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Abstract

We study the qualitative properties of a limiting elliptic system arising in phase separation
for Bose-Einstein condensates with multiple states:





∆u = uv2 in Rn,

∆v = vu2 in Rn,

u, v > 0 in Rn.

When n = 1, we prove uniqueness of the one-dimensional profile. In dimension 2, we prove
that stable solutions with linear growth must be one-dimensional. Then we construct entire
solutions in R2 with polynomial growth |x|d for any positive integer d ≥ 1. For d ≥ 2, these
solutions are not one-dimensional. The construction is also extended to multi-component
elliptic systems.
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1 Introduction and Main Results

Consider the following two-component Gross-Pitaevskii system

−∆u + αu3 + Λv2u = λ1u in Ω, (1.1)
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−∆v + βv3 + Λu2v = λ2v in Ω, (1.2)
u > 0, v > 0 in Ω, (1.3)
u = 0, v = 0 on ∂Ω , (1.4)∫

Ω
u2 = N1,

∫

Ω
v2 = N2 , (1.5)

where α, β,Λ > 0 and Ω is a bounded smooth domain in Rn. Solutions of (1.1)-(1.5) can be
regarded as critical points of the energy functional

EΛ(u, v) =
∫

Ω

(|∇u|2 + |∇v|2) +
α

2
u4 +

β

2
v4 +

Λ
2

u2v2 , (1.6)

on the space (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) with constraints
∫

Ω
u2dx = N1,

∫

Ω
v2dx = N2. (1.7)

The eigenvalues λj ’s are Lagrange multipliers with respect to (1.7). Both eigenvalues λj =
λj,Λ, j = 1, 2, and eigenfunctions u = uΛ, v = vΛ depend on the parameter Λ. As the parameter Λ
tends to infinity, the two components tend to separate their supports. In order to investigate the
basic rules of phase separations in this system one needs to understand the asymptotic behavior
of (uΛ, vΛ) as Λ → +∞.

We shall assume that the solutions (uΛ, vΛ) of (1.1)-(1.5) are such that the associated eigen-
values λj,Λ’s are uniformly bounded, together with their energies EΛ(uΛ, vΛ). Then, as Λ → +∞,
there is weak convergence (up to a subsequence) to a limiting profile (u∞, v∞) which formally
satisfies {

−∆u∞ + αu3∞ = λ1,∞u∞ in Ωu ,

−∆v∞ + βv3∞ = λ2,∞v∞ in Ωv ,
(1.8)

where Ωu = {x ∈ Ω : u∞(x) > 0} and Ωv = {x ∈ Ω : v∞(x) > 0} are positivity domains composed
of finitely disjoint components with positive Lebesgue measure, and each λj,∞ is the limit of λj,Λ’s
as Λ →∞ (up to a subsequence).

There is a large literature about this type of questions. Effective numerical simulations for (1.8)
can be found in [5], [6] and [13]. Chang-Lin-Lin-Lin [13] proved pointwise convergence of (uΛ, vΛ)
away from the interface Γ ≡ {x ∈ Ω : u∞(x) = v∞(x) = 0}. In Wei-Weth [27] the uniform
equicontinuity of (uΛ, vΛ) is established, while Noris-Tavares-Terracini-Verzini [24] proved the
uniform-in-Λ Hölder continuity of (uΛ, vΛ). The regularity of the nodal set of the limiting profile
has been investigated in [12, 26] and in [16]: it turns out that the limiting pair (u∞(x), v∞(x)) is
the positive and negative pair (w+, w−) of a solution of the equation −∆w + α(w+)3− β(w−)3 =
λ1,∞w+ − λ2,∞w−.

To derive the asymptotic behavior of (uΛ, vΛ) near the interface Γ = {x ∈ Ω : u∞(x) =
v∞(x) = 0}, one is led to considering the points xΛ ∈ Ω such that uΛ(xΛ) = vΛ(xΛ) = mΛ → 0
and xΛ → x∞ ∈ γ ⊂ Ω as Λ → +∞ (up to a subsequence). Assuming that

m4
ΛΛ → C0 > 0, (1.9)
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(without loss of generality we may assume that C0 = 1), then, by blowing up, we find the following
nonlinear elliptic system

∆u = uv2 , ∆v = vu2 , u, v > 0 in Rn . (1.10)

