SHARP ESTIMATES FOR BUBBLING SOLUTIONS OF A FOURTH
ORDER MEAN FIELD EQUATION

CHANG-SHOU LIN AND JUNCHENG WEI

ABSTRACT. We consider a sequence of multi-bubble solutions uy of the following fourth order
equation
h(z)e*

Jo hev

where h is a C?# positive function, € is a bounded and smooth domain in R*, and py, is a
constant such that py < C. We show that (after extracting a subsequence), limg_, 4o p =
3203m for some positive integer m > 1, where o3 is the area of the unit sphere in R*.
Furthermore, we obtain the following sharp estimates for py:

(+) Auy, = py

in Q, ur =Aur =0 on 01,

. 1 .
_ 2 2
pr — 3203m = co ]E 1 6k,j(l; AG4(pj,pi) + AR4(pj,pj) + 3203A10g h(p;)) + 0(; 1 €h,j)
- y -
where ¢ > 0, log 3% = max,ep;(p;) uk (z) — log( [, he*) and up — 3203 37", Ga(-,p;) in
k.

Cfoc(ﬂ\{p17 ;pm})
This yields a bound of solutions as py, converges to 3203m from below provided that

m

> O~ AGu(p;,p) + AR4(pj,p;) + ﬁA log i(p;)) > 0.

i=1 1] 8
The analytic work of this paper is the first step toward computing the Leray-Schauder degree
of solutions of equation (*).

1. INTRODUCTION

In this paper, we initiate the study of the following fourth order mean field equation
{ A%y = p2<_ in Q,

Jo e (1.1)
u=Au=0 on Jf.

This is the first of a series of two papers on computing the Leray-Schauder degree for solutions
of (1.1). In this first paper, we compute the sharp estimates of the bubbling rate of multiple
bubble solutions.

In dimension two, the analogous problem

_ _ he*
Ay = Pl her I Q, (1.2)
u=0 on 0f2
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where € is a smooth and bounded domain in R?, has been extensively studied by many
authors. We summarize the results for (1.2) and identify the difficulty in studying (1.1) now.
Let (ug, px) be a bubbling sequence to (1.2) with p; < C, max,eq ug(x) — +oo. Then it has
been proved that

(P1) (no boundary bubbles) u; is uniformally bounded near a neighborhood of 02 (Ma-
Wei [18]);

(P2) (bubbles are simple) p;, — 8m7 for some m > 1 and uy(z) — 877", Gal-, pj)
in C?(Q\{p1, ..-,pm}) (Brezis-Merle [2], Nagasaki-Suzuki [21], Li-Shafrir [13], Ma-Wei [18]),
where G5 is the Green function of —A with Dirichlet boundary condition;

(P3) (sup + inf estimates) at each bubble p; ; where uy(pr,;) = maxgepy(p,) Uk (), the
following refined estimates hold (Brezis-Li-Shafrir [5], Li [12], Li-Shafrir [13])

\ug(x) — uk(pr,;) — log 2\ <C (1.3)

(1 + |m—:20k,j|2)
ksj

where uy(py,;) — log( [, he"*) = log 5—;
kg
(P4) (exact bubbling rate) It holds then (Chen and Lin [7])

m B 1 m
pe = 8mm = co » _ h(pr;) " Alog h(px;)e; ; log o T O iy (1.4)
5] y

=1 =1
(P5) (Leray-Schauder degree) Li [12] initiated the program of computing the Leray-

Schauder degree of solutons to (1.2). He showed that the Leray-Schauder degree remains a
constant for p € (8w (m — 1),87wm) and that the degree depends only on the Euler character-
istics of Q2. Chen and Lin [8] obtained the exact degree counting formula as follows

1

—(=x(2) +1) - - - (=x(22) + m) for m > 0,

d(p):{ (X)) +1) -+ (=x() +m)

1.5
1 form=0 (1.5)

where x(2) is the Euler characteristic of (.

In this and subsequent paper [17], we carry out the same program for equation (1.1). It will
be shown that d(p)-the Leray-Schauder degree of (1.1) can be defined as long as p # 32mos,
where o3 is the area of unit sphere in R*. The main purpose of this paper and the subsequent
one [17] is to compute d(p). In these two papers, we prove, among other things, the following
theorem
Theorem A. Let 32mos < p < 32(m + 1)os and d(p) be the Leray-Schauder degree for
equation (1.1). Then

d(p) = { ar(=x(Q) +1) - - - (=x(Q) +m) for m >0,

1 form=0 (1.6)
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where x(Q2) is the Euler characteristic of Q.

Remark. We are informed by Prof. Malchiodi that he obtained a similar degree counting
formula for the corresponding prescribing ()—curvature problem on a four dimensional com-
pact manifold, [20]. He used a different approach— the Morse theory approach-to obtain the
formula. We remark that on compact manifolds, one doesn’t need to prove Property (P1).
On the other hand, one of the main difficulties in our proof is the property (P1).

As a consequence of Theorem A, equation (1.1) always possesses a solution for p # 32mo;
whenever the Euler characteristic x(Q2) < 0. (Here m can be made > 2, by results of Lin-Wei
[16].) On the other paper, when x(€2) > 0, the situation is much different than the second
order case. For example, when (2 is a ball, we can prove the existence of at least one solution
when p € (0,64703). See the remark after Corollary (1.2). The complete proof of Theorem A
will be given in [17], the second part of this series of papers.

Set d} = lim, ,gmr+ d(p) and d;, = lim, ,30m0, d(p). One of the main steps in the proof of
Theorem A is to calculate the gap d — d,, for any integer m > 1. Once this is known, d(p)
can be computed inductively on m. Clearly, the gap of d; — d. is due to the occurrence of
blowup solutions when p — 32mo3. Thus an important question is to analyze the blowup
behavior of sequence of solutions wuy to (1.1) and to know the signs py — 32mos.

