimensional family of bounded solutions
to LSU(n+ 1), so we can conclude that all the solutions of (4.1) form exactly
a linear space of dimension n(n + 2). Theorem 4.1 is then proved. �
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Remark 4.2 We note by the proof that Theorem 4.1 remains valid if we re-
lax the condition φi ∈ L∞(R2) to the growth condition φi(z) = O(|z|1+α) at
infinity with α ∈ (0,1).

5 Classification of singular Toda system with one source

For the Toda system SU(n+ 1) with one singular source (1.6), denote A−1 =
(ajk), the inverse matrix of A and define as before

Uj =
n∑

k=1

ajkuk, αj =
n∑

k=1

ajkγk ∀ 1 ≤ j ≤ n, (5.1)

where u = (u1, . . . , un) is a solution of (1.6). So

−�Ui = exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠− 4παiδ0 in R
2 (5.2)

with

∫

R2
exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠dx =
∫

R2
eui dx < ∞, ∀ i.

In this section, we will completely classify all the solutions of (1.6), and
prove in the next section the nondegenerency of the corresponding linearized
system. Here is the classification result.

Theorem 5.1 Suppose that γi > −1 for 1 ≤ i ≤ n, and U = (U1, . . . ,Un) is
a solution of (5.2), then we have

|z|2α1e−U1 = λ0 +
∑

1≤i≤n

λi |Pi(z)|2 in C
∗, (5.3)

where

Pi(z) = ci0 +
i−1∑

j=1

cij z
μ1+μ2+···+μj + zμ1+μ2+···+μi , cij ∈ C, (5.4)

μi = γi + 1, and λi ∈ R satisfies

λi > 0, λ0λ1 · · ·λn = 2−n(n+1) ×
∏

1≤i≤j≤n

⎛

⎝
j∑

k=i

μk

⎞

⎠
−2

. (5.5)

Conversely, U1 defined by (5.3)–(5.5) generates a solution (Ui) of (5.2).
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The proof of Theorem 5.1 is divided in several steps. Suppose U =
(U1, . . . ,Un) is a solution of (5.2).

5.1 Step 1

We will prove that e−U1 = f verifies the differential equation as follows:

f (n+1) +
n−1∑

k=0

wk

zn+1−k
f (k) = 0 in C

∗, (5.6)

where wk are real constants only depending on all γi and f (i) denotes the i-th
order derivative of f w.r.t. z.

Lemma 5.2 Let (Uj ) be given by (5.1), with (ui) a solution of (1.6). Define
Zn = Wn

n and by iteration

Zk = Wn
k + Uk,zZk+1 +

n−2∑

j=k

W
j
k Zj+2, ∀ k = n − 1, n − 2, . . . ,1. (5.7)

Then Zk are holomorphic in C
∗. More precisely, there exist wk ∈ C such that

Zk = wk

zn+2−k
in C

∗, for any 1 ≤ k ≤ n,

where wk only depends on γj .

Here W
j
k (1 ≤ k ≤ j ≤ n), considered as functional of (U1,U2, . . . ,Un)

and their derivatives, are the invariants constructed in Sect. 2 for Toda system
SU(n + 1).

Proof First, we recall that

Wm
1 = −eU1

(
e−U1

)(m+1)

for 1 ≤ m ≤ n,

Wm
k+1 = − Wm

k,z̄

Uk,zz̄

for 1 ≤ k ≤ m − 1.

(5.8)

Using (3.3), Zn is holomorphic in C
∗ and by Lemma 2.1

Wk
k,z̄ = −Uk,zz̄Uk+1,z, for any 1 ≤ k ≤ n − 1.

Consequently, in C
∗ there holds by (5.8),

0 = Wn
n−1,z̄ + Un−1,zz̄Wn = Wn

n−1,z̄ + Un−1,zz̄Zn = (Wn
n−1 + Un−1,zZn

)
z̄

= Zn−1,z̄.



Classification and nondegeneracy of SU(n + 1) Toda system

So Zn−1 is also holomorphic in C
∗. Suppose that Z�+1 are holomorphic in

C
∗ for k ≤ � ≤ n − 2, then we have in C

∗,

Zk,z̄ =
(

Wn
k + Uk,zZk+1 +

n−2∑

j=k

W
j
k Zj+2

)

z̄

= Wn
k,z̄ + Uk,zz̄Zk+1 + Wk

k,z̄Zk+2 +
n−2∑

j=k+1

W
j
k,z̄Zj+2

= −Uk,zz̄W
n
k+1 + Uk,zz̄Zk+1 − Uk,zz̄Uk+1,zZk+2

−
n−2∑

j=k+1

Uk,zz̄W
j

k+1Zj+2

= Uk,zz̄

(
Zk+1 − Wn

k+1 − Uk+1,zZk+2 −
n−2∑

j=k+1

W
j

k+1Zj+2

)
= 0.

The last line comes from the definition of Zk+1. Thus, Zk is holomorphic in
C

∗ for all 1 ≤ k ≤ n.
Next, we want to show that

Zk = wk

zn+2−k
(5.9)

for some real constant wk depending on γj . Define

Vj = Uj − 2αj log |z|, ∀ 1 ≤ j ≤ n. (5.10)

So

−�Vi = −4Ui,zz̄ + 4παiδ0

= exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠+ 4παiδ0 − 4π

n∑

j=1

(
aij γj δ0

)

= |z|2γj exp

⎛

⎝
n∑

j=1

aijVj

⎞

⎠

with
∫

R2
|z|2γj exp

⎛

⎝
n∑

j=1

aijVj

⎞

⎠dx =
∫

R2
exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠dx

=
∫

R2
eui dx < ∞, ∀ 1 ≤ i ≤ n.
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As γi > −1, applying Brezis-Merle’s argument in [4] to the system of Vi ,
we have Vi ∈ C0,α in C for some α ∈ (0,1) and they are upper bounded
over C. This implies that we can express Vi by the integral representation
formula. Moreover, by scaling argument and elliptic estimates, we have for
all 1 ≤ i ≤ n,

∇kVi(z) = O
(

1 + |z|2+2γi−k
)

near 0 and

∇kVi(z) = O
(
z−k
)

near ∞,∀ k ≥ 1.

