NONRADIAL SOLUTIONS TO CRITICAL ELLIPTIC EQUATIONS OF
CAFFARELLI-KOHN-NIRENBERG TYPE

MONICA MUSSO AND JUNCHENG WEI

ABSTRACT. We build an unbounded sequence of nonradial solutions for

_ 2N N+2
V(z|~2Vu) + |z| V2% N-2 =0, >0 in RV \ {0},

where N > 5 and a < 0. This answers a question of L. Veron.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

The celebrated Caffarelli-Kohn-Nirenberg (CKN) inequalities ([2]) assert that there exists a
constant S = S(a,b) such that for all u € C§°(RY) it holds

(11) SC[lel luftda)’ < [ Jal > Vulds
RN RN
for N >3,-c0o<a<20<b-a<lyg= #@Va)—a) Associated with (1.1) is the

Euler-Lagrangian equation
(1.2) —V(|lz|2*Vu) = |2|"%?" in RY

which is called CKN-type equation throughout the paper.

There has been intensive research lately on the attainment and symmetries of extremal so-
lutions of CKN inequalities. An interesting aspect of CKN inequalities is that it connects the
classical Sobolev inequality (a = b = 0) with the Hardy inequality (b = 1,a = 0). In fact, when
a = b = 0, inequality (1.1) is Sobolev inequality, and the constant S(0,0) := S is attained. (1.2)
becomes the well-known Yamabe problem

(1.3) Au+uv2=0 in RY
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whose solutions are classified (Caffarelli-Gidas-Spruck [3]): all positive solutions are radially sym-
metric around some point and given by

n—2 Z'—f

—_— 1 N = 1 i
(1.4) Uyg=¢ 2 U(T) with £€eRY, >0, Uly) =an <1+|y|2

N-—-2

where ay > 0 is a generic constant.
In the parameter region

(1.5) 0<a< ,a<b<a+1,

Chou and Chu [5] proved that all solutions to (1.2) are radially symmetric, using the method of
moving planes, and that these solutions also give rise to extremal solutions of CKN inequalities.
On the other hand, in the parameter region

(1.6) —0<a<0,a<b<a+1,

some striking new phenomena are discovered by Catrina and Wang [4]: they showed that for
b=a+1orb=a, the best constant in (1.1) is S and is never achieved. Symmetry breaking
extremal solutions are also found. This has initiated intensive studies on (1.1)-(1.2). We refer
to Dolbeault-Esteban [12], Dolbeault-Esteban-Loss-Tarantello [13], del Pino-Dolbeault-Fillippas-
Tertikas [9], Felli-Schneider [16], Lin-Wang [22] and the references therein.

In this paper, we are concerned with the case of b = a and ¢ = 1\2,—1_\'2, namely the following
nonlinear equation
(1.7) V(|z|"2*Vu) + |z|" 2% u|¥2u =0, in RN\ {0}.

According to Catrina-Wang [4], the extremal solution to (1.1) does not exist. Since a < 0,
the method of moving plane can not be applied. An interesting question is: if a < 0, are there
any positive (radial or nonradial) solutions to (1.7)? When a > 0, all positive solutions are
radially symmetric and unique (up to scaling). Another interesting question is: if a > 0, are
there sign-changing solutions to (1.7)?

For both questions, our answers are affirmative.

Theorem 1.1. Assume that N > 5.
Part a. Ifa <0 ora>N —2, then for any sufficiently large integer k there is a finite energy
solution to Problem (1.7) of the form

k N-—-2
(1.8) ug(z) = |z| Ze;TU (et (@ =€) + Ri(2) |,

In (1.8) ei are positive numbers defined as

7N_
Er = CNkk N-4

[N}

where c¢ny i a positive constant, depending on N and k, such that limg_, o cng = [a(a — (N —
2)]ﬁAN, with AN a positive constant depending only on N. Furthermore, the points Ef are
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arranged in a regular polygon in R? x {0} as follows

ff =4/1-¢€} (cos(j ; 17r),sin(j%17r),0,...,0) eRY, j=1,...k
Finally in (1.8) Ry is a function that satisfies ||Rk||L 2N — 0 as k = +o00. Moreover,

N-2 (RV)
N —2a \V4 2
(w2~ ¥52 ug | ¥22)

Here O(1) remains bounded as k — co. As a consequence, problem (1.2) has infinitely many
nonradial positive solutions.

(1.9)

Part b. Assume now that 0 < a < N —2 and a # # Then for any sufficiently large integer
k there is a finite energy solution to Problem (1.7) of the form

k N-2
(1.10) ur(@) = le* | Y (=1)Fey * U ey (@ — &) + Ri(@) |

i=1
where

_ N-2
er = cnpk 1

with ¢y, positive numbers, depending on N and k, such that limy_, o ek = [a(N—2—a)]ﬁAN,
with Ay a positive constant depending only on N. The points ff are arranged in o regular polygon
in R? x {0} as follows

/ J—1 g1 .
ff: 1-¢2 (cos( 2 ), sin( 2 W),O,...,O)GRN, j=1,...k.
Finally in (1.10) Ry is a function that satisfies ||Rk||LI\2,1j2 ®Y) — 0 as k = +o0c. Moreover,
T —2a Vuk 2
Jor |||V — =kS+0(1).

(Jro = #52 g #) 7

Here O(1) remains bounded as k — oo.

(1.11)

Problem (1.7) can also be regarded as a Hardy-type equation with critical Sobolev exponent.
Define

(1.12) v(z) = |z|Fu(z), where J:=—2a.
A direct computation shows that u is a solution to (1.7) if and only if v solves

(1.13) Av—y—

S |2y =0 in RV \ {0}

We will use the notation

(1.14) v = §(§+N—2)=a(a—(z\r—z)).
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The condition a ¢ {0, %52, N — 2} implies that v > —(¥52)2 and v # 0.
In view of problem (1 13) Theorem 1.1 is equivalent to

Theorem 1.2. Assume that N > 5.
Part a. If~ > 0, then for any sufficiently large integer k there is a finite energy solution to
Problem (1.13) of the form

(1.15) Zek U (7 (@ - €9) + Re(o) |

where

ENIN)

er = cnpk N-
with cny positive numbers, depending on N and k, such that limg_,o cNp = vﬁAN, with An
a positive constant depending only on N. The points 5;? are arranged in a regular polygon in
R? x {0} as follows

i—1 i—1
g =1/1-¢} (cos(Jk ﬂ),sin(Jk w),O,...,O)ERN, j=1,...k.

Finally in (1.15) Ry is a function that satisfies || Ry L7 @

— 0 as k = +o00. Moreover,

Jan (IVui* + \$|2Uk)

(Jen i)

Here O(1) remains bounded as k — oo.
Part b. Assume that — (%)2 < v < 0. Then for any sufficiently large integer k there is a

finite energy solution to Problem (1.18) of the form

(1.16) = kS+ 0(1).