In this paper, we shall obtain estimates analogous to (1.4) for bubbling solutions to (1.1).
To this end, we have to first resolve the analogous properties (P1), (P2) and (P3) for problem
(1.1). Once we obtain (P1), (P2) follows from results in Wei [23]. So we just need to prove
(P1) and (P3). Here the problem arises since the method of Kelvin transform in obtaining
(P1) and the method of moving spheres in obtaining (P3) seem not applicable for (1.1). We
overcome these difficulties by using various new techniques. (After we obtain (P1)-(P3), the
Leray-Schauder degree d(p) of (1.1) for p # 32mo3 can be well-defined.)

The following is the main result of this paper:

Theorem 1.1. Let h be a positive C*P function in Q and uy, be a sequence of blowup solutions
of (1.1) with p = px. Then (after extracting a subsequence), limg_, o pr = 3203m for some

positive integer m. Furthermore,

Pr — 3203m

m
=1

Z (Pe,j)) 6k][32 Alog h(pk,;) + AR4(pr,j, Pr,j) +ZAG4 Pk.j> Pi)] + 0 Ze(i]
j=1 i#£] 7
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where co > 0 1s a generic constant, G4(-, P) is the Green function of A? with Navier boundary

condition u = Au =0 on 02, Ry is the reqular part of G4, pr; are the local mazimum points

of u, on Bs(pj), and log % = uk(pr,;) — log( [, he).
Clearly Theorem 1.1 implies the following

Corollary 1.2. Let h(z) be a C?# positive function and satisfy

% o1
D (h())) g5 Aogh(p;) + ARu(py,p) + 3 AGa(pi ;)] > 0 (18)
j=1 I#7
for all (p1, ..., pm) satisfying
1 )

320’3 I

Then for any compact interval I C (3203(m — 1),3203m], there ezists a constant C > 0
such that

u(z) < C forz € (1.10)

for any solution u of (1.1) with p € I.
As a consequence, if Ah(x) > 0, then (1.10) holds for any solution u of (1.1) with p €
(0, 3203].

Remark: 1. Corollary 1.2 extends earlier results of Lin and Wei [16] where we proved
Corollary 1.2 for m = 1,h = 1. We note that when Q@ = B; and h(z) = 1, (1.2) has no
solution when p > 8. However, for (1.1), a solution exists when p < 3203. We conjecture
that a solution to (1.1) exists for any p > 0.

2. Theorem 1.1 can be extended easily to the following n—th order mean field type equation

(=A)"u = Pfg?:;u in €,
(=AYu=0 ondQ,5=0,...,n—1

(1.11)

where Q is a smooth and bounded domain in R?". In particular, we have the same degree

counting formula for solutions to (1.11)

d(p) = { ?(fo_rXT(nQ):"(') 1)« (=x(©) + m) for m >0,

where p € (m2?"(n — 1)nlog, 1, (m + 1)22"(n — 1)!nloy, ;). This then implies that (1.11)
always has a solution if p # m22"(n — 1)Inloy, ; and x(Q2) < 0.
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Semilinear equations involving exponential nonlinearity and fourth order elliptic operator
appear naturally in conformal geometry and in particular in prescribing ()Q—curvature on

4-dimensional Riemannian manifold M (see e.g. Chang-Yang [6])
Py +2Q, = 2Q,, ™ (1.12)
where P, is the so-called Paneitz operator:
2
Py = (A,)° +6(5 RyI — 2Ricy)d,

9w = €*g, Q, is Q— curvature under the metric g, and ng is the (Q-curvature under the new
metric g,,.

Integrating (1.12) over M, we obtain

b= [ Q= [ @

where k, is conformally-invariant. Thus, we can write (1.12) as

Qg 64w
Pw+2Q,=k——— (1.13)
! ’ ! f v Qau et
In the special case, where the manifold is the Euclidean space, P, = A% and (1.13) becomes
h(z)e*
APy = pti— 1.14

There is now an extensive literature about this problem, we refer to Adimurthi-Robert-
Struwe [1], Baraket-Dammak-Ouni-Pacard [3], Druet-Robert [9], Hebey-Robert [10], Hebey-
Robert-Wen [11], Malchiodi [19] and the references therein.

The organization of this paper is as follows: The statements for properties (P1)-(P3) are
collected in Section 2 where important preliminaries are presented. The proof of (P1) is given
in the Appendix A and the proof of (P3) is given in Section 3. Finally in Section 4, we prove
Theorem 1.1. Though we essentially follow those of [7], we simplify and give a new proof of
the key estimates—Estimate C in Section 5.

Throughout this paper, unless otherwise stated, the letter C will always denote various

generic constants which are independent of £ > 1.

Acknowledgments: The research of the first author is partially supported by a research
Grant from NSC of Taiwan. The research of the second author is partially supported by an
Earmarked Grant from RGC of Hong Kong.
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2. PRELIMINARIES

We begin with the following lemma which excludes the boundary blowups. The proof of it
is by adopting the method used in our previous paper [16] and is given in Appendix A.

Lemma 2.1. Let u be a solution to (1.1) with p < C. Then there exists a § > 0 such that
u(z) < C for all x such that d(x, Q) < 6.

Let G4 denote the Green’s function of A% under the Navier boundary condition, that is

A2G4($, y) = 5(.1‘ — y), G4‘ag = AG4|3Q =0. (21)
We decompose
1 1
G =—1 R . 2.2
4(z,y) 1o, BTt 4(z,y) (2.2)
It is easy to see that
A,Gy(z,y) <0, ApRy(z,y) > 0. (2.3)

From Lemma 2.1, we derive the following lemma, whose proof follows exactly those in Wei
[23] and thus omitted.

