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Abstract

We consider the boundary value problem ∆u + |x|2αup = 0, α > 0, in the
unit ball B with homogeneous Dirichlet boundary condition and p a large
exponent. We find a condition which ensures the existence of a positive
solution up concentrating outside the origin at k symmetric points as p
goes to +∞. The same techniques lead also to a more general result on
general domains. In particular, we have that concentration at the origin
is always possible, provided α /∈ IN .
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1 Introduction and statement of main results

In this paper, we consider the following so-called Hénon equation ([17]) ∆u+ |x|2αup = 0 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)
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where α > 0, Ω is a bounded domain in IRN (N ≥ 2) containing the origin, and
p > 1.

Problem (1.1) has attracted a lot of studies in recent years. In [19], Ni showed
the existence of a radially symmetric solution when p < N+2+2α

N−2−2α for N ≥ 3 and
Ω = B1(0). When Ω = B1(0) ⊂ IR2, numerical computations by Chen, Ni and
Zhou [9] suggest that for some parameters (α, p), the ground state solutions are
nonradial. This was partially confirmed recently by Smets, Su and William in
[24], in which it was proved that for each 2 < p+1 < 2∗(= 2N

N−2 if N ≥ 3;= +∞
if N = 2), there exists α∗ such that for α > α∗ the ground states are nonradial.
They also showed that for fixed α, the ground state solution must be radial if p is
close to 1. WhenN ≥ 2, the asymptotic behavior of (radial or nonradial) ground
state solutions as α → +∞ is studied by Byeon and Wang in [3, 4], in which
they proved that the ground state solution develop boundary concentrations.
In another direction, when N ≥ 3, α is fixed, Ω = B1, and p + 1 → 2N

N−2 , Cao
and Peng [5] showed that the ground state solution develops a boundary bubble
(hence must be nonradial). In [6] and [20], multiple boundary concentrations
have been constructed when N ≥ 3,Ω = B1 and p→ N+2

N−2 .

In this paper, we consider the problem (1.1) when N = 2 and p is large, i.e.,
the following boundary value problem: ∆u+ |x|2αup = 0 in B,

u > 0 in B,
u = 0 on ∂B,

(1.2)

where α > 0, B = B(0, 1) is the unit ball in IR2 and p is a large exponent.
Unlike [5], as p → +∞, there are no boundary concentration solutions. The
proof of this fact follows from the same proof of Proposition 5 of [18]. One of
the main results of this paper is to show the presence of solutions concentrating
at the origin or outside the origin as long as α 6∈ IN and Ω contains the origin.

Let Kα = max{k ∈ IN : k < α + 1}. Concerning concentration outside the
origin, the main result we obtain for (1.2) is the following:

Theorem 1.1 There exists p0 > 0 large such that for any 1 ≤ k ≤ Kα and
p ≥ p0 problem (1.2) has a solution up which concentrates at k (symmetric)
different points of B \ {0}, i.e. as p goes to +∞

p|x|2αup+1
p ⇀ 8πe

k∑
i=1

δξi weakly in the sense of measure in B

for some ξ = (ξ1, . . . , ξk). More precisely, for any δ > 0 as p→ +∞:

max
B\∪k

i=1B(ξi,δ)
up → 0 , sup

B(ξi,δ)

up →
√
e.
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Theorem 1.1 is based on a constructive method which works also for a more
general problem:  ∆u+ a(x)up = 0 in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(1.3)

where Ω is a smooth, bounded domain in IR2, p is a large exponent and a(x) ≥ 0
is a potential (eventually vanishing somewhere in Ω).
Set

Z := {q ∈ Ω : a(x) = |x− q|2αqaq(x), aq(q) > 0}.

Let G(x, y) be the Green’s function, i.e. the solution of the problem{
−∆xG(x, y) = δy(x) x ∈ Ω,
G(x, y) = 0 x ∈ ∂Ω,

and let H(x, y) be the regular part defined as

H(x, y) = G(x, y)− 1
2π

log
1

|x− y|
.

Let q1, . . . , qm ∈ Z be different points so that αi := αqi /∈ IN for any i =
1, . . . ,m. In order to find a solution concentrating at q1, . . . , qm and at ξ1, . . . , ξk ∈
Ω\Z, the location of the concentration points ξ1, . . . , ξk should be a critical point
of the following function:

Φ(ξ1, . . . , ξk) =
k∑

i=1

H(ξi, ξi) +
k∑

i,j=1
i6=j

G(ξi, ξj) +
1
4π

k∑
i=1

log a(ξi)

+2
k∑

i=1

m∑
j=1

(1 + αj)G(ξi, qj),

where

(ξ1, . . . , ξk) ∈M :=
{
(ξ1, . . . , ξk) ∈ (Ω \ Z)k : ξi 6= ξj for i 6= j

}
.

The role of the function Φ in concentration phenomena was already shown for
(1.3) with a(x) = 1 in [15] (see also [2, 10, 14] in the context of the mean
field equation). Considering changing sign solutions of (1.2) (up replaced by
|u|p−1u in the equation), we can allow also negative concentration phenomena
and the function responsible to locate the concentration points is “essentially”
Φ as already shown in [16] for a(x) = 1. To understand the role of Φ in presence
of some concentration point in Z, we refer to [12, 13] where in the context of
the mean field equation blowing up solutions are constructed.

The result we have is the following:
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Theorem 1.2 Let q1, . . . , qm ∈ Z be different points so that αi = α(qi) /∈ IN for
any i = 1, . . . ,m. Let k ≥ 1 and assume that (ξ∗1 , . . . , ξ

∗
k) ∈ M is a C0−stable

critical point of Φ (according to Definition 3.1). Then, there exists p0 > 0 such
that for any p ≥ p0 problem (1.3) has a solution up which concentrates at m+k
different points of Ω, i.e. as p goes to +∞

pa(x)up+1
p ⇀ 8πe

m∑
i=1

(αi + 1)δqi
+ 8πe

k∑
i=1

δξi

weakly in the sense of measure in Ω, for some ξ ∈M such that Φ(ξ1, . . . , ξk) =
Φ(ξ∗1 , . . . , ξ

∗
k). More precisely, for any δ > 0 as p goes to +∞:

up → 0 uniformly in Ω \ (∪m
i=1B(qi, δ)) ∪

(
∪k

i=1B(ξi, δ)
)

and
sup

x∈B(qi,δ)

up(x) →
√
e , sup

x∈B(ξj ,δ)

up(x) →
√
e

for any i = 1, . . . ,m and j = 1, . . . , k.

Remark 1.1 Let us remark that Theorem 1.2 implies the existence of solutions
for (1.2) concentrating at the origin, provided α /∈ IN . Moreover, by means of
a Pohozaev identity, it is easy to show that, in the class we are considering
(according to a specific ansatz we will describe below), it is not possible to
construct solutions for (1.2) concentrating at the origin and some other points.

As in the mean field equation, it is possible to identify a limit profile problem
of Liouville-type (for a(x) = 1 see the aymptotic analysis in [1, 11, 22, 23]):{

∆u+ |x|2αeu = 0 in IR2,∫
IR2 |x|2αeu <∞ (1.4)

with α ≥ 0. Problem (1.4) possesses exactly a three-parameters family of solu-
tions:

Uδ,ξ(x) = log
8δ2

(δ2 + |x− ξ|2)2
, δ > 0, ξ ∈ IR2 (1.5)

if α = 0 (see [8]), and a one-parameter family of solutions:

Uδ(x) = log
8(α+ 1)2δ2

(δ2 + |x|2(α+1))2
, δ > 0 (1.6)

if α /∈ IN (see [21]).

We will build solutions for problem (1.3) that, up to a suitable normalization,
look like a sum of concentrated solutions for the limit profile problem (1.4)
centered at several points q1, . . . , qm, ξ1, . . . , ξk as p→∞. We are going to use
some arguments and ideas introduced in [15, 16].
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The paper is organized as follows. In Section 2 we describe exactly the ansatz
for the solution we are looking for and we rewrite the problem in term of a
linear operator L (for which a solvability theory is performed in Appendix C).
In Section 3 we solve an auxiliary non linear problem and, by reducing (1.3) to
solve a finite system cij = 0, we will give in Section 4 the proof of Theorem 1.2.
In Section 5, we provide in a radial setting the proof of Theorem 1.1.

2 Approximating solutions

Let us consider the problem{
−∆u = a(x)gp(u) in Ω,
u = 0 on ∂Ω. (2.1)

Here gp(s) = (s+)p. Let q1, . . . , qm ∈ Z and set αi = αqi
, ai(x) = aqi

(x), for
any i = 1, . . . ,m. Assume that αi /∈ IN and |qi−qj | ≥ 2ε for any i 6= j, for some
small ε > 0. Take a k−tuple ξ = (ξ1, . . . , ξk) ∈ Oε, where

Oε =
{
ξ ∈ Ωk : dist (ξi, ∂(Ω \ Z)) ≥ 2ε, |ξi − ξj | ≥ 2ε, i 6= j

}
.

