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ABSTRACT. We consider the following nonlinear Neumann problem

{—Au—l—uu:u%ig, u>0 in Q,

gu =, on 99,

where Q C RV is a smooth and bounded domain, ;z > 0 and n denotes the outward unit
normal vector of 02. Lin and Ni ([37]) conjectured that for p small, all solutions are
constants. We show that this conjecture is false for all dimensions in some (partially
symmetric) non-convex domains 2. Furthermore, we prove that for any fixed u , there
are infinitely many positive solutions, whose energy can be made arbitrarily large. This
seems to be a new phenomenon for elliptic problems in bounded domains.

1. INTRODUCTION

In this paper, we consider the nonlinear elliptic Neumann problem

— —ul = i
(1.1) { Au+pu—u?=0, u>0 in €,

g—z =0, on 0,
where 1 < ¢ < 400, > 0,n denotes the outward unit normal vector of 0f), and €2 is a
smooth and bounded domain in RY, N > 3.

Equation (1.1) arises in many branches of the applied science. For example, it can be
viewed as a steady-state equation for the shadow system of the Gierer-Meinhardt system
in biology pattern formation [24], [43], or for parabolic equations in chemotaxis, e.g.
Keller-Segel model [38].

When ¢ is sub-critical, i.e. ¢ < &£2, Lin, Ni and Takagi [38] proved that the only
solution, for small p, is the constant one, whereas nonconstant solutions appear for large
[38] which blow up, as p goes to infinity, at one or several points. The least energy solution
blows up at a boundary point which maximizes the mean curvature of the boundary [45],
[46]. Higher energy solutions exist which blow up at one or several points, located on the
boundary [15], [27], [34], [55], [31], in the interior of the domain [8], [14], or some of them
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on the boundary and others in the interior [29]. (A good review can be found in [43].)
In the critical case, for large u, nonconstant solutions exist [1], [54]. As in the subcritical
case the least energy solution blows up, as p goes to infinity, at a unique point which
maximizes the mean curvature of the boundary[3], [42]. Higher energy solutions have
also been exhibited, blowing up at one [2], [55], [48], [26] or several separated boundary
points[41], [37], [56], [57], [62]. For the study of interior blow-ups, we refer to [17], [20],
[49], [53] and [63]. Some priori estimates for those solutions are given in [26], [32].

As we mentioned above that in the case of small y, Lin, Ni and Takagi proved in the
subcritical case that problem (1.1) admits only the trivial solution(i.e. u = ,upfll) Based
on this, Lin and Ni [37] asked:

Lin-Ni’s Conjecture: For u small and q¢ = %, problem (1.1) admits only the constant

solution.

The above conjecture was studied by Adimurthi-Yadava [4], [5] and Budd-Knapp-
Peletier [11] in the case 2 = Bg(0) and u radial. Namely, they considered the following

problem:
(1.2) Au—,uu—!—u% =0 in Bg(0), u>0 in Bg(0),
' wisradial, 2 =0 on 0Bg(0).

The following results were proved:

Theorem A ([4], [5], [6], [11]). For u sufficiently small,
(1) if N =3 or N > 7, problem (1.2) admits only the constant solution;
(2) if N =4,5 or 6, problem (1.2) admits a nonconstant solution.

Theorem A reveals that Lin-Ni’s conjecture depends very sensitively on the dimension
N. A natural question is: what about general dimensions? The proofs of Theorem A
use radial symmetry to reduce the problem to an ODE boundary value problem. Con-
sequently, they do not carry over to general domains. In the general three-dimensional
domain case, M. Zhu [66] and Wei-Xu [65] proved:

Theorem B ([66] [65]): The conjecture is true if N = 3 (¢ = 5) and 2 is convez.

In the case of N = 5,¢ = %, Rey and Wei [52] proved that for any smooth bounded
domain €, problem(1.1) admits a solution, which blow up at K interior points for any
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K € N*,if p > 0 is small. Therefore, (1.1) has arbitrary number of solutions as u — 0.
Thus Lin-Ni’s conjecture is false in dimension five.
When N > 7, Druet, Robert and Wei [19] proved the following result:

Theorem C: Suppose that N > 7 and H(z) # 0 for all x € 0N). Assume that there ezists
C > 0 such that

(1.3) / uv < C.
Q
Then for yu small, u = constant.

The purpose of this paper is to give a negative answer to Lin-Ni’s conjecture in all
dimensions for some non-conver domain €2. More precisely, we assume that €2 is a smooth
and bounded domain {2 satisfying the following conditions:

Lety= (v',y") € B2 x RN=2 r = ||, then

(Hy) y € Q if and only if (Y1,Y2,Y3, " »—Yir---,Yn) €2, V i=3,...,N;

(Hy) (rcos@,rsinf,y") € Q o (r,0,9")€Q, VOe(0,2r);

(Hs) Let T := 00N {ys =---=yny = 0}. There exists a connected component T of

T, such that H(x) =v <0, Vz €T, where H(z) is the mean curvature of 0 at
x € 0f2.

Note that by the assumption (H,), I is a circle in the plane y3 = --- = yy = 0. Thus,
we may assume that [' = {y? + y2 = r?, y3 = --- = yy = 0}, where ry > 0 is a constant.
Note also that for z € v, H(z) = M where k;(z) are the principal curvatures and
ki(x) = ro.

For instance, the domains in Figure 1 satisfy (H;), (Hy) and (H3). Note that 2 can be
simply connected.
Another example is the annulus: 2 = {a < |z| < b} with 0 < a < b < +oc.

For normalization reason, we consider throughout the paper the equation

(1.4) —Au+/m—ozNuLt§:0, u >0 in €,
' g—z =0, on 0f2,
where ay = N(N — 2). The solutions are identical up to the multiplicative constant
N-2
(o) "7

Our main result in this paper can be stated as follows:
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Figure 1

Theorem 1.1. Suppose that N > 3 and §2 is a smooth and bounded domain satisfying
(H,), (Hz) and (H;). Let u be any fized positive number. Then problem (1.4) has infinitely

many positive solutions, whose energy can be made arbitrarily large.

We can make rq = 1 by a suitable change of variable, where r( is the radius of the circle
in (Hj).

The constant p in (1.4) is fixed. We obtain infinitely many positive solutions. This is a
new phenomenon. For subcritical problems, by a compactness result of Gidas-Spruck [21],
the energy of positive solutions remains uniformly bounded. So this kind of phenomena
can only happen for critical exponent problems. On the other hand, the existence of
infinitely many sign-changing radial solutions for another critical exponent problem with
Dirichlet boundary condition has been studied by Cerami-Solimini-Struwe [13] for N > 7.