(1.17) Z )iy T U (5 (@ — €8) + Ril@) |

where
N-—2
tr = cnpk™ V2
with ¢y positive numbers, depending on N and k, such that limy_, o ey = (—v)ﬁAN, with
AN a positive constant depending only on N. The points 5;“ are arranged in a regular polygon in

R? x {0} as follows

i—1 i—1
& =1/1-¢} (cos(Jk w),sin(]k w),O,...,O)ERN, j=1,...k.

Finally in (1.17) Ry, is a function that satisfies |

2N — 0 as k = +00. Moreover,
—2 (RN)

Jan ([Vue* + \z|2uk)

(v ) ™

(1.18)

= kS+0(1).
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Here O(1) remains bounded as k — oo.

Let us comment on previous works on (1.13). According to [20], L. Veron raised the following
question: For v € R and v # 0, let u € C*°(R"\{0}) be a solution to Problem (1.13). Is it true
that u must be radially symmetric about the origin? L. Veron also pointed out that there may be
solutions of a certain form as suggested in Section 4 of Bidaut-Veron and Veron [1]. The form
of solutions suggested in [1] is invariant under Dihedral symmetry Dj. In [19], Jin-Li-Xu proved

the following: (i) for v < — (N;2)2 , (1.13) has no smooth solutions; (i) for —M <v<0,al

solutions to (1.13) are radially symmetric; (i) for v > —(NZQ)Z, problem (1.13) has infinitely

many radial solutions; () for v > %, (1.13) has non-radial solutions. Moreover, the number
of non-radial solutions goes to oo as v — +o0o. The nonradial solutions in [19] are constructed
by bifurcations. As commented in [19], these solutions are not the types of solutions suggested in
[1], and it is an interesting question to study the existence of solutions of the suggested form. The
ezistence of nonradial solutions is also open when 0 < v < %. Theorem 1.2 gives an affirmative
answer to Veron’s question and also fills the existence gap 0 < v < ¥ left in [19].

Problem (1.13) also arises in nonrelativistic molecular physics. The inverse square potentials
describe the interaction between electric charges and dipole moments of molecules; see [23]. For
mathematical analysis of such problems, we refer to Felli-Terracini [17], Azorero-Peral [18], Smets
[25], Terracini [27] and the references therein.

The proof of Theorem 1.2 is by reduction method: we look for solutions of (1.13)

k N—2
(1.19) ug(z) = ZUjE;TU (6;1(:1: - 5;“)) +¢

where o; is either 1 or (—1)’*1, and ¢ is small in suitable norm. Since the equation (1.13) is
rotationally invariant, we look for solutions of (1.13) which are invariant under %"—rotation, for
some integer k > 2 and also reflections. Therefore we put k bubbles at k equally distributed
vortices lying on the unit circle. This leaves two parameters (gx,&F) to be determined. The
key idea is to use k as parameter. The reduction works if we employ the four fundamental
invariances of (1.13): problem (1.13) is invariant under the Kelvin transform, scaling, reflections,
and rotations.

The idea of using the number of bubbles as parameter was first used by Wei-Yan ([28]) in
constructing infinitely many positive solutions to the prescribing scalar curvature problem. del
Pino-Musso-Pacard-Pistoia ([10, 11]) also used this idea in constructing infinitely many sign-
changing solutions to (1.3). See also Musso-Pacard-Wei [24], Wei-Yan [29] for the use of this
idea in a different context. Here we use the same idea. Our main difficulty in this paper is the
reduction part: we have to deal with the Hardy operator A + # which has a singularity at the
origin and we can not use Maximum Principle nor Green’s representation formula nor weighted
L norms. Instead of using the weighted Sobolev L*°-norms (as in [28]), here we use the L?
space.
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We don’t know if the restriction that N > 5 is only technical. Firstly, for the prescribed scalar
curvature problem,

(1.20) Au+ K(z)u™2 =0

it has been proved that under some conditions on K, there is an energy bound for all solutions in
the case of dimensions N = 3,4. (Theorem 1.2 implies that the energy of solutions to (1.13) can
be unbounded when N > 5.) We refer to Schoen-Zhang [26], Y.Y. Li [21], O. Druet [14]-[15] and
the references therein. We don’t know if similar result holds for (1.13) when N = 3,4. Secondly,
we do need N > 5 to define the scaling parameter in terms of k. See (2.4) below.

The paper is organized as follows: In Section 2 we define a first approximation of the solution
we are looking for and we explain in details the scheme of the proof to get the result of Theorem
1.2. In Section 3 we give the proof of Theorem 1.2. Section 4 is devoted to estimate, in some
appropriate norm, the error of approximation. Finally Sections 5 and 6 are devoted to prove
some technical Lemmas.

2. CONSTRUCTION OF A FIRST APPROXIMATION AND SCHEME OF THE PROOF

We start with the construction of a first approximate solution to Problem (1.13). This first
approaximate solution consists of k—bubbles located in a circe of appropriate size so that it is
invariant under Kelvin’s tarnsform, rotation by 27” and reflections.

Fix k to be an integer and denote by Ry € O(2) x {Ix_»} the rotation of 2 in the (z1,z,)-
plane. Set e; := (1,0,...,0) € RV, let € be a positive parameter and consider the regular polygon
in R? x {0} C RN whose vertices are given by the orbit of the point

(2.1) &:=v1-e2e RV,
under the action of the group generated by Ry, namely

&=RTe, j=1,...,k
Define

n—2 & 1 ’
(2.2) Vie(z) = g—TU(¥) where U(y) = an (W)

Observe that equation (1.13) in invariant under Kelvin transformation,

v(z) = |x|2—Nv<#),

so it is natural to look for solutions v to (1.13) in the space DV'2(RY) that are invariant under
Kelvin transform.
Thanks to the choice of the point & given by formula (2.1), we observe that each function Vj.
is indeed invariant under Kelvin transform. Define the first approximate solution as
k

(2.3) Vilel(z) = Z Vie(2), and V_[e](@) = ) (~1)Vje(2).

Jj=1
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These new functions V; and V_ are also invariant under Kelvin transformation. The choice of
& and the Kelvin transformation invariance are borrowed from [10].

For simplicity of notation we will write Vi[e](z) = Vi(z).

In our construction, the parameter € is not independent on k. In fact its dependence on k is at
main order explicit, and changes from dimension to dimension. To be more precise, we assume
that

U
(2.4) €= Eu

where p is a positive parameter, uniformly bounded away from zero and from infinity as k — oo.
In fact we assume that there exists a positive, small number §, independent of k, such that

(2.5) §<pu<ét forall k large.

This choice of € first appeared in [28] for the prescribed scalar curvature problem.

To simplify the notation we will denote with V' the function V or the function V_, depending
if we are considering the case of positive or sign changing solutions.

The function E defined as
(2.6) E(z) = AV + [V~ — %v

z

is the error of approximation. It is clear that a basic issue for our construction is to measure the
size of this error function E, both in a region near the concentration points £; and also far away.
One of the main difficulties in this paper is the presence of the Hardy operator A + # For

reasons that will become clear later, it is convenient to do this measurement using the L¥% norm.
We have the validity of the following

Proposition 2.1. Let § and n be two positive small numbers. There exist ko and C such that,

for all k > ky and € = 1+” — satisfying (2.5), the following estimates hold true
k N-—-4
k5 if N=35,
gk 32 iy N =
(27) VBN, e e 2y SC 4 Fl0B K™ if N =6,

EURE i N>
foranyj=1,...)k, and
k3% if N=5,
(2.8) IE|| 2 <C{ k73|logk|=> if N =6,
LN+2 (RN {e_ B 4’3
( \U]_l (5.7 k)) k_% Zf N 2 7

where E is the error of approzimation defined in (2.6).

