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ABSTRACT. Let (M,g) be an N-dimensional smooth compact Riemannian
manifold. We consider the singularly perturbed Allen-Cahn equation
2Agu + (1 —u?)u = 0 in M,

where € is a small parameter. Let  C M be an (/N — 1)-dimensional smooth
minimal submanifold that separates M into two disjoint components. Assume
that K is non-degenerate in the sense that it does not support non-trivial
Jacobi fields, and that |Ax|? + Ricg(vk,vic) is positive along K. Then for
each integer m > 2, we establish the existence of a sequence € = ¢; — 0, and
solutions ue with m-transition layers near K, with mutual distance O(e|lne¢l).
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1. INTRODUCTION

In the gradient theory of phase transitions by Allen-Cahn [2], two phases of
a material, +1 and —1 coexist in a region  C RY separated by an (N — 1)-
dimensional interface. The phase is idealized as a smooth e-regularization of the
discrete function, which is selected as a critical point of the energy

_ | & o L. o
L= [ SIVuP+ -

where € > 0 is a small parameter. While any function with values +1 minimizes
exactly the second term, the presence of the gradient term conveys a balance in
which the interface is selected asymptotically as stationary for perimeter. The
energy I. may be regarded as an e-relazation of the surface area: indeed, in [25]
it is established that a sequence of local minimizers u., with uniformly bounded
energy, must converge in L}Oc—sense to a function of the form xg — xge so that
OF locally minimizes perimeter, thus being a (generalized) minimal surface. This
is the starting point of the I'-convergence theory, in which the constraint of I. to
a suitable class of separating-phase functions, converges to the perimeter function
of the interface. Indeed, analogous assertions hold true for general families of
critical points, and for stronger notions of interface convergence, see [6, 29, 33]. The
principle above applies to modeling phase transition phenomena in many contexts:
material science, superconductivity, population dynamics and biological pattern
formation, see for instance [31] and references therein.

It is natural to consider situations in which phase transitions take place in a
manifold rather than in a subset of Euclidean space. In this paper we consider
a compact N-dimensional Riemannian manifold (M, §), and want to investigate
critical points in H!(M) of the functional

_ Sl -2, L o o2
Jg(u)—/M2|Vgu| +45(1 a*)”,

with sharp transitions between —1 and 1 taking place near a (N — 1)-dimensional
minimal submanifolds of M. Critical points of J. correspond precisely to classical
solutions of the Allen-Cahn equation in M,

e?Azu 4+ (1-a*)a =0 inM, (1.1)
where Ay is the Laplace-Beltrami operator on M.

We let in what follows K be a minimal (N — 1)-dimensional embedded submani-
fold of M, which divides M into two open components M. (The latter condition
is not needed in some cases.) The Jacobi operator J of K, corresponds to the second
variation of N-volume along normal perturbations of I inside M: given any smooth
small function v on K, let us consider the manifold K(v), the normal graph on K
of the function v, namely the image of K by the map p € K — exp, (v(p)z/;c (p))
If H(v) denotes the mean curvature of IC(v), defined as the arithmetic mean of
the principal curvatures, then the linear operator 7 is the differential of the map
v — nH(v) at v =0. More explicitly, it can be shown that

TV = At + |Ax|*Y + Ricy(vic, vie), (1.2)
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where A is the Laplace-Beltrami operator on K, |Ax|? denotes the norm of the
second fundamental form of K, Ricg is the Ricci tensor of M and vg is a unit
normal to K. We will briefly review these concepts in Section 2.

The minimal submanifold /C is said to be nondegenerate if the are no nontrivial
smooth solutions to the homogeneous problem

Jv =0 in K. (1.3)
This condition implies that I is isolated as a minimal submanifold of M.

In [28], Pacard and Ritoré assume that K is non-degenerate and, and proved
that there exists a solution w. to equation (1.1) with values close to +1 inside
M, whose (sharp) 0-level set is a smooth manifold which lies e-close to . More

precisely, let w(z) := tanh %) be the unique solution of the problem

w’ +w—w?=0 inR, w0)=0, wtoo) = =1, (1.4)

and denote by c, its total energy, namely

Lo 1 2)2
1= | = —(1— .
c /RQ|w| + 4( w)
Then the solution w. in [28] resembles near K the function w(t/e), where t is a

choice of signed geodesic distance to I'. In particular

Je(ue) — ¢ |K|.

