ENTIRE SOLUTIONS AND GLOBAL BIFURCATIONS FOR A
BIHARMONIC EQUATION WITH SINGULAR NONLINEARITY
IN R3
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ABSTRACT. We study the structure of solutions of the boundary value problem

(0.1) APy =

e inB, u=Au=0 on0B

where A2 is the biharmonic operator and B C R® is the unit ball. We show that
there are infinitely many turning points of the branch of the radial solutions of
(0.1). The structure of solutions depends on classification of the radial solutions
of the equation

(0.2) A2y =u"? in R%.

This is in sharp contrast with the corresponding result in R2.

1. INTRODUCTION

In this paper we investigate existence, uniqueness, asymptotic behavior and fur-

ther qualitative properties of radial solutions of the biharmonic equation
(1.1) ~A’u=u"? in R%.

The motivation for studying (1.1) is to understand the structure of solutions of the

Navier boundary value problem
(1.2) ~A’u=ANL+u)?>inQ, u=Au=0 on 0

where L > 0, Q C R is a bounded smooth domain. The physical dimension should
be N =2 or 3. Problem (1.2) is a special case (with 7= 0, D = 1) of the problem

(1.3) TAu— DA*u=ANL+u)"? inQ, u=Au=0 on 0

where T'> 0, D > 0 and L > 0. Problem (1.3) models the deflection of charged
plates in electrostatic actuators (Lin and Yang [22]). Here A = aV? where V is

the electric voltage and a is constant. Associated with (1.3) is the following energy
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functional

(1.4 B = [ {Zvur+ Diawr - 2

L+u

where P = [, £|Vu|?dz is the stretching energy, @ = [, 2|Au[*dz corresponds to

Toula) +z @ dx is the electric potential energy.

Lin and Yang ([22]) considered two kinds of boundary conditions: pinned bound-

the bending energy, and W = — fQ

ary condition
u = Au =0 on 0N

and clamped boundary condition

uz?—ZzOonaQ.

For the pinned boundary condition, they found that there exists 0 < A, < o©
such that for A € (0,.), (1.3) has a maximal regular solution uy, which can be
obtained from an iterative scheme. (By a regular solution uy of (1.3), we mean that
uy € C*(Q) N C3(Q) satisfies (1.3).) For A > )., (1.3) does not have any regular
solution. Moreover, if X', A" € (0, A\.) and X' < A", then the corresponding maximal

solutions uy and uy» satisfy
uy > uyr in .

Physically, this is a natural relation because higher supply voltage results in greater
elastic deformation or deflection.

The number A., which determines the pull-in voltage, is called the pull-in thresh-
old. It is known from [22] that, for A € (0, \;), ming(L + uy) > 0. Let ¥\ = {z €
Q: L+ uy(xz) =0} be the singular set of (1.3). An interesting question is to study
the limit of uy as A  A.. The monotonicity of u, with respect to A implies that
there is a well-defined function U so that

U(z) = lim uy(z); —L<U(z)<0, z€q.

A=A

However U(z) may touch down to —L and cease to be a regular solution to (1.3).
(By [22], U € W2?(Q).) For the one-dimensional case, Lin and Yang showed that
U is a regular solution, that is, the set ¥y, = 0.

In our previous paper ([13]), we showed that for N = 2 or 3, U is a regular
solution. Moreover, we also showed that there is a unique solution for (1.3) at
A = A.. For two-dimensional convex domains, we also established the existence of

a second solution for every A € (0, \.). This shows that at least in two-dimensional
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domains, problem (1.3) behaviors subcritically. (Numerical computations as well as
asymptotic behavior as D — 0 are done in [23].)

In this paper, we initiate the study of (1.2) on three dimensional domains. Note
that our main results in this paper are still true for (1.3). We concentrate on the
case of the unit ball. We shall establish the following results: for A\ small, the
maximal solution is unique. There exists N\, < A. such that the solution branch
has infinitely many turning points for A near \.. This shows that problem (1.2)

behaviors supercritically in R3. This is somehow surprising. We remark that when

N+4
N—-4

should be less critical than =7 and behavior subcritically.

N = 3, the formal critical exponent for A? is = —7. One expects that u=3
We remark that problem (1.2) can find the applications in thin film problems,
see [1], [2], [3], [18], [19], [20], [21]. When D = 0, Problem (1.3) can also find the
applications in MEMS devices, see, [6], [7], [9], [10], [11], [17], [28], [29], [25]. The
qualitative behavior of solutions has been studied in [14], [15], [16] and [24].

By a change v = —u, we see that v satisfies

_Ar
(L —v)%’

For simplicity, we assume that L = 1. We shall consider throughout the paper the

(1.5) Ay = 0<v<L inQ, v=Av=0 on 0.

following problem

A
(1—-v)*

We first study the properties of entire radial solutions of (1.1). We seek solutions

(1.6) A%y = 0<v<1linQ, v=Av=0 on 0.

u of (1.1) which only depend on |z|. Due to the homogeneity, (1.1) is invariant under
a suitable rescaling. This means that existence of a solution immediately implies
the existence of infinitely many solutions, each one of them being characterized by
its value at the origin. To ensure smoothness of the solution, one needs to require
that «'(0) = u"(0) = 0. We see that solutions of (1.1) can be determined only by
fixing a priori also the value of 4" (0). In this paper, the proofs are performed with a
shooting method which uses as a free parameter the ”"shooting concavity”, namely
the initial second derivative u"(0).
Hence we consider the following initial value problem
A’y =—u=? wu=u(r), inR

(1.7) u(0) =1, w'(0) =u"(0)=0, u"(0)=7>0

Our first theorem is on the classification of entire solutions to (1.7):
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Theorem 1.1. There exists a unique v* € (0,00) such that for v € (0,7*), there
is a unique R, € (0,00) such that Au,(R,) = 0 and (Au,)'(r) <0 forr € (0, R,).
The function R, is continuous and increasing with respect to v and R, — 0o as
v — v*. Fory > ~*, there exists C := C(y) > 0 such that (Au,)'(r) <0 forr >0,
Au,(r) = C as r — oo and u, has the growth Cr? near co. For v = +*, we have
(Auy)' (1) <0 forr >0, Auy(r) = 0 as 7 — 00. Thus Au,-(r) > 0 forr € (0, 00)
and ul.(r) > 0 for r € (0,00).