We postpone the proof of this result to Section 4: Appendix 1.

We start observing the following facts: the function V. defined in (2.3) not only is invariant
under Kelvin transformation, it is also invariant under the group of rotations Ry, € O(2) x {In_2}.
Furthermore it is even in the last (N — 2) coordinates, namely

(2.9) Vi(zr, 22, —Tiy. .. xn) = Vie(x1, 22,4, ...,xny) forall =3,...,N.
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It is thus natural to work in a space of functions that respect all the above symmetries. Let

(2.10) H={uecDY}RN) : u(z) = |$|2_Nu(|§—|), u(Rpx) = u(z), u satisfies (2.9)}.
In particular the functions V4 defined in (2.3) belong to H.
When « > 0, we will look for solutions to (1.13) belonging to the space H of the form

(2.11) v(z) = Vi(2) + ¢4 (2)
where ¢4 € H is a lower order term.

On the other hand, when —(%52)? < 4 < 0, our solution will look like
(2.12) v(@) = V_(2) + 6_(2)

where again ¢_ € H is a lower order term. As before, to simplify the notation we will denote
with ¢ the function ¢, or the function ¢_, depending if we are considering the case of positive
or sign changing solutions.

Let p = % In terms of ¢, problem (1.13) takes the form

(2.13) A — #qﬁ L pVPlg L E+ N(¢) =0, in RY, ¢eH.

In (2.13), the function E was introduced before in (2.6), and
(2.14) N(¢) = [[U+ /7' (U +¢) = |UP~'U = p|UIP"¢] .

We will solve Problem (2.13) using a gluing argument. The idea is to decompose the nonlinear
problem (2.13) into k + 1 sub-problems: the first k¥ problems correspond to the k-bubble regions
(inner part), and the last problem corresponds to the region outside the bubbles (outer part).
This idea of decomposition principle has been used in a number of problems, e.g. the counter-
example to De Giorgi conjecture by del Pino, Kowalcyzk and Wei [6], and also the construction
of multiple end solutions to nonlinear Schrédinger equations by del Pino, Kowalczyk, Pacard and
Wei [7]. Note that this is reduction procedure is different from [28].

For any j = 1,...,k, let {; be a cut-off function defined as follows. Let ((s) be a smooth
function such that ((s) =1 for s < 1 and ¢(s) = 0 for s > 2. Then we set

CChnHy| Ity = &y |)  if [yl > 1,

(2.15) Gw) = |

(k" y = &l) if [y <1,
for a certain 7 > 0 small and independent of k. Observe that
(2.16) G =GW/lyl*).
A function ¢ of the form

k
¢ =Y ¢+
Jj=1

is a solution of Problem (2.13) if we can solve the following coupled system of elliptic equations

inéz (¢1a"'a¢k) and d}:
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(2.17) Ag; +p|VIP ¢+ GlplVIP o — #@- +E+N($j+Sigii +9)] =0, j=1,....,k

(2.18)
Ap— oyt (prl”_1 - i) D (1=G)pi+(1=Z51G) (VP 9+ E+N(Zh_16+¢) ) = 0.
i

BEH ER

To solve System (2.17)-(2.18) we will solve first problem (2.18) for given ¢;’s of a special form
that we describe next. Define

(219) L3 ={ue L™ : u(z) = |:U|27Nu(#

The function ¢; will inherit the size of the measure of the error of approximation E defined in
(2.6) in the interior region B(j, 1), for some 1 > 0, small and independent of k. Thus, given the

), w(Rrz) = u(z), wu satisfies (2.9)}

result in Proposition 2.1, we assume that ¢; € H|) L7 for any j =1,...,k, with

N-—2

(2.20) (arp—er)  #lso

for some fixed constant o, independent of k£ and small. For further reference, we will use the
notation

N-—2

(.21) o= (ze—g) ¢l

A trivial observation is that
1l 2|1 < Cllgllse,
for some explicit constant C.

The following result holds.

Lemma 2.2. Let § > 0. There exists ko and C such that for all k > ko and all € =

k1+‘1‘v2—4
with § < p < 87 for all k large, the following holds: Let ¢; € Hﬂﬁ%, j=1,...,k satisfy
conditions (2.20). Then there ezists a unique solution ¢ = ¥(¢1) € H|) L7 to equation (2.18),
such that

k3"3  if N=5,

N+2

(2.22) ¥l o, < Clg(k) +ll¢1ll21] where g(k)=q k~3|logk|> if N =6,
6
kNS if N>

The operator U satisfies the Lipschitz condition
126} = T, < C llg} = @l

Furthermore the function ¥ (¢1) depends continuously on the parameter p, in the sense that the
function p — 1 € L¥2 s continuous in the natural topologies.
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Moreover, if we define 11 = (19 (see (2.15) for the definition of (1), then we get the finer
estimate

(2.23) lonll g, <€ [F7 7" g lle + Il

N-2 —

We postpone the proof of the above Lemma to Section 5: Appendix 2, Proof of Lemma 2.2.

Let us consider now the operator ¥y = 1)(¢) defined in the previous Lemma, that gives a
solution to Problem (2.18) for ¢ = (¢y,...,¢;) fixed. Our next interest is to solve Equations
(2.17). We claim that, if we solve Problem (2.17) for j = 1, then automatically Problem (2.17)
is solved for any j = 1,...,k. This is simply due to the invariance of Equation (2.17) under the

2

rotation Ry of the angle 5% in the first two components in RY. In fact, one gets that if ¢ is

a solution to Equation (2.17) for j = 1, then a posteriori ¢;(z) := ¢1(Ri71m) is the solution to
Equation (2.17), for j =2,..., k.

We thus solve Equation (2.17) for j = 1.

Let us rewrite Equation (2.17) as follows

(2.24) A¢y +p|Vic [P ¢y + h(z) =0,
where Vi, is defined in (2.2) and

(2:25) (@) =p(IVI~' G = VielP")s + GlpIVIP T — #dﬁ + E+ N(¢1 + Ziza 6 + ¢)]-

Define
2N X
2

(2.26) LV ={ue€ L™ u(zx) = |x|72*NU(W), u(Rrx) = u(z), u satisfies (2.9)}

We make the following observation: if we assume that ¢; is invariant under Kelvin transform,
that it is invariant under the rotation Ry and it is even with respect to the last (N — 2) variables,

then thanks to the properties of ¥(¢) we find that the function h(z) defined in (2.25) also satisfies

h(z) = |m|_2_Nh(#), hRyz) = h(z) forall zeRN\{0}

and
h(z1, T2, 23, -, Tiy-- -, ZTN) = h(21,%2,%3,- -, —Ti,-.., TN), for all 1=3,...,N.