Lemma 2.2. Let uy be a bubbling sequence with pr < C. Then (after extracting a subse-
quence), pr — 3203m and ug(z) — 3203 22"21 G4(-,p;), where (p1, ..., pm) Ssatisfies

1 .
V<320_3 IOg h(pz) + R4(pi,pz‘) —+ ;Gzl(pz,p])) = (]’z — 1’ ey N (24)

We also need to recall the well-known Pohozaev’s identity for solutions of fourth-order

equation
A%y = h(z)e" in D.
We have

Lemma 2.3. Let u satisfy A%u = h(z)e* in D, where D is a smooth and bounded domain in
R*. Then we have

(2.5)

/ (dh+ < z,Vh >)e* = / < z,v> h(z)e
D oD
1 0 OA 0
+ / “|Au? < z,v > 9% Au— < z,Vu > il z, VAu > —u+ <z,v><Vu,VAu >
oD | 2 Oov Oov Oov
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and for any £ € R*,

/D(< &, Vh>)e" = / h(z)e" < & v > (2.6)

oD
/8D

Proof: In fact, multiplying A%u = h(z)e* by z - Vu and integrating by parts, we obtain the

1 0A 0A
5|Au\2<§,y>— <&, Vu > a—,,u_ <& VAu > 8—Vu+<§,u >< Vu,VAu >

lemma. O
Let do be a fixed small constant and ug(pg,;) = maxgep;(p,) ur(r) and
1

€k = 2.7
Jo h(z)evx (27)
Then ¢, — +00 as k — 400. Let us define
Iy, .
lk,j = uk(prj) — c, P Ckf, where a4 = 64, (2.8)
o
and
I, = lrsnjfgn lkj, €= lgr;_lsnm €k,j (2.9)

Note that Iy ; — +o0, as otherwise uy, satisfies |A2uy| < C in Bsy(prj), ur + |Aug| < C on
0Bs, (px,;)- This implies maxye;, (s, ;) uk(z) < C, which contradicts to our assumption.
Next, we present a theorem which gives (P3)-sup + inf estimates. The proof of it is inter-

esting and given in a separate section.

Lemma 2.4. We have
(7]
(1 + gl

k.j

|u(z) — uk(pr,;) —log | <C, (2.10)

for x € Bs,(px,j)-

From Lemma 2.4, we have the following important corollary

Corollary 2.5. Let uy be a sequence of blowup solutions of (1.1) with p = py,. Let Uy, Iy ;, €, €k,
be defined as before. It then holds

k—C<Ul;<lL+C, Cle<e; <Ce&,j=1,..,m, (2.11)

k

h—C<l;<cp+C, Cle T <, <Ce % j=1,..m. (2.12)
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Finally, we consider a problem in R*. It has been proved ([15], [22]) that the solution to
the following problem

AU =€V, in R
S oo (2.13)
Jra €Y < +o0,
is given by
4
Oy €
Ueco(z) =1 , 2.14
o) = log M (214)
for any € > 0,a € R*, provided that
U(z) = o(|z|?) as  |z| — +oo. (2.15)

Let U = log f73imyr and 7 € (0,1) be a fixed constant. We need the following lemma which

proves the nondegeneracy of U:

Lemma 2.6. The solutions to the following linearized problem

A¢=e"g, [6(y)l <O+ [yl) (2.16)
is given by ¢ = Zj:o c;j1; where

1— |yl yi
=1 |y|2,¢- = —1,..4 (2.17)

wO j_1+|y|2a]

3. PROOF OF LEMMA 2.4

In this section, we prove the sup+inf estimates—Lemma 2.4. As we mentioned before,
the method of moving spheres seems not applicable here. Instead, we use an approach of
combination of potential analysis and Pohozaev identity. This approach has been used in
Bartolucci-Chen-Lin-Tarantello [4].

We now state a more general theorem: Let ug(x) be a solution of

A%y, (z) = hg(x)e® in By, and

hk(l‘)eﬂk(m)dﬁv <c, (3.1)

By
where hy(z) converges to a positive function h(z) in C'(B,), and without loss of generality,
we may assume h(0) = 1. Suppose that uy satisfies the following assumptions
(1) |ax(x) — r(y)| < c for [z] = |y = 2,
(ii) |Adg(x)| is bounded in any compact set of B, \ {0}
(iii) 0 is the only blow-up point of iy, i.e., set S = {z|z) — = and limy_, | o7y (7%) — +00}.
Then S = {0}.
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We want to establish the following sharp estimate of the bubbling behavior of i, near 0. To

state our result, we let [; be the maximum and z; be a maximum point of ty, i.e,
lk = ﬂk(xk) = max ak .
B,

and let v(x) be the solution of
A?y(z) = €*@ in R

v(0) =0= max v(z) and |v(z)| = O(log|z|) at oo . (3.2)

Theorem 3.1. Suppose Uy, is a sequence of solution of (3.1) and satisfies assumptions (i)-(iii)

and v is the solution of (3.2). Then there exists a constant ¢ such that

la(z) — by — v(et |z — 24])| < C in By .

Applying Theorem 3.1 to uy = uy — cx, we obtain Lemma 2.4.
For r € (0,1), set

ax(r) = [ u(w)et s
and

a(r) = kl—lgloo ag(r) and o = 11—% a(r) .

We first have

Lemma 3.2. Suppose Uy is a solution of (3.1) and satisfies assumption (i)-(iii). Then @y —

—oo uniformly in any compact set and o = 3203.

Proof: Suppose that there exists a point zy € By\{0} such that @, (zy) is bounded. Then by
assumptions (i)-(iii), the sequence iy is bounded in any compact set of By \ {0}. By taking a
diagonal process, a subsequence, still denoted by @y, approaches a function u(z) in B \ {0}.