Define qi = ξi−m, αi = 0 and ai(x) = a(x) for any i = m+ 1, . . . ,m+ k.

Let i = 1, . . . ,m + k. Let us set U i(y) := log 8(αi+1)2

(1+|y|2(αi+1))2
. Let f0i, f1i be

defined in (A.1), (A.2) and V i, W i be the solutions of (A.1), (A.2) with α = αi,
for any i = 1, . . . ,m+ k. Define

Uδi,qi(x) = U i

(
δ
− 1

α+1
i (x− qi)

)
− 2 log δi = log

8(αi + 1)2δ2i
(δ2i + |x− qi|2(αi+1))2

and

Vδi,qi
(x) = V i

(
δ
− 1

α+1
i (x− qi)

)
, Wδi,qi

(x) = W i

(
δ
− 1

α+1
i (x− qi)

)
.

Set:

Uξ(x) :=
m+k∑
i=1

1

γµ
2

p−1
i ai(qi)

1
p−1

P

(
Uδi,qi

+
1
p
Vδi,qi

+
1
p2
Wδi,qi

)
,

where
γ := p

p
p−1 e−

p
2(p−1)

and the concentration parameters satisfy

δi = µie
− p

4 (2.2)

(with µi to be chosen below).
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By Lemmata B.1-B.2 we have that for |x− qi| ≤ ε:

Uξ(x) =
1

γµ
2

p−1
i ai(qi)

1
p−1

(
p+ U i(y)− log 8(αi + 1)2µ4

i +
1
p
V i(y) +

1
p2
W i(y)

+ 8πH(x, qi)
(
αi + 1− C0(αi)

4p
− C1(αi)

4p2

)
+

1
αi + 1

log δi
p

(
C0(αi) +

C1(αi)
p

)

+ 8π
∑
j 6=i

(
µ2

i ai(qi)
µ2

jaj(qj)

) 1
p−1

G(x, qj)
(
αj + 1− C0(αj)

4p
− C1(αj)

4p2

)
+O(e−

p
4 )

 ,

where y = δ
− 1

αi+1

i (x− qi).

Let us choose {µi} as the solution of the following system:

log(8(αi + 1)2µ4
i ) = 8πH(qi, qi)

(
αi + 1− C0(αi)

4p
− C1(αi)

4p2

)
+

log δi
p(αi + 1)

(
C0(αi) +

C1(αi)
p

)
+

8π
∑
j 6=i

(
µ2

i ai(qi)
µ2

jaj(qj)

) 1
p−1

G(qi, qj)
(
αj + 1− C0(αj)

4p
− C1(αj)

4p2

)
, (2.3)

in order to get that

Uξ(x) =
1

γµ
2

p−1
i ai(qi)

1
p−1

(
p+ U i(y) +

1
p
V i(y) +

1
p2
W i(y)

)
(2.4)

+O

(
e
− p

4(αi+1) |y|
γ

+
e−

p
4

γ

)

for |y| ≤ εδ
− 1

αi+1

i .

For p large, µi bifurcates from the solution of (2.3) with p = +∞:

µi = e−
3
4 e

2π(αi+1)H(qi,qi)+2π
∑

j 6=i
(αj+1)G(qj ,qi)(1 +O(

1
p
)) (2.5)

in view of the value of C0(α) (see (A.5)).

Remark 2.1 Let us remark that Uξ is a positive function. Since

p+ U i +
1
p
V i +

1
p2
W i ≥ log

2(αi + 1)2µ4
i

ε4(αi+1)
− C

in |y| ≤ εδ
− 1

αi+1

i , by (2.4) we get that Uξ is positive in B(qi, ε) for any i =
1, . . . ,m + k for ε sufficiently small. Moreover, by elliptic regularity theory
Lemmata B.1-B.2 imply that for any i = 1, . . . ,m+ k:

P

(
Uδi,qi

+
1
p
Vδi,qi

+
1
p2
Wδi,qi

)
→ 8π(αi + 1)G(·, qi)
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in C1-norm on |x − qi| ≥ ε. Hence, since ∂G
∂ n (·, qi) < 0 on ∂Ω, Uξ is a positive

function in Ω.

We will look for solutions u of problem (2.1) in the form u = Uξ +φ, where φ will
represent an higher order term in the expansion of u. In terms of φ, problem
(2.1) becomes {

L(φ) = −[R+N(φ)] in Ω,
φ = 0 on ∂Ω,

where

L(φ) := ∆φ+ a(x)g′p(Uξ)φ, (2.6)
R := ∆Uξ + a(x)gp(Uξ), (2.7)
N(φ) = a(x)[gp(Uξ + φ)− gp(Uξ)− g′p(Uξ)φ]. (2.8)

For any h ∈ L∞(Ω), define

‖h‖∗ = sup
x∈Ω

∣∣(m+k∑
i=1

δi|x− qi|2αi

(δ2i + |x− qi|2(αi+1))
3
2

)−1

h(x)
∣∣. (2.9)

We conclude this section by proving an estimate on R in ‖ · ‖∗.

Proposition 2.1 There exist C > 0 and p0 > 0 such that for any ξ ∈ Oε and
p ≥ p0

‖∆Uξ + a(x)Up
ξ ‖∗ ≤

C

p4
. (2.10)

Proof. Observe that by equations (A.1)-(A.2):

∆Uξ(x) =
m+k∑
i=1

δ
− 2

αi+1

i

γµ
2

p−1
i ai(qi)

1
p−1

(
−|yi|2αieUi(yi) +

1
p
∆V i(yi) +

1
p2

∆W i(yi)
)

=
m+k∑
i=1

δ
− 2

αi+1

i

γµ
2

p−1
i ai(qi)

1
p−1

|yi|2αi

(
−eUi(yi) +

1
p
f0i(yi) +

1
p2
f1i(yi)

−1
p
eUi(yi)V i(yi)−

1
p2
eUi(yi)W i(yi)

)
, (2.11)

where yi = δ
− 1

αi+1

i (x − qi). If |x − qi| ≥ ε for any i = 1, . . . ,m + k, by (B.2),
(B.4) formula (2.11) gives that:

∣∣m+k∑
j=1

δj |x− qj |2αj

(δ2j + |x− qj |2(αj+1))
3
2

−1 (
∆Uξ + a(x)Up

ξ

)
(x)
∣∣ (2.12)

≤ Ce
p
4

(
(
C

p
)p + pe−

p
2

)
= O(pe−

p
4 ).
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While, if |x− qi| ≤ ε for some i = 1, . . . ,m+ k,

|∆Uξ + a(x)Up
ξ | =

∣∣ δ
− 2

αi+1

i

γµ
2

p−1
i ai(qi)

1
p−1

|y|2αi

(
−eUi

+
1
p
f0i +

1
p2
f1i − 1

p
eUi

V i

− 1
p2
eUi

W i

)
+ δ

2αi
αi+1

i |y|2αiai(δ
1

αi+1

i y + qi)U
p
ξ (δ

1
αi+1

i y + qi) +O(pe−
p
2 )
∣∣

where y = δ
− 1

αi+1

i (x− qi). By (2.4) we deduce that, for x = δ
1

αi+1

i y + qi:

Up
ξ (x) = (

p

γµ
2

p−1
i ai(qi)

1
p−1

)p

(
1 +

1
p
U i(y) +

1
p2
V i(y) +

1
p3
W i(y) (2.13)

+ O(
e
− p

4(αi+1)

p
|y|+ e−

p
4

p
)

)p

.

By Taylor expansions of exponential and logarithmic function, we have that, for
|y| ≤ Ce

p
8(α+1) ,(

1 +
a

p
+

b

p2
+

c

p3

)p

= ea

[
1 +

1
p
(b− a2

2
) +

1
p2

(
c− ab+

a3

3
(2.14)

+
b2

2
+
a4

8
− a2b

2

)
+O

(
log6(|y|+ 2)

p3

)]
provided −5(α+ 1) log(|y|+ 2) ≤ a(y) ≤ C and |b(y)|+ |c(y)| ≤ C log(|y|+ 2).

Since ( p

γµ
2

p−1
i

)p = 1

γδ2
i
µ

2
p−1
i

, by (2.14) we get that for |x− qi| ≤ εδ
1

2(αi+1)

i

Up
ξ (x) =

1

γδ2i µ
2

p−1
i ai(qi)

p
p−1

eUi(y)

[
1 +

1
p

(
V i − 1

2
(U i)2

)
(y)

+
1
p2

(
W i − U iV i +

1
3
(U i)3 +

1
2
(V i)2 +

1
8
(U i)4 − 1

2
V i(U i)2

)
(y)

+O
(

log6(|y|+ 2)
p3

+ e
− p

4(αi+1) |y|+ e−
p
4

)]
,

where y = δ
− 1

αi+1

i (x− qi). Since

δ
2αi

αi+1

i |y|2αi
ai(δ

1
αi+1

i y + qi)
ai(qi)

Up
ξ (δ

1
αi+1

i y + qi) = O(p2δ
− 1

αi+1

i |y|2αi+1eUi(y)),

we get that in this region

|∆Uξ + a(x)Up
ξ | =

∣∣ δ
− 2

αi+1

i

γµ
2

p−1
i ai(qi)

1
p−1

|y|2αi

(
−eUi

+
1
p
f0i +

1
p2
f1i (2.15)
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−1
p
eUi

V i − 1
p2
eUi

W i

)
+ δ

2αi
αi+1

i |y|2αiai(qi)U
p
ξ (δ

1
αi+1

i y + qi)

+O(p2δ
− 1

αi+1

i |y|2αi+1eUi(y) + pe−
p
2 )
∣∣

=
1

δ
2

αi+1

i

|y|2αieUi(y)O(
1
p4

log6(|y|+ 2) + p2δ
1

αi+1

i |y|) +O(pe−
p
2 ).