In this paper we describe a new phenomenon induced by the presence of positive
curvature in the ambient manifold M: in addition to non-degeneracy of K, let us
assume that

K = |Ax* + Ricz(vc,vc) >0 on K. (1.5)

Then, besides the solution by Pacard and Ritoré, there are solutions with multiple
interfaces collapsing onto K. In fact, given any integer m > 2, we find a solution
ue such that u? — 1 approaches 0 in My as ¢ — 0, with zero level set constituted
by m smooth components O(e|loge|) distant one to each other and to X, and such
that

Je(ue) — me. |K|.

Condition (1.5) is satisfied automatically if the manifold M has non-negative Ricci
curvature. If N = 2, K corresponds simply to the Gauss curvature of M measured
along the geodesic K.

The nature of these solutions is drastically different from the single-interface
solution by Pacard and Ritoré[28]. They are actually defined ouly if ¢ satisfies a
nonresonance condition in . In fact, in the construction € must remain suitably
away from certain values where a shift in Morse index occurs. We expect that
the solutions we find have a Morse index O(|loge|®) for some a > 0 as critical
points of J., while the single interface solution is likely to have its Morse index
uniformly bounded by the index of K (namely the number of negative eigenvalues
of the operator 7).
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Theorem 1. Assume that IC is nondegenerate and embedded, and that condition
(1.5) is satisfied. Then, for each m > 2, there exists a sequence of valuese =¢e; — 0
such that problem (1.1) has a solution u. such that u2—1 — 0 uniformly on compact
subsets of M4, while near K, we have

Ug :Zw <2€f£(g)> + %((71)77171 . 1) +0(1)’

S
=1

where (g, Z) are the Fermi coordinates defined near K through the exponential map
(see Section 2.1), and the functions fy satisfy

m+1 1 1 1
j) = efi) 2log = — —loglog - | + O(1). 1.6
i) = (6= "52) [Vetog L = oglog | o). (19
Moreover, when N = 2, there exist positive numbers vy, . .., V;,_1 such that given
¢ > 0 and all sufficiently small € > 0 satisfying
1 V; . .
‘@_]72 j737 fO’I"G/ll 121,...,m—1, j:1,2, (17)

a solution u. with the above properties exists.

We observe that the same result holds if m is even and M\ K consists of just one
component. Thus the condition that X divides M into two connected components
is not essential in general.

As we will see in the course of the proof, the equilibrium location of the interfaces
is asymptotically governed by a small perturbation of the Jacobi-Toda system

EQ(AKfj+(|AK|2+RiC§(VICaVIC))fj) —ag [e”Vimlim) — o= Uil ] = 0, (1.8)

on K, 7 =1,...,m, with the conventions fo = —o0, fnt+1 = +00. Heuristically,
the interface foliation near X is possible due to a balance between the interfacial
energy, which decreases as the interfaces approach each other, and the fact that the
length or area of each individual interface increases as the interface is closer to K
since M is positively curved near K.

What is unexpected, is the need of a nonresonance condition in order to solve the
Jacobi-Toda system. A question which is of independent interest is the solvability
of the Jacobi-Toda system without the condition (1.5). Similar resonance has been
observed the problem of building foliations of a neighborhood of a geodesic by CMC
tubes considered in [17, 22]. This has also been the case for (simple) concentration
phenomena for various elliptic problems, see [8, 16, 19, 20].

Our result deals with situations in which the minimal submanifold is locally but
not globally area minimizing. In fact, since condition (1.5) holds, the Jacobi op-
erator has at least one negative eigenvalue, and near ', M cannot have parabolic
points. In the case of a bounded domain  of R? under Neumann boundary condi-
tions, a multiple-layer solution near a non-minimizing straight segment orthogonal
to the boundary was built in [9]. In ODE cases for the Allen-Cahn equation,
clustering interfaces had been previously observed in [7, 26, 27]. No resonance phe-
nomenon is present in those situations, constituting a major qualitative difference
with the current setting.
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The method consists of linearizing the equation around the approximation

([ Z—<cfu®) 1
—efy .
U — L =JENTT Z((=1)™ 1
oz, 2) Zw( 5 ) +2(( ) ),

=1
and then consider a projected form of the equation which can be solved boundedly
after finding a satisfactory linear theory, and then applying the contraction mapping
principe. In that process the functions f; are left as arbitrary functions under some
growth constraints. At the last step one gets an equation which can be described
as a small perturbation of the Jacobi-Toda system

We do not expect that interface foliation occurs if the limiting interface is a
minimizer of the perimeter since in such a case both perimeter of the interfaces and
their interactions decrease the energy, so no balance for their equilibrium locations
is possible. On the other hand, negative Gauss curvature seems also prevent inter-
face foliation. This is suggested by a version of De Giorgi-Gibbons conjecture for
problem (1.1) with M the hyperbolic space, established in [3].