Similar phenomenon occurs in the prescribed scalar curvature problem [64]. It is inter-
esting to compare the results in this paper and [64] with recent work of S. Brendle on the

non-compactness of Yamabe problem. Consider the Yamabe problem on S, which can
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be reduced the following problem in RY:

4(N -1 2
%Agu—Rgu—%cu% =0 in RV

where A, is the Laplace operator with respect to g, R, denotes the scalar curvature of g,

(1.5)

and the constant ¢ is the scalar curvature of the new metric u¥-2 g. R. Schoen conjectured
all solutions to (1.5) are compact. This conjecture is proved to be true in dimensions less

than 24. See [18], [33], [35], [36] and [39]. In [10], S. Brendle constructed a metric g in
3
conformally flat. Then, for this metric, there exists a sequence of positive smooth solutions

dimension N > 52, with the following properties: (i) g;; = d;; for |z| > 2, (ii) ¢ is not
up to (1.5) such that sup, <, un(z) — +00, and u, develops exactly one singularity. This
disapproves Schoen’s conjecture in dimensions N > 52. On one hand, both problems (1.5)
and (1.4) have no parameters but possess infinitely many positive solutions. The proofs
are similar: a kind of variational reduction method (we call it localized energy method) is
used. On the other hand, the solutions constructed by Brendle has a single bubble near
the origin, and the energy of the solutions remains uniformly bounded. Here we obtain
solutions with arbitrarily many bubbles, and the energy of the solutions can be arbitrarily

large.

We believe that the symmetric condition in Theorem 1.1 is technical. A more general

result, as follows, should be true.

Conjecture: Assume that mingcpq H(z) < 0 and that the set {x € 0QH(z) =
mingego H(z)} is a smooth l-dimensional sub-manifold on 02, with 1 < 1 < N — 1.

Then there are infinitely many positive solutions to (1.4).

Recently, we are able to prove that there are convex domains, such that problem (1.2)
has infinitely many solutions if N > 4. Thus, the Lin-Ni’s conjecture is false even in a
convex domain if N > 4. By the result of [66, 65], the condition N > 4 is necessary. The

energy of these solutions is unbounded as p — 0, which is consistent to the result in [19].
Acknowledgment. The second author is supported by an Earmarked Grant from RGC
of Hong Kong. The third author is partially supported by ARC.

2. OUTLINE OF PROOFS

We outline the main idea in the proof of Theorem 1.1.
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It is well-known that the functions

N2
Ura(y) = (ﬁ) ’ ,A>0, aeRY
are the only solutions to the problem
—Au:aNu%, v>0, in R.
Let us fix a positive integer
k > ko,

where kg is a large positive integer which is to be determined later.
Integral estimates (see Appendix A) suggest to make the additional a priori assumption

that A\ behaves as the following

N

kv=3 if N >4,

N

A=

>

- D3 5 klnk .
A= Lemo ke N =3

Y

where § < A < %,DQ, D3 are some positive constants in Proposition A.4, § is a small
positive constant which is to be determined later, and [y is the quantity in Proposition A.4
satisfying Gy — 1 as k — +o00.

Fixa € T' C 092. We introduce a boundary deformation which strengthens the boundary
near a. After rotation and translation of the coordinate system, we may assume that a = 0
and the inward normal to I" at a is the positive zy-axis. Denote 2’ = (z1,...,2zx5_1), and
B(a,é) = {z € RN : |z—a| < §'}. Then, we can find a constant ¢’ > 0 such that 'NB(a, ')

N-1
can be represented by the graph of a smooth function p,(z') = 1 > kiz? + O(|2'?), and
i=1

(2.1) QN B(a,d") ={(z',zn) € B(a,d) : zx > pa(z')}.

Here k;,2 = 1,..., N—1 are the principal curvatures at a. Furthermore, the average of the
principal curvatures of I at a is the mean curvature H(a) = ﬁ Zf\i Il k; = v because of
(H3). To avoid clumsy notations we drop the index a in p.

On I' N B(a, ¢'), the outward normal vector n(x) is

n(z) = !

— v/ )
NV

Let 2* = 2. Using the transformation u(y) — e~ 2 u(%), we find that (1.4) becomes

7).
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(2.2) —Au+ pe*u = ayu*L,u>0, in Q,
' g—z =0, on 0f),,
where
N-2 .
23) =k NE N >4,
' e = em Ik ip N 3

and Q. = {yley € Q}.
Define

Hy={u:w e H'(Q.),uis even in yp,h = 2,--- , N,
2my

o
u(rcosf,rsinb, y") = u(rcos(d + %),rsin(&—i— —=),y"),i=1... k-

k

and

1 20-)m 1 . 2(j—1
U= —sini(j )W,O), j=1,---,k,
€

T = (gcos — -

where 0 is the zero vector in RV—2.

We define W, ,; to be the unique solution of

—Au + peu = ayU? ! in Q.
(2.4) e Nk
o =0 on Of2,.
Let

k
W(y)=> Wi,
j=1

Theorem 1.1 is a direct consequence of the following result:

1},

Theorem 2.1. Suppose that N > 3 and §2 is a smooth and bounded domain satisfying
(Hy), (Hz) and (Hs). Then there is an integer ko > 0, such that for any integer k > ko,

(2.2) has a solution uy, of the form

up = W(y) + wr,

where wy, € Hy, and as k — 400, ||wk||r= — 0.
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We will use the techniques in the singularly perturbed elliptic problems to prove The-
orem 2.1. In all the singularly perturbed problems, some small parameters are present
either in the operator or in the nonlinearity or in the boundary condition. Here there is no
parameter. Instead, we use k, the number of the bubbles of the solutions, as the parameter
in the construction of bubble solutions for (1.4). This idea is motivated by the recent
paper [64], where infinitely many solutions to a prescribed scalar curvature problem were
constructed. The difference is that now the location of bubbles is fixed.

The main difficulty in constructing solution with k-bubbles is that we need to obtain
a better control of the error terms. Since the number of the bubbles is large, it is very
difficult to carry out the reduction procedure by using the standard norm. Noting that
the maximum norm will not be affected by the number of the bubbles, we will carry
out the reduction procedure in a space with weighted maximum norm. Similar weighted
maximum norm has been used in [41],[50]-[52], [64]. But the estimates in the reduction
procedure in this paper are much more complicated than those in [41],[50]-[52], because
the number of the bubbles is large.

3. FINITE-DIMENSIONAL REDUCTION

In this section, we perform a finite-dimensional reduction.
Let

(31) lull = sgp(i L) ),

j=1 (L+[y—z4)) =77

and

(3:2) 7. = sup (Z

J=1

)17,

1+\y—l‘g\) S

where we choose

(3.3) T=—.

For this choice of 7, we have
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k
(3.4) > _ 1 _<c N>
= e =l
Let
Y. = % 7. = —AY: + 2V = (2* _ 1)U2*—28U%’wi
AN v iTE R = Lz " HA

We consider

( k
—A¢y + pe’dpp — N(N +2)W?* 2¢p =h+c1 Y, Z;, in .,
i=1
% = ( 09
(3.5) { on ’ on 0f/,
¢k € Hsa
k
< E Zia ¢k >=0
\ =1

for some number ¢, where < u,v >= fﬂs Uv.