(5.11)

By (2.3) and (5.11), it is obvious that

Wk
k (z) = Ck + o(1)

z2
near 0 and Wk

k (z) = O
(
z−2
)

near ∞,

where Ck are real constants depending on γj only. Thus considering z2Wk
k ,

we get

Wk
k (z) = Ck

z2
in C. (5.12)

In particular, Zn is determined uniquely. To determine Zk for k < n, we can
do the induction step on k. By using (5.7), the definition of W

j
k , (2.5) and

(5.11), we obtain

Zk = wk + o(1)

zn+2−k
near 0 and Zk = O

(
1

zn+2−k

)
at ∞,

where wk is a real constant and depends only on γj . By the Liouville theorem,
(5.9) is proved. �

Proof of (5.6) To prove that f satisfies the ODE, we use (5.9) with k = 1. By
the above lemma, for k = 1,

w1

zn+1
= Z1 = Wn

1 + U1,zZ2 +
n−2∑

j=1

W
j

1 Zj+2

= Wn
1 + w2

zn
U1,z +

n−2∑

j=1

wj+2

zn−j
W

j

1 .



Classification and nondegeneracy of SU(n + 1) Toda system

As f = e−U1 , we have −U1,zf = f ′ and W
j

1 f = −f (j+1) by definition for
all 1 ≤ j ≤ n. Multiplying the above equation with f , we get

w1

zn+1
f = −f (n+1) − w2

zn
f ′ −

n−2∑

j=1

wj+2

zn−j
f (j+1),

or equivalently

f (n+1) +
n−1∑

k=0

Zk+1f
(k) = f (n+1) +

n−1∑

k=0

wk+1

zn+1−k
f (k) = 0.

Up to change the definition of wk , we are done. �

5.2 Step 2

We will prove that the fundamental solutions for (5.6) are just given by
fi(z) = zβi with

β0 = −α1, βi = αi − αi+1 + i for 1 ≤ i ≤ (n − 1), βn = αn + n,

(5.13)
or equivalently we have P(βi) = 0 where

P(β) = β(β − 1) . . . (β − n) +
n−1∑

i=0

wkβ(β − 1) . . . (β − k + 1).

By (5.13), βi satisfies

βi − βi−1 = γi + 1 > 0 for all 1 ≤ i ≤ n. (5.14)

Let

f = λ0|z|−2α1 +
n∑

i=1

λi |Pi(z)|2, (5.15)

with

Pi(z) = z(μ1+μ2+···+μi−α1) +
i−1∑

j=0

cij z
μ1+···+μj−α1,

where μi = 1 + γi > 0. Note that

|Pi(z)|
|z|μ1+···+μi−α1

=
∣∣∣∣∣∣
1 +

i−1∑

j=0

cij z
−μj+1−···−μi

∣∣∣∣∣∣
in C

∗.
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Since |Pi(z)| is a single-valued function, we have cij = 0 if μj+1 +· · ·+μi /∈
N. In the following, we let f (p,q) denote ∂

q
z̄ ∂

p
z f . For any f of (5.15), we

define, if possible, U = (U1, . . . ,Un) by

e−U1 = f and e−Uk = 2k(k−1)detk(f ) for 2 ≤ k ≤ n, (5.16)

where

detk(f ) = det
(
f (p,q)

)

0≤p,q≤k−1
for 1 ≤ k ≤ n + 1. (5.17)

Theorem 5.3 Let detk(f ) be defined by (5.17) with f given by (5.15) and
λi > 0 for all 0 ≤ i ≤ n. Then we have detk(f ) > 0 in C

∗, ∀ 1 ≤ k ≤ n.
Furthermore, U = (U1, . . . ,Un) defined by (5.16) satisfies (5.2) if and only if
(5.5) holds.

Before going into the details of proof of Theorem 5.3, we first explain how
to construct solutions of Toda system from f via the formula (5.16). Here
we follow the procedure from [37]. For any function f , we define detk(f ) by
(5.17). Then we have

detk+1(f ) = detk(f )∂zz̄ detk(f ) − ∂z detk(f )∂z̄ detk(f )

detk−1(f )
for k ≥ 1. (5.18)

The above formula comes from a general formula for the determinant of a
(k + 1) × (k + 1) matrix. We explain it in the following. Let N = (ci,j ) be a
(k + 1) × (k + 1) matrix:

N =
⎛

⎝
M1

−→u −→v−→s ck,k ck,k+1−→
t ck+1,k ck+1,k+1

⎞

⎠

where −→u and −→v stands for the column vectors consisting of first (k − 1)

entries of the k-th column and (k + 1)-th column respectively, and −→s and
−→
t

stand for row vectors consisting of the first (k − 1) entries of the k-th row and
(k + 1)-th row respectively. We let

N1 =
(

M1
−→u−→s ck,k

)
, N2 =

(
M1

−→v−→
t ck+1,k+1

)
,

N ∗
1 =

(
M1

−→u−→
t ck+1,k

)
, N ∗

2 =
(

M1
−→v−→s ck,k+1

)
.