Hence, in this region we obtain that

∣∣m+k∑
j=1

δj |x− qj |2αj

(δ2j + |x− qj |2(αj+1))
3
2

−1 (
∆Uξ + a(x)Up

ξ

)
(x)
∣∣ (2.16)

≤ Cδ
2

αi+1

i

(1 + |y|2(αi+1))
3
2

|y|2αi

1

δ
2

αi+1

i

|y|2αieUi(y)(
1
p4

log6(|y|+ 2)

+p2δ
1

αi+1

i |y|) + Cpe−
p
4 ≤ C

p4
,

where y = δ
− 1

αi+1

i (x− qi). Let us remark that, if m+ k = 1 the weighted ‖ · ‖∗-
norm has a singular weight at q1. However, the expression for ∆Uξ + a(x)Up

ξ in
(2.15) reduces to take the form:

∆Uξ + a(x)Up
ξ =

1

δ
2

α1+1

1

|y|2α1eU1(y)O(
1
p4

log6(|y|+ 2) + p2δ
1

α1+1

1 |y|)

since the term O(pe−
p
2 ) comes out from the interaction with all the other con-

centration points. Hence, the estimate (2.16) does not present any problem.

On the other hand, if εδ
1

2(αi+1)

i ≤ |x− qi| ≤ ε we have that by (2.11):

|∆Uξ| = O

(
pe−

p
2 + pδ

− 2
αi+1

i |y|2αieUi(y)

)
,

and by (2.13)

a(x)Up
ξ (x) = O

(
1
γ
δ
− 2

αi+1

i |y|2αieUi(y)

)
,

since (1 + s
p )p ≤ es, where y = δ

− 1
αi+1

i (x− qi). Thus, in this region

∣∣m+k∑
j=1

δj |x− qj |2αj

(δ2j + |x− qj |2(αj+1))
3
2

−1 (
∆Uξ + a(x)Up

ξ

)
(x)
∣∣ (2.17)

≤ Cpe−
p
4 +

Cp

(1 + |y|2(αi+1))
1
2
≤ Cpe−

p
8 , y = δ

− 1
αi+1

i (x− qi).

By (2.12), (2.16) and (2.17) we obtain the desired result.
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3 The finite dimensional reduction

First of all, we will solve the following linear problem: given h ∈ C(Ω̄), we
consider the linear problem of finding a function φ ∈W 2,2(Ω) such that L(φ) = h+

∑2
j=1

∑m+k
i=m+1 cije

Uδi,qiZij in Ω,
φ = 0 on ∂Ω,∫
Ω
eUδi,qiZijφ = 0 j = 1, 2, i = m+ 1, . . . ,m+ k,

(3.1)

for some coefficients cij , j = 1, 2 and i = m + 1, . . . ,m + k. Here and in the
sequel, we denote for any i = 1, . . . ,m+ k:

Zi0(x) :=
|x− qi|2(αi+1) − δ2i
|x− qi|2(αi+1) + δ2i

and for any j = 1, 2, i = m+ 1, . . . ,m+ k:

Zij(x) :=
4δi(x− ξi)j

δ2i + |x− ξi|2
.

Following the approach in [15, 16] for a(x) = 1 (see also [10, 14]), in Appendix
C we prove:

Proposition 3.1 There exist p0 > 0 and C > 0 such that, for h ∈ C(Ω̄) there
is a unique solution to problem (3.1), for any p > p0 and ξ ∈ Oε, which satisfies

‖φ‖∞ ≤ Cp‖h‖∗. (3.2)

Moreover
2∑

j=1

m+k∑
i=m+1

|cij | ≤ C

(
1
p
‖φ‖∞ + ‖h‖∗

)
(3.3)

and
‖φ‖ ≤ C (‖φ‖∞ + ‖h‖∗) . (3.4)

Let us now introduce the following nonlinear auxiliary problem:
∆(Uξ + φ) + a(x)gp (Uξ + φ) =

∑2
j=1

∑m+k
i=m+1 cije

Uδi,qiZij in Ω,
φ = 0 on ∂Ω,∫
Ω

eUδi,qiZijφ = 0 j = 1, 2, i = m+ 1, . . . ,m+ k,

(3.5)
for some coefficients cij . The following result holds:

Proposition 3.2 Let ε > 0 be fixed. There exist c > 0 and p0 > 0 such that
for any p > p0 and ξ ∈ Oε problem (3.5) has a unique solution φp(ξ) which
satisfies ‖φp(ξ)‖∞ ≤ c

p3 . Furthermore, the function ξ → φp(ξ) is a C1 function
in L∞(Ω) and in H1

0 (Ω).

10



Proof. Using (2.6)-(2.8) we can rewrite problem (3.5) in the following way

L(φ) = − (R+N(φ)) +
∑
i,j

cije
Uδi,qiZij .

Let us denote by C∗ the function space C(Ω̄) endowed with the norm ‖ · ‖∗.
Proposition 3.1 ensures that the unique solution φ = T (h) of (3.1) defines a con-
tinuous linear map from the Banach space C∗ into C(Ω̄), with a norm bounded
by a multiple of p. Then, problem (3.5) becomes

φ = A(φ) := −T
[
R+N(φ)

]
.

Let Br :=
{
φ ∈ C(Ω) : φ = 0 on ∂Ω, ‖φ‖∞ ≤ r

p3

}
, for some r > 0. Arguing as

in [15], using Remark C.1 we can prove that the following estimates hold for
any φ, φ1, φ2 ∈ Br

‖N(φ)‖∗ ≤ cp‖φ‖2∞, ‖N(φ1)−N(φ2)‖∗ ≤ cpmax
i=1,2

‖φi‖∞‖φ1 − φ2‖∞. (3.6)

By (3.6), Proposition 2.1 and Proposition 3.1, we easily deduce that A is a
contraction mapping of Br for a suitable r > 0. Finally, a unique fixed point
of A exists in Br. The regularity of the map ξ → φp(ξ) follows using standard
arguments as in [15].

After problem (3.5) has been solved, we find a solution to problem (2.1), if we
are able to find a point ξ = (ξ1, . . . , ξk) such that coefficients cij(ξ) in (3.5)
satisfy

cij(ξ) = 0 for i = m+ 1, . . . ,m+ k, j = 1, 2.

Let us introduce the energy functional Jp : H1
0(Ω) → IR given by

Jp(u) :=
1
2

∫
Ω

|∇u|2dx− 1
p+ 1

∫
Ω

a(x)(u+)p+1dx,

whose critical points are solutions to (2.1). We also introduce the finite dimen-
sional restriction J̃p : M→ IR given by

J̃p(ξ) := Jp

(
Uξ + φp(ξ)

)
. (3.7)

The following result can be proved using standard arguments as in [15, 16]:

Lemma 3.1 For all p sufficiently large, if ξ ∈M is a critical point of J̃p, then
Uξ + φp(ξ) is a critical point of Jp, namely a solution to problem (2.1).

Next, we need to write the expansion of J̃p as p goes to +∞,

Lemma 3.2 It holds

J̃p(ξ) =
c1
p

+
c2
p2
− c3
p2

Φ(ξ) +Rp(ξ),
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where Rp = O( log2 p
p3 ) uniformly with respect to ξ in compact sets of M. Here

c1, c2 and c3 6= 0 are constants (depending only on q1, . . . , qm) and the function
Φ : M→ IR is defined by

Φ(ξ1, . . . , ξk) =
k∑

i=1

H(ξi, ξi)+
k∑

i,j=1
i6=j

G(ξi, ξj)+
1
4π

k∑
i=1

log a(ξi)+2
k∑

i=1

m∑
j=1

(αj+1)G(ξi, qj).

Proof. Multiplying equation in (3.5) by Uξ + φp(ξ) and integrating by parts,
we get that

J̃p(ξ) =
(

1
2
− 1
p+ 1

)∫
Ω

|∇(Uξ + φp(ξ))|2 −
1

p+ 1

∑
i,j

cij(ξ)
∫

Ω

eUδi,qiZijUξ.