2. GEOMETRIC BACKGROUND AND THE ANSATZ

In the first preliminary part of this section, we list some necessary notions from
differential geometry: Fermi coordinates near a submanifold of M, minimal sub-
manifold, as well as Laplace-Beltrami and Jacobi operators. We then express the
problem in a suitable form, define an approximate solution and estimate its error.

2.1. Local coordinates. Let M be an N > 2-dimensional smooth compact Rie-
mannian manifold without boundary with given metric g. We assume that I is
an N — 1 dimensional submanifold of M. For each given point p € K, T, M splits
naturally as
TyM =T,K & NK,

where T,/ is the tangent space to K and N,K is its normal complement, which
spanned respectively by orthonormal bases {E; : i = 1,--- ,N—1} and {Ex}. More
generally, we have for the tangent and normal bundles over I the decomposition

TM=TKa& NK.

Let us denote by v the connection induced by the metric § and by 7V the corre-
sponding normal connection on the normal bundle.

Notation: Up to section 2.4, we shall always use the following convention for
the indices

i, k,l---€{1,2,--- ,N—=1}, a,bec,---€{1,2,---,N}.

Given p € I, we use some geodesic coordinates § centered at p. More precisely,
in a neighborhood of p in I, we consider normal geodesic coordinates

§=Y,(3) :=exp} (iE:), §=(F1, . Fn-1) €V, (2.1)

where exp’ is the exponential map on K and summation over repeated indices is
understood. V is a neighborhood of the origin in RN ~1,

This yields the coordinate vector fields X; = f.(9;),4 = 1,--- , N — 1 where
f(F) =Y,(3). For any E € T,K, the curve

s = p(s) = expl(sE)
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is a geodesic in K, so that
Vx;Xjlp € NJK foranyi,j=1,---,N -1
We recall that the Christoffel symbols I'}Y, i,5 =1,--- , N — 1 are given by
Vx.Xjlp =T En, ie I =§(Vx,X;, En).
We also assume that at p the normal vector Ey is transported parallelly (with

respect to 77V) through geodesics vg(s) from p. This yields a frame field Xy for
NK in a neighborhood of p which satisfies

inXN‘pETp’C, i.e. g(inEN,EN)lpZO, 1=1,--- ,N—]..
We define the numbers 7, 4,5 = 1,--- , N — 1, by

—1
Vx, Xnlp = Z TIvE;, ie Ty = g(Vx,Xn,Ej).
j=1

In a neighborhood of p in M, we choose the Fermi coordinates (y,Zz) on M
defined by

@O(y’ 2) = eXpr(gr) (EEN) with (9'7 2) = (9-13 t ayN—la 2) SRS (_507 50)a (22)
where eXpy (y) 18 the exponential map at Y,(y) in M. We also have corresponding
coordinate vector fields

X; = 0(9,), Xy =2(0).

By construction, Xn|, = En.
2.2. Taylor expansion of the metric. In this section we will follow the notation
and calculations of [17]. By our choice of coordinates and the Gauss Lemma, on K
the metric g splits in the following way,
N—1
9p) = Y 545 ® dj; + gyndz@dz, peK. (2.3)
ij=1
As usual, the Fermi coordinates above are chosen so that the metric coefficients
satisfy
gab = g(Xaa Xb) =dqp at p-
Furthermore, §(X;, Xn) = 0 in some neighborhood of p in K. Then
Xig(X;, Xn) = §(Vx,Xj, Xn) +§(X;, vx, Xn) onK,
yield the identity
Y+, =0 at p. (2.4)

We denote by TY : NK — R, i,5 = 1,--- ,N — 1, the 1-forms defined on the
normal bundle of I as
TY(Ex) = §(Ve.Ej, En). (2.5)
The second fundamental form Ax : TIC x TIC — NK of the submanifold K and its
corresponding norm are then given by

N-1
Ax(Ei, E;) =T{(En)En, |Axl =) (Fz(EN)Y- (2.6)

1,j=1
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For X,Y, Z W € T M, the curvature operator and curvature tensor are respectively
defined by the relations

R(X,Y,Z)=Vx Vy Z—Vy Vx Z—Vxy|Z, (2.7)
R(X,Y,Z,W) = §(R(Z, W)Y, X).
The Ricci tensor of (M, g) is defined by
Rics(X,Y) = g R(X, X, Y, Xp). (2.9)

We now compute higher order terms in the Taylor expansions of the metric
coefficients. The metric coefficients at ¢ = ®°(0, Z) are given in terms of geometric
data at p = ®°(0,0) and |Z| = dist;(p, ¢), which is expressed by the next lemmas,
see Proposition 2.1 in [17] and the references therein.