To show the difference between dimension two and dimension three, we prove the

following theorem in dimension two

Theorem 1.2. Consider the following problem

A’y = —u=2 u=u(r), inR?
w(0) = 1,u'(0) = u" (0) = 0, Au(0) = v
For any v € (0,00), there is a unique R, € (0,00) such that Au,(R,) = 0 and

(Au,)'(r) < 0 for r € (0,R,). The function v — R, is increasing and R, — oo as
v — 00. Moreover, Au,(r) — 00, u,(r) — oo forr € (0,00) as v — oc.

(1.8)

It is easy to know that the equation in (1.1) has a singular solution

(1.9) U(r) = (g_f)‘”f"#/s.

Theorem 1.1 implies that there exists a unique entire solution to (1.7). Our second

theorem is on the qualitative properties of this entire solution ..

Theorem 1.3. Let u.,-(r) be the entire solution to (1.7) (given by Theorem 1.1).
Then

N 56\ ~1/3
(1.10) Tll)rgor 3 (1) = (¥>
and u-(r) — Up(r) has infinitely many intersections.
Finally we consider the structure of radial solutions of (1.2) with

Q=B={zeR: |z| <1}.

Namely we study existence and the property of non-minimal radially symmetric

solutions of the problem
(1.11) Au=)A1-u)?% 0<u<1inB, u=Au=0 ondB.
To state the results, we put

C}={ueCYB)NC*B): u=u(|z|) solves (1.11)}

C»,n == U,\>0{)\} X C/\.
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Theorem 1.4. There are no secondary bifurcation points on C,. and C, is homeo-
morphic to R with the end points (0,0) and (\,,1 — |z|*/?), where

=2
81

Moreover, C, bends infinitely many times with respect to \ around A, and the Morse
index of the solutions approach 400 for A near \,.

We remark that the techniques in this paper have been extended in [12] to give a

complete characterization of entire radial solutions to

(1.12) A’y =uP u>0 in R

"+4 This problem has been studied recently by Gazzola and

where n > 5 and p >
Grunau [8].

The organization of this paper is as follows: In Section 2, we prove Theorem 1.1
and in Section 3, we prove Theorem 1.2. In Section 4, we study the properties of
entire solutions and prove Theorem 1.3. Section 5 is devoted to the proof of Theorem

1.4.

Acknowledgments: The research of the first author is supported by a grant of
NSFC (10571022). The research of the second author is partially supported by an
Earmarked Grant from RGC of Hong Kong. The second author thanks Professor

Michael Ward for many useful discussions.

2. THE CASE OF N = 2: PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2. Since we are only interested in the radial
solutions, by a shooting method, keeping u(0) fixed, say u(0) = 1, we look for
solutions w of the initial value problem over [0, co):

u(r) + 2u7(r) = J(r) + Kl (r) = —u ()

(2.1) w(0) = 1, w(0) = u"(0) = 0, u"(0) =~ > 0

which is the radial version of equation (1.8). By standard ODE theory, we see that
for each v > 0, (2.1) has a unique solution u,(r) for r near 0.

If w = u(r) is a radial positive solution of (2.1), then
Ug = au(a_%r) (a > 0)

is a radial positive solution of the equation in (2.1) such that u,(0) = a.
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We apply a shooting method with initial second derivative as parameter. We
remark that 2u”(0) = Awu and that by ’'Hospital’s rule

Tu”(r) — ul(r) 3 mn

This means that the initial conditions in (2.1) also read as

(Au)'(0) = u™(0) + lim

r—0 7“2

(2.2) u(0) =1, ¥'(0) = (Au)'(0) =0, Au(0)=2y>0.

For all v > 0, (2.1)-(2.2) admit a unique local smooth solution u. defined on some
right neighborhood of » = 0. Let

| 4 if uy(r)(Au,)(r) >0, Vr>0
By = { min{r > 0; u,(r)(Au,)(r) =0} otherwise.

From now on we understand that u, is continued on [0, R,). Let

={7>0; R, <00, u,(R,) =00},

I ={y>0; R, <00, (Au,)(R,)=0}.
We first prove the following statement:

Lemma 2.1. Assume N = 2. Then I~ = (0,00) and R, = 0o as y — oo.

To prove this lemma, we need a comparison principle, which has been observed
by McKenna-Reichel [24] and which will turn out to be useful also in the proof of
Lemma 2.1.

Lemma 2.2. (Comparison Principle). Assume that f : (0,00) — (0, 00) is locally
Lipschitz and strictly increasing. Let u, v € C*([0, R)) be such that

Vr € [0, R): A%u(r) = f(v(r)) = A%u(r) — f(u(r))
(2.3) (0) u(0), v'(0) =w'(0) =0,

A0(0) 2 Au(0), (A0)(0) = (Auy(0) =0,
Then we have for all r € [0, R):
(2.4) v(r) > u(r), v'(r) >d'(r), Av(r) > Au(r), (Av)(r) > (Au)'(r).

Moreover,

(i) the initial point 0 can be replaced by any initial point p > 0 is all four initial
data are weakly ordered.

(i) a strict inequality in one of the initial data at p > 0 or in the differential
inequality on (p, R) implies a strict ordering of v, v', Av, (Av)" and u, v/, Au,
(Au)" on (p, R).

Proof of Lemma 2.1:

)
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We first show that /T = (). On the contrary, there is 0 < 7y < 0o and R,, < 00

such that lim__, Ry %0 (r) = oo. Noticing that u., satisfies the equation

(r(Aun) (1)) = —ru,(r) <0

Yo

we see that (Au,,)'(r) < 0 for r € (0,R,,). The fact that Au,,(0) = 27 < oo
implies that (Au.,,)(r) < 27, for r € [0, R,,]. Thus,

(2.5) Aty — 270) <0 on Bg,

where Bp,  is the ball with center at 0 and radius of R,, and ¢ is the unique solution

of the problem
—A¢=1inBg,_, ¢=0 on0dBg,.
(2.5) and the maximum principle then implies that u,, can not be oo on 0Bp, .
Thus, I = (.
Now we show that I~ # (). Considering the problem

(2.6) AW =X1-v)"2inB, v=Av=0 ondB

where B is the unit ball of R?, we see from [22] that there is 0 < \. < oo such
that for A € (0, \.], (2.6) has a minimal positive solution vy € C*(B) satisfying
0 < vy < 1. The minimality of v, implies that v(x) = vx(r). Defining wy =1 — vj,

we see that w, satisfies the problem
— A%, = Aw;Q in B, wy=1, Awy, =0 on 0B.