Even more, if we assume that ¢; € L£¥°2 then h € L¥4z.
We solve (2.17) by a finite dimensional reduction procedure. This consists of two steps. (See

[8].)

Step 1: For a general function f € 515_12, we consider first the linear problem
(2.27) Ap+pVil o= f+eVET Zi, in RV \ {0}, / Vi $Z1 =0
where

(228)  Zil@) = T2Ee-&), with Z()= " UE)+ VUG -y
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(see (2.2) for the definition of U) and

c= — fRN fZIE
fRN ‘/1];:‘_1Z128
We have the following result.

Lemma 2.3. Let us assume that f € L£~+2. Then Problem (2.27) has a unique solution ¢ =
T(h) € DY2(RN) (N L¥2 satisfying

(2.20) 18l < CIIF I 2,

for some positive constant C.

We use the above lemma to solve the corresponding projected version of (2.24)
(2.30) Ady +pViel 261 + h(z) = V2 2, / BV =0
R

where here h is the explicit function defined in (2.25) and
fRN h(.’L‘) Z1e

= =19 "
fRNVvls le

We can prove the following result

Lemma 2.4. Let 6 > 0. There exists ko and C such that for all k > ko and all e = ’% with

kT

d < pu < 87 for all k large, the following holds: there exists a unique solution ¢ = ¢, () € L7
to equation (2.30), such that
k= if N =5,
(2.31) I¢1llie < CQ E~*|logk| = if N =6, ,
kTS i N> T

Furthermore the solution ¢1 depends continuously on p, in the sense that the function p — ¢1 €
2N
LN-2 45 continuous in the natural topologies.

To make our exposition clearer, we also postpone the proofs of Lemma 2.3 and Lemma 2.4 to
Section 6 Appendix 3.
Step 2: Once (2.30) is solved, it is clear that V + ¢ becomes an exact solution to (1.13) if there
exists a choice for the parameter y so that
(2.32) c=c[p] =0.

This is done in Section 3, where we also conclude the proof of our results.
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3. PROOF OF THE RESULTS

This Section is devoted to the
Proof of Theorem 1.2. Let § > 0 be a small fixed number. Lemma 2.4 garantees the existence
of a large integer ko, such that for all ¢ = -5 with § < p < 01, for all integers k > ko there
kTN=2

exists ¢; € H and ¢ € R solution to the non linear Problem
Ady +pVP 6y +h(z) = VB Zi, in RV \ {0}, /Vfg_lqszls —0

where we recall the expression of h given by (2.25)

(@) = p(VIP = VP )+ GLPIVIP (81) — b1+ B+ N(gr + Sisai + )
E is given by (2.6), N(¢) is defined in (2.14), Vi, is defined in (2.2), Z. is defined in (2.28) and
1 is the function whose existence is guaranteed by Lemma, 2.2. Furthermore, the function ¢; and
the constant ¢ depends continuously on u. For further reference, we write

(3.1) Mz) = GE+ L(¢1) + N (1)
where
(3.2) £(61) =PIV 6 = Wae")ds = G
and
(3.3) N(#1) =G [pIVIP"9(d1) + N1 + Zia i + )] .

It is thus a trivial observation to say that the function

v=V+4¢

is a solution to our original problem (1.13) if we can chose p so that
(3.4) c=clu]=0.
At this point we need to distinguish the case of positive solutions vy = Vi + ¢4 from the case
of sign changing solutions v_ = V_ + ¢_. With obvious notation, define the continuous function
9:+(p)
(3.5) g+(p) = o hyZyy.

Observe that equation (3.4) is equivalent to find p so that

9+(p) =0
Define the constant I‘} to be given by
1 1
(3.6) Il = lim 5> —— , N>5,
ko0 kN2 ot € — &|N-2
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where £; = (7% ,0) € C x RV=2, We claim that I'l, is a positive number. Indeed, observe

that |§ — & | = 2Z24=1 (1 4+ O(1)) as k — co. Thus

n 1 = 1
Iy = (2m)N -2 Z N2 > 0.
j=1

Furthermore, we define the constant I'y; to be given by
1 . 1
k—oo kN2 ; & — & |N-2
A simple analysis shows that
N 1 = (—1)7 1 N (—1)7
Iy = 2m)N-2 JX_: N2 — " 2nN-2 1- ]:22 -2 <0,
since |Z;°22 g,_vl_); < E‘;‘;Q ]N% < floo le__2da: = ﬁ < 1.

Then we claim that the expression of g+ (u) can be explicitly computed as follows

1 _ 1
(3.8) g+ () = RFS [—’YMGN +uNThby + P Gk(ﬂ)]
and

1 N 1
(3.9) g-(n) = presey li +p" T Tyby + o O ()

In (3.8) and (3.9) an and by are positive constants that depend on the dimension N. Furthermore
O (n) denotes a generic continuous function of the variable u, which is uniformly bounded as
k — oo.

Observe now that if v > 0, then the function g4 (u) has a positive zero

= .
u=(7aN> +0(

- .
bNF} LN =D

This fact proves the existence to

(3.10) Av—y#ﬂmﬁv:o in RV \{0},0=V+¢.
We claim that v~ = 0, where v~ denotes the negative part of v. In fact, if v~ Z 0, then
multiplying (1.13) by v~ and using Sobolev inequality yield

/ Vo P+ L@ )2 >0 >0
RN\{0} ||

where C' > 0 is a generic constant. This is impossible due to the structure of v =V + ¢ and the
estimate of ¢. As a consequence, we obtain a positive solution of the form (1.15) predicted by
Theorem 1.2, Part a.
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On the other hand, if — (%)2 < v <0, then the function gy (1) has a positive zero

s )
uz(wN) +0(

bnT ENND

This fact proves the existence of the sign changing solution of the form (1.17) predicted by
Theorem 1.2, Part b.

An adaptation of the arguments that we will use below to prove estimates (3.8) and (3.9) give
the expansion of the energy (1.16) and (1.18). We omit the proof of this fact.

The rest of the Section will be devoted to prove (3.8). In exactly the same way one gets (3.9).

In the rest of the proof, with O (1) we denote a generic continuous function of the variable u
that is uniformly bounded as k — oo.

Expansion (3.8) is consequence of three facts:

(3.11)
1 B B 1
- GEZ. = oz [—w(/RN U(y)Z(y)dy) + pu™ 3FN(/RN UP~(y)Z(y) dy) + E(")k(ﬂ)
with
(3.12) / Uy)Z(y)dy >0 and UP Y (y)Z(y) dy > 0,
RN RN
(3.13) o L($1)Z1e = ﬁ@k(ﬂ)
and
(314) [ V@02 = 0l

The rest of this section is devoted to give the proof of expansions (3.11)-(3.12)-(3.13)-(3.14).
The computation near the bubble part is similar to those in [28]. We need to assert the new
contribution from the Hardy-operator.