Then we have

det(N )det(M1) = det(N1)det(N2) − det(N ∗
1 )det(N ∗

2 ).
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Since the proof is elementary, we omit it. Clearly, (5.18) follows from the
above formula immediately.

Suppose that detk(f ) > 0 for 1 ≤ k ≤ n and detn+1(f ) = 2−n(n+1). Define
U1 by f = e−U1 . As −e−2U1U1,zz̄ = ffzz̄ − fzfz̄, then

−4U1,zz̄ = e2U1−U2 if and only if e−U2 = 4(ffzz̄ − fzfz̄) = 4det2(f ).

By the induction on k, 2 ≤ k ≤ n, we have

−4e−2UkUk,zz̄ = 4e−2Uk
[

log detk(f )
]
zz̄

= 4 · 22k(k−1)
[
detk(f )∂zz̄detk(f ) − ∂zdetk(f )∂z̄detk(f )

]

= 22k(k−1)+2detk+1(f ) detk−1(f )

= 2(k+1)ke−Uk−1detk+1(f ).

Thus, Uk satisfies �Uk,zz̄ +e2Uk−Uk+1−Uk−1 = 0 in C
∗ if and only if e−Uk+1 =

2(k+1)k detk+1(f ). For the last equation k = n, we have

−4e−2UnUn,zz̄ = 2(n+1)ne−Un−1detn+1(f ).

Thus, Un satisfies �Un + e2Un−Un−1 = 0 in C
∗ if and only if detn+1(f ) =

2−n(n+1).
Therefore, assume that U = (Uk) given by (5.16), (5.17) and (5.15) is a

solution of the Toda system (5.2), to get the equality in (5.5), it is equivalent
to show

detn+1(f ) = λ0λ1 · · ·λn ×
∏

1≤i≤j≤n

⎛

⎝
j∑

k=i

μk

⎞

⎠
2

(5.19)

for f given by (5.15). We have first

Lemma 5.4 Let g = |z|2βf with β ∈ R, and f be a complex analytic function
in C

∗, there holds

detk(g) = |z|2kβdetk(f ) in C
∗,∀ k ∈ N

∗. (5.20)

Proof This is obviously true for k = 1, we can check also easily for k = 2.
Suppose that the above formula holds for 1 ≤ � ≤ k, then by formula (5.18),

detk+1(g) = detk(g)∂zz̄ detk(g) − ∂z detk(g)∂z̄ detk(g)

detk−1(g)

= det2(detk(g))

detk−1(g)
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= det2(|z|2kβ detk(f ))

|z|2(k−1)β detk−1(f )

= |z|2(k+1)β det2(detk(f ))

detk−1(f )

= |z|2(k+1)βdetk+1(f ).

The equality (5.20) holds when detk−1(f ) �= 0. �

Thanks to (5.20), to prove (5.19), it is enough to prove the following: Let

f̃ = λ0 +
n∑

i=1

λi |Pi(z)|2 in C (5.21)

with Pi given by (5.4), then

detn+1(f̃ ) = λ0λ1 · · ·λn ×
∏

1≤i≤j≤n

⎛

⎝
j∑

k=i

μk

⎞

⎠
2

× |z|2nγ1+2(n−1)γ2+···+2γn.

(5.22)
Here we used (n + 1)α1 = nγ1 + (n − 1)γ2 + · · · + γn for SU(n + 1).

Proof of (5.22) We proceed by induction. Let n = 1, we have P1 = c0 + zμ1 ,
so

det2(f̃ ) = det2
(
λ0 + λ1|P1|2

)
= |z|−4α1λ0λ1|P ′

1|2 = λ0λ1μ
2
1|z|2(μ1−1)

= λ0λ1μ
2
1|z|2γ1

since μ1 − 1 = γ1. Then (5.22) holds true for n = 1.
Suppose that (5.22) is true for some (n − 1) ∈ N

∗, we will prove (5.22) for
the range n. Define Lk(P ) to be the vertical vector (P, ∂zP, . . . , ∂k

z P ) ∈ C
k+1

for any smooth function P and k ∈ N
∗. Denote P0 ≡ 1, there holds

detn+1(f̃ ) =
∑

0≤ik≤n,ip �=iq

λi0λi1 · · ·λin det
(
Pi0Ln(Pi0), ∂z̄Pi1Ln(Pi1), . . . ,

∂n
z̄ PinLn(Pin)

)

= λ0λ1 · · ·λn

∑

1≤ik≤n,ip �=iq

det
(
P0Ln(P0), ∂z̄Pi1Ln(Pi1), . . . ,

∂n
z̄ PinLn(Pin)

)
.
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The last line is due to P0 ≡ 1. Let e1 be the vertical vector (1,0, . . . ,0), we
have

det
(
P0Ln(P0), ∂z̄Pi1Ln(Pi1), . . . , ∂

n
z̄ PinLn(Pin)

)

= det
(
e1, ∂z̄Pi1Ln(Pi1), . . . , ∂

n
z̄ PinLn(Pin)

)

= det
(
P ′

i1
Ln−1(P

′
i1
), . . . ,P ′

in
Ln−1(P

′
in
)
)
.