Problem (1.10) has been studied in Berestycki-Lin-Wei-Zhao [8], and Noris-Tavares-Terracini-
Verzini [24]. It has been proved in [8] that, in the one-dimensional case, (1.9) always holds.
In addition, the authors showed the existence, symmetry and nondegeneracy of the solution to
one-dimensional limiting system

u
′′

= uv2, v
′′

= vu2, u, v > 0 in R. (1.11)

In particular they showed that entire solutions are reflectionally symmetric, i.e., there exists
x0 such that u(x − x0) = v(x0 − x). They also established a two-dimensional version of the De
Giorgi Conjecture in this framework. Namely, under the growth condition

u(x) + v(x) ≤ C(1 + |x|), (1.12)

all monotone solution is one dimensional.
On the other hand, in [24], it was proved that the linear growth is the lowest possible for

solutions to (1.10). In other words, if there exists α ∈ (0, 1) such that

u(x) + v(x) ≤ C(1 + |x|)α, (1.13)

then u, v ≡ 0.
In this paper we address three problems left open in [8]. First, we prove the uniqueness of

(1.11) (up to translations and scaling). This answers the question stated in Remark 1.4 of [8].
Second, we prove that the De Giorgi conjecture still holds in the two dimensional case, when we
replace the monotonicity assumption by the stability condition. A third open question of (1.10)
is whether all solutions to (1.10) necessarily satisfy the growth bound (1.12). We shall answer
this question negatively in this paper.

We first study the one-dimensional problem (1.11). Observe that problem (1.11) is invariant
under the translations (u(x), v(x)) → (u(x + t), v(x + t)),∀t ∈ R and scalings (u(x), v(x)) →
(λu(λx), λv(λx)), ∀λ > 0. The following theorem classifies all entire solutions to (1.11).

Theorem 1.1. The solution to (1.11) is unique, up to translations and scaling.

Next,we want to classify the stable solutions in R2. We recall that a stable solution (u, v) to
(1.10) is such that the linearization is weakly positive definite. That is, it satisfies

∫

Rn

[∇ϕ|2 + |∇ψ|2 + v2ϕ2 + u2ψ2 + 4uvϕψ] ≥ 0, ∀ϕ,ψ ∈ C∞
0 (Rn).

In [8], it was proved that the one-dimensional solution is stable in Rn. Our first result states
that the only stable solution in R2, among those growing at most linearly, is the one-dimensional
family.
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Theorem 1.2. Let (u, v) be a stable solution to (1.10) in R2. Furthermore, we assume that the
growth bound (1.12) holds. Then (u, v) is one-dimensional, i.e., there exists a ∈ R2, |a| = 1 such
that (u, v) = (U(a · x), V (a · x)) where (U, V ) are functions of one variable and satisfies (1.11).

Our third result shows that there are solutions to (1.10) with polynomial growth |x|d that
are not one dimensional. The construction depends on the following harmonic polynomial Φ of
degree d:

Φ := Re(zd).

Note that Φ has some dihedral symmetry; indeed, let us take its d nodal lines L1, · · · , Ld and
denote the corresponding reflection with respect to these lines by T1, · · · , Td. Then there holds

Φ(Tiz) = −Φ(z). (1.14)

The third result of this paper is the following one.

Theorem 1.3. For each positive integer d ≥ 1, there exists a solution (u, v) to problem (1.10),
satisfying

1. u− v > 0 in {Φ > 0} and u− v < 0 in {Φ < 0};
2. u ≥ Φ+ and v ≥ Φ−;

3. ∀i = 1, · · · , d, u(Tiz) = v(z);

4. ∀r > 0, the Almgren frequency function satisfies

N(r) :=
r
∫
Br(0) |∇u|2 + |∇v|2 + u2v2

∫
∂Br(0) u2 + v2

≤ d; (1.15)

5.
lim

r→+∞N(r) = d. (1.16)

Note that the one-dimensional solution constructed in [8] can be viewed as corresponding to
the case d = 1. For d ≥ 2, the solutions of Theorem 1.3 will be obtained by a minimization
argument under symmetric variations (ϕ,ψ) (i.e. satisfying ϕ ◦ Ti = ψ for every reflection Ti).
The first four claims will be derived from the construction. See Theorem 4.1.

Regarding the claim 5, we note that by Almgren’s monotonicity formula, (see Proposition
5.2 below), the Almgren frequency quotient N(r) is increasing in r. Hence limr→+∞N(r) exists.
To understand the asymptotics at infinity of the solutions, one way is to study the blow-down
sequence defined by:

(uR(x), vR(x)) := (
1

L(R)
u(Rx)

1
L(R)

v(Rx)),

where L(R) is chosen so that ∫

∂B1(0)
u2

R + v2
R = 1.