Setting £, = mingwy, y = /\1/45;3/47', and Wy = wy(r)/&\, we see that w, with
wx(0) = ming W, = 1 satisfies the problem

1

—A;’LT))\ = 11);2 in B)\, ’II))\ = é_—, Ayu?,\ =0 on (9B,\

A
where By, = {y € B2 : |y| < A4, **}. Denote 2y, = (Aw,)(0). We see that
Ya € I7. Moreover,

Ry, = \1g %",

Now we use Lemma 2.2 to show that R, is an increasing function of . For
any vi,72 € I~ and 74 > 7, by Lemma 2.2, we see that u,,(r) > u,,(r) and
A, (1) > Auy,(r) for r € (0,min{R,,, R,, }]. This clearly implies that R, > R,,.
The continuity of 2, on v can be obtained by the standard ODE theory.

Now we claim that

(2.7) sup{y € g_} = 00.



Suppose sup{y € I} = v* < co. We show that
(2.8) lim R, = oo.
7=
If (2.8) does not hold, we see that Ry < R* < oo for all ¥ € I~. Considering the

problem
(2.9) A*v=X1-v)"? in Bg., v=Av=0 on 0B

we see from [22] that there exists A** > 0 depending on R* such that for A € (0, \**),
(2.9) has a minimal solution vy € C*(Bg:). By arguments similar to those in the

proof of I~ # (), we can obtain w* with ming, w* = 1 and @* satisfies the equation
—A?@* = [@*]7? in By, %" = A%* =0 on 0By,

where
By={yeR: |yl < R*[\ Igin(l —wy) 34
R*

It is known from [13] that Aming,, (1—v,)~® — co as A — 0. Thus, R*[Aming,, (1—
vy)"%]"/* > R* for X sufficiently small. Denoting 27** = (A@*)(0), we see that
R, > R*. This contradicts the fact that R, is an increasing function of . The
monotonicity of Au and the facts that v* < oo, Ry» = 400 imply that (1.1) has a
solution u(r) for r € (0,00) with 0 < Au(r) < 2v* for r € [0,00). On the other

hand, we see from the equation of u that

1 s
—(Au)'(r) = —/ Eu"?(&)dE > ¢ for r large
r Jo T
and this implies that

Au(rg) — Au(r) > ClnTL for r > 7y
0

where 79 > 1 is a large number. This contradicts the fact that 0 < Au(r) < 29* for
r € [0,00). Thus, claim (2.7) holds.

Proof of Theorem 1.2

The proof of the first part of this theorem can be obtained from Lemma 2.1. We
only need to show that the last part of this theorem.

Suppose that there is R* > 0 such that Au,(R*) < oo as v — oo. Since
—A(Au,) < 1in Bg+ and Au,, < 0o on 0Bpg-, the standard a priori estimate implies
that Au, < 0o in B+ as v — oo. This contradicts the fact that Au,(0) =2y — oo.
Thus Au,(r) — oo for r € [0,00) as 7 — co. This also implies that u,(r) — oo for

r € (0,00) as ¥ — oo. This completes the proof. O
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3. THE CASE OF N = 3: PROOF OF THEOREM 1.1

In this section, we consider the case of N = 3. As in Section 2, (1.7) is equivalent
to the following initial value problem over [0, c0):

(3.1) u®(r) + 2u"(r) = —u%(r), r€[0,00)

' u(0) =1, «'(0) =u"(0) =0, u"(0)=v>0.
By standard ODE theory, we see that for each v > 0, (3.1) admits a unique local
smooth solution u., defined on some right neighborhood of r = 0. Let R, I*, 1~ be
defined as in Section 2.

By arguments similar to those in the proof of Lemma 2.1, we find that the set
I"={y€(0,00): R, <00, (Au,)(R,) =0} #0.

Define v* = sup I~. We will show that v* < co. Indeed, for ¢ > 0 sufficiently small
(e.g. € < 2/3) and b > 0 sufficiently large, it follows from Lemma 3.5 of [24] that
the function v(r) = (1 + b*r?)1~% satisfies

A%y +v72 <0 on (0,00).

Now we construct a subsolution to the equation with the growth O(r?) in (3.1). Let
V(r) =1+7r?+v.(r). We see that

A’V 4+ V2 < A%, +v2 <0 on (0,00).

We easily see that AV (r) > 0 for r € (0,00) and AV (r) — 6 as 7 — o0. Setting
7 = V"(0), we see that the solution us; > V and Auz > AV on (0,00). On the
other hand, the function V(r) = Ar? (4 > 0) is a supersolution to the equation in
(3.1), thus by choosing A sufficiently large and applying Lemma 2.2, we see that
uz <V on (0,00). Thus, us is a solution of (3.1) with growth O(r?) near co. The
comparison principle implies that v* < 4. We easily know that Au,.(r) — 0 as
T — 00.

Now we show that u,- is the unique solution of (3.1) with Au(r) — 0 as r — oo.
On the contrary, there are v** > v* such that A« (r) = 0, Au,(r) = 0 as r — oo.

Then it follows from the comparison principle that
Uqex > Uqe 01 (0, 00).

But, it follows from the equations of u,- and u,-- that

. © 1 T 52
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and

o © q r 52

Clearly, (3.2) and (3.3) imply a contradiction. This implies that u.« is the unique
solution of (3.1) satisfying Au(r) — 0 as r — oco. Since Au,«(r) > 0 for r € (0, 00),
we see that (r*ul.(r))’ > 0 for r € (0,00). Integrating it on (0,7) and noting

!

ul.(0) = 0, we see that ul.(r) > 0 for 7 € (0,00). This completes the proof. O

4. PROPERTIES OF ENTIRE SOLUTIONS: PROOF OF THEOREM 1.3
Let u,~ be given by Theorem 1.1. We prove Theorem 1.3 in this Section. In fact,

we prove the following theorem which gives the asymptotic behavior of u.-

Theorem 4.1. The following linearized problem

2 4, B=9(), W(O0) =¢"(0)=0, Ap—0 asr — oo
5

u

(4.1) Ay =

. . !
admits the only solution ¥ = c(%uv* —Tuv*), for some constant c. As a consequence,
we have for r large

~1/3
(4.2)  uye(r) = (Z_?) r*3 4 Myr'/? cos(B1nr) + Myr'/?sin(8lnr) + O(r3+)

5+4/45+4/193 \/4/193—45
where v = —% and = Y——F—.