Therefore detn+1(f̃ ) = λ0λ1 · · ·λn detn(h) with h = ∑
1≤i≤n |P ′

i |2. More-
over, for i ≥ 1,

P ′
i =

i−1∑

k=1

(μ1 + μ2 + · · · + μk)cikz
μ1+μ2+···+μk−1

+ (μ1 + μ2 + · · · + μi)z
μ1+μ2+···+μi−1

= (μ1 + μ2 + · · · + μi)z
μ1−1P̃i ,

where

P̃i = zμ2+···+μi +
i−1∑

k=1

c̃ikz
μ2+···+μk with c̃ij ∈ C.

This means that

h = |z|2γ1

[
n∑

i=1

(μ1 + μ2 + · · · + μi)
2|P̃i |2

]

= |z|2γ1

[
μ2

1 +
n−1∑

i=1

(μ1 + μ2 + · · · + μi+1)
2|P̃i+1|2

]
:= |z|2γ1 h̃,

hence h̃ is in the form of (5.21) with (n − 1). Consequently, by the induction
hypothesis, we get

detn+1(f̃ ) = λ0λ1 · · ·λndetn(h)

= λ0λ1 · · ·λn|z|2nγ1detn(̃h)

= λ0λ1 · · ·λn|z|2nγ1

×
∏

1≤k≤n

(μ1 + μ2 + · · · + μk)
2 ×

∏

2≤i≤j≤n

⎛

⎝
j∑

k=i

μk

⎞

⎠
2

× |z|2(n−1)γ2+···+2γn,

which yields clearly the equality (5.22). �
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On the other hand, assume that (5.5) holds true, using the above analysis
and (5.19), we see that U defined by (5.16) and (5.15) is a solution of (5.2) in
C

∗ provided that detk(f ) > 0 in C
∗.

First we make a general calculus of detk(g) with

g =
n∑

i,j=0

mijfifj , where mij = mji for all 0 ≤ i, j ≤ n, (5.23)

where fi(z) = zβi . Let M = (mij )0≤i,j≤n and J = (zij )0≤i,j≤n with zij =
(zβj )(i). Let N j1,...,jk

i1,...,ik
be the k × k sub matrix (bij )i=i1,...,ik,j=j1,...,jk

, for any
matrix N = (bij ), we denote also Ni1,...,ik the k×(n+1) sub matrix by taking
the rows i1, . . . , ik of N , and N t means the transposed matrix of N .

As g(p,q) =∑mijf
(p)
i f

(q)
j . For 1 ≤ k ≤ n, we can check easily that

(
g(p,q)

)

0≤p,q≤k
= J0,1,...,kMJ0,1,...,k

t
,

and

det
(
J0,1,...,kMJ0,1,...,k

t
)

=
∑

0≤i0<i1<···<ik≤n,0≤j0<j1<···<jk≤n

det

(
J

i0,i1,...,ik
0,1,...,k M

j0,j1,...,jk

i0,i1,...ik
J

j0,j1,...,jk

0,1,...,k

t
)

=
∑

0≤i0<i1<···<ik≤n,0≤j0<j1<···<jk≤n

det
(
M

j0,j1,...,jk

i0,i1,...,ik

)
det
(
J

i0,i1,...,ik
0,1,...,k

)

× det
(
J

j0,j1,...,jk

0,1,...,k

)
. (5.24)

Moreover, exactly as for (5.22), by induction, we can prove that

det
(
J

i0,i1,...,ik
0,1,...,k

)
=

∏

0≤p<q≤k

(
βiq − βip

)

× z
(k+1)βi0+k(βi1−βi0−1)+···+(βik

−βik−1−1)

=
∏

0≤p<q≤k

(
βiq − βip

)× zβi0+βi1+···+βik
− k(k+1)

2 . (5.25)
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Given f by (5.15) with λi satisfying (5.5), we will prove that detk(f ) > 0
in C

∗. Clearly, f > 0 in C
∗ and f =∑0≤i,j≤n mijfifj where

M = (mij ) = BB
t
,

B = (bij ) with bii =√λi, bij =√λicji for j > i, bij = 0 for j < i.

For 1 ≤ k ≤ n, denote B = J0,1,...,kB , we can check that

detk+1(f ) = det
(
J0,1,...,kMJ0,1,...,k

t
)

= det
(

B Bt
)

=
∑

0≤i0<i1<···<ik≤n

det
(

Bi0,i1,...,ik
0,1,...,k

)
det

(
Bi0,i1,...,ik

0,1,...,k

t
)

=
∑

0≤i0<i1<···<ik≤n

∣∣∣det
(

Bi0,i1,...,ik
0,1,...,k

)∣∣∣
2
.

As detn+1(f ) = 2−n(n+1) �= 0 by (5.5) and (5.19), the rank of the matrix B
must be (k +1) in C

∗, hence for any z ∈ C
∗, we have 0 ≤ i0 < i1 < · · · < ik ≤

n, such that det(Bi0,i1,...,ik
0,1,...,k )(z) �= 0, thus detk+1(f ) > 0 in C

∗.
To complete the proof of Theorem 5.3, it remains to compute the strength

of the singularity. Notice that M = BB
t

is a positive hermitian matrix, since
λi > 0. By the formulas (5.24), (5.25), as ip ≥ p, jp ≥ p, βi are increasing
and

k∑

p=0

βp − k(k + 1)

2
= −(k + 1)α0 + kγ1 + (k − 1)γ2 + · · · + γk = −αk+1,

we get

detk+1(f ) =
∏

0≤p<q≤k

(βq − βp)|z|−2αk+1
[
ζk + o(1)

]
as z → 0, (5.26)

with ζk = det(M0,1,...,k
0,1,...,k ) > 0. This implies

Uk+1 = −2αk+1 log |z| + O(1) near 0.