Let us remark that in general we should also include the translational derivatives of
W in the right hand side of (3.5). However due to the symmetry assumption ¢ € Hy,
this part of kernel automatically disappears. This is the main reason for imposing the
symmetries.

We recall the following result, whose proof is given in [52].

Lemma 3.1. Let f satisfy || f||«« < 0o and let u be the solution of
ou

—Au+pfu=f in Q. %zo on 0.

Then we have

uw) < [ O,

0. |z —y/N2

Next, we need the following lemma to carry out the reduction.

Lemma 3.2. Assume that ¢ solves (3.5) for h = hy. If | hi||+ goes to zero as k goes to
infinity, so does ||dk|«-

Proof. We argue by contradiction. Suppose that there are k — +o00, h = hy, Ay € [6,07],
and ¢y, solving (3.5) for h = hg, A = Ay, with ||hg|[«« — 0, and ||¢g||« > ¢ > 0. We may
assume that ||@x||« = 1. For simplicity, we drop the subscript k.

According to Lemma 3.1, we have



10 LIPING WANG, JUNCHENG WEI, AND SHUSEN YAN

6(y)] <C / sz*—aqs(zn dz

(3.6) 6 . :

+C o W(M(ZN + | ZZi(Z) ) dz
& Z:1

Using Lemma B.4, there is a strictly positive number # such that
‘/ éWQ*’qu(z) dz‘
e =y
k 1 k
<Cl9l] =
Qa0

le

(3.7)

1+ |y—$a\) T =2

It follows from Lemma B.3 that

. st

k

1 1
59 <Cltl. [ = S o

o (Lt [z —

k

1
<Cllnll. Y o

i (L+ |y — =)

and

‘/E WZZZ(Z) dz‘

1
(3.9) <CZ/N p— |N P dz

SCZ :

N-—2
ot (L4 Jy — )= 77
Next, we estimate c¢;. Multiplying (3.5) by Y7 and integrating, we see that c; satisfies

(3.10) Zzz,mcl (=Ap+ ped — N(N +2)W* 26, 1) — (h, Y1).
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It follows from Lemma B.2 that

k

1 1
|<h,Y1>‘ <C||A|x /RN (1+ |z — aq|)N-2 Z N2 dz

([ =)

<Cl|h] s
On the other hand,

(=A¢+pe’p — N(N +2)W* 724, Y1)
(3.11) =(—AY; + pe’V; — N(N + 2)W* 7Y, ¢)
=N(N +2)(UT *0pUs , — W> %Y1, ¢).
ATl A

By Lemmas B.1,

[6(W)| < Clig]l.

On the other hand, it follows from Lemma A.1,

Cellneg| < Ce%|lne|
Ty =) = (= a7

loaz (Y)] < (

c
1+|y—m4|
We consider the cases N > 6 first. Note that ﬁ <1 for N > 6. Using Lemmas B.2,

A.1 and A.2, we obtain

since ¢ <

‘(UQ* 200U, — W2 2Y), ¢>‘

k
<Ol | e n X ey &

i=
2*—2)

<Cll¢ll. Z| |1+(, +o()[¢ll. = o(D)|]-

(3.12)

T 1161l / (U7 210n0n| + Wil
Qe

For N = 3,4,5, we have ﬁ > 1. By Lemmas B.1, B.2, A.1 and A.2,
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‘<U2* _ZaAUl 2 W2*72Y1, ¢>‘

k
2* -3 _2
SC/Q U%,wl ZZU%,:EAYWS‘—FC/ 22 _SUJ N ‘Ylm
€ j= Qe

+ / (Ui*;flaAeoA,zl\+Ui*;j”\eoA,mllY1\+ [z
QE A )

k 1
(3.13) <C|9|« / 1+z— |)4(1 B) Z (1+ |z —z;[)N-2

j=2

k
0 [ (LU isl+ olel,
Qe :2

Z=2)v;)|g

k

k
! vt !
<OWl- | s (o Vie) ™ Lo

N—2
j=2 zl( ‘Hy_xZD R

+ o(1)[[8]l
Let

Q—{y—yy ) € Q. <|y| > cos—}
If y € ©, then

k 1 1
ZU%,% < Z ‘x —

( +|y_$1|)N 2—17—0 $1|T+0

1
1+ ly = )N 2

and

k C
Z 247 S =2
Py +|y—«’rzl) z I+ ]y —=z))2
So, we obtain

1 k k
\/(;1 (1 + |Z o $1|)(N—2)(1—ﬂ) ( A’w] Z

j=2 i=1 1+‘y_xl|) 2_2+T

I
S
—
—_
~
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IfyeQ,l>2 then

k o C
1 = ’
2V S Ty —m)v
and
i 1 C
N-2, . < N_2
i (I+ |y — i) L+ ly—m)
As a result,

k k
1
2
/Q,(1+|z—rc1 (N=2)(1=6) 2_: ) Z 1+|y—x,|) ARt

=1

1 1
<C -
- 412"’%

o (14 [z =2 JN200 1y gy )tw
C
4T 70’

N+2
|~/El p— x1| N—-2

where 6 > 0 is a fixed small constant.

Noting that for § > 0 small, 72 — 247

k k

1

1
2
e (L)
k 1

N+2
= |7y — x| 2 TN

So, we have proved

(UF 200Uy, ~ W 702,)| = o1

A%

But there is a constant ¢ > 0,

("2, Y1) =c+o(1).

i=1
Thus we obtain that

c1 = o([[[l+) + O([[~]l+)-

13
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So,

k
1

N-2
=1 (I+ly=z) 2 7+ )

(3.14) 6l < (o) + llull.c + 5

1
S S
j=1 A+ly—=z;)"z 17

Since ||@[|« = 1, we obtain from (3.14) that there is R > 0, such that

(3.15) [6W)| (=) = o >0,

for some i. But ¢(y) = ¢(y — z;) converges uniformly in any compact set of RY to a

solution u of

2*—-2
(3.16) Au+ N(N + 2)U%,0 u=0

for some A € [6,67!], and u is perpendicular to the kernel of (3.16). So, u = 0. This is a
contradiction to (3.15).
O

From Lemma 3.2, using the same argument as in the proof of Proposition 4.1 in [41],

Proposition 3.1 in [52], we can prove the following result :

Proposition 3.3. There exists kg > 0 and a constant C' > 0, independent of k, such
that for all k > ko and all h € L*(S).), problem (3.5) has a unique solution ¢ = Li(h).

Besides,
(3.17) [Le(B)|ls < Cllhllss,  [er] < CllA]-
Moreover, the map Li(h) 1s C' with respect to A.

Now, we consider

. k
AW +¢) +p2(W+¢) =an(W+¢)" ' +¢ 3 Z, inQ,,
i=1

% _ o0
(318) ¢ ;ne H’ on £

k
<> Zi, ¢ >=0.