Let us expand the leading term
∫
Ω
|∇Uξ|2: in view of (2.4) we have that∫

Ω

|∇Uξ|2 = −
∫

Ω

∆Uξ(x)Uξ(x)dx

=
m+k∑
i=1

1

γµ
2

p−1
i ai(qi)

1
p−1

∫
B(qi,ε)

(
|x− qi|2αieUδi,qi − 1

p
∆Vδi,qi

− 1
p2

∆Wδi,qi

)
Uξ(x)dx

+O
(
e−

p
2

)
(setting x− qi = δ

1
αi+1

i y)

=
m+k∑
i=1

1

γ2µ
4

p−1
i ai(qi)

2
p−1

∫
B(0,εδ

− 1
αi+1

i
)

|y|2αieUi

− δ
2

αi+1

i

p
∆Vδi,qi

− δ
2

αi+1

i

p2
∆Wδi,qi

×

×
(
p+ U i(y) +

1
p
V i(y) +

1
p2
W i(y)

)
dy +O

(
1
p3

)
=

m+k∑
i=1

1

γ2µ
4

p−1
i ai(qi)

2
p−1

∫
B(0,εδ

− 1
αi+1

i
)

|y|2αi

(
eUi

− 1
p
f0i +

1
p
eUi

V i − 1
p2
f1i +

1
p2
eUi

W i

)
×

×
(
p+ U i(y) +

1
p
V i(y) +

1
p2
W i(y)

)
dy +O

(
1
p3

)
=

m+k∑
i=1

1

γ2µ
4

p−1
i ai(qi)

2
p−1

(
p

∫
IR2
|y|2αieUi

dy +
∫

IR2
|y|2αiU ieUi

dy −
∫

IR2
|y|2αif0idy

+
∫

IR2
|y|2αiV ieUi

+O(
1
p
)
)

=

=
m+k∑
i=1

[
e

p

(
1− 2

log p
p

+
1
p
− 2
p

log ai(qi)
)
Ai +

e

p2
Bi −

4e
p2
Ai logµi

]
+O

(
log2 p

p3

)
,

where
Ai :=

∫
IR2 |y|2αieUi

dy = 8π(αi + 1)
Bi :=

∫
IR2 |y|2αieUi (

U i − 1
2 (U i)2 + V i

)
dy,
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because
µ
− 4

p−1
i = 1− 4

p logµi +O( 1
p2 ),

ai(qi)−
2

p−1 = 1− 2
p log ai(qi) +O( 1

p2 ),
1
γ2 = e

p2

(
1− 2 log p

p + 1
p +O( log2 p

p2 )
)
.

Recalling the expansion of µi in (2.5), we get that∫
Ω

|∇Uξ|2 =
8πe
p

(
1− 2

log p
p

+
4
p

)m+k∑
i=1

(αi + 1) +
e

p2

m+k∑
i=1

Bi

−16πe
p2

m+k∑
i=1

(αi + 1)

log ai(qi) + 4π(αi + 1)H(qi, qi) + 4π
∑
j 6=i

(αj + 1)G(qj , qi)


+O

(
log2 p

p3

)
=

8πe
p

(
1− 2

log p
p

+
4
p

)m+k∑
i=1

(αi + 1) +
e

p2

m+k∑
i=1

Bi

−16πe
p2

m∑
i=1

(αi + 1)

log ai(qi) + 4π(αi + 1)H(qi, qi) + 4π
m∑

j=1
j 6=i

(αj + 1)G(qi, qj)


−64π2e

p2
Φ(ξ1, . . . , ξk) +O

(
log2 p

p3

)
uniformly for ξ in a compact set of M. In particular,∫

Ω

|∇Uξ|2 = O

(
1
p

)
. (3.8)

Now, using Proposition 3.2 and estimates (2.10), (3.6), by (3.3)-(3.4) we deduce
that

|cij(ξ)| = O

(
1
p
||φp(ξ)||∞ + ‖N(φp(ξ))‖∗ + ‖R‖∗

)
= O

(
1
p4

)
and

‖φp(ξ)‖ = O (‖φp(ξ)‖∞ + ‖N(φp(ξ))‖∗ + ‖R‖∗) = O

(
1
p3

)
.

Therefore, by (3.8) we have that

J̃p(ξ) =
(

1
2
− 1
p+ 1

)∫
Ω

|∇Uξ|2 +O

(
1
p3

)
and our claim follows with suitable constant c1, c2 and c3 = 32π2e 6= 0.

We introduce the following definition.

Definition 3.1 We say that ξ is a C0−stable critical point of Φ : M→ IR if for
any sequence of functions Φn : M→ IR such that Φn → Φ uniformly on compact
sets of M, we have that Φn has a critical point ξn such that Φn(ξn) → Φ(ξ).
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In particular, if ξ is a strict local minimum/maximum point of Φ, then ξ is a
C0−stable critical point.

Proof of Theorem 1.2. According to Lemma 3.1, we have a solution to pro-
blem (1.3) if we find a critical point ξp of J̃p. This is equivalent to find a critical

point of the function Φp : M→ IR defined by Φp(ξ) :=
(
pc1 + c2 − p2J̃p(ξ)

)
/c3

(see Lemma 3.2). On the other hand, Φp → Φ uniformly on compact sets of
M as p goes to +∞, because of Lemma 3.2. Now, by Definition 3.1 we deduce
that, if p is large enough, there exists a critical point ξp ∈ M of Φp such that
Φp(ξp) → Φ(ξ∗). Moreover, up to a subsequence, we have that ξp → ξ as p
goes to +∞, with Φ(ξ) = Φ(ξ∗). The function up = Uξp + φξp is therefore a
solution to (1.3) with the qualitative properties predicted by the theorem, as
it can be easily shown. The proof of the positivity of up follows the lines of
Remark 2.1.

4 Proof of Theorem 1.1

Let Ω = {x ∈ IR2 : |x| < 1} be the unit ball and let a(x) = |x|2α for some
α > 0. Let k ≥ 1 be a fixed integer and set

ξ∗i :=
(

cos
2π
k

(i− 1), sin
2π
k

(i− 1)
)

for any i = 1, . . . , k.

We will look for a solution to problem (2.1) as up = Uρ + φp(ρ), where

Uρ :=
k∑

i=1

1

γµ
2

p−1
i ρ

2α
p−1

(
PUδi,ξi

+
1
p
PVδi,ξi

+
1
p2
PWδi,ξi

)

and the concentration parameters δi are given in (2.2), µi are defined in (2.3)
and the concentration points ξ are given, for any i = 1, . . . , k, by

ξi := ξi(ρ) = ρξ∗i =
(
ρ cos

2π
k

(i− 1), ρ sin
2π
k

(i− 1)
)
, ρ ∈ (0, 1).

The rest term φp(ρ) can be found symmetric with respect to the variable x2 and
each line {tξ∗i : t ∈ IR}, for any i = 1, . . . , k.

Using results obtained in the previous Sections and taking into account the
symmetry of the domain and the function a, we reduce the problem of finding
solutions to (2.1) to that of finding critical points of the function J̃p : (0, 1) → IR
defined as in (3.7) by J̃p(ρ) := Jp(Uρ+φp(ρ)). Using Lemma 3.2, it is not difficult
to check that

J̃p(ρ) =
c1
p

+
c2
p2
− c3
p2

Φ(ρ) +Rp(ρ),
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where Rp(ρ) = O
(

log2 p
p3

)
uniformly for ρ in compact sets of (0, 1). Moreover,

c1, c2 and c3 6= 0 are constants and

Φ(ρ) := H(ρξ∗1 , ρξ
∗
1) +

k∑
i=2

G(ρξ∗1 , ρξ
∗
i ) +

α

2π
log ρ, ρ ∈ (0, 1).

In this case, we have

G(x, y) =
1
2π

log
1

|x− y|
− 1

2π
log

1√
|x|2|y|2 + 1− 2(x, y)

, H(x, x) = − 1
2π

log
1

1− |x|2
,

and so, function Φ reduces to

Φ(ρ) =
1
2π

log(1− ρ2) +
α− (k − 1)

2π
log ρ+

1
2π

k∑
i=2

log

√
ρ4 + 1− 2ρ2(ξ∗1 , ξ

∗
i )

|ξ∗1 − ξ∗i |
.

Now, there exists ρ0 ∈ (0, 1) such that Φ(ρ0) = max
ρ∈(0,1)

Φ(ρ), provided α−k+1 >

0, since lim
ρ→1−

Φ(ρ) = lim
ρ→0+

Φ(ρ) = −∞. Then, ρ0 is a C0−stable critical point

of Φ and so, function J̃p has for p large enough a critical point ρp. That proves
our claim for any k ≤ Kα.

A Appendix

Let us recall the following basic result stated by Chae and Imanuvilov in [7]:
for any f(t) ∈ C1[0,+∞) there exists a smooth radial solution

w(r) =
r2(α+1) − 1
r2(α+1) + 1

(∫ r

0

φf (s)− φf (1)
(s− 1)2

ds+ φf (1)
r

1− r

)
for the equation

∆w +
8(α+ 1)2|y|2α

(1 + |y|2(α+1))2
w = |y|2αf(|y|),

where φf (s) = ( s2(α+1)+1
s2(α+1)−1

)2 (s−1)2

s

∫ s

0
t2α+1 t2(α+1)−1

t2(α+1)+1
f(t)dt for s 6= 1 and φf (1) =

lims→1 φf (s).