Hence U = (U1, . . . ,Un) satisfies (5.2) in C. This completes the proof of
Theorem 5.3. �
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By Theorem 5.3, we have proved that any f given by (5.15) verifying (5.5)
is a solution of (5.6), because U = (U1, . . . ,Un) defined by (5.16) is a solu-
tion of the Toda system. In particular, it is the case for f =∑0≤i≤n λi |z|2βi

satisfying (5.5), with βi are given by (5.13). Let L denote the linear operator
of the differential equation (5.6). Then

0 = LL(f ) =
n∑

i=0

λi |L(zβi )|2,

which implies L(zβi ) = 0, ∀ 0 ≤ i ≤ n. Thus Step 2 is proved.

5.3 Step 3

Suppose U = (U1, . . . ,Un) is a solution of (5.2), we will prove that f = e−U1

can be written as the form of (5.15). For any solution (Ui), as f = e−U1 > 0
satisfies (5.6), we have

f =
n∑

i,j=0

mijfifj , where mij = mji for all 0 ≤ i, j ≤ n,

where fi(z) = zβi is a set of fundamental solutions of (5.6).
We want to prove that f can be written as a sum of |Pi(z)|2, which is not

true in general, because even a positive polynomial in C cannot be written
always as sum of squares of module of polynomials. For example, it is the
case for 2|z|6 − |z|4 − |z|2 + 2. It means that, we need to use further informa-
tions from the Toda system. In fact, we will prove that M = (mij ) is a positive
hermitian matrix.

With Vi given by (5.10),

eV1 = |z|2α1e−U1 = |z|2α1f

= m00 +
n∑

i=1

mii |z|2(βi−β0) + 2
∑

0≤i<j≤n

Re
(
mij z̄

βj−βi
) |z|2(βi−β0).

Take z = 0, we get m00 > 0. Let J = (zij )0≤i,j≤n with zij = (zβj )(i) as in
Step 2. Using (5.24), (5.25) and the monotonicity of βi , exactly as before, we
get, for 1 ≤ k ≤ n − 1

detk+1(f ) =
∏

0≤p<q≤k

(βq − βp)|z|−2αk+1
[
det
(
M

0,1,...,k
0,1,...,k

)
+ o(1)

]
,

as z → 0.
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Recall that e−Uk+1 = 2k(k+1) detk+1(f ) and Vk+1 is defined by (5.10),

e−Vk+1(0)

22(k+1)k
=
[
|z|2αk+1detk+1(f )

]

z=0
= det

(
M

0,1,...,k
0,1,...k

)
×

∏

0≤p<q≤k

(
βq − βp

)2
,

which yields

det
(
M

0,1,...,k
0,1,...,k

)
> 0, ∀ 1 ≤ k ≤ n − 1. (5.27)

Similarly, when k = n, noticing that

n∑

p=0

βp − n(n + 1)

2
= 0,

we obtain

2−n(n+1) = detn+1(f ) = det(M) ×
∏

0≤p<q≤n

(
βq − βp

)2
, (5.28)

hence det(M) > 0. Combining with (5.27) and m00 > 0, it is well known that
M is a positive hermitian matrix. Consequently, we can decompose M = BB

t

with a upper triangle matrix B = (bij ) where bii > 0. To conclude, we have

f =
n∑

i,j=0

mijfifj =
n∑

k=0

|Qk|2, where Qk =
k∑

i=0

bikfi.

It is equivalent to saying that f is in the form of (5.15) with λi = b2
ii > 0.

Combining with Theorem 5.3, the proof of Theorem 5.1 is finished. �

6 Quantization and nondegeneracy

Here we will prove Theorem 1.3. We first prove the quantization of the inte-
gral of eui . By (5.24), (5.25) and again the monotonicity of βi with f given
by (5.15), we have for 1 ≤ k ≤ n,

e−Uk = 2k(k−1)detk(f ) = |z|2(βn−k+1+···+βn)−k(k−1) [ck + o(1)] ,

as |z| → ∞,

where

ck = 2k(k−1)λn−k+1λn−k+2 · · ·λn ×
∏

n−k+1≤q<p≤n

(βp − βq)2 > 0.
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Thus, as −�Uk = euk − 4παkδ0
∫

R2
eukdx = 4παk + lim

R→+∞

∫

∂BR

∂Uk

∂ν
ds

= 4π

[
αk + βn−k+1 + · · · + βn − k(k − 1)

2

]

= 4π
[
αk + αn−k+1 + k(n − k + 1)

]
.

Therefore,
n∑

k=1

aik

∫

R2
eukdx = 4π(2 + γk + γn+1−k),

which implies

uk(z) = −4π(2 + γn+1−k) log |z| + O(1), for large |z|.
This proves the quantization.

To prove the nondegeneracy, we let (ui) be a solution of the singular Toda
system SU(n+ 1) (1.6) and φi be solutions of the linearized system LSU(n+
1):

−�φi =
n∑

j=1

aij e
uj φj in R

2, φi ∈ L∞(R2) ∀ 1 ≤ i ≤ n, (6.1)

or equivalently

− 4�i,zz̄ = exp

⎛

⎝
n∑

j=1

aijUj

⎞

⎠×
n∑

j=1

(
aij�j

)

in R
2,�i ∈ L∞(R2),∀ 1 ≤ i ≤ n,

where Uj are defined by (5.1) and �j defined by (4.2).

We will use the quantities Y
j

1 = eU1[(e−U1�1)
(j+1) − (e−U1)(j+1)�1] for

1 ≤ j ≤ n, and

Y
j

k+1 = −Y
j
k,z̄ + W

j

k+1�k,zz̄

Uk,zz̄

for 1 ≤ k < j ≤ n.