\ =1
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We have

15

Proposition 3.4. There is an integer ko > 0, such that for each k > ko, 6 < A < 61,

where § is a fized small constant, (3.18) has a unique solution ¢, satisfying

]l < Cezte,

where o > 0 is a fized small constant. Moreover, A — ¢(A) is C*.

Rewrite (3.18) as

( k
—A¢ + ue?¢p — N(N + 2)W2**2</5 =N(@)+1lx+c1d. Z;, inQ,
i=1
9% _ on 0f)
3.19 on ’ &
I P
k
\ =1
where

N () = aN((W n ¢)2*—1 Tl (2" — 1)W2**2¢),

and

k
I = an (W?“1 = Ui*il).
ATy
j=1

In order to use the contraction mapping theorem to prove that (3.19) is uniquely solvable

in the set that ||¢||. is small, we need to estimate N(¢) and Ij.
In the following, we always assume that ||¢||. < ¢|Ine].

Lemma 3.5. We have
IN(8)[|ur < C[p]|in =12,
Proof. We have

Clo|*, N > 6;
C(W~2g2+ g2 1), N =3,4,5.

IN(¢)| s{
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Firstly, we consider N > 6. We have

k 2*—1
2*—1
<Z 1+ |y—:cj|) +)

]_1

k
Y (
= —xm

IN(@) <Cllol[:

(3.20)

_4

1 )N—2
(L4 ly —z4))7

-

<Cll¢

J=1

where we use the inequality

1 k 1

k k

P q 1 1
E CijjS(E CL;;J) (E bg) s —+—:1,aj,bj20,j:1,...,k.
j=1 j=1 b

By Lemma B.1 and (3.3), we find,

k
<C+ <C.
]Zl 1+\y—a: Z\xl—xjr
Thus,
k
N(®)| < Cllo||*~ .
IN(@®)| < Cllg2 2_: |y_$]|)¥“
For N = 4,5, similarly to the case N > 6, we have
IN(8)|
k =N k 1 2
<clol( X5 ) ( )
i (L ly — )20 S+l
k
+CllgllF
(3.21) Z +y - xJI)N2+2”
2*—1 k
<Cl|¢ 3( - ) +CllollF "
gl Z |y_%|)N22+T || Z _%DNJZH
<C .
Il Z T

Now, we discuss the case N = 3. Without loss of generality, we assume y € €2y, where

ye={y=(,y") eR xR"”: <|y| > cos—}
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Then for any small o > 3 > 0,
k

k
1
5 <
= (Ut ly —a|)t=° (1+\y—x1 ) “JZ 1+|y—%l) 7

k
1
< +
2 —wm (1+\y—x]\ A+ ly—a)-
<
_(1+\y—$1|) -
since & — eDas PRIk,
Similarly,
- C
Z 5 < —
i—2 1+|y—xg|) 7 (L+]y—m)2
Thus
C
N(o)| <9l +[19ll2
O 1ol gy s~ 1, ==
C
S||¢||z 5 yEQI
(1+ |y — )2

since o > (3 can be made as small as desired, and

C
(1+ |y — )™

6]1> < Ce?|Inef* <

Thus
IN(8)[|ur < C[o]min —12).

Next, we estimate .
Lemma 3.6. We have

||lk||** S 05%+07

where o > 0 s a fized small constant.

Proof. Recall

I
Qj:{y:(y',y")ERQXRN_Q’ <\y| > cos—}

)

17
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By the symmetry, we can assume that y € €. Then,

ly—z;| >y —x1], VyeQ.

Thus, for y € Qq,

k
Iy <
k| <C (1+|y—x1| 1ﬂj§:1+|y_x|(N21ﬁ)

(3.22) ) -
+C(§:],Hy_m )

Ma-

Let us estimate the first term of (3.22). Using Lemma B.2, we obtain

1 1
(1+ |y — 2 |)405) (1 + |y — ;[ )(NV-2(-H)
1 1 1
2 ( + )
(8.2 L+ ]y —z]) 7 (1+|y—x]-|)¥+7 |z — |- (r2)8
1 1
, j>1
(1+ ‘y—$1|) 24T |z —xl\w—T (N+2)8
Since &2 — 7 > 1, we find that for § > 0 small,
k
1 - 1ﬂ§:1 — z,|)(N-2)(1-)
(3.24) (141 “| — (1+1y M
1 21— (N+2)8 1 1
=C NEz o, (ke) = 7 = Ce>™? s
(L+ |y — )2 (1+ |y —z1]) "2

Now, we estimate the second term of (3.22).
Suppose that N > 5. Then % — N+27’ > 1. Using Lemma B.2 again, we find for
Yy € Qh
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1 1 1
<
L+ Jy — )20 = (1 4y — ) 20H) (14 [y — 2;)) 720D
< C ( 1 N 1 )
Tz — | T NET N1 4 |y — ) THNET (L4 [y —ay]) T TR
< ¢ L
oy w| TR (1 fy ) AR
<C(ke) ™ FoT NP S

(Lt [y =) T

which, gives for y € €}y
2*—1
(1+ \y — x| )N )

<C(ke) TP 1 wry, = Cetv? :
(L4 ly—a)

If N =4, by the same computation we get

M;r

J=2

k

k
C 1
<
; 1+ |y — z;])20-F) ; 2y — 23T (1 + |y — @y |)H37
Chel=57-28 Cer—357—28 0
— = y Yy € Y.
(L4 ly—za)'*57 (L |y — )57

Uty —ag P07 ) = Wy —a)or

Hence

For N = 3, noting ¢ = eDzvﬂ Eklnk , by the similar computation we can get that for
y €y,
i 1 < zk: 1 < Cez 28
= A+ ly =) 7 1+ |y —m))2 Sl — P T (L Jy—a)?
and thus

) <
= 1+ ly =l (

L+ |y — =)

Finally, we estimate the last term of (3.22). From Lemma A.1, we can check
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k k

! 3+ 1
2wy —a) e ST

Nf2_ . °
j=1 j=1 (T+fy—z)) =7

Combining all the above estimates, we obtain the result.

Now, we are ready to prove Proposition 3.4.

Proof of Proposition 3.4. Let us recall that

N-—2 D3 .
e=kvs, fN>4; ¢=eDn 0k if N =3

Let

k
Ex ={u:ue ), |ul. < e%,/ > Zig =0}
Q

¢ =1

if N > 4. and

k
11
Ey={u:ueC(),|ul. <ezln E’/Q zZiqﬁ =0.}

e i=1

Then, (3.19) is equivalent to

¢ = A(¢) =: L(N(¢)) + L(l).