Lemma 2.1. At the point ¢ = ®%(0, 2), the following expansions hold

Vxy Xv = O(|2]) X, (2.10)

Vx, Xj =THEN) XNy + O(Z)Xa, dj=1,- N -1, (2.11)
N-1

Vi Xn = Vxn Xi = Y THEN)X; +O(Z)Xa, i=1,---,N—-1. (2.12)
j=1

Lemma 2.2. In the above coordinates (g, %), for anyi,j =1,2,--- /N —1, we have

3i5(0,2) = 8i; — 2T (En)Z — R(X N, X, X, X;)| 22

N—-1
+ Z IH(EN)TL(EN)IZ? +O(2)), (2.13)

k=1
giN(Oﬂz) = O(‘5|2)7 (214)
ann(0,2) = 14+ 0O(2). (2.15)

2.3. The Laplace-Beltrami and Jacobi operators. If (M, §) is an N-dimensional
Riemannian manifold, the Laplace-Beltrami operator on M is defined in local co-
ordinates by the formula

1
Apg = ——r 8a<\/det~ 529 ) 2.16
M= = 99" (2.16)
where G denotes the inverse of the matrix (§a). Let X C M be an (N — 1)-
dimensional closed smooth embedded submanifold associated with the metric gg
induced from (M, g). Let Ax be the Laplace-Beltrami operator defined on K.

Let us consider the space C*>°(NK), which identifies with that of all smooth
normal vector fields on K. Since K is a submanifold of codimension 1, then given

a choice of orientation and unit normal vector field along K, denoted by vx € NK,
we can write ¥ € C*°(NK) as ¥ = ¢, where ¢ € C°(K).

For U € C*(NK), we consider the one-parameter family of submanifolds ¢t —
K¢ w given by

Ko = {expg (tv(g) g€ IC}. (2.17)
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The first variation formula of the volume functional is defined as

d
— 1 = V. h 2.1
Gl Vel = [ <wonsy vk, (2.18)

where h is the mean curvature vector of L in M, < -,- >x denotes the restriction
of g to NIC, and dVi the volume element of K.

The submanifold K is said to be minimal if it is stationary point for the volume
functional, namely if

d
o OVol(lCmy) =0 forany ¥ e C*(NK), (2.19)
t=
or equivalently by (2.18)7 if the mean curvature h is identically zero on K. It is a
standard fact that if I (Ey) is as in (2.5), then
N—-1
K is minimal <= > Ti(Ey) =0. (2.20)
i=1
The Jacobi operator J appears in the expression of the second variation of the

volume functional for a minimal submanifold K
2

dt? li=o

and is given by

Vol(K:,w) = 7/ <JYU, ¥ >y dVi forany ¥ € C°(NK), (2.21)
r

J¢ = —Ax¢ — Ricy (v, v)d — |Ax[*¢, (2.22)
where ¥ = ¢vi, as has been explained above.

The submanifold K is said to be mon-degenerate if the Jacobi operator J is
invertible, or equivalently if the equation J¢ = 0 has only the trivial solution in
C=(K)

2.4. Laplace-Beltrami Operator in Stretched Fermi Coordinates. To con-
struct the approximation to a solution of (1.1), which concentrates near I, after
rescaling, in M /e, we introduce stretched Fermi coordinates in the neighborhood
of the point e 'p € e 'K by

do o

0,2 ) (2.23)
Obviously, in M. = ¢~ ' M the new coefficients gu;’s of the Riemannian metric,
after rescaling, can be written as

1
@.(y.2) = Z0(ey.e2), (3.2) = (v, yw-n2) €7V (-

gab(y7z) :gab(5Y752>7 CL,b: 1727"' 7N'

Lemma 2.3. In the above coordinates (y, z), for anyi,j =1,2,--- /N —1, we have
6ij(y,2) = & — 2eT(En)z — 2R(Xj, X, X, Xi)| 2]
N—-1
+22 ) THENTL(EN)|2* + O(lez]?), (2.24)
k=1
gin(y,2) = O(le=]), (2.25)
ann (¥, 2) = 14+ 0(Jez?). (2.26)

Here R(-) and T'% are computed at the point p € K parameterized by (0,0).
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Now we will focus on the expansion of the Laplace-Beltrami operator defined by

_ # ab
Apm, = Maa(g Vdetgd, )

| (2.27)
= g 0,05 + (0ag™®) Oy + 5 0a (log (detg) ) g Ob.