Recall that Yn
n,z̄ = 0 in C

∗ for solutions of LSU(n + 1), we can prove also (as
for (2.4))

Y
j
j,z̄ = −�j,zz̄Uj+1,z−Uj,zz̄�j+1,z for solutions of LSU(n + 1) and j < n.

(6.2)
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Now we define some new invariants Z̃k for solutions of (6.1), which cor-
respond to Zk for system SU(n + 1). Let

Z̃n = Yn
n , and Z̃k = Yn

k + �k,zZk+1 +
n−2∑

j=k

Y
j
k Zj+2,

∀ k = n − 1, n − 2, . . . ,1.

The central argument is

Lemma 6.1 For any solution of (6.1), we have Z̃k ≡ 0 in C
∗ for all

1 ≤ k ≤ n.

Proof By the same argument as in Sect. 4, we have that Z̃n is holomorphic in
C

∗, since

Z̃n = Yn
n =

n∑

i=1

�i,zz − 2
n∑

i=1

Ui,z�i,z +
n−1∑

i=1

(
�i,zUi+1,z + Ui,z�i+1,z

)
.

Using the integral representation formula for �i , we see that ∇k�i = O(z−k)

as |z| → ∞ for all k ≥ 1, so Z̃n = O(z−2) at infinity. On the other hand, since
γj > −1 for all 1 ≤ j ≤ n, we have �i ∈ C0,α(C) with some α ∈ (0,1), for
any 1 ≤ i ≤ n. Again, by elliptic estimates, we can claim that

∇k�i(z) = o
(
z−k
)

as z → 0, for k ≥ 1, 1 ≤ i ≤ n.

By the behavior of Ui via (5.11), Z̃n = o(z−2) near the origin, so Z̃n ≡ 0
in C

∗.
Combining the iterative relations on Y

j
k , the behaviors of �i and Uj , we

can claim that for all k ≤ j ≤ n,

Y
j
k = O

(
zk−j−2

)
as |z| → ∞ and Y

j
k = o

(
zk−j−2

)
as |z| → 0.

(6.3)
Therefore (recalling that Zk = wkz

k−2−n for any k), as Zn = Wn
n and Yn

n = 0,

Z̃n−1,z̄ = Yn
n−1,z̄ + �n−1,zz̄Zn

= −Un−1,z̄Y
n
n − �n−1,zz̄W

n
n + �n−1,zz̄Zn = 0.

So Z̃n−1 is holomorphic in C
∗. Using expression of Zk , the asymptotic behav-

ior of �i and (6.3), we see that Z̃n−1 = O(z−3) at infinity and Z̃n−1 = o(z−3)
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near 0, hence Z̃n−1 = 0 in C
∗. For k ≤ n − 2, suppose that Z̃j = 0 for j > k,

we have

Z̃k,z̄ = Yn
k,z̄ + �k,zz̄Zk+1 + Y k

k,z̄Zk+2 +
n−2∑

j=k+1

Y
j
k,z̄Zj+2

= −Uk,zz̄

[
Yn

k+1 + �k+1,zZk+2 +
n−2∑

j=k+1

Y
j

k+1Zj+2

]

+ �k,zz̄

[
Zk+1 − Wn

k+1 − Uk+1,zZk+2 −
n−2∑

j=k+1

W
j

k+1Zj+2

]

= −Uk,zz̄Z̃k+1

= 0.

Here we used the definition of Zk+1. Similarly, the asymptotic behaviors yield
that Z̃k = 0 in C

∗. The backward induction finishes the proof. �

Let g = f �1 with f = e−U1 . By the definition of Y
j

1 , we see that g(j+1) =
f (j+1)�1 + f Y

j

1 for any 1 ≤ j ≤ n. Finally,

g(n+1) = f (n+1)�1 + f Yn
1

= −�1

n−1∑

j=0

Zj+1f
(j) + f Y

j

1

= −Z1f �1 − Z2f
′�1 −

n−1∑

j=2

Zj+1

[
g(j) − f Y

j−1
1

]
+ f Yn

1

= −
n−1∑

j=0

Zj+1g
(j) + f

[
Yn

1 + �1,zZ2 −
n−2∑

j=1

Y
j

1 Zj+2

]

= −
n−1∑

j=0

Zj+1g
(j).

For the last line, we used Z̃1 = 0. Therefore g satisfies exactly the same dif-
ferential equation (5.6) for f .

As g is a real function in C
∗, we get g = ∑ m̃klfkfl with a hermitian

matrix (m̃kl). As before, the coefficients m̃kl need to be zero if μk+1 + · · · +
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μl /∈ N, k < l, because for z = |z|eiθ ,

g =
n∑

k=0

m̃kk|z|2βk + 2
∑

k

|z|2βk Re

(
∑

k<l

m̃kle
i(μk+1+···+μl)θ

)

is a single-valued function in C
∗. Besides, we can also eliminate the subspace

of constant functions for �1 as in Sect. 4. We can conclude then the solution
space for (6.1) has the same dimension for the solution manifold for (1.6),
which means just the nondegeneracy. �

7 Proof of Theorem 1.5

Let u be a solution of (1.1). By the proof of Lemma 5.2, f = e−U1 satisfies
the differential equation:

L(f ) = f (n+1) +
n−1∑

k=0

Zk+1f
(k) = 0 in C \ {P1, . . . ,Pm}, (7.1)

where Zk+1 is a meromorphic function with poles at {P1, . . . ,Pm} and
Zk+1(z) = O(|z|−n+k−1) at ∞.