Now we prove that A is a contraction map from Ey to Ey. Using Lemma 3.5, we have

[4¢]ls < CIIN(@)llex + Clllkllae < CllBIE 12 + Oy
(3.25) <Ce2™m =12 4 Okl ws
<Cet? + C||lg || sa-
Thus, by Lemma 3.6, we find that A maps Fy to Ey.
Next, we show that A is a contraction map.
1A@1) — A2l = ILN(81) = LIN(@2))]le < CIIN(S1) — N(@2)]]oe
If N > 6, then

2% -2

INY(6)] < Clt
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As a result, we have

IN(¢1) — N(¢2)| < C(Wl 724 gy 2*72)\¢1 — 9|
: . . 1 21
C 2% 2 29 — bl _ _
(61272 + gl =) 61 — el (Z T ijT+7)
As in the proof of Lemma 3.5, we have
k 1 2*_1 k
(jzl (1+ |y—mj|>¥+f) Z 1+ |y—x]|>
So,
| A(¢1) — A(¢2)|l« < ClIN($1) — N(¢2)]|u
« . 1
<C(IllZ =% + g2l =) 161 — ool < llér = ool

Thus, A is a contraction map if N > 6.
If N =3,4,5, then

IN'()] < C(WF=32|¢| + |

Hence, similar to the proof of Lemma 3.5, we have

2*—2)

[N (¢1) — N(¢2)|

<C(W=2 (|¢1| + |2]) + |d1[* 72 + |

77261~ 6|
6N b 1 2
<C(I6all + 162l = 6all. W= (3 )
j=

—1 1+|y—xj
CQlE =+ a7~ 61 - gul (3 1 )
" " j=1 (I+ly— xj|)T_+T
k
1
(o1l + 16201161 — .
(6]l + el = 45 Z +ly =) F

So,

14(61) — ABI. < CIN () ~ (o).
<C (6l + 16211) 61 = dall < 5161 = al.
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Thus, we have proved that A is a contraction map.
It follows from the contraction mapping theorem that there is a unique ¢ € Ey, such
that

¢ = A(9).
Moreover, it follows from (3.25) that

Il < Ce3* + Ol

So, the estimate for ||¢||. follows from Lemma 3.6.

4. PROOF OF THEOREM 2.1

Let

F(A) =I(W +¢),

where ¢ is the function obtained in Proposition 3.4, and let

N —2)?
GEPE
2 .
Using the symmetry, we can check that if A is a critical point of F'(A), then W + ¢ is
a solution of (1.4).

2%

M@=§/Umﬁ+w%%—

€

Proposition 4.1. For N > 4, we have

F(A) = k((Ag — AyyAe — A, AN % + o(e)),

where the constant A; > 0,7 = 0,1,2 are positive constants, which are given in Proposi-
tion A.3.
For N = 3, we have

1
F(A) = k(D1 — Dyyehln— — Dyshklnk + 0(5)),

where the constants D;,1 = 1, 2,3 are strictly positive numbers, which are given in Propo-
sition A.4.
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Proof. There is t € (0, 1), such that

F(A) =I(W)+{I'(W),¢) + 1DQI(W +19) (6, )
/ zk¢+/ (DG + 22 — N(N +2)(W +t6)

2*—2

¢?)
=I(W) — (N+2)/Q ((W+t<;s)2‘2 WQ*‘Q ¢ +/ N(¢
—107) =NV +2) [ (70w =)o [ \N(¢)\\¢I)-

€

But

| @

<CIIN@)|I-.lI9- / 5

o O 1

k

1
PR

Tty -z

Using Lemma B.2, we find that if N > 4,

k

1+|y—xz\) T24T

I

J

k
1(1+|?J—$J‘ i=1
k

1 1
(HIy—x\N”T ZZ (1+y— )T+ (1+\y—xi|)¥+f
k

1+|y—:vj| N+ TS |xz—x1|27

1
@+ Jy — o)V

- 1
M?r

,_.

Jj=

k
<C)

j=1

1+y—=; |)N+%T'

Thus, we obtain that for N > 4,

/Q IN@)][9] < CEIN@)IL..lI8ll. < ChlI4|% < Che*.

23
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Now we consider the case N = 3. In this case, 7 = 0. Let n > 0 be a small constant.
Then it holds

k k 1 1

Thus,

1
/Q IN(¢)|l¢| < C(kIn =T K2)[IN(0)]].x ]l
gC(klné + k%) ||9]12 < Cke't7.

Thus, we obtain

F(A) =I(W))— N(N +2) / ((W e WQ*‘Q) ¢* + 0 ().

=

Now

22 N > 6;

=2 yor-2 _ O(|q5
(W+19) W _{O(W%|¢|+\¢2*‘2), N = 3,4,5.

Thus, we have

‘—N(N +9) / ((W +1¢)” 7 - W2*—2)¢2

€

2*

2 z )
N-2 )

1+|y—x9|) 7 17

E ] 1

<Cll¢l}

if N >6. If N =3,4,5, noting that N — 2 > ¥=2 4+ 7 we obtain
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‘—N(N+2)/Q (7 +t0)" " = w2 2)2

k

* 1 g
<ol | ()

Q. V5o

Suppose that N > 4. Let > 0 small. Using Lemma B.2, if y € €0y, then

<C [ wvs|gp

Qe

1
(L +ly—a )=

M;r

J

= |l

< 1 1 -
j= 3 (1+ |y —m1) 4+T(1—|—|y—:r]\) +37
k
¢ 1 N-2 I*Z . — < Ce” ! 51
(Lt ly = 2a])72727 525 oy — 72 L+ |y —z])7 +37
As a result,
(Zk: 1 )2* Q*ﬁ 1 X0
* ? y 1
o L+ ly—al) = (14 |y — o, |)N+2"37

So, we have proved that for N >4,

|-V +2) /Q (W +t0)" " — w2 2) g2

P72 < Chelte

<Chke™%"
For N = 3, we have

<clele [ E(i )

7j=1

k

k 6 1

<C ) 2/ - ) < Ck'In=||¢|]® < Cke'te.
S0 |, (i —apt) 2

‘—15/ ((W +16)* - W4)¢2

€

N

1+\y—$gl)
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So, we have proved

Proof of Theorem 2.1: We just need to prove that F'(A) has a critical point.

For N > 4 | since v < 0, the function

—Al’)/A — AzAN_2

1
N
_Alr)/

has a maximum point at Ay = A(N-2)

interior of [6,67!] if § > 0 is small. As a result, F/(A) has a critical point in [§, 5.

Suppose N = 3. Then

_ 1
F(A) := —DyyeAln A DseABkInk + O(eA)

:8(—D27A In % + O(A)).

Since

1
—DyyAln At O(A) - —o0, as A — +oo.

and

1
—DyyAln 1t O(A) > A, asA— 40,

-3
. Thus, F(A) attains its maximum in the

we see that F'(A) has a maximum point in (6,671), if § > 0 is small. As a result, F/(A)

has a critical point in [d,67!].