By Fatou’s Lemma,

/ e" < +oo. (3.3)
B2\ {0}

Since [p, e™ < +o00 and () — u(z) in By \ {0}, we see that hy(z)e™ — h(z)e™®) +a'dy in
the distributional sense, for some constant . Here d; is the Dirac measure with singularity
at 0. But by (3.3)

o = lim( /B (e - / h()er) = o

r—0

Therefore u(z) satisfies

A?u(z) = h(z)e"™ + ady in B, .
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Thus
u(r) = — log < ) v(x), with @ > 0,v(z) is smooth, and
2] (3.4)
e’ ‘”)da: <C.
B
By the Pohozaev identity (2.5), we have
/ [4hi(2) + (Vhi(x) - 2)]e™
. (Aug)*?  Ouy, 0 .
= Yrdo — — —Au| d :
/BBT hi(z)|x|e"*do /BBTT|: 5+ 5y By DUk| do (3.5)
6 auk
— Niigd
+ /aBT 37‘ < 67‘ ) Ukaa -
By letting £ — 400, we have
2
da(1 + o(1)) = 2 <i> o3(1+0(1)) (3.6)
40'3
where o(1) tends to 0 as r — 0. Since a > 0, we have
a = 3203 . (3.7)

However, (3.7) implies ;7 = 8 and then (3.1) yields

/ x| 8dx < 01/ e!@dy < ¢ic
B Bl

a contradiction. Thus, @(xz) — —oo uniformly in any compact set of By\{0}.
(B;\{0}) and ¢, — +o0

as k — 400 where ¢, = f|w|:1ﬂk(x)da is the average of @, over S%. Clearly

i(x) = E, log é—‘ + () | (3.9)

Now it is obvious that @ (z) = @g(z) — cx converges to 4(z) in C7,

with A?v(x) = 0 in By. We can apply the Pohozaev identity (3.5) to obtain o = 3203 as the
same as (3.7). Thus, Lemma 3.2 is proved.
0

Proof of Theorem 3.1: By (i) and (ii), it is easy to see that @ (z) can be written as

i (y)
[ 10e (‘x ) ey + o). 5.9)

| fellcapsy < C - (3.10)

2

where fi(z) is a smooth function Bs,
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Recall 4y (zg) = Iy = maxp, tx. Then

- 1 Ty — i
tg(x) =l = — [ log {| k yl) hi(y)e®™* D dy + fr(x) — fulzy) - (3.11)
403 J, z —y
Set vg(x) = tug(exr + x1) — I and g = e~ %. Then (3.11) implies
1 w5 7
_ ] vk (Y) g 12
(o) = 3o [ 108 (2 ) lwper Wy + ) (3.12)
K

where /iy (y) = hy(zk + 6_%y) and
IV fillpp = 0 for 1< j<4.

From (3.12), we have |Aw(z)| is uniformly bounded. Thus, vy(z) — v(z) in C}

loc

(R*) and
v(x) satisfies

A%y(z) = €@ in R* and

1 3.13
v(z) = — [ log Wl e’ Ody + ¢ (3.13)
403 Jra E]

for some constant ¢y. Therefore Av(z) — 0 as |z| — 400, a classification result of [2] shows
that
v(z) = c—i—log# .
(1 + [[*)*
Thus, for any R > 0,
lvg(z) — v(z)| = 0 uniformly for |z| < R (3.14)

as k — +oo.

To prove Theorem 3.1, it is equivalent to showing
1
lve(z) — v(z)| < C for R < |z| < reet | (3.15)

for some ry > 0.

To prove (3.15), we claim

1\ !
lag — 3203 < ¢ (log 5_> , (3.16)
k
where oy is the local mass defined by
o = / by ()@ dg (3.17)
B

The idea to obtain (3.16) is to apply the Pohozaev identity (3.5) on the circle |z| =

er(log —). Hence, we need some fine estimates of v;. Basically, all estimates required here
€k
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can be obtained by using the Green representation formulas (3.12). First, we has a rough

estimate about the behavior of vy.

For any fixed 6 > 0, there exists R = Rs and ky = k(6) € N such that if |z| > 2R and

k > kg, then

(677
< - — — .
v () < (403 5) log |z|

The proof is standard, and is omitted here. Since 57’3 — 8 as k — 400, § is always chosen

such that

vp(z) < =Tlog|z| holds for |z| > 2R.

1
For log — < |z| < 5,:1, set
€k

Gx(|2]) = / Fre @y |
lyl<ro|z|
where ro < £ is a positive constant. By (3.18),

o — ()] < e / Wy

B 1
Sc/ lyl 7dy=0<—3>,
lyl>rola] ||

1

for |z| > log — and k large.
Ek

By (3.19), we claim that

<C,

avk (67 1

(8
ve(x) + Fjglog|x|
B O

<0 ((1gi) |x|-1>
S| <o ()

1\ !
! <0 ((log —> |x|_2) ,and
€k

‘mk(x>+ﬂ_
0 op 1 1\
- sc(log—) |2,
€k

203 |z|?
—Av(z) — ——
for |z| = log i In fact, we will prove (3.20) holds for logi <|z| < i

or o3 |z

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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We first show (3.16) by assuming (3.20)-(3.24). Rescaling back to @y, (3.20)-(3.24) can be

written as follows:

for |z| = 24 (log i)

1
Substituting (3.25)-(3.29) to (3.5) on r = & log(g—), we have
k

1 1
4 1)ex 1 ] .
o+ OV log( ) = 4 0((log 1))
Thus,
1.4
O!k:320'3+0((10g—) ),

and then (3.16) is proved.