In Section 6, we will prove
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Theorem 1.4. Let (u, v) be a solution of (1.10) such that

d := lim
r→+∞N(r) < +∞.

Then d is a positive integer. As R →∞, (uR, vR) defined above (up to a subsequence) converges
to (Ψ+, Ψ−) uniformly on any compact set of RN where Ψ is a homogeneous harmonic polynomial
of degree d. If d = 1 then (u, v) is asymptotically flat at infinity.

In particular this applies to the solutions found by Theorem 1.3 to yield the following property

Corollary 1.5. Let (u, v) be a solution of (1.10) given by Theorem 1.3. Then

(uR(x), vR(x)) := (
1

Rd
u(Rx)

1
Rd

v(Rx))

converges uniformly on compact subsets of R2 to a multiple of (Φ+, Φ−), where Φ := Re(zd).

Theorem 1.4 roughly says that (u, v) is asymptotic to (Ψ+, Ψ−) at infinity for some homo-
geneous harmonic polynomial. The extra information we have in the setting of Theorem 1.3 is
that Ψ ≡ Φ = Re(zd). This can be inferred from the symmetries of the solution (property 3 in
Theorem 1.3).

For another elliptic system with a similar form,
{

∆u = uv, u > 0 in Rn,

∆v = vu, v > 0 in Rn (1.17)

the same result has been proved by Conti-Terracini-Verzini in [15]. In fact, their result hold for any
dimension n ≥ 1 and any harmonic polynomial function on Rn. Note however that the problem
here is different from (1.17). Actually, equation (1.17) can be reduced to a single equation: indeed,
the difference u− v is a harmonic function (∆(u− v) = 0) and thus we can write v = u−Φ where
Φ is a harmonic function. By restricting to certain symmetry classes, then (1.17) can be solved
by sub-super solution method. However, this reduction does not work for system (1.10) that we
study here.

For the proof of Theorem 1.3, we first construct solutions to (1.10) in any bounded ball BR(0)
satisfying appropriate boundary conditions:





∆u = uv2, in BR(0),

∆v = vu2, in BR(0),
u = Φ+, v = Φ− on ∂BR(0).

(1.18)

This is done by variational method and using heat flow. The next natural step is to let
R → +∞ and obtain some convergence result. This requires some uniform (in R) upper bound
for solutions to (1.18). In order to prove this, we will exploit a new monotonicity formula for
symmetric functions (Proposition 5.7). We also need to exclude the possibility of degeneracy,
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that is that the limit could be 0 or a solution with lower degree such as a one dimensional
solution. To this end, we will give some lower bound using the Almgren monotonicity formula.

Lastly, we observe that the same construction works also for a system with many components.
Let d be an integer or a half-integer and 2d = hk be a multiple of the number of components k,
and G denote the rotation of order 2d. In this way we prove the following result

Theorem 1.6. There exists a positive solution to the system




∆ui = ui

k∑

j 6=i,j=1

u2
j , in C = R2, i = 1, . . . , k,

ui > 0, i = 1, . . . , k,

(1.19)

having the following symmetries (here z is the complex conjugate of z)

ui(z) = ui(Ghz), on C , i = 1, . . . , k,

ui(z) = ui+1(Gz), on C , i = 1, . . . , k,

uk+1(z) = u1(z), on C
uk+2−i(z) = ui(z), on C , i = 1, . . . , k.

(1.20)

Furthermore,

lim
r→∞

1
r1+2d

∫

∂Br(0)

k∑

1

u2
i = b ∈ (0,+∞) ;

and

lim
r→∞

r
∫
Br(0)

∑k
1 |∇ui|2 +

∑
i<j u2

i u
2
j∫

∂Br(0)

∑k
1 u2

i

= d .

The problem of the full classification of solutions to (1.10) is largely open. In view of our
results, one can formulate several open questions.

Open problem 1. We recall from [8] that it is still an open problem to know in which dimension
it is true that all monotone solution is one-dimensional. A similar open question is in which
dimension it is true that all stable solution is one-dimensional. We refer to [2], [20], [18], [23], and
[25] for results of this kind for Allen-Cahn equation.