It is easy to see that Theorem 1.1 follows from Theorem 4.1.
We first show (1.10). We use some ideas from [8]. To this end, we use the Emden-

Fowler transformation:

(4.3) Uy (r) =r30(t), t=Inr (r>0).

Therefore, after the change of (4.3), the equation in (3.1) may be rewritten as
(4.4) v W (t) + Ksv"(t) + Kov"(t) + K10'(t) + Kov(t) = —v2(t), t€R

where K, = -3 K, =

-3, K, = 2, K3 = 3. This implies that the entire

— 30

27 3
solution of (3.1) corresponds to a solution of (4.4). For v > ~*, the solution u, has
a growth O(r?), this corresponds v(t) — oo as t — oo. Thus, we show that u.,«(r)

corresponds to the solution v of (4.4) satisfying lim,_,., v(t) = (—Kg) /5.
Note that (4.4) admits the constant solution v, = (—Kj)~*/?, which, by (4.3),
correspond to the singular solution Uy(r) = (—Kg)~*/3r*/3 of (3.1).
We now write (4.4) as a system in R*. By (4.3) we have
4
ul.(r) =0 & V(t) = —gv(t).
10



This fact suggests us to define

wi(t) = v(?),
wo(t) = o' (2) + %v(t)
ws(t) = o (1) + %v’(t)
wa(t) = v"(t) + %v”(t)
so that (4.4) becomes
g
(49) wh (1) = wi (1)
w)(t) = Cowy(t) + Caws(t) + Cywy(t) — wi2(t)
where

i+1-m e
Cm = —Ticm 1 (_1;1i+1—m§—lz—1—m
for m = 1,2,3,4 with K, = 1. This gives first that C; = 0 so that the term
Cywi (t) does not appear in the last equation of (4.5). Moreover, we have the explicit
formulae:

3
CQ - —ZK(), 03 - 1, 04 = —-2.

System (4.5) has one stationary point (corresponding to wy)

4
P ((_KO)_1/37 g(_KO)_l/gv 0, 0) .
Around this ”singular point” P the linearized matrix of the system (4.5) is given by
-2 1 0 o0
0 0 1 0
(4.6) Mp = 0 0 0 1

—2Ky Cy C3 Cy

The corresponding characteristic polynomial is
v vt 4+ K312 + Kov? + Kyv + 3K,

and the eigenvalues are given by

5+ v45+4V103 5 — 45+ 4193

V= 6 Vo = — 6
5+ 145 — 44/193 5 — 45— 44/193
Vg = — , Uy = — .
6 6

It is clear that

5)
I/1<0<V2, V3,V4¢R, §RV3:§RV4:—6<0.
11



This means that P has a three dimensional stable manifold and a one dimensional
unstable manifold.

Let u be the unique entire solution of (3.1) with Au(r) — 0 asr — 0o. Let v be de-
fined according to (4.3) so that it solves (4.4), and w(t) = (w;(t), wa(t), w3(t), wa(t))
be the vector solution of the corresponding first order system (4.5). Then we see
from Au(r) — 0 as r — oo that
2, 11 , 28
(4.7) e s [v (t) + ik () + Ev(t) — 0 ast — oo.

Proposition 4.2. We have
lim w(t) = P.
t—00
In particular, the trajectory w is on the stable manifold of P.

To prove this proposition, we first prove some useful lemmas.
Lemma 4.3. Let v be the global solution and assume L € [0, 00| such that
tllg:(l) v(t) = L.
Then L = (—Ky)~'/3.

Proof. We first exclude the case L = 4+00. By (4.7), we see that

L1, . 98
t —u'(t —
v()+3v()+ 5

Thus, the standard ODE theory implies that

u(t) := g(t) = o(e?") as t — oo.

t
v(t) = Bie 5+ Bye st +/ (e‘g(t‘s) - e‘%“‘s))g(é‘)ds

T
t

< B3egt+B4e§t/ e%sg(s)ds
T

= o(e%t) ast — oo

where T > 0 is sufficiently large. On the other hand, since v(t) — +o0 as t — oo,
we see from (3.1) that

(4.8) v (t) + Ksv" (t) + Kov"(t) + K1’ (t) + Kov(t) = o(1) as t — oo.

The corresponding characteristic polynomial is

10 15 50 56 2
,04+—p3+—2— )(

50,56 _ (205 12, 39 28)

3P Tl T
and the unique positive eigenvalue is p = % Therefore,

_24
e su(t) —c,ec>0 ast— oo.

This contradicts the fact that v(¢) = o(e3!) obtained above.
12



If L # (—K,) /3, then —v~2(t) — Kov(t) — o # 0 and for € > 0 sufficiently small
there exists 7" > 0 such that

(4.9) a—e<vi(t) + Ksv"(t) + Kp"(t) + Kiv'(t) S a+e VE>T.
Take € < || so that o — € and o + € have the same sign and let

d :=sup |v(t) —v(T)| < o0.
>T

Integrating (4.9) over [T, t] for any t > T yields
(a—e)t—T)+C — K6 < v"(t)+ K3v"(t) + Kov'(2)
< (a+€)(t—T)+C+|Kqlo, Vt>T,

where C = C(T) is a constant containing all the terms v(T"), v'(T), v"(T) and v"'(T).
Repeating twice more this procedure gives

o— € o+ €

t—T>3+0() <'(t) < (t—T)*+0(t?) ast— oc.

This contradicts the assumption that v admits a finite limit as ¢ — oo. This com-
pletes the proof. O

If v is eventually monotonous, then Lemma 4.3 implies that (1.10) holds. So, we
need to consider the case that v oscillates infinitely many times near ¢ = oo, i.e. v
has an unbounded sequence of consecutive local maxima and minima. In the sequel
we always restrict to this kind of solutions without explicit mention.