APPENDIX A. ENERGY EXPANSION

In all of the appendixes, we always assume that

x]:(gcos k ,gsi k ,0), j=1,
where 0 is the zero vector in RV 2 and
N—2 D3 g kink

e=k v3, if N>4 ec=eDP» , if N =3.

g
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In this section, we will estimate the energy of W. Recall that

2%
7

1 o
1) =5 [ (0DuP + ) = 5 [ Ju
Qe

€

Ui (y): —2
Y (1+ 2 ly— 2%

and
k
W(y) =Y Waa(y),
j=1
where W) ;. is the solution of (2.4).

Let

(A1) Onz;(Y) =Us 4 (y) = Wag, (y)-

ATi

Then, DAz satisfies

(A.2)

{_AQDA,Q;J- + MEQ(pA,.’L‘j = /'1/62U%,1'j (y), in Qg,

OPA e o
L —
5 = B U%,zj, on 0f€),.

We need to estimate pp z;. Write pp o, = @1 + @2, where ; is the solution of

(A.3)

a(pA,ac .

—Apy + pep = ,uz-:QU%,zj (y), in €,
TJ = 0, on 8(25,

and ¢y is the solution of

— Ay + pe’p; =0, inQ,,
A4
(4-4) {%:BQUIE., on 992,
n mn A

Using Lemma 3.1, we find

27
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il <ce [ A=
y)| < Ce / —A——dz
o 0. |y —=[V2
1
SC’sz/ dz
(A.5) o L+ [z =)V 2y — 2|V =2
Ce? .
W: N Z 57
<4 Ce?lni, N =4,
Ce, N = 3.

Next, we estimate ;. Let A = =, &; = ez, and @2(y) = 5’¥g02(§y). Then

(A.6)

OU 5.
% ==t on 0.

{_AQEQ + pupe =0, in Q:

Let G(z,y) be the Green function of —A+ I in 2 with the Neumann boundary condition.
We have

N GU,\,@.(Z)
Ga(y) = BQG(%?J)TUZZ
8U)\j,(2) OUM(z)
= G(z,y ’7jdz+/ G(z,y)—L1—dz
(A.7) /amB%(fcj) (=) on OM\B (Z;) =0 on
OUxz,(2)

Gz,y7d2+06¥.
/aQnt(;ij) (=) on ( )

If y ¢ Bs(Z;), then |G(z,y)| < C for all z € By (Z;), which, together with (A.7), give

48w =0T [ ) 20CT), v B

z — fﬁ'j‘N72

Thus, it remains to estimate @o(y) for y € By(Z;).
Let K(|z —y|) and H(z,y) be the singular part and the regular part of G(z,y) respec-
tively. For y € B;s(Z;), we have

H(zy) = —K (|2 —g))(1+ O(d)),
where 7 is the reflection point of y with respect to 92, and d = d(y, 092). It is easy to see
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d(y,00) < Cly —z;| ify € Bs(z;).
Noting that

O, (2) (N =2)A" X(z — #),n)

on (1+ X2z —,[2)~

Y

we find

0U, 3,
[ aen™ay,
6QQB%(.i'j) n
(N —=2)e"Yz —zj,n)

v 1 /
=—¢£?—F G(ez,y)
2 09:NB 4 (x;) (1+ %|z—xj|2)%

If N > 4, noting that

(A.9)

d < Cly— ;| = Cele™'y — =y,
we can check (see also [51]) that

(A.10)

OUy ;.
/ Gz, y)—2= ) g,
3903% (ij) an

_ 1 1 N =23V k22
:—(Ag)_N24/ ( + 1=1 ZZ dZ
RN—

—Ty_z. o w—— N
Ul SN2, li/\_zJ|N72 2 (1+]22)2

+ (Ag)—¥o((d+e)/R L L L

N-1 |z — 76_1‘11’\_‘”" N=2 - €‘li—$a’ N2 (14 |2|

N—-4

=(Ae)~"" (s

ey — £
O )

2 dz)

29

where z is the reflection point of z with respect to zxy = 0, and g solving the following

linear problem

—Apy =0, o in RY ={(z/,zn),zn > 0},
(A.11) e — —%%z‘;z on ORY,
@o(z) =0, as |z| = +oo.

So, we obtain from (A.7), (A.8) and (A.10),
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62

1+ |y — 2 )V

(A.12) wa(y) =2 Paley) =€ATSD0(y_$j)+O(

N-2
i +eV72).

Combining (A.5) and (A.12), we obtain

g?[Ing|™

A13 o) =eA T (=) 10
( ) @A,J(y) € ool )+ ((1+|y_$j|)N74

A
withm =1for N=4,m =0 for N > 5.
Now we study the case N = 3. In this case, (A.10) becomes

+e¥?), N>4

Y

(A.14)
OUy .
/ G(z’y)'\’if(z)dz
69NB, (3;) on
; 1 1+0(ly — 2;])\1 322, ki2?
=—(A6)5(/ (— gt y = %)y 1 2o B dz + O(e|Inel)).
BB, (0) |2 — 2| g vy T2 (14 ]e)?

So, we obtain

(A.15) . L 14c0(y— )1 S kizf

wns,y © 12— L) 2(1+ [2)}

dz 4+ O(£?| Inel).

-

Denote y* = =% and d* = 7|y*|, for some large L > 0. Then

1 1 152 k22
/ ) 2121 Zz dZ
Bd*

+ )=
o 2=yl 2=y 17214 |22)"

and

1 1 152 k22
Bty 12—V 2=y 2 (14 |2)2)2

Suppose that z € Bs (0) \ (Ba+(0) U By (y*)). Then,
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11 |y*|
o)
and
1 |y
— =—(14+0
o o))
But

_ 1 _ C
(™ =+ [y) / s < (W ) < C
B 5 (0\(Bas (0)UBg v)) (1 12])? 1+ dr

%
So, we find

1 1+e0(ly*) 1 32, k;22
/ 4 +e (_EU D)_ Dis1 Zzs d
B 5 (0)\(Bg= (0)UB g« (y*)) |z —y| |z — y*| 2(1+ 222

5
D¢
/ 1+e0(ly*]) S0, kiz?
3
B 5 (0\(Bas (0)UBg (u)) 2l (14 [22)3

N
2e

dz +0(1)

=AvIn

1
) =Ayln——+ 0O(1),

. +O(1+6|y*|ln . .
ely*| ely*| ely*|

where A > 0 is a constant. Here we have used ¢|y*| < C. Thus, we have proved that

1 1
(A.16) One; () = p2(y) + O(e) = —eA? Ayln el T O(e), N=3.
e—A’

Combining (A.13) and (A.16), we obtain

Lemma A.1. We have

- :rj) ( g?|Ing|™
A (14 y =z )V
with m =1 for N =4,m =0 for N > 5, where g is the solution of (A.11), while

4-N
PAz; (y) = EAT(PO(y + 5N_2)7 N >4,

1
ra; (V) = P2(y) + O() = —eA?Ayln -— + O(¢), N =3,
ET

for some constant A > 0.