We come back for the proof of (3.20)-(3.24). By (3.12), for loge; ' < |z| < &, !,

1 ~
oe(@) = — |<log( y )hk(wevk(y)dwom
y £

40'3

- 40'3

oY 1

logm +0(1)
1

1 1\ -
— log < ) hi(y)e*@dy + O(1)
ly|<rolz|

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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where

[ ety < c,
y|<ey

1
[ o () ntde @y = Offal Stoglal
y2rolsl  \|1T =Y

and (3.19) are employed. This proves (3.20). To prove (3.21), we have

m) e i o
= 4_013 Sre 7|5|6|;_)y‘2hk( ) vk(y)dy+0(\x|—4+6k)
— 0
o T e T [ e
+O(|z|™* + &)
= e+ Ol

Q-1 R
= - — + O((log — )
403‘33‘ (( ngk) z|7)

For (3.22), we have

0 OV, -1 0
7 (50) =5
-1 ]
oy

O(1
_o0) / I )y O+ el
y|<ro|z

a2

S
=0|——] -
(=)
We have proved (3.20)-(3.22). Proofs of (3.23) and (3.24) are similar, and we should omit

them here. Hence (3.16) is proved completely.
We note (3.20) holds for log i < |z| < &, '. Therefore, by (3.16) and (3.20), we have

(g:ﬁL>ﬁ()W@@+O@Q

lz —y|?

(z—y)z\ + ovr(¥) c 2|4
(F228) hutwperdy + Ofes + lal )

|k (z) + 8loglz|| < C
for log ;- < [z| < &;*. So far, we have proved

1
lvg(z) —v(z)| < C for |z| < Ror |x| > loge— (3.30)
k
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For the region R < |z| < -, we proceeds as follows: for |z| < log -,
k €k

1 1 ~
Avg(z) = ——/ ——h(y)e” W dy + O(|z|~°
k() 203 Dy <ol o — 92 k(Y) (lz[7)
]_ 1 ~ ]_ Ty~ 1
= - gl (y)e Wy — — —h(y)e Wy + O(—)
203 Jy <rolal 1212 93 Jy|<rolal |7[* |z|*
TS B I
203 zf? |z
1
= Av(x)+O(W)

where we have used the fact that & (|z|) — oy = O(#) and that oy, — 3203 = O(logli)'
Thus, '
C

|Avg(z) — Av(z)| < e (3.31)

holds for R < |z < .

Now we choose ¢(z) = C’(l—l—ﬁ) where C'is large. Then —Ag(x) = % > |Avg(x) —Av(z)|.
It is easy to see that g(z) > |vg(z) — v(z)| for || = R and |z| = log i Thus, the maximum
principle implies

log(z) —v(z)| < C(1+ —) (3.32)

for R < |z| < log i
Combining (3.30) and (3.32), we have proved (3.15). Thus, Theorem 3.1 is completely
proved. O

4. THE ESTIMATE OF p; — 3204m

The main purpose of this section is to prove Theorem 1.1. We follow the main steps used
in [7]. Let

Ug(x) = ug(z) — ¢ (4.1)
which satisfies

A%fy = pph(z)e™ in Q, / h(z)e™ = 1. (4.2)
Q
Recall the definitions cg, pk.j, lk, Ik j, €k, €k,; given in (2.7)-(2.9).

For a fixed small dg > 0, we set the local “mass” py ; to be

ps=p [ hla)e s (4.3)
BJO (pj)
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By Corollary 2.5, we have
ps=m [ hla)e s+ O(e)
Bso (pk,j)

which yields

Zpk,j = pr + O(e)-

j=1
In By, (pk,;), we set
G (x) = prgRa(@,pg) + Y priGa(, pri)
%

and wg(z) to be the error term defined by

wi(z) = uk(z) — ZPk,iG4($,pk,z’) = Uy, — Z Pi,iG4(T, Pri) + ck
i=1 i=1
on Q\ U7, B%O(pj).
We first have
Estimate A: |wg(z)| + [0%wi(2)| = O(ex) for all |af < 3,z € Q\ UJL; Bs (p;)-

Proof: This follows from the Green’s representation formula:

un(z) = / G2, 9)(peh(y) ™ )dy

N Zﬂk/ | Ga(z,y)h(y)e™ + O(e;)

(Gaa.9) = Gala prg) )™ + 3 pGista. ) [

j=1 Bngo(Pk,j) j=1 3570

= Zpk/ O(ly = prsh(y)e™ + Y priGalw, prz) + Oler)
j=1 /B

%(Pk,j) j=1

= Z Pk, Ga(x, prj) + O(€x).

=1

Similarly we can estimate |0%wy(z)| for |a| < 3. Hence Estimate A is established.

Estimate B: |V(logh(x) + G} (2))| = O(ex) at x = py 5.

(Pk,5)

(4.4)

(4.5)

h(y)e™ + O(ex)
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Proof: Applying (2.6) to @ on Bs,(pk,;), we obtain

LHS of (2.6) = py, / < &, Vh > el
Bs, (Pk,5)
= pk/ [< &, Vh > — < &, Vh(pg,) >]e™ + pk/ < &,Vh(pg ) > e
Bsy (Pk,j) Bso (Pr,j)
= Oe) + pk/ h(pk’j)e{”c < &, Viogh(pk;) >
Bs, (Pk,5)
= O(Gk) + o < 6, V]Og h(pk,j) > .
On the other hand by Estimate A, we have
ug(z) = wi(z) + @;(x) (4.8)
where
Ak * Pk,j 1
¥ = G* log ———.
Gi(z) = Gj(x) + 104 og P——

Note that AQ(G;‘(QJ)) = 0 in Bs,(pr,;)\{pr,;}- Applying the Pohozaev’s identity to G;‘, we

obtain

RHS of (2.6)
= ABgo(pj)[< §v> (%|Aukl2)— <&, VAuyy, > %— < & Vup > 8?;“% <&v> %8§:f’“]+o(eﬁ)
= [ <ew> GIAGR- <6 VAG > - <696 > Tk < s IO
0Bs, () 2 7T or 7T or ar or
+0(ex)
Sim [ [cevs GG - <6 vad s Ko cevar s 2290 (s 201926
0B, (p;) 2 ! 7T or J or or Or
+0(ex)
= —pr; < & VGi(pr,j) > +O0(ex)
This proves Estimate B. 0
Next, we give a sharper description of the bubbling behavior of uy in the ball By, (p. ;). We
set
hie,; = h(p,;)
and

vk,j(z) =log [ — ik, (4.9)
(€ + v/ Prbjlz — quj[?)*
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where ¢ ; is given by (2.8) and ¢x; € R* is chosen such that