We define the energy function

(410) B(t) = — = =20(t) - 20/ (0) + 50" (1)

We prove first that on consecutive extrema of v, the energy is decreasing. For the
proof of the following lemma, the sign of the coefficients K;, K3 in front of the odd

order derivatives in equation (4.4) is absolutely crucial.
Lemma 4.4. Assume that ty < t; and that v'(ty) = v'(t1) = 0. Then
E(to) > E(t1).

If v is not constant, then the inequality is strict.

Proof. From the equation (4.4) we find:
E'(t) = —v2(t)'(t) — Kov(t)v'(t) — Ko’ ()" (t) + v"v™
_ (—U72 o KQUH)UI + "

— (’U(4)(t)+K3’UI”+K1’U,)’U,(t)+’U”’U’”.
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Integrating by parts, this yields:

E(t) — B(ty) = /t " B (s)ds = — / " ()" (5)ds — Ky / " () P

to to

t1 t1
+K1/ |v'(s)\2d8+/ V" (s)v" (s)ds

to to
t1 t1
- _K, / v"(s)Pds + K, / v'(s)[2ds < 0
to to

since K3 > 0 and K; < 0. If v is not a constant, the inequality is strict. O
Lemma 4.5. There are 0 < 0y < 0y such that
(4.11) 6, <w(t) <Oy fort sufficiently large.

Proof. Let {{;}ren denote the sequence of consecutive positive critical points
of v, we see that there are 6,60, > 0 such that 6; < v(t;) < 6, for all k. On the
contrary, we can find a subsequence (still denoted by {tx}) such that v(tx) — 0 or
v(ty) — oo as k — oo. We only consider the first case, the second case is similar.

By Lemma 4.4, we see that
(4.12) E(t)) > E(tg) for any large k.

Since v(tx) — 0 as t — oo, we easily see that E(t;) — oo as k — oo, this contradicts
(4.12). This completes the proof. O

Lemma 4.6. For T > 0 sufficiently large,
/ /() [2ds + / v"(s)ds < o,
T T
Proof. We take the same sequence {t;}ren as in the proof of Lemma 4.5. We
assume that 7" > t;. Then for any k:
tr t
—K3/ |v"(s)|?ds + Kl/ [v'(s)[?ds = E(t) — E(t1) > —E(t) > —c0.
t1 t1
The statement follows by letting £ — oo and using again that K3 > 0 and K; <
0. O

Lemma 4.7.

/ 10" (s)]2ds < oo.

T
Proof. Since u.(r) > 0 forr € (0,00), we see that v'(t)+3v(t) > 0 fort € (—o0, 00)
and thus

(4.13) () < %v(t) for t € (=00, 50).
14



We choose {t;}ren as in the previous lemmas. Now we can choose another mono-
tonically increasing diverging sequence {7y}ren of flex points of v such that v is

decreasing there. We choose
T >T, 1 /100
V(1) <0, v"(m) =0.
It follows from (4.13) and Lemma 4.5 that —v'(7;) < 3v(7;) and thus [v/(7;)| < 26,

for all k. We multiply the equation (4.4) by v” and integrate over (T, 7%):

(4.14)
Tk Tk
/ (v(4)(s)+ng'"(s)+K21)"(s)+Klv'(s)+Kov(s))v"(s)ds = —/ v 2(s)v"(s)ds.
T T
We show that all the lower order terms remain bounded, when & — oco. We see that

Tk
(4.15) ‘/ o' (s)ds| = |00 - 2/ V() (s)Pds| <
T
by Lemmas 4.5 and 4.6. With the same argument, one also obtains
Tk
(4.16) ‘/ v(s)v"(s)ds‘ <C.
T

The Holder inequality and Lemma 4.6 imply

(4.17) ‘/ "(s)ds‘ <C.

By our choice of 75 (recall that v"(7;) = 0), we obtain

(4.18) ‘/ ()" ds‘ \”(T)\?gc.

Finally, integrating by parts, we find from (4.14)-(4.18) that

(4.19) / 2ds<‘ / V' ds‘+|v'" (T)w"(T)| < C.

T
Letting £k — oo, we obtain our conclusion. O

Lemma 4.8. -
/ W@ (s)[?ds < oo.
T

Proof. In view of Lemmas 4.5-4.7 we may find a sequence {s;} such that

lim s, = oo, wv(sk) =O0(1), lim v'(s;) = lim v"(s) = lim v"(sx) = 0.
k—o0 k—o0 k—o0 k—o00

We multiply the equation (4.4) by v*) and integrate over [T, s;):
(4.20)

/ " (0@ (5))2ds = / (Lo s) = Kou(s) — Kuv'(s) — Kov"(s) — Kyo™(3))0@ (s)ds

T T
15



By using Lemmas 4.5-4.7 and arguing as in the previous proofs we obtain

[ o0wmsyas = [3heeE] " = oqy

T

/T 0@ (50" (s)ds = O(1) — /  (s) ds = 0(1);

/T F @ 2(s)ds = O(1) +2 / =" (50! (s)ds

T
Sk /2 1/2
< ow+c( [ wrepas) " (0 Pds)
T
< 0(1).
Inserting all these estimates into (4.20), the claim follows. O

Lemma 4.9.
/ v?(s)(v3(s) + Kp)?ds < oo.
T
Proof. From the equation (4.4), we conclude
(U(4)(S) +K31)'”($) + KQU"(S) + Klv'(s))2 — 1)2(8)(1)_3(8) 4 KO)Z-

The statement follows now immediately from Lemmas 4.5-4.8. O
The proof of Proposition 4.2 and (1.10) will be completed by showing:
Lemma 4.10. Let w = (wy, ws, w3, wy) be as in Proposition 4.2. We assume further

that v = wy has an unbounded sequence of consecutive local mazxima and minima
near t = 0o. Then it follows that

(4.21) lim w(t) = P.

t—00

In particular, lim;_, v(t) = (—Ky)~ /3.