Proof of (3.11) and (3.12). Given the definition of the cut off function ¢;, we write

(3.15) GEZ,, = / GEZ, = / EZ,. + / GEZ,. = A+ B.
RN B(¢1,32) B(¢1,3) B(&1,32)\B(£1,3)

We start with A. Recall that

E=FE(r) - Ba(), Ei(z)=AV+V?, Eyx)= #V(x)-

We have the validity of the following expansion

4 1
R ( U(y)Z(y) dy) (1 + E@k(u)) .
B(Elv%) RN
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Indeed, we have by definition

(3.17) [, Ede=c Z / Vie@ 2P
B(£1,22) B(¢1,22) |93| €

The main term is the integral of #VMZM over the ball B(&, 1)

_N-2 o z—& 2/ ~
g 2 —VEZ =¢ — " U y 7 y
/B(ﬁl,”) EEAC B0, %) ley + &l W2()

=52[/B OO / (—  )U)Z(y) dy

o B0,3) ley + &

=pk 277 | Uy)Z(y)dy — pk~2" %3 / U(y)Z(y) dy

RN RN\B(O,Elk)
(3.18) + kN /B( )IyIZU(y)Z(y) dy(1 + o(1)Ok(p))
0,7%

where o(1) — 0 as k — oo and O (u) is a continuous function in the variable y, uniformly
bounded as £ — co. Observe now that

& /
B(0,

£Oi(n) if N =5

lyPU(y)Z(y)dy = C < &2|logk|Ok(u) if N =6,
e20r(p) if N>6

'tk

and that

/ Uw)Z(y) dy = ()N 0 (1).
RN\ B(0

Thus we conclude that

1) [ vz s ([ vwaw ) (14 10i)

Now we estimate the other terms in (3.17). For instance consider j = 2. Performing the change
of variables “”—_fl =y we have

S AT
B(£1,1) |z| €

£ .tN—l

< O2 N—2/Ek AN

where we used the fact that, if [y| < Z then |[U(y + e~ (& — &))| < C(ek)N 2
We thus conclude that

= |¢2 /B(ol Uly+e (& — &) Z(y)

N-—-2

e 2z —=Va:Z (
/B(gl,z) |[?

8 =k o)
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and hence
_N-2 V T —& — k2wl
€ | |2 ]s T) - k(,u)'
B(@?Z)

This last fact, together with (3.13) and (3.19), give the validity of (3.16).
Let us now evaluate || Blen, ) E, Z,.. Recall that

k
z) = VP =3 V]l

In the ball B(&1, 1), we perform the natural change of variables

z—&1 _

=y, that gives

<m+§:wy+f%&—@4.

#1

Define U (y) = 2iaUy+ el (& —&)). Thus,
I:me<W+m”*w+gywwwl@—@m>ﬂm@

=p</ U”*lffZ(y)der/ [(U—sO)P~ ! —UP 1 UZ(y) dy
B(0, %) B(0, %)

(3.20) +A%WJ§¥”@+€H&—&DHM@>=h+b+&

We start with the observation that

— p—1
hi=et (Z IS €|N 2) p/B(o,Ek v

:pn«A;LWAZde“2+@mN@um

(1+ (k)*0(1))

014

Let us now evaluate I». We use the inequality |(a 4+ b)® — a®| < C|b|?, for any 0 < s < 1, to get
first that, for y € B(0, ), one has

_ 1 N-3, m+ p—1
(3.21) = L [u pI‘N(/RNU Z) +

kN-2

U(y) < Ck(ek)N 2.

Thus we get
L tN —1

IQ = EN_2k(Ek)N_2(AEk m dt)@k(/,l,) =
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In an analogous way one gets
Iy = k> kN1 0 (u).
With this we conclude that

1 1
(3.22) [ mza= e ([ i+ o]
B(£1,2) A RN k

Estimates (3.16) and (3.22) give the computation of the term A in (3.15).
We will next check that B is smaller than A in (3.15). We write

/ GEZ.. = / QB 7y — / GEsZh
B(&1,%2)\B(&1,3) B(&1,3)\B(&1,F) B(&1,%2)\B(&1,3)

Arguing as in the proof of estimate (3.16) (see in particular (3.18)), we have that

i—z .tN—l
C1E2Z15 S 052/ v 5 S 062(kE)N_2

2 (14 2)N-2

ke

‘é(glw%)\B(glzg)

thus we get

(3.23) QB Zye = k2 72220, (p).

/B(gl,%”)\B(&,%)
On the other hand, arguing as in (3.20), (3.21) and (3.22) we have

21
s tN—l
/ CIEIZIE S C(Ek)N_z/ T o N4z S CEZ(kE)N_2
B(&1,32)\B(&1, 1) 2 (141
thus we get
(3.24) / GEi Zh = k2 ©2220,().
B(gli%)\B(gh%)

From (3.23) and (3.24) we conclude that
(3.25) B =k v10,(p).

Estimate (3.11) thus follows from (3.15), (3.16), (3.22) and (3.25).
Finally, since (see (2.2) and (2.28))
0

20 = (5u0u0)) o where U,(0) = ()T

we have that

[ vwze) = (5 ] | Uﬁ)uzl, wd [ 0 wz6)= (5 [ Uﬁ’)uzl

Thus we have the validity of (3.12) because

Uj:;ﬂ/ U?, and / AT
RN RN RN RN
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Proof of (3.13). Referring to (3.2), we first observe that

<C

/ p(VP' G = V9121
RN

<c o (X <ol [ Ve XV
G ) BEL5)

/ (VP — VE ) Zic
B(£172k )

Jj>1 i>1

(performing the change of variables ey = x — &)

= Clléu s / U (
B(0,21) ;

) (R 7| < Cer) gl
Tl —c G =a)

Jj>1

where we have used the fact that in the region we are considering we have -, ( a +|y75_11 T ) <

C(ek)N~2. Collecting the above estimates, we conclude that
_9o___4 _ 2
(320) /RN p(VP G = VE )1 Zhe = k72N 59 04 (1)

where ©(u) denotes a continuous function of u, which is uniformly bounded as ¥ — oco. To
conclude the estimate (3.13), we observe that

/ G E |2C1¢1Z1g

We next estimate || 2z (1¢1]| 2n_. A direct use of Holder inequality gives
[z] N+2

v [ Ziell zv, < ClliGi—5Cidnl] o, .

NIz | |2 NItz

<CllG z |2C1¢1||

2N | N+42 N2
|||i2c1¢1|| 2 <O / 61 ¥52) 5 < O ¥ |6 | o
z| B(e1, )
Thus we conclude
)
3.27 L Za,
(3.27) ‘/RN@ TrGnz

Estimate (3.13) follows directly from (3.26) and (3.27).

< Ck~

Proof of (3.14). Since (2.23) holds, we get

/Clprl” (1) Z1e| < CllGpVIP (@)l 2 1 Z1ell 2, < ClGplVIP |y G ()] 2,

(3.28) < Ck~2 v
Referring to (3.3), we have that

[GN (1) < COVE 2D 1oi* + W)
J
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Thus, we get

/ GN($1) 21
RN

gc/ ave [ S 162 + P
Bl D) XJ: ’

—1
<Ol mgHQ@%L+§NQ%@$+MWﬁ%
j#1

Observe now that [[V,\” ||y < C, and [|¢1¢1[%w < Cllé1 13, while for j # 1, one has
N-2
N-—-2

)N) < C(ek) "% ||6slljx < CE™1 552y 1.