V(i) = V 10g h(p,;).- (4.10)

By direct computations, we also have

Prj — kgl = O(€}) (4.11)
For x € Bs,(pr,j), we also set
Mk, (T) = ug(x) — cx — vr,5(7) — (G5(2) — G} (pr.g))- (4.12)
Then by Estimate B and (4.11), we have
(Vk,j(pr,j)| = Olex) (4.13)
Mh,j (D) = lk,j — Uk, (Pr,g) = Olex) (4.14)
"I’]k,j(l') S C fOI' T &€ B(;O(pk,j) (415)

Let us check the matching of wy and 7 ; on B% (Pr,j):

Mk, (T) = up(r) — & — vgi(z) — (G5 () — G5 (pr,5))

M

=wp+ Y priGa(x,pri) — cx — log
20 Z RV

— (G5(z) — G} (pr.))

j
il — qr41?)*

4
= O(ex) + prjGa(x, prj) + prjRa(w, prj) — c& + G (pr,;) — log J
. . . . . ( /pkh’k,‘]‘x _ Qk,] 2)4
Ofer) + (222 —8)1 G () — log 1%k
=0Ul(e —= —=23)lo —c x N —log — %
* 4oy © T — Drj kT Ph g (v Prhi,j)*
Pk,j
= O(ex) + Agj + —8)lo
( k) k,j (40_3 ) g |./L' _ pk,j|
where Ay ; is a constant given by
* «
Apj = —c, —log ej- + G} (Pr,;) — log 2h42 ) (4.16)
Pk,

Then by Corollary 2.5, we have | Ay j| = O(1). This implies that for x € dB;, (px,;), we have

Pk.j

i(x) =Ak,; + (== —-8)1 O(eg). 4.17
s (0) = Ay (G2 = 8)1og -+ 0(e) (417

Moreover, (4.17) holds for partial derivatives of 7 ; up to the order 3.

Let
_ _ 0

k(%) = Mg (Prg + kg (prhig)"/*2), R = 862 ; (4.18)

J

The following estimate is the key estimate, whose proof will be given in a separate section
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Estimate C: For any 7 € (0, 1), there exists a constant C; such that

[7k,5(2)] < Cr(L+12))7 (€ + € sup  |ijg;(2)])
Z<|2|<R

Now we have

Estimate D: For any % <71 < 1, we have

Akl < Cle+ € sup i,

R
§§|2|SR

)

Proof: By Green’s formula,

uk(pr;) = log(aue ) + cx

=3[ e Gulprs )y + O
i=1 BEO(Pk,l)

For | # j,

/ pehe™ Ga(pr,j, )y = priGa(Pr,js Pry) + O(e).
Bso (Pk,1)

For [ = j, we have
/ prhe™ Gy(pk j,y)dy
Bs, (pk,j)

1 1
= / prhe (4— log ———— + Ru(pr,j,y))dy
Bsy (Pi.s) o3 |k — Yl

1

. 1
= ——p / prhe"® log ————dy + pr jRa(Dr.j; Pr,j) + O(er)-
Bs, (Pk,5) |pk,j - yl

403
Now we write
he®™ — pekitiki+(G; (@) -G} (pk,;))
= h(p;)e™ H(x,m;(x)) + h(pe;)e™
where

H(z,t) = etHlog h(z)+G7 (z)—log h(pk,;) =G5 (Pk,j) _ |

Let z and 2 ; satisfy

T = prj+ eng(orhig) 2 Qog =Dy + eng(prhng) 2,

19

(4.19)

(4.20)

(4.21)

(4.22)
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Then we have

Pr / he™ log |pr,; — v
Bs(Py,;)

= Pk/ he™ logﬁk,j(ﬂkhk,j)_1/4+0k/ he™ log |z|
Bs, (Pk,5) Bg(0)

_ 07
Pij 108 (€xj (b ;) 7" +Pk/
i 10g(ex,;( D)) o) (LT 12 — 2032)7

o
1 2 H (2, m1,5) log 2] + O(ex)(4.23)

(1 + H(z,n,4)) log ||

= pijlog(ex;(pehr )~ +,01c/
’ ’ ! Ba(0) (L+[2 = 2x,5[?)

where we have used
|2k, = O(Gk),/ (1+7r*)"*rlogrdr = 0. (4.24)
0

The last term in (4.23) can be estimated by

Oy 2 ~
H(z,0)log |z| + O(e,” + €, sup |fg;(2)])
/BR(O) (1 + |Z - Zkaj|2)4 g g R<|zI<R !

2 =

=O0(e,+€, sup |7k,;(2)]).

5<[2/<R
Combining all together, we obtain Estimate D (by choosing a larger 7 > %) O
Estimate D implies
Estimate E: On Bs, (py ;)
2
pky. T -~
kg (2) = (327 — 8) log +O(e+€" sup |i,;(2)]). (4.25)
03 T — Drj B<|z|<R
From (4.25), we also have
sup ‘ﬁk,j‘ S C|pk,j - 320’3‘ + CGk,j. (426)
F<|2I<R
Hence Estimate C can be refined as
7,3 (2)] < C(L+[20)7 (6" + €fl pry — 3203)- (4.27)

On the other hand, |p; ; — 3203| can also be estimated by a quantity related to n ;.
Estimate F

O0AN 5
Pr,j — 3203 = / %dm + o(ep). (4.28)
0Bs, (Pk,;) v
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Proof:

21

. 0Au
Pki = Pk / he** = / u
Bj;(pk,;) 9Bs, (Pk,j)

ov
0Bs, (Pk,j) v 0Bs, (Pk,j) v
0A
3204 +/ 877’” +0(e)
aB&o(pk j) v
since 9A . .
O,
=32 —
ov 3 r3 + 0(7“7)
O
. OAny
It remains to compute |, 083, (pr.) 50t
Note that 7, ; satisfies
A% = prb,i€™ 1k, + pehuie”™ (H (2, neg) — 1,5)- (4.29)
L
° e — /prhi ;T — qr|?
\I](x) — k,] k k:.] k’.]
€ij TV Prhigle — qel?
Then it is easy to see that W(x) satisfies
A%T(x) = pphy ;€0 DT (), (4.30)
Using (4.29) and (4.30), we obtain
[ ) - @) = [ phge H ) - m o)
Bso (Pk,j) Bsy (Pk,;) (4.31)
The left-hand-side of (4.31) equals
= —_— \I’( ) A?]k +A\If J — Tk,
/3350 (Pr,5) v T ov ov 7 v
0 ; OAmy ;
/ %(\P(CU) +1) - / 877’“” + O(€4 ;1pr,j — 3203 + €} ;)
0Bs (Pk,j) v 0Bs (Pk,;) v
A 26% j / OANy ; 2 3
— ) — =+ O(€;_i|pr,j — 3203 +€;5)
/6350 (Pr.5) v Gi,j t v P05 + 0(6%,1') 9Bs5,(pk.j) v R !
8A77k7
= —/ 78 J -+ O(Ez,j).
0Bs (Pk,j) v

The right-hand-side of (4.31) equals

o 1 ) o2
SRVl K (errios) [ i 2

i 1— |z — z1,]?
90,0 (G5 +log h]212m+O(|nk,; 2) | J
I,m m

1 + ‘Z — zk,j|2

dz
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1 1 ) 0? 1— 2|2
= e S 2 [Gi+logh ot 2m) +O (LT
Joehi, /11«4((1+|Z\2)4) ek’]lzmaxlaﬂﬁm[ +log h (214 2k) (2m +2k,m) +O(€;") T+ 22
1 2 1 2> 1-12f 2
L 2 A6 +logh)(pey) / dz + o)
ph(prg) P4 e (L 22 1 |2 )
where
1 1z[2 1— ]z 1 / 22 =1 1—z)?
— dz = - dz < 0. 4.33
4/11@4 A+ 2251+ 227 T 4 e U+ 2P 1+ |22 (4.33)
Combining Estimate F and (4.32), we obtain
1
- — 3204 = co———=62 A(G%(pr.;) + log h(pr.;)) + o€ . 4.34
Pk.j YO o) (G} (Dr,5) + log h(px,;)) + o(€; ;) (4.34)
where ¢y > 0.
O

Finally, summing up the estimates in (4.34), we obtain Theorem 1.1.

5. PROOF OF ESTIMATE C

In this section, we prove Estimate C. Our proof is different from [7] and is simpler.
Let 7 € (0,1) be a fixed positive number. We begin with the following simple but important

lemma

Lemma 5.1. Let u satisfy
A’u = f(y) in Br(0), u=Au=0 on dBg(0)
Then for R large we have

l<y>" (u— U(O))HL«»(B%(O)) <O <y>"7 fFW)lle(Bao)- (5.1)

Proof: Assume that || <y >*" f(y)|lLe(Br(0)) = 1.

By the Green’s representation formula,

w =)= [ it R ) - ROV (62)
where R, is the regular part of the Green’s function of A2 in By (0) with Navier boundary
condition.

Note that

1

. z
) = R4(0, )| f(2)|dz < C—-
R R Br(0)

<y>"|f(z)|dz

=S

Y

=S

|
Br(0)
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<C<y>"

So we only need to consider the first term on the right hand side of (5.2). To this end, we

decompose

z
/ log 12 / / / ) log i f(2)dz
Ba(o) 1Y — pl<ill Jip<ld<ely Jlaz2 1Y~ 2]

The last integral can be controlled by

[ e seaison [ Wpeieso<y s
|z/>2]y| ‘?J 2| |z|>2]y| |2|

For the first integral, we have

1
ly—z| > |y| —[2| > §|y| > |2
| log f(2)dz| < / log 2= %
el<iyl Y — 2] l2l< i 2|
<C<y>"

<z>"*dz

It remains to compute the last integral

z 3 o
/ log d f(z)dz = |y|4/ log 2 f(lylz)dz
ly|<|z[<2]y| 1 ley — 2

ly — 2| 1<|z<2 Z|
< |y|4/ | log 12 | <y >"Tt<z>"dz
1<)z<2 e — Z|
< C<y>"
O
Let us go back to the equation for 7:
Afj=e"(e" = 1)+ O(e; <y >"°) in By (0)
Ek,]'
= 0(1), M7= 0(&,;) on 0B, (0).
Sk,]‘
Let 7x,; = 7k,;X- Then we have 7 ; satisfies
2.4 U(em” —1). 6\ - . .
A Nk, = € 77’]]9,‘7 + O(ij <y> ) m B&_O(O), Nk,j = Ank,J =0 on 8Bs_0(0)
Mk,j ki i (5.3)
We claim that
|| <y >77 ﬁkJ”Loo(B s (0) < Cez,j. (54)

Eekj

Estimate C follows from (5.4).
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—T —T A 7] — ﬁk"
Suppose not. Then €5l <y >7" fijllzs 5, (@) = +00. Let iy = pmmmg 00

2€p, 5
k,j 26,5

Then 7, ; satisfies

Mg — 1
Azﬁk,j = GU(e,vi)ﬁk’j + 0(< Yy >T_4) in Bi (0), ﬁk,j = Aﬁk,j =0 on 8BL (0)
Nk,j €k.j €k,j
where ﬁk’J(O) =0.
We claim that 7; ; — 0 in CL(R?*). In fact, by standard elliptic regularity theory, 7 ; — 7o,

loc

where 7, satisfies
Ao = Vo, m0(0) = Vi (0) = 0, [no(y)| < C <y >7. (5.5)