Proof We first show that the limit of v'(t) as ¢ — oo exists. Define h(t) :=
fT £)d¢ for t > T. We easily see that the limit of h(t) as t — oo exists.
Indeed, for any large t1, to with T' < t; < 5, we see from Lemma 4.6 that

to

e~ el < ([ wrae) ([ rerae)” <0 s o

t1 t1
16



Thus, lim; 4, A(t) exists and this implies lim; 4 [v'(t)| exists. Lemma 4.6 implies
that lim;_,o, v'(t) = 0. Thus, we can obtain that lim; o, v"(t) = 0, lim;_,o v"(t) = 0
and limy_,,, v™® (¢) = 0. It is easily seen from the equation (4.4) that
tli)rglo(v’Q(t) + Kyv(t)) = 0.
This implies that
Jim v(t) = (~Ko) .
This completes the proof. O

Finally we complete the proof of Theorem 4.1.

Proof of Theorem 4.1:

To prove the first part of this theorem, we just need to show that there is no
solution to (4.1) with ¢(0) = 0, Ay(0) = 1. In fact, if there is a solution to (4.1)
with ¢(0) = 0, Ay(0) = 1, then we claim that ¢(r) can’t have zeroes in (0, +-00).
In fact, if ¢(r) > 0 for r € (0, R), ¥(R) = 0, then A(A) > 0 in (0, R) and hence
(AY)'(r) > 0 and (A¢)(r) > (A9)(0) = 1 for r € (0, R), which then implies that
¢ > 1r? for r € (0,R), a contradiction to the fact that 1/(R) = 0. Note that
(r) > 0 for r > 0 and so A(Ay) > 0. Hence Ay > 1 for r > 0. A contradiction to
our assumption.

Thus ¢ = ¢(3u, — rul,.), for some constant c.

Using the Emden- Fowler transformation (4.3) and letting v(t) = (—Kg) /3 +h(t),
we see that h(t) satisfies

(4.22)  AD(t) + Ksh™(t) + Koh"(t) + Kib/ (t) + 3Koh(t) + O(h?) =0, t> 1.
Therefore in the leading order, we can write

(4.23) h(t) = Mie 6% cos Bt + Mye o'sin Bt + Mze"'" + o(e"?)

where § = VAVI9B-15

6
This then implies that as r — 400,

(4.24) k(r) = Myr'/? cos(B1nr) + Myr'/?sin(B1Inr) + Maratt + o(ri/3+m)
where k(r) = r*3h(t) := u,-(r) — Up(r), t = Inr.

We now show that M7 + M2 # 0.

Suppose now that M; = My = 0. Then we have

, since w is on the stable manifold of the singular point P.

(4.25) k(r) ~r """ asr — +o0

where kK = —% — 14 > 0. Furthermore, k(r) has no zeroes for r large. We show

that this is impossible. In fact, it is easy to see that k must change sign in (0, +00).
17



Otherwise, we assume k£ > 0. Then using the behavior of k¥ near oo and integrating

—2_p-2?
the equation A%k = —UJ HUOO k over R?, we see that
Y
00 ,',.2 uf*Q o U72
/ (wy 0 )k(r)dr =0
0 ’LL,Y* — U()

which contradicts with £ > 0. (The integral exists because of (4.25).)

Suppose k(r) has exactly j zeroes in (0, +00) (recalling that k£ has no zeroes when
r is large) and k(r) ~ r~17% as r — oo, we easily see that r2k/(r) has j zeroes. On
the other hand, since the function n(r) := r?k'(r) satisfies n(0) = 0 and 7(r) — 0 as
r — oo, we see that 7/(r) has j + 1 zeroes. Thus Ak(r) = -57/(r) has at least j + 1
zeroes. A similar idea implies that r>(Ak)’(r) has at least j zeroes and (r?(Ak)'(r))’
has at least j + 1 zeroes. Therefore, A%k = 5 (r?(Ak)'(r))" has at least j + 1 zeroes.

uw l-Uy?

This contradicts our assumption that k£ has j zeroes, since A%k = — P k > 0.
Y

This proves our claim and completes the proof of Theorem 4.1. 0

5. STRUCTURE OF RADIAL SOLUTIONS OF (1.11): PROOF OF THEOREM 1.4

In this section we study the structure of radial solutions of (1.11) and prove
Theorem 1.4.
Note that (1.11) is reduced to
u®(r) + 2" (r) = W for r € (0,1)
(5.1) 0<u(r)<1
u(l) =0, u"(1)+24'(1) =0, ¥ (0)=u"(0)=0
where u = u(r) for r = |z|. We apply the phase plane analysis as in [26], [27], but
our case is more complicated since the operator in our equation is 4th order.

Next we introduce the initial value problem
{ u®(r) + 2u"(r) = =2 forr € (0,1)

5.9 (1—u(r))?
(5:2) u(0) = A € (0,1), »'(0)=u"(0)=0.
Make the changes:
1 —u(r _
oY) =71 1(4), y = A1 - A4)

Then (5.2) is reduced to

v®(y) + v (y) = —v2(y) fory € (0, AV (1 - A)~%/*)
(5.3) 0<v<
w(0) = 1, 0/(0) = v"(0) = 0

Setting # = AY*(1 — A)73/* we see that the solution v(y) of (5.3) depends on

0, we denote it by vy. Moreover, vg(d) = =, (Ayvp)(f) = 0. We claim that
18




ve(y) — uy(y) for all y € (0,00) as § — oo. This can be seen from Theorem 1.1.
Note that for each 6, there is a unique 7y such that (vg)”(0) = 5. We easily see
that vy — +* as § — oo, where v* is defined in Theorem 1.1. The standard ODE
theory implies that our claim holds.

We apply the Emden-Fowler transformation:

& (t) =y tu(y), t=Iny,
where 7 = In#. Then (5.3) changes to

(5.4)
2V (1) + K32"(t) + K2 (t) + K12 () + Kozr(t) = —2.2 for t € (—o0, 7)
0<2(t) < ﬁe‘gt
lmy_,_o €32, (t) = 1, limy,_o €32, (t) = -3, lim,_o est2!(t) = 2.

Through the above transformation, the boundary conditions: u(1) = Au(l) = 0
correspond to

_1/3 " 11 , 28 _
2 (1) = X7V (2)"(7) + E(ZT) (1) + 3,27(7') = 0.