Assume that
∫∞
0
t2α+1| log t||f |(t)dt < +∞. It is a straightforward computation

to show that

w(r) = Cf log r +Df +O(
∫ +∞

r

t2α+1| log t||f |(t)dt+
1

r2(α+1)
) as r → +∞,

where Cf =
∫ +∞
0

t2α+1 t2(α+1)−1
t2(α+1)+1

f(t)dt. A similar computation can be performed

also for ∂rw(r). Therefore, up to replacing w(r) with w(r) − Df
r2(α+1)−1
r2(α+1)+1

, we
have shown
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Lemma A.1 Let f ∈ C1[0,+∞) such that
∫ +∞
0

t2α+1| log t||f |(t)dt < +∞.
There exists a C2 radial solution w(r) of equation

∆w +
8(α+ 1)2|y|2α

(1 + |y|2(α+1))2
w = |y|2αf(|y|) in IR2

such that as r → +∞

w(r) = Cf log r +O(
∫ +∞

r

t2α+1| log t||f |(t)dt+
1

r2(α+1)
)

and

∂rw(r) =
Cf

r
+O(

1
r

∫ +∞

r

t2α+1|f |(t)dt+
| log r|
r2α+3

),

where Cf =
(∫ +∞

0
t2α+1 t2(α+1)−1

t2(α+1)+1
f(t)dt

)
.

Now, let U(y) = log 8(α+1)2

(1+|y|2(α+1))2
. Let V,W be radial solutions of

∆V + |y|2αeUV = |y|2αf0 in IR2, f0(y) :=
1
2
eU(y)U2(y), (A.1)

and

∆W + |y|2αeUW = |y|2αf1 in IR2, (A.2)

f1(y) := eU(y)

(
V U − 1

2
V 2 − 1

3
U3 − 1

8
U4 +

1
2
V U2

)
(y)

such that as |y| → +∞:

V (y) = C0(α) log |y|+O(
1

|y|α+1
), (A.3)

W (y) = C1(α) log |y|+O(
1

|y|α+1
),

where Ci(α) =
∫ +∞
0

t2α+1 t2(α+1)−1
t2(α+1)+1

f i(t)dt, i = 1, 2.

Let us remark that it is possible to constructW since by (A.3) V has logarithmic
growth at infinity. Since later we will need the exact expression of V , we have
that

V (y) =
1
2
U2(y) + 6 log(|y|2(α+1) + 1) +

2 log 8(α+ 1)2 − 10
|y|2(α+1) + 1

(A.4)

+
|y|2(α+1) − 1
|y|2(α+1) + 1

(
2 log2(|y|2(α+1) + 1)− 1

2
log2 8(α+ 1)2

+4
∫ +∞

|y|2(α+1)

ds

s+ 1
log

s+ 1
s

− 8(α+ 1) log |y| log(|y|2(α+1) + 1)

)
,

as we can see by direct inspection. Moreover, it is easy to compute the value of
C0(α):

C0(α) = 12(α+ 1)− 4(α+ 1) log 8(α+ 1)2 (A.5)
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B Appendix

Let α ≥ 0. Let Uδ,ξ be the function defined as

Uδ,ξ(x) = log
8(α+ 1)2δ2

(δ2 + |x− ξ|2(α+1))2
, δ > 0, ξ ∈ IR2,

a solution of −∆Uδ,ξ = |x− ξ|2αeUδ,ξ in IR2 (see (1.5)-(1.6)). Let P : H1(Ω) →
H1

0 (Ω) be the projection operator onto H1
0 (Ω). The following expansions hold:

Lemma B.1 We have as δ → 0:

PUδ,ξ(x) = Uδ,ξ(x)− log 8(α+ 1)2δ2 + 8π(α+ 1)H(x, ξ) +O
(
δ2
)

(B.1)

in C(Ω̄) and
PUδ,ξ(x) = 8π(α+ 1)G(x, ξ) +O

(
δ2
)

(B.2)

in Cloc(Ω̄ \ {ξ}), uniformly for ξ away from ∂Ω.

Proof. Since PUδ,ξ(x)−Uδ,ξ(x)+log 8(α+1)2δ2 = −4(α+1) log 1
|x−ξ| +O(δ2)

as δ → 0 uniformly for x ∈ ∂Ω and ξ away from ∂Ω, by harmonicity and the
maximum principle (B.1) readily follows.
On the other hand, away from ξ, we have Uδ,ξ(x) − log 8(α + 1)2δ2 = 4(α +
1) log 1

|x−ξ| +O(δ2). This fact, together with (B.1) gives (B.2).

Let V , W be the radial solutions of (A.1), (A.2) respectively, which satisfy (A.3):

V (y) = C0(α) log |y|+O(
1

|y|α+1
),W (y) = C1(α) log |y|+O(

1
|y|α+1

) as |y| → +∞,

for some constants C0(α), C1(α). For any δ > 0 and ξ ∈ IR2, we define

Vδ,ξ(x) := V
(
δ−

1
α+1 (x− ξ)

)
, Wδ,ξ(x) := W

(
δ−

1
α+1 (x− ξ)

)
for x ∈ Ω. Then, Vδ,ξ and Wδ,ξ satisfy

∆Vδ,ξ + |x− ξ|2αeUδ,ξVδ,ξ = |x− ξ|2αf0
δ,ξ in IR2,

and
∆Wδ,ξ + |x− ξ|2αeUδ,ξWδ,ξ = |x− ξ|2αf1

δ,ξ in IR2,

where

f j
δ,ξ(x) :=

1
δ2
f j

(
x− ξ

δ
1

α+1

)
, j = 0, 1.

By (A.3) we deduce the following expansions:
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Lemma B.2 We have as δ → 0:

PVδ,ξ(x) = Vδ,ξ(x)− 2πC0(α)H(x, ξ) + C0(α)
α+1 log δ +O (δ)

PWδ,ξ(x) = Wδ,ξ(x)− 2πC1(α)H(x, ξ) + C1(α)
α+1 log δ +O (δ)

(B.3)

in C(Ω̄), and
PVδ,ξ(x) = −2πC0(α)G(x, ξ) +O (δ)
PWδ,ξ(x) = −2πC1(α)G(x, ξ) +O (δ) (B.4)

in Cloc(Ω̄ \ {ξ}), uniformly for ξ away from ∂Ω. In particular, the following
global estimate holds: for any ε > 0 there exists c > 0 such that for any δ small
and ξ ∈ Ω with dist (ξ, ∂Ω) ≥ ε we have that

‖PVδ,ξ‖∞ + ‖PWδ,ξ‖∞ ≤ c| log δ|.

Proof. The proof follows from the same argument used to prove Lemma B.1
and from estimates (A.3).

C Appendix

In this Section, we prove invertibility of the operator L and we give a bound
(uniformly on ξ ∈ Oε) on its inverse norm by using L∞-norms introduced in
(2.9). Let us recall that L(φ) = ∆φ+ a(x)Wξφ, where Wξ(x) = pUp−1

ξ (x).

As in Proposition 2.1, we have for the potential a(x)Wξ(x) the following expan-
sions. By (2.13), if |x− qi| ≤ ε for some i = 1, . . . ,m+ k we have that:

a(x)Wξ(x) = p(
p

γµ
2

p−1
i ai(qi)

1
p−1

)p−1a(x)

(
1 +

1
p
U i(y) +

1
p2
V i(y)

+
1
p3
W i(y) +O(

e
− p

4(αi+1)

p
|y|+ e−

p
4

p
)

)p−1

= δ
− 2

αi+1

i |y|2αi

(
1 +O(δ

1
αi+1

i |y|)
)(

1 +
1
p
U i(y) +

1
p2
V i(y) +

1
p3
W i(y)

+O(
e
− p

4(αi+1)

p
|y|+ e−

p
4

p
)

)p−1

,

where again we use the notation y = δ
− 1

αi+1

i (x − qi). In this region, we have
that

a(x)Wξ(x) ≤ Cδ
− 2

αi+1

i |y|2αieUi(y) = O
(
|x− qi|2αieUδi,qi

(x)
)
.

Furthermore, by Taylor expansions of exponential and logarithmic functions as

in (2.14), we obtain that, if |x− qi| ≤ εδ
1

2(αi+1)

i (and |y| ≤ εδ
− 1

2(αi+1)

i ),

a(x)Wξ(x) = δ
− 2

αi+1

i |y|2αi

(
1 +O(δ

1
αi+1

i |y|)
)(

1 +
1
p
U i(y) +

1
p2
V i(y)
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+
1
p3
W i(y) +O(

e
− p

4(αi+1)

p
|y|+ e−

p
4

p
)

)p−1

= δ
− 2

αi+1

i |y|2αieUi(y)

[
1 +

1
p

(
V i − U i − 1

2
(U i)2

)
+O(

log4(|y|+ 2)
p2

)
]
.