By Lemma 2.6, g = Z;:o c;1; for some constants c¢j, 7 = 0,1, ..., 4. Using the assumption
10(0) = Vn(0) = 0, we deduce that ¢; = 0 and hence 7y = 0.
So 7x; — 0 in C} (R*). Now we consider

loc

L oplem™i —1) . s
| <y>* €U(777_)77k,j||L°°(B_5L(0)) <Cll<y>"T<y > mgllies 5 ) = o(1).

k,j k,j €k,j

By Lemma 5.1, we conclude

o5 ) < Cll <y > e (™ — Vi illem s ) +o(1) = o(1)

2Ek,j Zek’]‘

| <y >7" iy

which contradicts to the assumption that || <y >77 M|z , ©) =1

Zek,j

Appendix A: Proof of Lemma 2.1

In this appendix, we prove Lemma 2.1. We follow the ideas in Section 2 of our previous
paper [16].
Let u; be a sequence of solutions of
A?up = pph(x)e* , in  Om
ur = 0 ondf,

and uy blows up at {qi,...,¢,}, where py = T h(o)e% hf£)euk — 0.
Q
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In our previous paper [16], we have shown that uy — P(z) in C*(Q\{p1, .., Pm}). It is not
difficult to show that

lim P(z) = lim (—AP(z)) = 400,j =1,....,m

Z—pj T—=pj
Claim. p;€Qforj=1,2,...,m.
We prove it by contradiction. Assume p; =0 € 992 and e; = (1,0, ...,0) is the outernormal
of 0L at zero. (See Figure 2.1 in [16].)
LetN = B(0,7) N2 and ¢ be a solution of

A%2p =0 in Q,

Ap < 0and ¢ > 0in €,
=0 on B(0,r)N 0%Q,
Ap =0 on B(0,r)N o

We now choose C' is a large number so that
he®?®) is decreasing in z; for z € N.
N can be chosen so small such that
P(z) —Cyp(z) >0 and AP(z) — CAp(z) <0
for z € ON. Therefore by the maximum principle, for large &,
up — Co(x) >0 and Aug(z) — CAp(z) <0
for x € ON N Q. Set wy, = up — Cp(x). Then

Awy = py(he?)e¥ in N
wyp = Awg, =0 for x € 02N N.

Then we can use the local version of the moving planes as before to show wy(x) is decreasing

in x1, which yields a contradiction to the assumption 0 is a blowup point. O

Appendix B: Proof of Lemma 2.6
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In this section, we prove the nondegeneracy Lemma 2.6
Let U = log(lf“w be a solution of A?u = e*. In this section, we study the following

eigenvalue problem
Alp=e"¢, |9/ <C <y>T (5.6)

for some 7 € (0,1).

Since 1;,j = 0,...,4 satisfies (5.6), we may assume that ¢ satisfies [, e";¢p = 0,5 =
0,1,...,4. Our goal is then to show that ¢ = 0.

Let ¢ = 1= [ga log 25re¥ ¢dz. Then we have A?(¢—go) = 0. Since |do(y)| < C'log(2+]y)),

ly—z|

we have ¢ — ¢y = C. Thus,

1 1,
o) = - [ Jor oz +C (5.7

We first prove

Lemma 5.2. Let ¢ satisfy (5.6). Then |¢p| < C and there holds

/ qus:o,/ eV1hip=0,7=0,1,...4. (5.8)
RA RA
Proof: From (5.7), we see that
1
o=tnlyl(y- [ ")+ 0(), for ly| > 1 (5.9)
40’3 R4
and (5.9) holds for D*¢, |a| < 3.
We decompose
¢ =o(r)+¢ (5.10)

where ¢y(r) = ﬁ Jgs ¢do. Then it is easy to see that both ¢y and ¢ satisfy (5.6). Since
U is radially symmetric, by (5.9), it is easy to see that ¢ is bounded and satisfies (5.8).

Therefore, to prove the Lemma, it is enough to assume that ¢ = ¢(r) is radially symmetric.

Now multiplying (5.6) by ¥y(r) = L-> and integrating over B, (0), we obtain

1472
B 0A¢ _ 0AY
0= /337(0) ¢0(T) or ¢(T) or

and hence for r large, we have

0Ag 0AYy ln_r
or —o(r) or o rd )

From (5.9) and (5.11), we see that necessarily, [z, e”¢ = 0. The lemma is thus proved. [

(5.11)
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Let II be the stereographic projection of the sphere S* onto R* with respect to the North
Pole. Namely,

X

Vo = (z1,...,05) € S*y; = i=1,..,4, (z) =y = (y1, -, Ya) (5.12)

1-— £U5’
For a bounded function ¢(y) defined on R?, one can define a function v on S* by (z) =
#(y),y = [I(x). Then it is easy to see that

g P(o)do = 5 d(y)e’dy (5.13)

[ @)= [ (aop (5.14)

R4
where P, = (—A)(—A + 2) is the Paneitz operator on S*.
Transforming the identities (5.8) to v, we have that ¢ satisfies

Ydo = | Yxido=0,i=1,...,5 (5.15)
54 54
Note that the operator —Agn is known to have eigenvalues A; with multiplicity n; and eigen-
functions u; as follows:
A =0,n0=1uy=1,
M=nm=n+lu,;=0,1=1,..,n+1

(n+k—2)(n+2k—-1)!
y Uk i
kl(n —1)! ’

Thus Py = (—A)(—A + 2) also has eigenvalues and eigenfunctions

)\k:k(n+k—1),nk:

po = 0,up =1,
o =24,u;, =x;,1=1,...,5
Lo > 24
From (5.6) and (5.14), we derive that
/54(IP’4¢,¢) =24 /W eVp? =24 y ido > o /54 ? (5.16)

which implies ¥ = 0 and so ¢ = 0.

This proves Lemma 2.6.
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