From Lemma 2.1, the principal part of Zk at Pj is

Zk = wk

(z − Pj )n+1−k
+ O

(
1

|z − Pj |n−k

)
, (7.2)

where the coefficient depends only on {γij ,1 ≤ i ≤ n}.
As we knew in the Introduction, locally f can be written as a sum of

|νi(z)|2, where νi(z) is a holomorphic function. Hence

0 = LL(f ) =
n∑

i=0

|L(νi)|2.

Therefore, {νi}0≤i≤n is a set of fundamental solutions of (7.1), and by (7.1),
‖ν ∧· · ·∧ν(n)(z)‖ remains a constant through its analytical continuation. The
local exponents {βij ,1 ≤ i ≤ n} of (7.1) at each Pj is completely determined
by the principal part of Zk . Hence by (7.2) and (5.13), we have

β0j = −α1j , βij = βi−1,j + γij + 1.

Therefore, near each P�, � = 1,2, . . . ,m, νi(P� + z) =∑0≤j≤n cij z
βj�gj (z),

where gj is a holomorphic function in a neighborhood of P�. Since βj� −β0�

are positive integers, we have

ν(P� + ze2πi) = e2πiβ0�ν(P� + z), (7.3)
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i.e. the monodromy of ν near P� is e2πiβ0�I , I is the identity matrix. There-
fore, the monodromy group of (5.6) consists of scalar multiples of I only,
which implies [ν(z)], as a map into CP

n, is smooth at P� and well-defined
in C.

Applying the estimate of Brezis and Merle [4], we have

ui(z) = −(4 + 2γ ∗
i ) log |z| + O(1) at ∞,

for some γ ∗
i . To compute γ ∗

i , we might use the Kelvin transformation,
ûi(z) = ui(z|z|−2) − 4 log |z|. Then ûi(z) also satisfies (1.1) with a new sin-
gularity at 0,

ûi(z) = −2γ ∗
i log |z| + O(1) near 0.

The local exponent of ODE (7.1) corresponding to ûi near 0 is β∗
i where

β∗
i − β∗

i−1 = γ ∗
i + 1 for 1 ≤ i ≤ n. Let ν̂ = (̂ν1, . . . , ν̂n) be a holomorphic

curve corresponding to û, then

ν̂i (ze
2πi) = e2πiβ∗

i ν̂i (z).

Since the monodromy near 0 is a scalar multiple of the identity matrix, we
conclude that β∗

i − β∗
0 must be integers and therefore, all γ ∗

i are integers.
By identifying S2 = C ∪ {∞}, we see ν(z) can be smoothly extended to be
a holomorphic curve from S2 into CP

n and ∞ might be a ramificated point
with the total ramification index γ ∗

i . This ends the proof of Theorem 1.5. �
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Appendix: Explicit formula for SU(3)

For general SU(n + 1) (1.6), depending the values of γi > −1, we can have
many different situations by Theorem 1.1. The solution manifolds have di-
mensions ranging from n to n(n + 2). On the other hand, with the expression
of U1 given by (1.9) and f = e−U1 , we can obtain U2, . . . ,Un using the for-
mulas in (5.16). However the formulas for Uk , 2 ≤ k ≤ n are quite compli-
cated in general.

In this appendix, we focus on the case of SU(3) and give the explicit for-
mulas for n = 2. Consider

− �u1 = 2eu1 − eu2 − 4πγ1δ0,−�u2 = 2eu2 − eu1 − 4πγ2δ0 in R
2,

∫

R2
eui < ∞, i = 1,2, (8.1)
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with γ1, γ2 > −1. Our result is

Theorem 8.1 Assume that (u1, u2) is solution of (8.1).

• If γ1, γ2 ∈ N. The solution space is an eight dimensional smooth manifold.
More precisely, we have

eu1 = 4�|z|2γ1
Q

P 2
, eu2 = 4�|z|2γ2

P

Q2
in C (8.2)

with � = (γ1 + 1)(γ2 + 1)(γ1 + γ2 + 2) and

P(z) = (γ2 + 1)ξ1 + (γ1 + γ2 + 2)ξ2

∣∣∣zγ1+1 − c1

∣∣∣
2

+ γ1 + 1

ξ1ξ2

∣∣∣zγ1+γ2+2 − c2z
γ1+1 − c3

∣∣∣
2
,

Q(z) = (γ1 + 1)ξ1ξ2 + γ1 + γ2 + 2

ξ2

∣∣∣∣z
γ2+1 − (γ1 + 1)c2

γ1 + γ2 + 2

∣∣∣∣
2

+ γ2 + 1

ξ1

∣∣∣∣z
γ1+γ2+2 − (γ1 + γ2 + 2)c1

γ2 + 1
zγ1+1 + (γ1 + 1)c3

γ2 + 1

∣∣∣∣
2

,

where c1, c2, c3 ∈ C, ξ1, ξ2 > 0.
• If now γ1 �∈ N, γ2 �∈ N and γ1 + γ2 �∈ Z, then c1 = c2 = c3 = 0, the solution

manifold to (8.1) is of two dimensions.
• If γ1 ∈ N, γ2 �∈ N, then c2 = c3 = 0; if γ1 �∈ N, γ2 ∈ N, there holds c1 =

c3 = 0; we get a four dimensional solution manifold in both cases.
• If γ1 �∈ N, γ2 �∈ N but γ1 + γ2 ∈ Z, then c1 = c2 = 0, the solution manifold

to (8.1) is of four dimensions.