If |x− qi| ≥ ε for any i = 1, . . . ,m+ k:

a(x)Wξ(x) = O(p(
C

p
)p−1).

Summing up, we have that

Lemma C.1 There exist D0 > 0 and p0 > 0 such that

a(x)Wξ(x) ≤ D0

m+k∑
i=1

|x− qi|2αieUδi,qi
(x)

for any ξ ∈ Oε and p ≥ p0. Furthermore,

a(x)Wξ(x) = δ
− 2

αi+1

i |y|2αieUi(y)

[
1 +

1
p

(
V i − U i − 1

2
(U i)2

)
+O(

log4(|y|+ 2)
p2

)
]

for any |x− qi| ≤ εδ
1

2(αi+1)

i , where y = δ
− 1

αi+1

i (x− qi).

Remark C.1 As for Wξ, let us point out that, if |x − qi| ≤ ε for some i =
1, . . . ,m+ k, there holds

pa(x)(Uξ +O(
1
p3

))p−2 ≤ Cp(
p

γ
)p−2|x− qi|2αieUi(y) = O

(
|x− qi|2αieUδi,qi

(x)
)

where y = δ
− 1

αi+1

i (x − qi). Since this estimate is true if |x − qi| ≥ ε for any
i = 1, . . . ,m+ k, we have that

pa(x)(Uξ +O(
1
p3

))p−2 ≤ C
m+k∑
i=1

|x− qi|2αieUδi,qi
(x).

In an heuristic way, the operator L is close to L̃ defined by

L̃(φ) = ∆φ+

(
m+k∑
i=1

|x− qi|2αieUδi,qi

)
φ.

The operator L̃ is ”essentially” a superposition of linear operators which, after
a dilation and translation, approach, as p→∞, the linear operator in IR2:

φ → ∆φ+
8(αi + 1)2|y|2αi

(1 + |y|2(αi+1))2
φ, i = 1, . . . ,m+ k,
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namely equation ∆v+|y|2αiev = 0 linearized around the radial solution log 8(αi+1)2

(1+|y|2(αi+1))2
.

Set zi
0(y) = |y|2(αi+1)−1

|y|2(αi+1)+1
for any i = 1, . . . ,m + k and zj(y) = 4yj

1+|y|2 , j = 1, 2.
The first ingredient to develop the desired solvability theory for L is the well
known fact that any bounded solution of L(φ) = 0 in IR2 is precisely:
- for i = 1, . . . ,m proportional to zi

0;
- for i = m+ 1, . . . ,m+ k a linear combination of zi

0 and zj , j = 1, 2.
The second ingredient is a detailed analysis of L − L̃. Let us rewrite problem
(3.1). Given h ∈ C(Ω̄), we consider the linear problem of finding a function
φ ∈W 2,2(Ω) such that

L(φ) = h+
2∑

j=1

m+k∑
i=m+1

cije
Uδi,qiZij in Ω, (C.1)

φ = 0 on ∂Ω, (C.2)∫
Ω

eUδi,qiZijφ = 0 j = 1, 2, i = m+ 1, . . . ,m+ k, (C.3)

for some coefficients cij , j = 1, 2 and i = m + 1, . . . ,m + k. Here and in the
sequel, we denote for any i = 1, . . . ,m+ k:

Zi0(x) := zi
0

(
δ
− 1

αi+1

i (x− qi)
)

=
|x− qi|2(αi+1) − δ2i
|x− qi|2(αi+1) + δ2i

and for any j = 1, 2, i = m+ 1, . . . ,m+ k:

Zij(x) := zj

(
δ−1
i (x− ξi)

)
=

4δi(x− ξi)j

δ2i + |x− ξi|2
.

Following some ideas in [15] for a(x) = 1, we give the proof of Proposition 3.1.
The proof consists of six steps.

1st Step. The operator L satisfies the maximum principle in Ω̃ := Ω\∪m+k
i=1 B(qi, Rδ

1
αi+1

i )
for R large, independent on p. Namely,

if L(ψ) ≤ 0 in Ω̃ and ψ ≥ 0 on ∂Ω̃, then ψ ≥ 0 in Ω̃.

In order to prove this fact, we show the existence of a positive function Z in Ω̃
satisfying L(Z) < 0. We define Z to be

Z(x) =
m+k∑
i=1

zi
0

(
a

1
αi+1 δ

− 1
αi+1

i (x− qi)
)
, a > 0.

First, observe that for x ∈ Ω̃, if R > 1

a
1

αi+1
for any i = 1, . . . ,m + k, then

Z(x) > 0. On the other hand, we have:

a(x)Wξ(x) ≤ D0

(
m+k∑
i=1

|x− qi|2αieUδi,qi
(x)

)
≤ D0

m+k∑
i=1

8(αi + 1)2δ2i
|x− qi|2αi+4

,
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where D0 is the constant in Lemma C.1. Further, by definition of zi
0, we have

that for any x ∈ Ω̃:

−∆Z(x) =
m+k∑
i=1

a2|x− qi|2αi
8(αi + 1)2δ2i (a2|x− qi|2(αi+1) − δ2i )

(a2|x− qi|2(αi+1) + δ2i )3

≥ 1
3

m+k∑
i=1

8a2(αi + 1)2δ2i |x− qi|2αi

(a2|x− qi|2(αi+1) + δ2i )2
≥ 4

27

m+k∑
i=1

8(αi + 1)2δ2i
a2|x− qi|2αi+4

provided R > (
√

2
a )

1
αi+1 for any i = 1, . . . ,m+ k. Hence,

LZ(x) ≤
(
− 4

27a2
+D0(m+ k)

)m+k∑
i=1

8(αi + 1)2δ2i
|x− qi|2αi+4

< 0

since Z(x) ≤ m + k, provided that a is chosen sufficiently small (independent
of p). The function Z(x) is what we are looking for.

2nd Step. Let R be as before. Let us define the “inner norm” of φ in the
following way

‖φ‖i = sup

x∈∪m+k
i=1 B(qi,Rδ

1
αi+1
i

)

|φ|(x).

We claim that there is a constant C > 0 such that, if L(φ) = h in Ω, φ = 0 on
∂Ω, then

‖φ‖∞ ≤ C[‖φ‖i + ‖h‖∗],

for any h ∈ C0,α(Ω̄). We will establish this estimate with the use of suitable
barriers. Let M = 2 diam Ω. Consider the solution ψi(x) of the problem: −∆ψi = 2δi

|x−qi|αi+3 in Rδ
1

αi+1

i < |x− qi| < M

ψi(x) = 0 on |x− qi| = Rδ
1

αi+1

i and |x− qi| = M.

Namely, the function ψi(x) is the positive function defined by:

ψi(x) = (αi + 1)−2

(
− 2δi
|x− qi|αi+1

+Ai +Bi log |x− qi|
)
,

where
Bi = 2(

δi
Mαi+1

− 1
Rαi+1

)
1

log( M

Rδ
1

αi+1
i

)
< 0

and
Ai =

2δi
Mαi+1

−Bi logM.
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Hence, the function ψi(x) is uniformly bounded from above by a constant inde-

pendent of p, since we have that, for Rδ
1

αi+1

i ≤ |x− qi| ≤M ,

ψi(x) ≤ (αi + 1)−2

(
Ai +Bi log(Rδ

1
αi+1

i )
)

= (αi + 1)−2

 2δi
Mαi+1

−Bi log
M

Rδ
1

αi+1

i

 =
2

Rαi+1
(αi + 1)−2 ≤ 2

R
.

Define now the function

φ̃(x) = 3‖φ‖iZ(x) + ‖h‖∗
m+k∑
i=1

ψi(x),

where Z was defined in the previous Step. First of all, observe that by the
definition of Z

φ̃(x) ≥ 3‖φ‖iZ(x) ≥ ‖φ‖i ≥ |φ|(x) for |x− qi| = Rδ
1

αi+1

i , i = 1, . . . ,m+ k,

and, by the positivity of Z(x) and ψi(x),

φ̃(x) ≥ 0 = |φ|(x) for x ∈ ∂Ω.