In other words, for any 7 € R) (A;, u,) defined by

u () = 1 — =Han

(5.5)
S
e37 2. (1)
(2:)"(7) + 5 () (7) + Fzr(r) = 0
satisfies (5.1), and conversely, every solution of (5.1) is written in the form of (5.5).
Hence C, is homeomorphic to R. Since vg(y) — u,~(y) for all y € (0,00) as § — oo,
we easily see that z.(t) — Z(t) for all t € (—oo0,00) as 7 — oo with Z(t) =

y~*3u.~(y) is a solution of the problem

ZW () + K3 Z™(t) + Ky Z"(t) + K\ Z'(t) + Ko Z(t) = —Z72 fort € R
{ limy o e3'Z(t) =1, limy,_ooes'Z(t) = =2, limy,_o e3'2"(t) = 15,
Note that 7 — oo as # — oo. It is clear that Z(t) = wv(t) and v(t) is given
in (4.3). The singular point w = P corresponds to (A\,u) = (\,,1 — ||3) since
2:(7) = (—Ky)~Y3 as 7 — oo, where A, = —Kj.

To prove that C, bends infinitely many times with respect to A around A\*, we
only need to show that P is a spiral attractor. Since w is on the stable manifold
of the singular point P, we see that all trajectories of system (4.5) are eventually
tangential to the space

S = {s1%X1 + $oxo + by : s1,89,b € R}.
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Here x; £ ixy denotes eigenvectors of the matrix Mp defined in (4.6) corresponding
to the complex eigenvalues v3, v4. y denotes the eigenvector of the matrix Mp
defined in (4.6) corresponding to the real eigenvalue v;. But by Theorem 4.1, we

have
(5.6) u(t) = (—Ko) V3 + Mie™6' cos Bt + Mye 6" sin Bt + Mye' + o(e”?).

where M2 + M2 # 0. Thus P is a spiral attractor. This shows that C, must bend
infinitely many times with respect to A around A,.
Next we show that the secondary bifurcation point of C, does not occur, which is

the content of the following lemma.

Lemma 5.1. For any k € (0,1), there is at most one A= Mk) € (0,\] with
(A, u3) € Cr and uz(0) = k.

Proof. Suppose there are A, Ay € (0, \;] with A\; # Ao, say Ay > Ay and (Aq, uy,),
(A2, uy,) € C, such that uy,(0) = uy,(0) = k. If we set u; = uy,, ug = uy, and
zj =1 —wj(r) for j = 1,2, then

(5.7) =A%z = Xz, 2(0) = 1—£,2;(0) = 2"(0) = 0, z(1) =1, (Az)(1)=0.

—1/4
(lfn)3/4)\j /
1-k

Let z;(y) = it %) We see that Z; (j = 1, 2) satisfies
(5.8)
1

Alv; = —v;%, 0;(0) =1, vj(0) =2}"(0) =0, v(r;) = et (Ayv;) (1) =0

2 -
1/4
J

(v2)yy(0), by the comparison principle (see Lemma 2.2), we see that vi(y) > va(y)

for y € (0,7]. This contradicts the fact that vi(m) < wva(m) = +=. Suppose

1—k

where 7; = \./*(1 — k) ™%, Since A\; > )y, we see that 71 > 7. Suppose (v;),,(0) >

(v1)yy(0) < (v2)yy(0), by the comparison principle again, we see that (Avy)(7) <
(Awvy) (1) = 0, but this contradicts the fact that (Av;)(m2) > (Avy)(m1) = 0. Thus,
(v1)yy(0) = (v2)yy(0) and thus, v; = vo. Therefore, A\; = Xo. This is a contradiction
and completes the proof. O

Finally we analyze the Morse index of the solutions. Given u € C}, the linearized

eigenvalue problem is defined as follows:

2\
(5.9) Az(pzm@—kucp in B, o=A¢p=0 on dB.

Then, the number of its negative eigenvalues, denoted by ir = ir(), u), is called

radial Morse index. Equivalently, one can define iz to be the maximum dimension
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of the space V in H?(B) N H}(B) such that the following quadratic form

(5.10) Qo) = [ (180 — e

is negative.
We have

Theorem 5.2. Under the assumption of Theorem 1.4, ir = ir(\,u) — oo as
(Ayu) = (A 1= [z]*3).

Proof. Each (A, u) € C, can be parametrized by 7 € R: (A u) = (A(7),u(r)). We
denote by p; zr)(u(7)) the i-th eigenvalue of the linearized eigenvalue problem with
radially symmetric eigenfunction, i.e.,

(5.11)

Azg— 2

(1 —u)

¢+pp re(0,1), ¢(1)=4¢"(1)+2¢(1) =0, ¢'(0) =¢"(0)=0

Each p; () (u(7)) is simple. If (A(7),u(7)) is on the turning point of C,, then there is
i > 1such that p; z-)(u(7)) = 0 by the implicit function theorem. If yi; 5y (u(7)) = 0
holds for some i > 1 with (A(7),u(7)) € C, not on the turning point, then it is
actually the secondary bifurcation point of C,. We will show in the next lemma that
this case does not occur. Therefore, (A(7),u(7)) is on the turning point of C, if and
only of (5.11) has the eigenvalue 0. Note that the lemma below also implies that the
curve C, has no intersection. Theorem 1.1 implies that p; z(-)(u(7)) are continuous,
piecewise analytic and have only isolated zeroes. We will show that for any positive

integer @, ju; x(r)(u(7)) < 0 for large 7. This means that for any ¢ > 0, the operator

2X(7)
(1 —u(r))?

on (0,1) with the Navier boundary conditions has at least ( negative eigenvalues

(5.12) A% — I

for 7 large. Hence we see that there is a sequence {7;} with 7, = 0o as j — oo
such that the number of negative eigenvalues of (5.12) changes at 7;. (Recall that
i (—o0) (u(—00)) = pi(A?) — +00 as i — 00). Each (A(7;), u(7;)) must be a turning
point. Otherwise the solution near (A(7;), u(7;)) are a curve parametrized by A, the
critical groups of these solutions must be locally independent of A by homotopy
invariance of the critical groups (where critical groups are defined in Chang [4]).
By the formula for the critical groups at a non-degenerate point (see [4], p33), this
implies that the number of negative eigenvalues of the linearization must be constant

in a deleted neighborhood of (A(7;), u(7;)) which contradicts our choice of 7;. (There
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is a minor technical point here. We need to work in the space
Ho(B) = {h € H*(B)N Hy(B) : h(z) = h(|z|) € H*, h(1) = 0}.