B(e,n) €tz —&l?

€
ng@mgscwmﬁ</ (
Collecting the above estimates and using (2.23), we get

(3.29) /R QN7 = K V04 (),

where O (p) is a continuous function of y, uniformly bounded as k — oo.
Estimate (3.14) follows directly from (3.28) and (3.29).

This concludes the proof of the Theorem.

4. APPENDIX 1: ESTIMATE OF THE ERROR AND PROOF OF PROPOSITION 2.1

This section is devoted to estimate the error term E defined in (2.6). We write E = E; — E»,
where

(4.1) Ei(z) = AV + |[VP'V, and Ey(z) = | 7|2 V.
Denote ¢ = N +2 Let 7 > 0 be a small number and decompose the entire space RV as follows
k
RV =(JB g,, WJR
j=1

We estimate the error in each of the k + 1-subsets.

Interior estimate. We first estimate the L7 norm of the error in each ball B(;, ).
Let us fix j, say j = 1, and observe that, if we denote by

~ N+42

E(y)=e > E

(ey+&), Iyl <

we have

1Bl zaie-er1<3) = IENLagyi<)
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N+2

Let Ej(y) =¢ 2 Ei(ey + &), fori =1,2. In |y| < 7=, we have, for some 0 < s < 1,

i#1

Ei(y)=p (U(y) +5() Uly—e (& - 51)))) x

X

D U—e(& - 51)))] =D Uy —e7'(& - &)
J#1 j#1

where U is the basic cell in our construction, defined in (2.2). Notice that e 1§, —&;| ~ (ek) 1] —i
so that

EN—2k.N—2 n
Uly—e(§ — &) < CW for |yl < o
With this in mind, we can estimate in the region |y| < 7,
~ (Ek.)NfZ
4.2 E <C—=—+
and hence

(ek)(N=2)a  if N =5,

/ |E]9 < C{ (ek)N=24|logk| if N =6,
lyl<zk (ek)N-Da+4a—N i N >7.

Thus we conclude that
k=6 if N =35,
(4.3) 1Bl Lasen,)) = 1B ILa(Bo, 2 )) < C{ k4logkls i N =6,
ETlTwE i N> T
On the other hand, in the region |y| < &, we have that

| B> (y)| < Ce’Uly),
o)
k1 N1 e2(ke)(N=2a-N if N =35,
2 2 .
lle U”Lq(\y\ﬁslk) <Ce q/) m <C e?|loge| if N =6,

g2 if N>T.
Thus we conclude
k=5 if N=35,
(4.4) B2l Le(pes, 2y < C { k~4|logk|s if N =6,
k2R i N> T
Collecting (4.3) and (4.4), we conclude that
k5 if N=5,
(4.5) 1Bl za(ne;,2) < C { k~*logk|s if N =86,
TN i N>
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Exterior region. We now turn to the exterior region

k
— N
R=RN \JL:JlB(gj, k).

In this region, we have that Vj.(z) < C Iwi&% and thus

N42 N-2
3

k k
£ 2 [
4.6 E (z)| <C ———— and |Ex(2)|<C —sT——— v
(46) @I SCY g = IBEI$CY ppr g

We start with the computation of the L?-norm of E; in R. We have

(N+2

1
% T2q q 1 q
£ (N42
|E1|‘1) < Ck / — | <Cke =) / — e+ 0(1)| .
(/R RM\B(g;, ™) | — &|(N+2)a B(&; V)\B(&,1) [T — &|(N+2)a

Since

1
S S
/B(Ef'J)\B(sj,@ |z — &|(N+2)a =

we conclude that
(4.7) |Brllpacmy < Ck~%=3, forany N >5.

We now compute the L?-norm in the region R of the part E,. We separate R into a region close
to 0 and the rest, we get

1

q

||E2||L4(R) < (”EZ”QLq(B(O,%)) + ||E2||%q(R\B(0,%)))
Observe that Es has a singularity at 0, but

N=—2 1 N-2
1E201%  peo.1y < Clke 27 )4 / — | < C(ke 2 )?
L B(072) B(O,%) |.T|N_+2

thanks to N > 2. Thus, arguing as in the previous estimate (4.7), the size of || Ez||fq(g) is given
by the integral over a region close to dB(&;, ). Indeed, we have

k(=3-%)¢ if N =35,

N-—2 ].
| B2l|Ep) < Clhe ™)) (/ 7) <C{ k™3logkl? if N =6,
La(R) 1<lo—gsl<a |z — &V WC-NE e s

Thus we conclude that
k=3-2 if N =5,
(4.8) 1B:|lpary < C S k~°|logk| if N =6,
k2 v if N> T
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Collecting together (4.7) and (4.8) we conclude that

k=3-2 if N =35,
(4.9) |Ellpery < C{ k~%|logkls if N =6,
kN i N>

This concludes the proof of Proposition 2.1.

5. APPENDIX 2: PrROOF OF LEMMA 2.2

Proof of Lemma 2.2. The result stated in Lemma 2.2 will be a consequence of a corresponding
linear result and an application of the Contraction Mapping Principle. Thus let us first consider
the linear problem

(5.1) Ay — #«p =h in RY\{0},

where h belongs to the space L7 defined in (2.26). Hardy Inequality guarantees that if u €

DL2(RY), then w € L?(RY) and

—_9\?2 2
(5.2) (M) / “—2de/ Vul2.
2 RN |Z] RN

For any v > —(¥52)2, we define the Hilbert space D., given by D"*(RY) equipped with the

scalar product
(u, ) / [VuVo + 722
= v+ y—s]-
T s REE
We denote with || - ||, the corresponding norm and with || - || the natural norm in DL2(RY).
Inequality (5.2) gives that

Y o\L
(1+ —CN)2 llull < lwlly
where Cy = (%)2 Observe that

T -1
:3) ol 2y < 1S+ 2l
where § is the best Sobolev constant of the embedding D'2(RN ) — L¥~3 (RV).
Let us denote with T, the embedding T, : D, — L%(RN ). Then the adjoint operator

T : L% (RN) — D, defined as

¢ =T3(h) < ¢ is the unique solution of Az — #d) =h in RN \{0}

is a continuous operator and

175 (R)lly < CllAl e

LN+2
Observe furthermore that if h(x) = |:1:|_N_2h(ﬁ) then the function ¢ (z) = |$|_N+2¢(ﬁ) also
satisfies A¢p — #zﬁ = hin RV \ {0}. By uniqueness we get that ¢(z) = |a:|*N+2¢(ﬁg). In a
very similar way, one can show that if h(Rpz) = h(x), where Ry, denotes the rotation in the first
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two variables of the angle QT’T, also 1) is invariant under that rotation. And finally, if A is even in
the last (IV — 2) variable, we also get that 1) is. We thus conclude that, in case h € E%, then
& = T:(h) € £L52, thanks to (5.3).