Since by definition of ‖ · ‖∗ we have that(
m+k∑
i=1

δi|x− qi|2αi

(δ2i + |x− qi|2(αi+1))
3
2

)
‖h‖∗ ≥ |h(x)|, (C.4)

finally we obtain that

Lφ̃ ≤ ‖h‖∗
m+k∑
i=1

Lψi(x) = ‖h‖∗
m+k∑
i=1

(
− 2δi
|x− qi|αi+3

+ a(x)W (x)ψi(x)
)

≤ ‖h‖∗
m+k∑
i=1

|x− qi|2αi

(
− 2δi
|x− qi|3(αi+3)

+
2(m+ k)D0

R
eUδi,qi

(x)

)

≤ −‖h‖∗

(
m+k∑
i=1

δi|x− qi|2αi

(δ2i + |x− qi|2(αi+1))
3
2

)
≤ −|h(x)| ≤ −|Lφ|(x)

provided R ≥ 16(m+k)D0(αi +1)2 for any i = 1, . . . ,m+k and p large enough.
Hence, by the maximum principle in Step 1 we obtain that

|φ|(x) ≤ φ̃(x) for x ∈ Ω̃,

and therefore, since Z(x) ≤ m+ k and ψi(x) ≤ 2
R ,

‖φ‖∞ ≤ C[‖φ‖i + ‖h‖∗].
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3rd Step. We prove uniform a priori estimates for solutions φ of problem
Lφ = h in Ω, φ = 0 on ∂Ω, when h ∈ C0,α(Ω̄) and φ satisfies (C.3) and in
addition the orthogonality conditions:∫

Ω

|x− qi|2αieUdei,qiZi0φ = 0, for i = 1, . . . ,m+ k. (C.5)

Namely, we prove that there exists a positive constant C such that for any
ξ ∈ Oε and h ∈ C0,α(Ω̄)

‖φ‖∞ ≤ C‖h‖∗,

for p sufficiently large. By contradiction, assume the existence of sequences
pn → ∞, points ξn ∈ Oε, functions hn and associated solutions φn such that
‖hn‖∗ → 0 and ‖φn‖∞ = 1.
Since ‖φn‖∞ = 1, Step 2 shows that lim infn→+∞ ‖φn‖i > 0. Let us set φ̂n

i (y) =
φn((δn

i )
1

αi+1 y + qn
i ) for i = 1, . . . ,m + k, where we set qn

i = qi for i = 1, . . . ,m
and qn

i = ξn
i−m for i = m + 1, . . . ,m + k. By Lemma C.1 and (C.4), elliptic

estimates readily imply that φ̂n
i converges uniformly over compact sets to a

bounded solution φ̂∞i of the equation in IR2:

∆φ+
8(αi + 1)2|y|2αi

(1 + |y|2(αi+1))2
φ = 0.

This implies that φ̂∞i is proportional to zi
0 if i = 1, . . . ,m and is a linear com-

bination of the functions zi
0 and zj , j = 1, 2, if i = m + 1, . . . ,m + k. Since

‖φ̂n
i ‖∞ ≤ 1, by Lebesgue theorem the orthogonality conditions (C.3) and (C.5)

on φn pass to the limit and give rise to:∫
IR2

8(αi+1)2|y|2αi

(1+|y|2(αi+1))2
zi
0(y)φ̂

∞
i = 0 for any i = 1, . . . ,m+ k;∫

IR2
8

(1+|y|2)2 zj(y)φ̂∞i = 0 for any j = 1, 2 and i = m+ 1, . . . ,m+ k.

Hence, φ̂∞i ≡ 0 for any i = 1, . . . ,m+ k contradicting lim infn→+∞ ‖φn‖i > 0.

4th Step. We prove that there exists a positive constant C > 0 such that any
solution φ of equation Lφ = h in Ω, φ = 0 on ∂Ω, satisfies

‖φ‖∞ ≤ Cp‖h‖∗,

when h ∈ C0,α(Ω̄) and we assume on φ only the orthogonality conditions (C.3).
Proceeding by contradiction as in Step 3, we can suppose further that

pn‖hn‖∗ → 0 as n→ +∞ (C.6)

but we loss in the limit the condition
∫
IR2

8(αi+1)2|y|2αi

(1+|y|2(αi+1))2
zi
0(y)φ̂

∞
i = 0. Hence, we

have that

φ̂n
i → Ci

|y|2(αi+1) − 1
|y|2(αi+1) + 1

in C0
loc(IR

2) (C.7)
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for some constants Ci. To reach a contradiction, we have to show that Ci = 0
for any i = 1, . . . ,m+ k. We will obtain it from the stronger condition (C.6) on
hn.

To this end, we perform the following construction. By Lemma A.1, we find ra-
dial solutions wi and ti respectively of equations ∆wi+|y|2αieUi

wi = |y|2αieUi

zi
0

and ∆ti + |y|2αieUi

ti = |y|2αieUi

in IR2, such that as |y| → +∞

wi(y) =
4
3
(αi + 1) log |y|+O(

1
|y|αi+1

) , ti(y) = O(
1

|y|αi+1
),

since
∫ +∞
0

t2αi+1 (t2(αi+1)−1)2

(t2(αi+1)+1)4
dt = 1

6(αi+1) and
∫ +∞
0

t2αi+1 t2(αi+1)−1
(t2(αi+1)+1)3

dt = 0.

For simplicity, from now on we will omit the dependence on n. For i = 1, . . . ,m+
k, define now

ui(x) = wi

(
δ
− 1

αi+1

i (x− qi)
)

+
4
3
(log δi)Zi0(x)

+
8π
3

(αi + 1)H(qi, qi)ti

(
δ
− 1

αi+1

i (x− qi)
)

and denote by Pui the projection of ui onto H1
0 (Ω). Since ui − Pui − 4

3 (αi +
1) log |·−qi| = O(δi) on ∂Ω (together with boundary derivatives), by harmonicity
we get

Pui = ui − 8π
3 (αi + 1)H(·, qi) +O(e−

p
4 ) in C1(Ω̄),

Pui = − 8π
3 (αi + 1)G(·, qi) +O(e−

p
4 ) in C1

loc(Ω̄ \ {qi}).
(C.8)

The function Pui solves

∆Pui + a(x)Wξ(x)Pui = |x− qi|2αieUδi,qiZi0 (C.9)
+
(
a(x)Wξ(x)− |x− qi|2αieUδi,qi

)
Pui +Ri,

where

Ri(x) =
(
Pui − ui +

8π
3

(αi + 1)H(qi, qi)
)
|x− qi|2αieUδi,qi .

Multiply (C.9) by φ and integrate by parts to obtain:∫
Ω

|x− qi|2αieUδi,qiZi0φ+
∫

Ω

(
a(x)Wξ(x)− |x− qi|2αieUδi,qi

)
Puiφ (C.10)

=
∫

Ω

Puih−
∫

Ω

Riφ.

First of all, by Lebesgue theorem and (C.7) we get that∫
Ω

|x− qi|2αieUδi,qiZi0φ→ Ci

∫
IR2
|y|2αieUi

(zi
0)

2 =
8π
3

(αi + 1)Ci. (C.11)
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The more delicate term is
∫
Ω

(
a(x)Wξ(x)− |x− qi|2αieUδi,qi

)
Puiφ. By Lemma

C.1 and (C.8) we have that∫
Ω

(
a(x)Wξ(x)− |x− qi|2αieUδi,qi

)
Puiφ

=
∫

B(qi,εδ

1
2(αi+1)
i

)

(
a(x)Wξ(x)− |x− qi|2αieUδi,qi

)
Puiφ

−8π
3

(αi + 1)
∑
j 6=i

G(qj , qi)
∫

B(qj ,εδ

1
2(αj+1)
j

)

a(x)Wξ(x)φ+O(
1
p
)

=
4
3

log δi
p

∫
B(0,εδ

− 1
2(αi+1)

i
)

|y|2αieUi

(
V i − U i − 1

2
(U i)2

)
zi
0(y)φ̂i

−8π
3

(αi + 1)
∑
j 6=i

G(qj , qi)
∫

B(0,εδ
− 1

2(αj+1)
j

)

|y|2αjeUj

φ̂j +O(
1
p
)

= −Ci

3

∫
IR2
|y|2αieUi

(zi
0)

2

(
V i − U i − 1

2
(U i)2

)
(y) + o(1)

since Lebesgue theorem and (C.7) imply:∫
B(0,εδ

− 1
2(αi+1)

i
)

|y|2αieUi

(
V i − U i − 1

2
(U i)2

)
zi
0(y)φ̂i →

Ci

∫
IR2
|y|2αieUi

(zi
0)

2

(
V i − U i − 1

2
(U i)2

)
and ∫

B(0,εδ
− 1

2(αj+1)
j

)

|y|2αjeUj

φ̂j → Cj

∫
IR2
|y|2αjeUj

zj
0 = 0.

In a straightforward but tedious way, by (A.4) we can compute:∫
IR2
|y|2αieUi

(zi
0)

2

(
V i − U i − 1

2
(U i)2

)
(y) = −8π(αi + 1),

so that we obtain∫
Ω

(
a(x)Wξ(x)− |x− qi|2αieUδi,qi

)
Puiφ =

8π
3

(αi + 1)Ci + o(1). (C.12)

As far as the R.H.S. in (C.10), we have that by (C.8)

|
∫

Ω

Puih| = O

‖h‖∗ ∫
Ω

(
m+k∑
j=1

δj |x− qj |2αj

(δ2j + |x− qj |2(αj+1))
3
2
)|ui|

 (C.13)

+O(‖h‖∗) = O(p‖h‖∗)

since |ui| = O(| log δi|) = O(p) in Ω and∫
B(qj ,ε)

δj |x− qj |2αj

(δ2j + |x− qj |2(αj+1))
3
2
|ui| ≤ Cp

∫
IR2

|y|2αj

(1 + |y|2(αj+1))
3
2

= O(p).
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Finally, by (C.8)∫
Ω

Riφ = O

(∫
Ω

|x− qi|2αieUδi,qi (|x− qi|+ e−
p
4 )
)

= O(e−
p

4(αi+1) ). (C.14)

Hence, inserting (C.11)-(C.14) in (C.10) we obtain that

16π
3

(αi + 1)Ci = o(1)

for any i = 1, . . . ,m+ k. Necessarily, Ci = 0 and the claim is proved.