We choose ||u(7;)||lcc <7 < 1 and then smoothly truncate the function ﬁ such
that it equals ﬁ for 1 > s > n so the equation makes sense on Hy(B). Note that
the truncation will not affect the solutions close to (u(7;), A(7;)) in Ho(B) xR.) We
also see that each (u(7;), A(7;)) is a turning point. (This argument has been used
by Dancer [5].)

To prove our claim on ju; x(-)(u(7)) for large 7, we need to consider positive solu-
tions (Aj,u;) of (1.11) such that A; — A, and ||uj]|c = 1 as j — oco. Thus, we see
that there is 7; with 7; — oo such that A(7;) = A; and u(7;) = u;. We use a blowing

up argument. If we define ¢; = 1 — ||u;||c and

1-— u-(63/4)f1/4y) _
v =GN W ep =y @y e 0.1
j

then U;(0) = ming, U; = 1. A rather standard limiting argument shows that a
subsequence of U; converges uniformly to the unique positive solution u.,- of (1.1)
with u(0) = 1. Moreover, lim,_, y‘guv* (y) = (=Ky) ™13

By Theorem 4.1, we see that the solution g of

(5.13) k<4><y>+§k'"<y>=ui(y)k<y>, K(0) =1, K(0) = K"(0) = 0, K"(0) =1

3
has infinitely many positive zeroes. (We still do not know that relation between the
zeroes of ¢(y) and the Morse index. In the case of second order equations, we know
that there is relation between the zeroes of ¢(y) and the Morse index.)

We now in the position to complete the proof of this theorem. We consider the
equation

4 —2K,
(5.14) O (r) + =h"(r) = ——
T

. h(r).

Making the transformations:
¢(t) =r 3h(r), t=Inr

we see from the equation (5.14) that ¢(t) satisfies the equation

(5.15) 8) — 26"(0) + (15— 51 )9 =0.

Now we show that there exists 0 < £ < oo such that the problem

(5.16)
5 ( 9 112

() — Zp" 2 ==
80 - 500+ (15~ 5

; )o=0in (0.0, #(0)=¢(0)=0, 6(6)=d(t)=0
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has a solution ¢,(t). Since the eigenvalues of the equation in (5.16) are 3; (i =
1,2,3,4) with

\/ 193 2 5 193
ﬂ12 -+ —, ﬂ3,421_—

9 9
the solution ¢(t) of the equatlon (5.16) can be written to the form
(5.17) ¢(t) = Aj cos it + Agsin it + As cosh [yt + Ay sinh fot,
where

V193 5 V193 5
b=\ T PV Ty

Substituting the boundary conditions to (5.17), we see that

1 0 1 0 A 0
' cos (14 sin 31/ cosh (54 sinh (54 Az 0
—ﬂl sin ﬂlg ﬂl COS ﬂlg ,32 sinh ﬂzg ,32 cosh ﬂgg A4 0

To obtain a nontrivial (A, Ay, A3, Ay), we need that

1 0 1 0

0 By 0 Pa | _
(5.19) cos Bl sin 514 cosh [/ sinh B0 | 0

—fB1sin 514 (31 cos 31€ (o sinh Bof 3y cosh [Baf

ie.,
(5.20)
p(s) := By Py (cosh Bal—cos B1€)*—[B1 By sinh? Bol+(B32—[2) sinh Byl sin By £— (1 By sin? 31£] = 0.

A simple calculation implies that

(5.21) p(s) = 218> — 28102 cosh By cos 1 £ + (ﬁg - 5?) sinh By¢sin (3, /.
It is clear that

2nm 2n+4+1)mw
o(0) =0, o5y <0, pZEUT) 5
B B
where n € N*. Thus, we can find ¢, € (2;—1”, (27%1) such that p(¢y) = 0 for n large.

This implies that (5.16) has a solution ¢y, (t) for ¢ € (0, £y). This implies that there
is hy,(r) for r € (R, e R) which satisfies the problem

WO () + 40" (r) = 2K0h(r) in (R, e®R),

rd
(5.22) h(R) = W(R) =0, h(e"R) = H(c"R) = 0.
Extending hy,(r) by 0 outside the interval (R, eR), we see that hy, € W22(R?).
Similar arguments imply that there are infinitely many intervals Jy, Jo, ..., Jg, ...

such that J,NJ; =0 for k # 1, |Ji| = e — 1, J; = (1,€%) such that (5.22) with the

similar boundary conditions has a solution hy on J.
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If M > 0 and o is small and negative, we see by continuous dependence that there
are M intervals Iy, I, ..., I, such that I N I; = () for k # [ such that for each k,

the problem
(5.23) mW(r) + ém"'(r) = [% + 0} m(r) in I

r U (r)
with the Dirichlet boundary conditions on two end points of I; has a solution my.
Let m; be the solution of (5.23) and to be zero otherwise. Then m; € W*2(R%), m;
are orthogonal if i # j (in the product of (h, k) = [ps AhAkdz) and by multiplying
(5.23) by m; and integrating between these intervals we see that

Q(m) = / [51amp - 2]

,y*

is strictly negative at each m;. Hence the span of m; is an M-dimensional subspace
of C¢°(R?) such that Q(m) < i < 0 if m is in the unit sphere of E, where E is the
span of m; in W22?(R?). Since m; has compact support it follows easily that there
is an M-dimensional subspace of #H,(B;) such that
/ [\(Am)(z)F 21— ||U(Tj)||oo)3m2(z) Qs < 0
B; (1 = u(r;))*(ps2)
where p; = (1 — |Ju(7))]leo)**[A(7;)]7¥/* for large 7; if m is in the unit sphere in
E. (Note that Bj, which is B rescaled has the property that each function in E is

supported in B; for large j.)
Hence returning to the original scaling (using the transformation « = p;z) we see
that there is an M-dimensional subspace E; of H*(B) N Hy(B) such that
2X(7) 2
|Am(z)]* — m*(z)|dx < 0
/B [ (1 —u(r)(z))?

for m is in the unit sphere of F; and 7 large. By the variational characterization of

eigenvalues, this implies that ;) (u(7)) < 0 for 1 <4 < M if 7 is large. Since M

is arbitrary, this proves our claim and completes the proof of this theorem. 0
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