Open problem 2. Let us recall that in one space dimension, there exists a unique solution to
(1.11) (up to translations and scalings). Such solutions have linear growth at infinity and, in the
Almgren monotonicity formula, they satisfy

lim
r→+∞N(r) = 1. (1.21)

It is natural to conjecture that, in any space dimension, a solution of (1.10) satisfying (1.21) is
actually one dimensional, that is, there is a unit vector a such that (u(x), v(x)) = (U(a·x), V (a·x))
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for x ∈ Rn, where (U, V ) solves (1.11). However this result seems to be difficult to obtain at this
stage.

Open problem 3. A further step would be to prove uniqueness of the (family of) solutions
having polynomial asymptotics given by Theorem 1.3 in two space dimension. A more challenging
question is to classify all solutions with

lim
r→+∞N(r) = d. (1.22)

Open problem 4. For the Allen-Cahn equation ∆u + u − u3 = 0 in R2, solutions similar to
Theorem 1.3 was first constructed in [17] for d = 2 and in [1] for d ≥ 3. (However all solutions to
Allen-Cahn equation are bounded.) On the other hand, it was also proved in [19] that Allen-Can
equation in R2 admits solutions with multiple fronts. An open question is whether similar result
holds for (1.10). Namely, are there solutions to (1.10) such that the set {u = v} contains disjoint
multiple curves?

Open problem 5. This question is related to extension of Theorem 1.3 to higher dimensions.
We recall that for the Allen-Cahn equation ∆u + u − u3 = 0 in R2m with m ≥ 2, saddle-like
solutions were constructed in [10] by employing properties of Simons cone. Stable solutions to
Allen-Cahn equation in R8 with non planar level set were found in [23], using minimal cones. We
conjecture that all these results should have analogues for (1.10).

2 Uniqueness of solutions in R: Proof of Theorem 1.1

In this section we prove Theorem 1.1. Without loss of generality, we assume that

lim
x→+∞u(x) = +∞, lim

x→+∞ v(x) = 0. (2.1)

The existence of such entire solutions has been proved in [8]. By symmetry property of solutions
to (1.11) (Theorem 1.3 of [8]), we may consider the following problem





u
′′

= uv2, v
′′

= vu2, u, v > 0 in R,

lim
x→+∞u

′
(x) = − lim

x→−∞ v
′
(x) = a

(2.2)

where a > 0 is a constant. We now prove that there exists a unique solution (u, v) to (2.2), up to
translations. We will prove it using the method of moving planes.

First we observe that for any solution (u, v) of (2.2), u
′′

and v
′′

decay exponentially at infinity.
Integration shows that as x → +∞, |u′(x)− a| decays exponentially. (See also [8].) This implies
the existence of a positive constant A such that

|u(x)− ax+|+ |v(x)− ax−| ≤ A. (2.3)
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Moreover, the limits
lim

x→+∞(u(x)− ax+), lim
x→−∞(v(x)− ax−)

exist.
Now assume (u1, v1) and (u2, v2) are two solutions of (2.2). For t > 0, denote

u1,t(x) := u1(x + t), v1,t(x) := v1(x + t).

We want to prove that there exists an optimal t0 such that for all t ≥ t0,

u1,t(x) ≥ u2(x), v1,t(x) ≤ v2(x) in R. (2.4)

Then we will show that when t = t0 these inequalities are identities. This will imply the uniqueness
result.

Without loss of generality, assume (u1, v1) and (u2, v2) satisfy the estimate (2.3) with the same
constant A.

Step 1. For t ≥ 16A
a (A as in (2.3)), (2.4) holds.

Firstly, in the region {x ≥ −t + 2A
a }, by (2.3) we have

u1,t(x) ≥ a(x + t)−A ≥ ax+ + A ≥ u2(x); (2.5)

while in the region {x ≤ −t + 2A
a }, we have

v1,t(x) ≤ a(x + t)− + A ≤ ax− −A ≤ v2(x). (2.6)

On the interval {x < −t + 2A
a }, we have

{
u
′′
1,t = u1,tv

2
1,t ≤ u1,tv

2
2,

u
′′
2 = u2v

2
2.

(2.7)

With the right boundary conditions

u1,t(−t +
2A

a
) ≥ u2(−t +

2A

a
), lim

x→−∞u1,t(x) = lim
x→−∞u2(x) = 0,

a direct application of the maximum principle implies

inf
{x<−t+ 2A

a
}
(u1,t − u2) ≥ 0.

By the same type of argument also show that

sup
{x>−t+ 2A

a
}
(v1,t − v2) ≤ 0.