Using the assumption that the submanifold X is minimal as in formula (2.20), direct
computation gives that

detg = 1 — 2K (ey)2? + O(3)2)?),
where we have, using (2.6) and (2.9), denoted
K = Ricy (v, v) + | Axc|?. (2.28)
This gives
log (detg) = —e*K (ey)2% + O(£%|2)?).
Hence, we have the expansion
Am, = 0.n + Ax. + e22K(ey) 0, + B (2.29)
where the operator B has the form
B = ¢z a}j Oij + e22%aly i + 3% ady 0.0 + 22010; + 22703 0., (2.30)

and all the coefficients are smooth functions defined on a neighborhood of X in M,
evaluated at (ey,ez).

2.5. The local approximate solution. If we set u(x) := u(ex), then problem
(1.1) is thus equivalent to
Apm.u + F(u)=0 in M., (2.31)

where F(u) = u — u®. In the sequel, we denote by M. and K. the ¢~ !-dilations
of M and K.

To define the approximate solution we observe the heteroclinic solution to (1.4)
has the asymptotic properties

w(z) — 1= —2e V21l 4 O(e‘zﬁlzl), z>1,
w(z) + 1= 2" V2 L O(e V2R 2 <1, (2.32)
w'(z) = 2vV2e VAl 4 0(6_2\/§|Z|), |z| > 1,
For a fixed integer m > 2, we assume that the location of the m phase transition
layers are characterized in the coordinate (y, z) defined in (2.23) by the functions
z = filey), 1 < j < m with
filey) < faley) <--- < fuley),

separated one to each other by large distances O(|loge|), and define in coordinates
(y, z) the approximation

w2) = 3wy (o = fi(en) + T ) = (-1 (), (233)

with this definition we have that uy(y, z) = w;(z — f;(ey)) for values of z close to

fi(ey).
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The functions f; : K — R will be left as parameters, on which we will assume a
set of constraints that we describe next.

Let us fix numbers p > N, M > 0, and consider functions h; € W*P(K),
j=1,...,m, such that
[Bs w2 k) = 1DRR | ooy + 1 DichjllLeeey + hjlloeey < M. (2.34)
For a small € > 0, we consider the unique number p = p. with
e VZIr = g2, (2.35)

We observe that p. is a large number that can be expanded in ¢ as

1 1 1 loglogé
pPe = \/ﬁlogg — ﬁlog<\/§log g) +O(@>.

Then we assume that the m functions f; : K — R are given by the relations

N m+1 -
k(@) = (k — 2) pe + hie(y), k=1,...,m, (2.36)
so that
Fer1(9) = fe(@) = pe + hip1 () — hae(9), k=1,2,...,m—1 (2.37)
We will use in addition the conventions hg = —o0, hyp41 = +00.

Our first goal is to compute the error of approximation in a dy/e neighborhood
of K., namely the quantity:

S(ug) = Am,uo + Flug). (2.38)

For each fixed ¢, 1 < ¢ < m, this error reproduces a similar pattern on each set
of the form

Ay = { (y,2) € K. x (—(io (io) / 1z = fe(ey)| < ;ps+M}~ (2.39)

)
g £

For (y,z) € Ay, we write t = z — fy(ey) and estimate in this range the quantity
S(uo)(y,t + fe(ey)). We have the validity of the following expression.

Lemma 2.4. For ¢ € {1,...,m} and (y,z) € A; we have
(=1 'S (uo)(y, t + fo)
= 6(1 —w?(t))e?pe [e‘ﬂ(}”_h“l)eﬂt — e V2hesa—he) g2 (2.40)

— 2 (Ache + L+ f)K )W/ (t) + €2 Vi e (8) + (—1)*Ou(ep, ).
where for some 1,0 > 0 we have

19(, )l Lr (i) < Ce2t7eltl,
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Proof. From (2.29), using that w + F'(w;) = 0, we derive that, for (y, 2) € Ay

m

ZF wi(z = fi(ey)) + 2| Vi hyley)*w] (z - fi(ey))

S(Uo) = Uo y,
j=1

= &Y (Axhyley) + 2K (ey) )ul(z — f(e)

[a}p(ey,e2) Oinhj(ey) + b (ez,ey) Dihj(ey) | w (2 = fiey))

+ &3z

+ ¥ [ 22 adn(ey,e2) + 2% aiy(ey, €2) Oihj(ey)| w) (2 — f;(ey))

+ % zaly(ey, e2) 8;hj(ey) Oihj(ey) wl (z — fi(ey)) - (2.41)
Let us consider first the case 2 < ¢ <m — 1.