Let us go back to problem (2.18): Problem (2.18) is equivalent to
(5.4)

v=-T5 | VI - #) D A=)+ (L =S5 G) (pIVIP '+ E+ NS 65 +9)) | := M(¥)

Observe furthermore that if 1) € £~~2, then M) € LR,
We will see that the operator M is a contraction mapping in the set

X ={peL™= :[[¢ll an <cg(k)}

for some ¢ > 0, where g(k) is defined in (2.22).
Referring to (5.4), Holder inequality gives

— NP1 ot _ Nyp—1) N2 2y | V2
v [ 10 S el < [ a-S v ([ wi#)

J

Arguing as in the argument to get (4.9), we see that

4

N+42

NiQ
N+2
-1 € 8 14 . s
/RNl(l_ZCJ')Vp 1| ! <Ck (/Iz &1>7 W) <Ckt e < Ck TNt e
J —<i %

We thus conclude that
(5.5) Ip(1 = > GVP Tl an < oD an
J

N+2 ~

with o(1) = 0 as k — oo.
We next estimate the Z&-norm of the term pV?=' 3" (1 — (;)¢;. A direct use of Holder
inequality gives
VP~ 3201 = G5l gz, < CRlIPVITH A = Gl gy, < Chllnlal[VP7H(1 = ) Vac | g

N+2
J

Arguing as in the estimate (4.7), we get
E[[VP7H(L = ¢1)Viel|

o < Ck ~=a
F2

N

from which we conclude that

(5.6) IpV?~1 S (1 = ¢)jll an, < Ck™ 75|y 1.
J

N+2
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On the other hand, we write
(L= GINQ_ ¢+ <CIA=D I | D16l + 1wl |,
J J J J
from which we easily get

I —ZCJ')N(Z¢J‘ +)ll 2y, <C

Let us fix 7 = 1. Holder inequality gives

/[1—2@ |¢1|”]

from which we conclude that

11 =3 lenPlly, < Ok 6

OICED SO (EE DTGB ]
j i

2N
N+2

<Ol / VI < O(eh)N || |

RM\B(£1,)

On the other hand, a direct use of Holder inequality gives
1= WPl ay, < Cllpl o -
i

N+2

We thus conclude that

6.7 I01= 3N el g, < 0 [kl

Pan +[11Fon_
N-2 N-2

. We start with the observation

Next we shall estimate ||# (Z (1 CJ)¢J)

k
Arguing as in (4.8) we get that ||#(1 — (1)Vae| 2, . Thus, we conclude that
] ~2-
(5.8) I (Ql - cj)czsj) g, < CR 2516l s,
J:

From estimates (5.1), (5.6), (5.7) and (5.8) we conclude that M defined in (5.4) maps X into
itself.

Next we will show that M is a contraction mapping. Observe that

[(M(¢h1) = M(4h)| < C

plVIPH(1 - Zcmwl — o] + (1 - Z@-)|N(¢+w1) — N (¢ + o)
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Arguing as in (5.1), we easily get
(5.9) VP~ (1= Gler = alll 2, < Co(D)llthy — el 2,

with o(1) = 0 as k — co. On the other hand,
(1= GIN (1) =N (g+4)| < CA=3 ) [(V + 9+l = [V + ¢ + ") +p (VI 1 = v

Thanks to the assumptions on ¢, we get that |V + ¢+ ¢1[P — |V + ¢ + a|P < C|VIP7L1hy — 4ha],
and then arguing again as in (5.1) we can conclude that

(5.10) O ZQ)IN(¢ + 1) = N(¢ + 9o)lll 2z, < Co(1)][¢hr — o] 2o,

N

with o(1) — 0 as k — oo. We thus get from (5.9) and (5.10) that M is a contraction in X.

Consider now the function v, := (39. Then 1 solves

Ay — Ly =H in RV \{0}

|z[?
where
H(@) = =p(1= S GV = (VP = 75)6 (1= 6)é;
(5.11) —G(1 - Z GYE + N(9)) — ViV — AGie.

Since 1 solves the above equation, the previous argument gives
(5.12) 1]l 2n, < ClIH]| 22,

To get our estimate (2.23), we just need to evaluate the L%+ norm of the function h.
We start with the observation that, arguing as in (5.1), we get

(5.13) Ip(1 = S IV | o, < Ok F=3 %5 [y || 2n
J

N+3 N+3
Let us now consider the term (p|V[P~! — #)Cl 2 (1 —()¢;. Assume first that j # 1, then

VPTG = ¢)os| < Cllgsllag [IVIPT (1 = ) Ve |
Thus we get, using Holder inequality,

VP~ G = ¢l 2, < CllgalliallVP Gl y G Vel 2,
and, taking into account that ||V”_1C1||% < C while ||C1Vj5||131j2 < C%, we get

_ ek)N—2
1760 = el gy, < Ol

N
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and hence
VP16 Y (1 = ¢)sll an, < CkT' 7= Il
i#1
On the other hand, if j = 1, we get
IplVIP~ ¢ (1 = )| < ClignllaaGa (L — G)VE

and hence

_ _1—-_6_
VP61 = Gl 2y, < CKT 7= |6l
Now, arguing as in (5.8), we get that

k
’Y 2
[Fes (Z(l —cj)qb,-) oy, < ¥=1|¢1 |1
i=1
Collecting the above estimates we conclude that
- 2
(5.14) 16V E = o) Z( — G)ill g, < Ok 55

Next we evaluate [|G1(1 — 3, Cj)E”AQ’_IL. A first observation is that [|G(1 — >, ¢)E
ClG (=32, G)El T Arguing as in (4.2), one has that in the region where (i (1-3"; ¢ )
we have

PI/\

N—2
|Ey(z)| < CEW% < Ce’;‘wk]\fi2
>
This gives immediately that
N+2 6
(5.15) 160 =3 6Bl g, < C v
j

Next consider the nonlinear term (i (1 — >, (;)N(¢). In the region where (1 (1 —3_; (;) # 0, we
have

IN@I < C IV 1651 + [ [P

J

< C [VElIgals + v ]7]

Thus
(5.16) 160 - NG, <c[||¢1||1*+||w1||”m

Using the inequality || fg]| 2n < CIIfIIN llgll _2x_, we get

N+2 —

(5.17) [AGY 2x, < CIAG ]y (]l 22, < Ck™ 28" [|9h1]] 2o,
Using now the inequality ||fg] 2~ < [|ll2llglln, we get
IVl gy, < IGVBILIVGly.
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Now, a direct consequence of the definition of 41 gives that [|(1V¥[l2 < Cll¢1(lar < C'[|¢n]l 2n_,
which in particular implies that

(518) ||VC1V¢|| 2N < Ck™ ||¢1|| 2N
Collecting estimates (5.13), (5.14), (5.15), (5.16) (5.17), (5.18) inequality (5.12) gives
hinll g, < C [o(0)lhinll g, + =455 + k=755 gy 1. + 1],

where 0o(1) = 0 as k — oo. This gives the validity of estimate (2.23).
This concludes the proof of the result. O

6. APPENDIX 3

We start with the proof of

N-2 ~ N+2

Proof of Lemma 2.3. Let us~deﬁne~<;~5(y) =e 2z ¢(ey+&1) and h(y) =e 2 h(ey+& ) and consider
the equivalent problem for ¢ and h given by

(6.1) Ad+pUP~tp=h+cUP Y (y)Z(y) in RN, UrlZ¢=0
RN

With no loss of generality we may assume that
(6.2) hUP1Z =0.
RN
The evenness of the function h in the last (N — 2) variables implies that

/"6U 0, forall j=3,....,N
RN 6?]]