Therefore, we have shown that for t ≥ 16A
a , u1,t ≥ u2 and v1,t ≤ v2.
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Step 2. We now decrease the t to an optimal value when (2.4) holds

t0 = inf{t′ | such that (2.4) holds for all t ≥ t
′}.

Thus t0 is well defined by Step 1. Since −(u1,t0 − u2)
′′

+ v2
1,t0

(u1,t0 − u2) ≥ 0, −(v2 − v1,t0)
′′

+
u2

1,t0
(v2 − v1,t0) ≥ 0, by the strong maximum principle, either

u1,t0(x) ≡ u2(x), v1,t0(x) ≡ v2(x) in R,

or
u1,t0(x) > u2(x), v1,t0(x) < v2(x) in R. (2.8)

Let us argue by contradiction that (2.8) holds. By the definition of t0, there exists a sequence
of tk < t0 such that lim

k→+∞
tk = t0 and either

inf
R

(u1,tk − u2) < 0, (2.9)

or
sup
R

(v1,tk − v2) > 0.

Let us only consider the first case.
Define w1,k := u1,tk − u2 and w2,k := v2 − v1,tk . Direct calculations show that they satisfy

{
− w

′′
1,k + v2

1,tk
w1,k = u2(v2 + v1,tk)w2,k in R,

− w
′′
2,k + u2

1,tk
w2,k = v2(u2 + u1,tk)w1,k in R.

(2.10)

We use the auxiliary function g(x) = log(|x|+ 3) as in [14]. Note that

g ≥ 1, g
′′

< 0 in {x 6= 0}.

Define w̃1,k := w1,k/g and w̃2,k := w2,k/g. For x 6= 0 we have




− w̃
′′
1,k − 2

g
′

g
w̃
′
1,k + [v2

1,tk
− g

′

g
]w̃1,k = u2(v2 + v1,tk)w̃2,k, in R,

− w̃
′′
2,k − 2

g
′

g
w̃
′
2,k + [u2

1,tk
− g

′

g
]w̃2,k = v2(u2 + u1,tk)w̃1,k, in R.

(2.11)

By definition, w1,k and w2,k are bounded in R, and hence

w̃1,k, w̃2,k → 0 as |x| → ∞.

In particular, in view of (2.9), we know that infR(w̃1,k) < 0 is attained at some point xk,1.
Note that |xk,1| must be unbounded, for if xk,1 → x∞, tk → t0, then w1,k(xk,1) → u1,t0(x∞)−

u2(x∞) = 0. But this violates the assumption (2.8).
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Since |xk,1| is unbounded, at x = xk,1 there holds

w̃
′′
1,k ≥ 0 and w̃

′
1,k = 0.

Substituting this into the first equation of (2.11), we get

[v1,tk(xk,1)2 −
g
′′
(xk,1)

g(xk,1)
]w̃1,k(xk,1) ≥ u2(xk,1)(v2(xk,1) + v1,tk(xk,1))w̃2,k(xk,1) (2.12)

which implies that w̃2,k(xk,1) < 0. Thus we also have inf
R

w̃2,k < 0. Assume it is attained at xk,2.

Same argument as before shows that |xk,2| must also be unbounded. Similar to (2.12), we have

[u1,tk(xk,2)2 −
g
′′
(xk,2)

g(xk,2)
]w̃2,k(xk,2) ≥ v2(xk,2)(u2(xk,2) + u1,tk(xk,2))w̃1,k(xk,2). (2.13)

Observe that
w̃2,k(xk,2) = inf

R
w̃2,k ≤ w̃2,k(xk,1),

w̃1,k(xk,1) = inf
R

w̃1,k ≤ w̃1,k(xk,2).

Substituting these into (2.12) and (2.13), we obtain

w̃1,k(xk,1) ≥
u2(xk,1)[v2(xk,1) + v1,tk(xk,1)]

v1,tk(xk,1)2 − g
′′
(xk,1)

g(xk,1)

v2(xk,2)[u2(xk,2) + u1,tk(xk,2)]

u1,tk(xk,2)2 − g
′′
(xk,2)

g(xk,2)

w̃1,k(xk,1). (2.14)

Since w̃1,k(xk,1) < 0, we conclude from (2.14) that

u2(xk,1)[v2(xk,1) + v1,tk(xk,1)]

v1,tk(xk,1)2 − g′′ (xk,1)
g(xk,1)

v2(xk,2)[u2(xk,2) + u1,tk(xk,2)]

u1,tk(xk,2)2 − g′′ (xk,2)
g(xk,2)

≥ 1 (2.15)

where |xk,1| → +∞, |xk,2| → +∞. This is impossible since g
′′
(x)

g(x) ∼ − 1
|x|2 log(|x|+3)

as |x| → +∞,
and we also use the decaying as well as the linear growth properties of u and v at ∞.