As a direct consequence of Lemma A.1, we have

31
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Lemma A.2. There is a constant C > 0, such that

CE|1I1€‘ N > 4.
A7 g | < § T=mp= 2%
( ) O | < {Cs|lns|, N = 3.

Moreover, for any fized small 3 > 0, there is a constant C' > 0, depending on (3, such
that

‘WAywj| S C,Ui_f.a |6AW)\,$j| S Cl 1_f
A

x0T
Proof. Differentiating (A.2) with respect to A, we can repeat the same estimates as in
Lemma A.1 to obtain (A.17).

On the other hand, noting that ¢ <

Lemma A.1.

— ¢ the other two estimates follow from
1+/y—zj]

O

The following estimate is well known, whose calculations are quite standard (see [51])

AT

(A.18) aN/ UT = Ay — AiyAe + O('),

where A, and A; are some positive constants, and o > 0 is a small constant.

Using Lemma A.1, we find

y—;]|

* * 1
aN/ UL one = —aN/ UY ~'eA? AyIn —=7 T 0)
Q. A7) QE A7) e n

(A.19) .
=— flgfyAslng +0(), N =3,

for some As > 0. As a result,

2, 2 1172
/ (|DWA,wj| +e€ N’WA,:(:])
(A.20) : 1
zaN/ Ui*x, — aN/ U%*_.lgaA,wj = Ay + AsyAe lng +0(), N =3,
Qe Qe

Arg K,.CCJ

and
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]. 2* o* 2*—2 2
(A.21) :gaN /S;a U%;ﬂ?j - O'/N/Q UA,zc 2" O(/Sv25 U%awj (PA@J‘)

1 - - 1
:2—A0 + AsyAeln- 4+ O(e), N =3.
* €

Similarly, we can prove by using Lemma A.1 that

(A.22) / Us org, = —AgyAe + O(e'17), N >4,
Q.

ATi

for some As > 0,

(A.23) / ([DWh g, + 52NW1%,$]-) = Ag+ (45 — 41)yAe + O(e'17), N >4,

and

1 - - 1 -
(A.24) —aN/ Ax, = §Ao + (A5 — ;Al)fyAs +0(e9), N >4,

The readers can refer to [51] for details for the cases N > 4.
Next, we discuss the interaction between bubbles.
Define A = 2 and z; = ex;, j =1,--- , k. Then, we have for i # j,

B AN72 1
2*—1 _ 1
(A.25) OéN/Q Ui UA,a:] = B2 _-Tj|N72 +O(‘xi _$j|N2+a>’

A »Tq

where By > 0 is a constant, and ¢ > 0 is a fixed small constant.

On the other hand, using Lemma A.1

(A.26) aN/ U%*—}@}“mj:O(slnﬁ> :O(I‘%)’ N=3 i#j

33
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As a result,
[ (DWaeDWas, + Wi Wi,
(A.27) =ay / UL o Uty — o / U o #La,
BlA 1 5%
_BA o f ) Nes
|z — ] T — M7 gy — )
For N > 4, using
C
oW < T N3
Wl < gy
we also have
21 _ € R
(A.QS) O!N/S_;E U%,-’Eq, (p%”:c] _O(‘xz—[]‘/“7|N3), N24, Z#]’
and
/ (DWA,;EiDWA,wj + 82/”’WA,ZE,' WA,Z‘j)
(A.29) :

BiA —1—0( 1 n € )’ N >4

BT |zi — ;[N oy — VR

We are now ready to compute the energy I(W).

Proposition A.3. For N > 4, we have

IW) =k <A0 — AjAye — ANV 2 4 0(6)) :

where A;, 1 =0,1,2, is some positive constant, and 7 is the mean curvature of 02 along
r.

Proof. By using the symmetry, (A.23) and (A.29), we have
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%/ (|IDW|? + pe*Ww?)
k
1
:k(§/ (|DWA7$1|2 + 'LL82W/%:$1) + Z/ (DWAaleWAaxj + N82WA5$1 WA}"‘”J’))
Q. i

&

(A30)
:k§ (AO + (A3 — A1)yAs + o(e)
k
BIAN72 e 1
- - O '
+ Z(‘xl — gcj|N—2 + (‘371 _ :L'j‘N_?’ + 71 — $j|N—2+a))>
j=2
Let y . )
! 1
;= {y: (v, y") € Qe <m,w> ZCOSE}.
We have
aN . CMNk W2*
2*

k
o« k _
al (/ AJ,‘l + 2*/ Az11WA T +O / /%.’ElZ ZWA,LEi)2))-
2 M = i=2

It is easy to check

1
—OZN/ A:v1 = O{N/ A$1 NkN In —)
1931 € €
—Ao + (45 - —A1)7A5 + O(e'?),

and

« 1
W2 Wy = — O( )
aN /Ql A,z Azx; |-Tz _ .Z'j|N_2 + |$z _ .’Ej|N_2+U

Thus, we obtain

k N-2
=k A A A )vA
2 QEW ( ot 2 % 5+§;| i — x|V 2
(A.31) -
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Here, we have used

|WA,$J.| S C‘]n6|U%’

Zj?

which can be obtained directly from Lemma A.1.
Note that for y € Qi, |y — ;| > 3|z; — x1]. Thus

k k 1 1

As a result,

2% 9 2 _ N-17.N—-1
/QE Ut (; Us,)’ =0 kN,
which, together with (A.31), gives
k N—2
ay 9% 1 - - 1 - BlA 1
A32) X w = k(A + (A - A yA )
( ) 9* /Qs 9 0+( 3 9 1)7 8+;‘$Z—a)j|1\’—2+0(6 )

Combining (A.30) and (A.32), we are led to
1 g BAN-2 s
(A.33) (W) = k(AO — AryAe - 3 Z 4 0(e )),

where Ay and A; are some positive constants.

Since

2(j — 1)m

xj — 1| = 2|z1] sin

we have
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k k
> - T e
|x] - x1|N 2 2z )N2 ‘= (sin (Jfkl)”)N—2

1 . . .
_ 2‘1‘1| 9 NN-2 Z] =2 (sm (j— 1)7r) + (2|.’1}1|)N—27 lf k 1S even,

W Z] =2 m, if k is old.

But
- (G-
P ST o ok
O<e<—TfG ¢ J=2 ’[2]-

k
So, there is a constant B, > 0, such that

Z 7 —xl\N 5 = B4(5k)N_2+O(6N_2k).
J

Using € = k™ V-3, we obtain
I(W) = k(Ag — AiyAe — ALAN e + 0(e)),

where Ay, A1 and A, are some positive constants.