In all cases, we have
∫

R2
eu1dx =

∫

R2
eu2dx = 4π(γ1 + γ2 + 2). (8.3)

The proof follows directly from the formulas (1.9) and (5.16). Here in
the below we give direct calculations instead of the general consideration in
Sect. 5.

Define (U1,U2) and α1, α2 by (5.1). Denoting

W1 = −eU1
(
e−U1

)′′′ = U1,zzz − 3U1,zzU1,z + U3
1,z,

then W1,z̄ = −U1,zz̄[U1,zz + U2,zz − U2
1,z − U2

2,z + U1,zU2,z] := −U1,zz̄W2.
As before, we can claim that W2,z̄ = 0 in C

∗. By studying the behavior of W2
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at ∞, we get

W2 = w2

z2
in C

∗ where w2 = −α2
1 − α2

2 + α1α2 − α1 − α2.

As (W1 +U1,zW2)z̄ = U1,zW2,z̄ = 0 in C
∗, by considering z3(W1 +U1,zW2),

there holds

W1 + U1,zW2 = w1

z3
in C

∗ where w1 = 2α1 + 3α2
1 + α3

1 + α1w2.

Combine all these informations, the function f := e−U1 satisfies

fzzz = −f W1 = −w1

z3
f + f U1,z

w2

z2
= −w2

z2
fz − w1

z3
f in C

∗. (8.4)

Consider special solution of (8.4) like zβ , then β should satisfy β(β −1)(β −
2) + w2β + w1 = 0. We check readily that the equation of β has three roots:
β1 = −α1, β2 = α1 + 1 − α2 and β3 = α2 + 2. Hence β3 − β2 = γ2 + 1 > 0
and β2 − β1 = γ1 + 1 > 0. We obtain finally f (z) =∑1≤i,j≤3 bij z

βi z̄βj with
an hermitian matrix (bij ).

In the following, we show how to get explicit formulas of Ui for two cases,
and all the others can be treated similarly. The formulas of ui or the quanti-
zation (8.3) of the integrals are clearly direct consequences of expression of
Ui .

Case 1: γi /∈ N and γ1 + γ2 /∈ Z. To get a well defined real function f in
C

∗, we have bij = 0 for i �= j , so that

f = e−U1 =
3∑

i=1

ai |z|2βi in C
∗, with ai ∈ R.

Therefore direct calculation yields

e−U2

4
= −e−2U1U1,zz̄ = ffzz̄ − fzfz̄ =

∑

1≤i<j≤3

aiaj (βi − βj )
2|z|2(βi+βj−1).

Moreover, there holds also e−U1 = −4e−2U2U2,zz̄. With the explicit values of
βi , we can check that (U1,U2) is a solution if and only if

a1a2a3�
2 = 1

64
where � = (γ1 + 1)(γ2 + 1)(γ1 + γ2 + 2), (8.5)
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or equivalently

a1 = (γ2 + 1)ξ1

4�
, a2 = (γ1 + γ2 + 2)ξ1

4�
,

a3 = (γ1 + 1)

4�ξ1ξ2
with ξ1, ξ2 > 0.

Indeed, the positivity of e−U1 in C
∗ implies that a1, a3 > 0, so is a2 by (8.5).

Case 2: γ1 ∈ N but γ2 �∈ N. We get

e−U1 =
3∑

i=1

ai |z|2βi + Re(λzγ1+1)

|z|2α1
in C

∗, with ai ∈ R, λ ∈ C.

If a2 �= 0, changing eventually the value of a1, there exists c1 ∈ C such that

e−U1 = a1 + a2|zγ1+1 − c1|2 + a3|z|2(γ1+γ2+2)

|z|2α1
in C

∗.

We obtain then the expression of e−U2 directly and we can check that the
necessary and sufficient condition required to get solutions of (8.1) is always
(8.5). We leave the details for interested readers. This yields

e−U1 = 1

4�|z|2α1

[
(γ2 + 1)ξ1 + (γ1 + γ2 + 2)ξ2

∣∣∣zγ1+1 − c1

∣∣∣
2

+ γ1 + 1

ξ1ξ2
|z|2(γ1+γ2+2)

]

and

e−U2 = 1

4�|z|2α2

[
(γ1 + 1)ξ1ξ2 + γ1 + γ2 + 2

ξ2
|z|2(γ2+1)

+ γ2 + 1

ξ1
|z|2(γ2+1)

∣∣∣∣z
γ1+1 − (γ1 + γ2 + 2)c1

γ2 + 1

∣∣∣∣
2]

.

So it remains to eliminate the case a2 = 0. If a2 = 0, we can rewrite

f = a1 + Re(λzγ1+1) + a3|z|2(γ1+γ2+2)

|z|2α1
in C

∗,

where λ ∈ C. Direct calculation yields

e−U2

4
= ffzz̄ − fzfz̄ = |z|2(−α2+γ2+1)

[
c′

1|z|−2(γ2+1) + c′
2 + c′

3Re
(
λzγ1+1

)]
,



C.-S. Lin et al.

where

c′
1 = −|λ|2(γ1 + 1)2

4
, c′

2 = a1a3(γ1 + γ2 + 2)2,

c′
3 = a3(γ1 + γ2 + 2)(γ2 + 1).

As e−U2 > 0, we must have c′
1 ≥ 0. So we get λ = 0, and we find the expres-

sion of f as in Case 1 with a2 = 0. Then we need to verify (8.5). However
this is impossible since a2 = 0. Thus a2 must be nonzero.
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