We begin with the term

- p
Fuo(y,t+ fo)) = > F(wit+fo— 1)), It < 58
j=1
Since
w(s) ==£(1— 267\@'5‘) + 0(672\/5\5|) as s — +o0,
we find that for j < ¢,
(t + fo f]) 1= 7267\/§(frfj)67\/§t +0 (672\/§‘t+f27fj‘ ) , (2.42)
while for j > ¢,
(t+fo— f;) +1=2e"V2Um10eV2 4 O (e—zﬁltﬂ“@—fﬂ ) . (2.43)

Now, since
F(w) = w(l-v?), [ < +0(),

|ff_fj|:|£_j|ps+0(1), e_\ﬁpE :52/)5’

we find that if |j — | > 2 and 0 < o < v/2, then for some 7 > 0,

)| < Cem VATl < 247 ool (2.44)

| F (w; (t + fe —
On the other hand, for certain numbers s1, s3 € (0,1) we have
1
F(w(t+ fo— fe-1)) = F'(1) a1, +§F”(1 + s1a1) a?, (2.45)
1
F(w(t+ fo— feq1)) = F'(1) as + 5F”(1 — S9a3) a3. (2.46)
where
ay = w(t+fszg_1) -1, ag:= w(t+fg7fg+1)+1.

Now, we find

(—1)1“]_1u0 =w(t) —ay —as —az, az=0 ( max e
[7—€1>2

V3l fo | ) .
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Thus for some s3 € (0,1),

1
—F"(w — s3(ay + as))(a1 + az)?

(1) F(ug) =F(w) — F'(w) (a1 + az) + 5

+ 0< max eﬁ“feff) . (2.47)
l7—€1>2
Combining relations (2.44)-(2.47) and using that
Fi(1) = F(w) = 31— w?), |ay| + |as| = O(=V2%) = O(e=V2),

we obtain

m

(—1)(Fluo) = > P(wy(t+ fo — £) )

j=1

= 3(1 —w?) (a1 + a2)

+ 3 {F”(l — s9az) — F"(w — s3(ay + ag))} (a2 +a3) + O (€2+Te_"|t‘ )

= 3(1 —w?) (ay +as) + O (52'”6_"‘” ) .

Hence, recalling relations (2.37), (2.35), the definitions of a1, a2 and the asymptotic
expansions (2.42), (2.43) for j =¢—1 and j = ¢+ 1, we find

m

F(ug) = Y F(w;(t— f;)) =

j=1

6(—1) 71 (1 = w(1))ep. [ e VAR VE _ om VR Th) VA ] g, (2.48)

where 0, = O (52‘”6_"'” ).
Substituting (2.48) in expression (2.41) we then find

(—=1)" 'S (uo) (y, t + fo)
= 6(1 —wg(t))€2p5 |:e—\/§(hé_hé—l)e\/§t _ e—\/ﬁ(hul—he)e—\/it}

= &2 (Ache + (t+ f)K )w'(t) + 22| 9 hefPu (1)
+ (1) O(ey,t) . (2.49)

Here we have denoted
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Orley,t) = Ouley,t) = 23 (Achy + L+ fK Jw)(t+ fo - f;)
A
+ & Z | Vi hilPw) (2 = f;)
J#L
+ e3(=1)"" 2 aly Oihy Oxhy Wl (t+ fo — f;)
+ 53(t + fg) [azlk 8¢khj + bll 8ihj] w}(t + fo— f])
+ [ ady + 2% aly Oihy] wy (t+ fo = f;), (2.50)
where the coefficients are understood to be evaluated at ey or (ey, e(t+ fg(ey))).

While this expression has been obtained assuming 2 < ¢ < m — 1, we see that it
also holds for £ = m, ¢ = 1. The cases £ = 1 and ¢ = m are dealt similarly. The
only difference is that the term {e*ﬁ(hﬁhﬂ—l)eﬁt - 6*\/5(}”“*’”)6"/%] gets
respectively replaced by

—e VeV =1 and e VmeV2 p=m. (2.51)

2.6. Size of the error. Examining expression (2.50) we see that the error in the
considered region is made up by terms that can be bounded by a power of € times a
factor with exponential decay in t. We introduce the following norm for a function
g(y,t) defined on Ko x R. Let 0 >0, 1 < p < 400. We set

= oltl : 2.52
loloo = s Mol (0,000 252

We want to consider the error associated to points in the set A, as a function
defined in the entire space . x R. To do so, we consider a smooth cut-off function
¢(s) with ¢{(s) =1 for s < 1 and ((s) =0 for s > 2 and define

C-(t) = (1t - & —20).