5th Step. We establish the validity of the a priori estimate:

‖φ‖∞ ≤ Cp‖h‖∗ (C.15)

for solutions of problem (C.1)-(C.3) and h ∈ C0,α(Ω̄). The previous Step gives

‖φ‖∞ ≤ Cp

‖h‖∗ +
2∑

j=1

m+k∑
i=m+1

|cij |


since

‖eUδi,qiZij‖∗ ≤ 2‖eUδi,qi‖∗ ≤ 16 , ∀ j = 1, 2, i = m+ 1, . . . ,m+ k.

Hence, arguing by contradiction of (C.15), we can proceed as in Step 3 and
suppose further that

pn‖hn‖∗ → 0 , pn

2∑
j=1

m+k∑
i=m+1

|cnij | ≥ δ > 0 as n→ +∞.

We omit the dependence on n. It suffices to estimate the values of the constants
cij . For j = 1, 2 and i = m + 1, . . . ,m + k, multiply (C.1) by PZij and,
integrating by parts, get:

2∑
h=1

m+k∑
l=m+1

clh
(
PZlh, PZij

)
H1

0
+
∫

Ω

hPZij (C.16)

=
∫
Ω

a(x)Wξ(x)φPZij −
∫

Ω

eUδi,qiZijφ,

since ∆PZij = ∆Zij = −eUδi,qiZij .

We quote now some well known facts, see for example [14]. For j = 1, 2 and
i = m+ 1, . . . ,m+ k we have the following expansions:

PZij = Zij − 8πδi ∂H
∂(qi)j

(·, qi) +O
(
δ3i
)

PZi0 = Zi0 − 1 +O
(
δ2i
) (C.17)
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in C1(Ω̄) and
PZij = −8πδi ∂G

∂(qi)j
(·, qi) +O

(
δ3i
)

PZi0 = O
(
δ2i
) (C.18)

in C1
loc(Ω̄ \ {qi}). By (C.17)-(C.18) we deduce the following “orthogonality”

relations: for j, h = 1, 2 and i, l = m+ 1, . . . ,m+ k with i 6= l,

(
PZij , PZih

)
H1

0(Ω)
=

(
64
∫

IR2

|y|2
(1+|y|2)4

)
δjh +O(δ2i )(

PZij , PZlh

)
H1

0(Ω)
= O(δiδl)

(C.19)

and (
PZi0, PZij

)
H1

0(Ω)
= O(δ2i )(

PZi0, PZlh

)
H1

0(Ω)
= O(δiδl)

(C.20)

uniformly on ξ ∈ Oε, where δjh denotes the Kronecker’s symbol.

Now, since

|
∫

Ω

hPZij | ≤ C ′
∫

Ω

|h| ≤ C‖h‖∗,

by (C.19) the L.H.S. of (C.16) is estimated as follows:

L.H.S. = Dcij +O
(
e−

p
2

2∑
h=1

m+k∑
l=m+1

|clh|
)

+O(‖h‖∗), (C.21)

where D = 64
∫

IR2

|y|2
(1+|y|2)4 . Moreover, by Lemma C.1 the R.H.S. of (C.16) takes

the form:

R.H.S. =
∫

B(qi,ε
√

δi)

a(x)Wξ(x)φPZij −
∫

Ω

eUδi,qiφZij +O(e−
p
4 ‖φ‖∞) (C.22)

=
∫

B(qi,ε
√

δi)

(
a(x)Wξ(x)− eUδi,qi

)
φPZij +

∫
Ω

eUδi,qiφ (PZij − Zij) +O(e−
p
4 ‖φ‖∞)

=
1
p

∫
B(0, ε√

δi
)

32yj

(1 + |y|2)3

(
V i − U i − 1

2
(U i)2

)
φ̂i +O(

1
p2
‖φ‖∞)

in view of (C.17), where φ̂i(y) = φ(δiy+ qi). Inserting the estimates (C.21) and
(C.22) into (C.16), we deduce that

Dcij +O
(
e−

p
2

2∑
h=1

m+k∑
l=m+1

|clh|
)

= O(‖h‖∗ +
1
p
‖φ‖∞).
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Hence, we obtain that

2∑
h=1

m+k∑
l=m+1

|clh| = O(‖h‖∗ +
1
p
‖φ‖∞). (C.23)

Since
∑2

h=1

∑m+k
l=m+1 |clh| = o(1), as in Step 4 we have that

φ̂i → Ci
|y|2 − 1
|y|2 + 1

in C0
loc(IR

2)

for some constant Ci, i = m+ 1, . . . ,m+ k. Hence, in (C.22) we have a better
estimate since by Lebesgue theorem the term∫

B(0, ε√
δi

)

32yj

(1 + |y|2)3

(
V i − U i − 1

2
(U i)2

)
(y)φ̂i(y)

converges to

Ci

∫
IR2

32yj(|y|2 − 1)
(1 + |y|2)4

(
V i − U i − 1

2
(U i)2

)
(y) = 0.

Therefore, we get that the R.H.S. in (C.16) satisfies: R.H.S. = o( 1
p ), and in

turn,
∑2

h=1

∑m+k
l=m+1 |clh| = O(‖h‖∗) + o( 1

p ). This contradicts

p
2∑

j=1

m+k∑
i=m+1

|cij | ≥ δ > 0,

and the claim is established.

6th Step. We prove the solvability of (C.1)–(C.3). To this purpose, we consider
the spaces:

Kξ = {
2∑

j=1

m+k∑
i=m+1

cijPZij : cij ∈ IR for j = 1, 2, i = m+ 1, . . . ,m+ k}

and

K⊥
ξ = {φ ∈ L2(Ω) :

∫
Ω

eUδi,qiZij φ = 0 for j = 1, 2, i = m+ 1, . . . ,m+ k}.

Let Πξ : L2(Ω) → Kξ defined as:

Πξφ =
2∑

j=1

m+k∑
i=m+1

cijPZij ,
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where cij are uniquely determined (as it follows by (C.19)) by the system:

∫
Ω

eUδl,qlZlh

φ− 2∑
j=1

m+k∑
i=m+1

cijPZij

 = 0 for any h = 1, 2, l = m+1, . . . ,m+k.

Let Π⊥
ξ = Id − Πξ : L2(Ω) → K⊥

ξ . Problem (C.1)–(C.3), expressed in a weak
form, is equivalent to find φ ∈ K⊥

ξ ∩H1
0 (Ω) such that

(φ, ψ)H1
0(Ω) =

∫
Ω

(a(x)Wξφ− h) ψ dx, for all ψ ∈ K⊥
ξ ∩H1

0 (Ω).

With the aid of Riesz’s representation theorem, this equation gets rewritten in
K⊥

ξ ∩H1
0 (Ω) in the operatorial form

(Id−K)φ = h̃, (C.24)

where h̃ = Π⊥ξ ∆−1h and K(φ) = −Π⊥
ξ ∆−1 (a(x)Wξφ) is a linear compact ope-

rator in K⊥
ξ ∩ H1

0 (Ω). The homogeneous equation φ = K(φ) in K⊥
ξ ∩ H1

0 (Ω),
which is equivalent to (C.1)-(C.3) with h ≡ 0, has only the trivial solution in
view of the a priori estimate (C.15). Now, Fredholm’s alternative guarantees
unique solvability of (C.24) for any h̃ ∈ K⊥

ξ . Moreover, by elliptic regularity
theory this solution is in W 2,2(Ω).
At p > p0 fixed, by density of C0,α(Ω̄) in (C(Ω̄), ‖ · ‖∞), we can approximate
h ∈ C(Ω̄) by Hölderian functions and, by (C.15) and elliptic regularity theory,
we can show that estimate ‖φ‖∞ ≤ C‖h‖∗ holds for any h ∈ C(Ω̄). The proof
is complete.
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[3] J. Byeon, Z.-Q. Wang, On the Hénon equation: asymptotic profile of
ground states. Preprint (2002).

[4] J. Byeon, Z.-Q. Wang, On the Hénon equation: asymptotic profile of
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[17] M. Hénon, Numerical experiments on the stability of spherical stellar
systems. Astronomy and Astrophysics 24 (1973), 229–238.

[18] L. Ma, J. Wei, Convergence for a Liouville equation. Comment. Math.
Helv. 76 (2001), no. 3, 506–514.

[19] W.-M. Ni, A nonlinear Dirichlet problem on the unit ball and its appli-
cations. Indiana Univ. Math. J. 6 (1982), 801–807.

30



[20] A. Pistoia, E. Serra, Multi–peak solutions for the Hénon equation with
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