We want to show that also fRN == =0, for j = 1,2. Consider the vector integral

7 | Byr ﬁ(y) _ _ Y1
I=/ h| %y =cN/ ———— —9ydy, where gy=
- L?—%] wy (L4 y2) ¥ 2
Changing the variable g into eQT”g and using the rotational symmetry of h, we get eTi[ =1 ,
thus I = 0 since k # 1.

Let us consider the subspace

X={peD*R"): | ¢zZ=0, forall j=1,...,N}
RN

6_% v
which is well defined thanks to the Sobolev’s embedding D"?*(RY) — L% (RN).

Since [ovhZ =0, [on hg_; =0, forall j =1,...,N, finding weak solution to (6.1)
corresponds to finding ¢ € X such that

VoV® —p [ UP ¢+ [ AE =0 forall ©eX.
RN RN RN
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Now, for h € L+ (RY), let us denote by ¢ = A(h) € H the unique solution of the problem

(6.3) VeV + [ hp=0 forall ¢ € X,
RN RN

given by Riesz’s theorem. Then A defines a continuous linear map between L™+ (RY) and X.
Problem (6.1) can be formulated as

(6.4) ¢ — A(pUP~'4) = A(h), ¢€X.

The map ¢~5 eX—U ”_1¢~S eL? (RY) is easily seen to be compact, thanks to local compactness
of Sobolev’s embeddings and the fact that UP~! = O(|y| ).

Hence, Fredholm’s alternative applies to problem (6.1): for h =0, (6.1) reduces to (A +
pUP 1)(¢) = 0 with ¢ € X. Elliptic regularity yields that ¢ is also bounded, and hence it is a
linear combination of the functions Z and ‘9; for j =1,...,k. Then, the definition of X implies

that necessarily ¢ = 0. We conclude that Problem (6.1) is uniquely solvable in X for any h.
Besides,

196z + 1611, g2, gy < C 1l 23,

N+2

Arguing by uniqueness, as in the proof of Lemma 2.2, we find that ¢ satisfies the corresponding
symmetries. 5

It remains to prove that ¢ satisfies estimate (2.29). In terms of ¢, this is equivalent to show
that

(6.5) 10+ Y )bl < CIRI g

Being ¢ a solution to (6.1), local elliptic estimates yield

1l (51 <

Now, let us consider Kelvin’s transform of ¢,

o) = >N (|ly|"*y)

Then we check that c]) satisfies the equation

(6.6) A+ UP (y)g=h in RV \ {0},
where h(y) = |y|~N2h(Jy|~2y). We observe that

I, 250 0wy = W, g5y < I,
and

IVdllzsm + 18l g, = IV@llzam + 18] 2,
Then we get, from elliptic estimates applied to equation (6.6),
Il L <O Al gy, -

+2(Bz2)
But .
Bl zo By = Il YN 2@ |l Lo @™\ By)
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Combining the above estimates, relation (2.29) follows.
The proof is complete. O

We have now the tools to prove Lemma 2.4.

Proof of Lemma 2.4. Let T be the linear operator defined by Lemma 2.3. Then we can set up
Problem (2.30) as the fixed point problem
(6.7)

¢ =T <p(|V|”_1C1 — VicP M)y + GlplVIP e (9) — #451 +E+ N(pr+ Tz i + ¢)]) = F(¢1)-
Observe first that
k5 if N=35,

(6.8) IGEl 2y, < Cf(k), where f(k):= k4 logk| = if N =6,
kTS i N>,

as proved in Proposition 2.1. We show that the map F(¢,) is a Contraction Mapping in the ball
(6.9) X ={$ €L : ||g]li < af(R)},

for some constant « large, but independent of k.
Let us consider first the term p(; |V[P~11)(¢;). Holder inequality and estimate (2.23) give

(6.10)  [IpG VP (1)l 2z, < ClIGIVIET g lIGil

N+2

2

1 lgu 1. + [l 13,

ar, <C[R

where o(1) — 0 as k — oo.
Consider now the term p(|V|P=1(; — |V1.|P~1)¢1. First we observe that

/ (VIP~' ¢ — [Vie P~ Y1 | V¥ < Cllga [I5F /B ( )lvl”;l S Vi | ¥
RN 1%

j>1

Thus, we get
- - 2
6.11) eV G = VielP el z, < ClidnllidViell gl D Viell 2z, < Clldnflaak™ =3,
i>1

We next estimate || 2z (1¢1]| 2v_ . A direct use of Holder inequality gives
[z] N+2

Y 2N N+42 NN 2
(6.12) I sl g, < (/. ) [T < OE R,
Finally, we are left with || N(¢1 + 32, ¢ + w)||13_z)rr2 We have

N(g+) ¢j+¢) <C
J#1

|61 + D 1esl” + ¢|] :

i>1
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Arguing as in (6.10)-(6.11), we easily get thanks to (2.23)

IG VP g+l as, < C |lonlfas, + 3 1G51Pax + I1G51Ps

. N=2
i>1

(6.13) < C [l + o()lIde i + llgnl2]

where o(1) — 0 as k — oco. Thus consequence of estimates (6.10)-(6.13) is that the map F defined
in (6.7) maps X into X. Next we will show that F is a contraction mapping in X. This will
conclude our proof.

Observe that

|[F(¢1) = F@D)| < CLIVIPT G = VaelPDIgt — il + GV P (') — 9(¢°)]

+#|¢i — G|+ IN(8" + (") — N(¢* + (%)
Arguing as in (6.10) we get

IAVIPT G = Vie P61 — 611 + GV P I9(8Y) — (o™l 2

N+2

< Ok T (|6 — ¢l o, + [10(8") — ()] 2x,) < o(1) 16} — &3]l 2

N-3’

where o(1) = 0 as k — oo. Asin (6.12) we get

I (@ = Dl gy, < oLllst - 6l

~N-3’

where 0(1) = 0 as k — co. Finally, denote by f(¢) = t? and ¢! = ¢’ + (¢"). Then we have

IN (6" +1(8") = N(¢* +4(¢)]

N+2

= ([ BI04 13 =50 - 1@ -l gy
2 7

1 ~ A~ ~ ~ ~ A~ ~
< / [F (V4G +( =)~ (VG )| o, < CIA-Fllan,  sup  |F(V42) (V)]s

N 2l on_ <r
N-2

If we choose the number a in the definition of the set X (6.9) small, but fixed independently of
k, we can obtain that

61 — &1l 2

N-2

N | =

IN(¢' +9(8")) = N(¢* +9(¢*)| 2z, <

N+2

Thus we conclude that F is a contraction map in X.
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