We extend the error as follows. Let us set
Se(ug) 1= 6(1 = w?(t))2p. | eV VB o =VEun =i VR ¢ (1)
— &2 (Axhe+ (t+ J)K /(1) + 22| 9. bl (1)

+ (=1 G(1) Ouley, 1) (2.53)

where the cut-off expressions are understood to be zero outside the support of (..
We see that

(—1)2_1S(UO)<EQ, t+ ff) = SZ(UO)(ya t) for all (y7 t) € AZ-
The following lemma on the accuracy of the error is readily checked.

Lemma 2.5. For a given 0 < 0 < /2 and any p > 1 we have the estimates
1Se(uo)llpo < C*77, 16 Osllpe < O, (2.54)

N-1

; ; _1 N-1
where T is any number with T > ool and T > P
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Proof. The proof amounts to a straightforward verification of the bound term by
term. Let us consider for instance

B, = 6(1 . wQ(t))Eng [e—ﬁ(h(—hl—l)eﬂt _ e—\/i(hul—he)e—\/ﬁt} C(t)

Then for [t| < & we get
|Eq| < 052|log5| < CeV2re < e 7% e~ (V2=30)p: < e*"‘tlsQ*T,

where 7 > ﬁa. This implies ||E1||p., < Ce?™7 for any 1 < p < +00. Now, let us

consider the term
Es(y,t) = &% Ache(ey) w'(t).
Then for any o < V2 we have

IN

M BallLr a(emay < C2||Axhe(D) | Lo(B)

N

—1 N-1
Ce* 77 | Axhell o) < C* 77

The rest of the terms are dealt similarly, being in fact roughly at least £ times
smaller than those above. ([l

IN

Very important for subsequent developments is the Lipschitz character of the
error in the parameter function h = (hq,...,hn). Let us write S;(h) to emphasize
the dependence on this function. We have

Lemma 2.6. Let us assume that the vector-valued functions hy, ho satisfy the
constraints (2.34). We have the validity of the following Lipschitz conditions.

||Sj(h1) - Sj(hQ)”p,a < C(52_7—”1'11 - h2||W2*p(’C)’
1¢- ©e(0?) = ¢ Op(1?)]|p,0 < Ce* T[0! — 02|y (i),

1 N—1
for T > 7737 and T > =

Proof. Again the proof consists in establishing the bound for each of its individual
terms, more precisely, we need to bound now for instance 9p,p,;S5;(h). Since the
dependence on this object, and as well on second derivatives comes in linear or
quadratic way, always multiplied by exponentially decaying factors and small pow-
ers of €, the desired result directly follows. The dependence on the values of the
functions h; appears in a more nonlinear fashion, however smooth and exponen-
tially decaying. We omit the details. The complete arguments are rather similar
to those in the proof of Corollary 5.1 of [10]. O

2.7. The global approximation. The approximation ug is so far defined only in
a neighborhood of . in M., where the local Fermi coordinates make sense. Let
us assume that m is an odd number. In this case we require that K. separates M.
into two components that we denote M2 and M7 .

Let us use the convention that the normal to K. points in the direction of M7 .
Let us consider the function H defined in M, \ K. as

1 if 2 € M7,
H(z) := {—1 if 2 € M_. (2.55)

Then our approximation uo () approaches H(z) at an exponential rate O(e~V2/tl) as
|t| increases. The global approximation we will use consists simply of interpolating
uo with H sufficiently well-inside M. \ K. through a cut-off in |z|. Let Nj be the
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[

set of points in M. that have Fermi coordinates (y, z) well-defined and |z| < 2.

with some positive constant § < dq/10.

Let 7(s) be a smooth cut-off function with n(s) =1 for s < 1 and =0 for s > 2
and define

_3s i
ns(z) == {n(z(|) :) liffz;{/\\/‘/ij (2.56)

Then we let our global approximation w(z) be simply defined as
w = nsug + (1 —ns)H, (2.57)
where H is given by (2.55) and w is just understood to be H(z) outside N.

Since H is an exact solution in RY \ M., the global error of approximation is
simply computed as

S(w) = Aw + F(w) = nsS(uo) + E, (2.58)
where
E = 2VnsVug + Ans(ug —H) + F(nsuo + (1 —ns)H) — nsF (uo) -

Observe that E has exponential size O(e™¢) inside its support, and hence the
contribution of this error to the entire error is essentially negligible.