O
For the case N = 3, we have

Proposition A.4. For N = 3, we have

(W) =k (D1 — DyyeAln Aig — DyeABikInk + O(s)),
where D;, 1 = 1,2, 3, is some positive constant, and B, — 1 as k — +o0.
Proof. Similar to the proof of Proposition A.3, we find

k

(W) = /{,‘(Dl DyyedIn Z |% - m (a)),

where D;, Dy and D are some positive constant. Notlng that |z; — x| = Zsin @, and

Dlﬂ:

<

(co+0(1)) Ink,
j=2
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we obtain

" DA
=2 |zj — 21

— DyeABikInk,

where G, — 1 as k — oo. Thus, the result follows.

APPENDIX B. BASIC ESTIMATES

Firstly, we prove that W < C', where C' > 0 is a constant, independent of k. We have

a more general result.
Lemma B.1. For any a > 0,
k

k
1
2 e (S )

=1

where C >0 is a const(mt, independent of k.

Proof. Define

'
0. = — I’ " €R2 XRN_2: y_’& > z .
i =1y =9y") <\y’| ‘x]‘> _cosk}

Without loss of generality, we assume y € €);. Then,

|y—$]|2|y—$1|, vyEQI-
If [y — 1] < gz — 2y,

1
|y—$j|Z|$j—3?1|—|y—331|25|$1—$j-

But if |y — z1| > 1|z1 — 7],

1
|y—xj‘ > ‘y_-rl‘ > §|$1—xj|, Yy € Q.
Thus,
1 -
‘y_$j|2§‘$1—l‘j‘, Vyey, j=2,--- k.

Hence,
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1
7 (L4 |y — )

M;r

1
e §C+
1+ |y — ;1)

k
]=

1 Jj=

b 1
§0(1+z;m>.

j:

For each fixed 7 and j, ¢ # j, consider the following function

1 1
L+ ly — 2> (1 + |y — zi))?’
where a > 1 and 8 > 1 are two constants. The following two lemmas can be found in

Appendix B in [64].

(B.1) 9i5(y) =

Lemma B.2. For any constant 0 < o < min(«, ), there is a constant C > 0, such that

C 1 1
() < ( + )
9(v) < i — 5|7 \(L+ [y — i)t (14 |y — zy|)>HFe

Lemma B.3. For any constant 0 < 0 < N — 2, there is a constant C' > 0, such that

/ 1 1 .. C
4 T -
Ry [y = 2[V72 (L4 [2)2H 7 (L +[y))e

Let us recall that
=k NG if N>4, e=enfknE g N3

Lemma B.4. Suppose that T = N—:g Then there is a small @ > 0, such that

k
1
- d
/]RN PEr Lk Z |)¥+T :

= 1+|z—x]

=

k

k
= 1+\y—a:\) T Fl 1+\y—x]\)

where o(1) — 0 as k — +oo0.
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Proof. Firstly, we consider N > 6. Then +*5 < 1. Thus

4 1
W _2(z)<z(1+|z—x\)

=1

where 3 > 0 can be chosen as any small fixed constant. So, we obtain

1 k
/RN‘y_Z‘NQ Z v 4z

7j=1 +|Z_$J|) 7 tT

1
< d
Z/N |y—z|N (1 + |z — a4 pr 2, 4%

1 1
+ — dz.
ZZ/N T A T e

J=1 i#j

By Lemma B.3, if # > 0 is so small that % +74+60 <N —2, then

/ 1 1 J
; z
rY Y — 2N 72 (1 4 |z — ] )20 AT

1 1 C
< N3 ~ dz < o
e e Y (1+ |y —a;)) 7
On the other hand, it follows from Lemmas B.2 and B.3 that for 7 # 7,

1 1 1
——dz
/RN ly =2V (14 |2 = z)' 0P (1 4 |z — o) 27 F7
C 1 1 1

< ( o+ _
|zi — 2 Jow [y — 2NN (L |z — )2 (4 |z —zy))2 T

< C ( 1 n 1 )
Tl s PN Ay - ) T (1 - )T
Noting that

Z | |2 5 = C(ek)*™ 4'32 < C(ek)*™ = o(1),
i — T

J#i
we obtain
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O e ! Lo
e e ly = AV (U4 |z = @)D (14 |2 — )T
k

—o(1)Y !

N—2 N
= 4+ |y—z)) = 17

Suppose now that N = 5. Recall that ¢ = k=3 and

Q—{y—yy)EQ <|/| |> cos%}

For z € O, we have |z — x| > |z — 2;]. Using Lemma B.2, we obtain

3
s 1+\z—ac1\ )2 o 1+\z—x]\)
k
C 1 C
L3ﬁz 2 <
(I+lz—2)s T oy — s (1+[z—x)
since
k 1 k1
> 7 < C(ek)s Y — = O(e3k) = O(1)
=2 |7 — 3 j=2J?
Thus,
4 C C 3 C
W3(z <( + ) < 3 .
O e e S Ui

As a result, for z € 0, using Lemma B.2 again, we find that for # > 0 small,

WIJB

k
]:1 1+‘Z_x.7|) +

k

_(1+|z—:c1|)2*98+%+7—4ﬁ (1+|z—:1c1 2+ +T+0] ‘xj_xl‘ﬂ—a 43
o
—(1+|z_l.1|)2+§+r+0'

So, we obtain

41
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k
1 4 1
—Ws3(z dz
[21 |y—z|3 ( )Z(].‘F‘Z—LEJD%_H—
<

1 C C
- 3 243 0dz§ 34746’
o [V =23 (1 + |z — aq])2F2t7t (1+ |y —aq])2tF

which gives

k
dz
/Qsly—Z\?’ Z 1+|Z—frg|)+

j=1

1 P 1
ZZ/Q,i\y—zPW (z);( —dz

1+ |Z—.’13j‘)2+

< .
Z 1—|—|y—x\ 34740

Suppose that N = 4. In this case, ¢ = k2. We have that for z € Oy,

k
<
1“2_5” 29 (1 +\Z—$1\ %‘”;I%—m

-

Ce2k < C
Tl le—m)) P T (L[ —m[)2

and thus,

1

N
~
M-

k
<
j=1 (L4 [z =)t (1+\2—331 )3 4[572:; 1+|z—x\1+7

- (1 + |Z — x1|)4+774ﬂ (1 + |Z _ xl‘)2+1+7+——45 =
C

RIS

|x1—a:]\2

which gives
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k
d
/QE\ZJ—ZP Zl—|—|z—x|)1+7 <

7j=1
k

22 1 V4
Z/,|y—zl2 &L Ty !

< .
Z TR

For N = 3,z € Qy, since k"A\~* = o(1) for any n > 0 and o > 0 as k — 400, we have
fora> g >0,

b 1
<C
]X: 1+\z—x]|)1 B= (14 |z — x|t

and

) T
r11+k—%D+ (L |2 — @y )?Fatrie—se

which gives

1L 1
[RE=LAC)S e &
k 1
_Z/ ‘y—z| Z)Z I dz
SZ( ¢

1+ |y — anZ,|)%+T—5a+2'
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