If m is even, we simply define
w = nsuo + (1 —ns)(—1). (2.59)

In this case there is no need that I separates M into two components.

3. THE GLUING PROCEDURE

Once the global approximation w(x) in (2.57) or (2.59) has been built, we then
want to find a solution to the full problem of the form

u(z) = w(z) + p(z), =€ M.
where ¢(z) is a small function. Thus ¢ must satisfy
Apm.p+ F'(w)e = =S(w) — N(p) in M. (3.1)

where
N(p)=F(u+ ) — F(u) = F'(w)p.

We shall look for a solution of the form

u(z) = ZCjZ(fE)QEj(yaz) + ¢(z),
=
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where the functions <;~Sj are defined in the entire space . x R. Then the equation
is equivalent to

" Gia|[Amcdy + F/0)d; + GuF (®) + 20 + N + ) + S|

j=1

+ [2<VMECJ'2»VME¢~5J'> + QNSJ'AMECJ'Q} + Ay — (2 - Fw)(1- Zle))¢
j=1

=1

<.

(1= G N(0+D0Ged) + (1-30G2) S = 0 in M.
j=1 i=1 j=1
This system will be satisfied if the (m + 1)-tuple (¢1, ..., dm, 1) solves the system
Am.dj + F'(W)d; + Gi(F'(w) +2)¢ + GiN( +¢;) + Sw) =0,  (3.2)
for |z| < C|logel, j=1,...,m, and

—Am + 2 = Q(,2) in M., (3.3)
where we have denoted
Q) = (1 - Z le) { 2+ F(w)]¢ + N+ ZC@'Q&%’) } (3.4)
j=1 =1

+ (1= ¢2)Smw) + ) {2<VMECJ'27VM5¢~51> + fJBJAMECjz} :
j=1

j=1

The gluing procedure consists in solving equation (3.3) for ¢ in terms of a given

¢ = (P1,-..,bm) chosen arbitrary but sufficiently small, and then substituting the
result in equation (3.2). Let us assume the following constraints on the ¢;’s:

éj(y,z) = ¢; (y,z — fj(ey)), loillzpe <1 foral j=1,...m. (3.5)

Lemma 3.1. Given functions ¢; and h satisfying respectively constraints (3.5) and
(2.84), there exists a unique solution » = U(¢p,h) to equation (3.3) with

[¥lleo < C(*7 + 27T lI¢ll2,p.0);
for a small T > 0. In addition the operator ¥ satisfies the Lipschitz condition
(6" n!) = ¥(¢*,0%)]|oc < C7T[ [0 = ¢*[l2po + |1 —holl2p].  (3.6)
Proof. Let us consider first the linear equation
—Am Y +2¢=E(x) in M.. (3.7)
We claim that if we set

1Ellp0 = sup | EllLr(B(z1))s
€M,

then problem (3.7) has, for all small ¢ > 0, a unique bounded solution ¢ = A(E),
which in addition satisfies

[1Ds 9l + ¢ lloo < ClIE]p,0,
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provided that p > m. To prove this claim, it suffices to establish the a priori
estimate in L*°-norm. If that was not true, there would be sequences € = ¢,,, ¥y,
E,, with ||Ey|lp,0 — 0, ||¥n]lcc = 1 such that

_AME'wn + 2wn =F, in M..

Using local normal coordinates around a point p, € M, where |¢,(p,)| = 1, the
same procedure as in the proof of the a priori estimate in Proposition 4.1 leads us
to local convergence of v,, to a nontrivial bounded solution of

—Apntp+2¢p =0 in RV,
and a contradiction is reached.
To solve equation (3.3) we write it in fixed point form as
¢ =A(Q¢, ). (3.8)

In the region where the functions (1 — )", ¢15)C2j, V.m. (25, Am. (2, are supported
we have, thanks to (3.5),

16(2)] + [V $(2)] < Ce 74751 gjll2p0 < €2 77II65]12p,0,

for a small 7 > 0. We also notice that
1Q(0,2)] < C=~ (IDEn(ey) | + [Dihey)| + In(ey) | +1) + 7S 6520
j=1

‘We observe then that
- -7 -7 -7
10, Mlop < Ce™ ™% ||Allw2re) + € ll2pe < CETT + T ll2p.0) -

We check next the Lipschitz character of this operator, not just in % , but also in
the rest of its arguments. Let us write Q = Q(#, h, ¢) and assume

I8ll2p0 <1, ¥ll2pe < BT, [hllwerpe) < M. (3.9)

We consider (¢!, ¢!,h!), | = 1,2, satisfying (3.9), and denote Q' = Q