We have thus reached a contradiction, and the proof of Theorem 1.1 is thereby completed.

3 Stable solutions: Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The proof follows an idea from Berestycki-Caffarelli-
Nirenberg [7]-see also Ambrosio-Cabré [2] and Ghoussoub-Gui [20]. First, by the stability, we
have the following

Lemma 3.1. There exist a constant λ ≥ 0 and two functions ϕ > 0 and ψ < 0, smoothly defined
in R2 such that {

∆ϕ = v2ϕ + 2uvψ − λϕ,

∆ψ = 2uvϕ + v2ψ − λψ.
(3.1)
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Proof. For any R < +∞ the stability assumption reads

λ(R) := min
ϕ,ψ∈H1

0 (BR(0))\{0}

∫
BR(0) |∇ϕ|2 + |∇ψ|2 + v2ϕ2 + u2ψ2 + 4uvϕψ∫

BR(0) ϕ2 + ψ2
≥ 0.

It’s well known that the corresponding minimizer is the first eigenfunction. That is, let (ϕR, ψR)
realizing λ(R), then 




∆ϕR = v2ϕR + 2uvψR − λ(R)ϕR, in BR(0),

∆ψR = 2uvϕR + v2ψR − λ(R)ψR, in BR(0),
ϕR = ψR = 0 on ∂BR(0).

(3.2)

By possibly replacing (ϕR, ψR) with (|ϕR|,−|ψR|), we can assume ϕR ≥ 0 and ψR ≤ 0. After a
normalization, we also assume

|ϕR(0)|+ |ψR(0)| = 1. (3.3)

λ(R) is decreasing in R, thus uniformly bounded as R → +∞. Let

λ := lim
R→+∞

λ(R).

The equation for ϕR and −ψR (both of them are nonnegative functions) forms a cooperative
system, thus by the Harnack inequality ([3] or [9]), ϕR and ψR are uniformly bounded on any
compact set of R2. By letting R → +∞, we can obtain a converging subsequence and the limit
(ϕ,ψ) satisfies (3.1).

We also have ϕ ≥ 0 and ψ ≤ 0 by passing to the limit. Hence

−∆ϕ + (v2 − λ)ϕ ≥ 0.

Applying the strong maximum principle, either ϕ > 0 strictly or ϕ ≡ 0. If ϕ ≡ 0, substituting
this into the first equation in (3.1), we obtain ψ ≡ 0. This contradicts the normalization condition
(3.3). Thus, it holds true that ϕ > 0 and similarly ψ < 0.

Fix a unit vector ξ. Differentiating the equation (1.10) yields the following equation for (uξ, vξ)
{

∆uξ = v2uξ + 2uvvξ,

∆vξ = 2uvuξ + v2vξ.
(3.4)

Let
w1 =

uξ

ϕ
,w2 =

vξ

ψ
.

Direct calculations using (3.1) and (3.4) show
{

div(ϕ2∇w1) = 2uvϕψ(w2 − w1) + λϕ2w1,

div(ϕ2∇w2) = 2uvϕψ(w1 − w2) + λψ2w2.
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For any η ∈ C∞
0 (R2), testing these two equations with w1η

2 and w2η
2 respectively, we obtain





−
∫

ϕ2|∇w1|2η2 − 2ϕ2w1η∇w1∇η =
∫

2uvϕψ(w2 − w1)w1η
2 + λϕ2w1η

2,

−
∫

ψ2|∇w2|2η2 − 2ψ2w2η∇w2∇η =
∫

2uvϕψ(w1 − w2)w2η
2 + λψ2w2η

2.

Adding these two and applying the Cauchy-Schwarz inequality, we infer that
∫

ϕ2|∇w1|2η2 + ψ2|∇w2|2η2 ≤ 16
∫

ϕ2w2
1|∇η|2 + ψ2w2

2|∇η|2 ≤ 16
∫

(u2
ξ + v2

ξ )|∇η|2. (3.5)

Here we have taken away the positive term in the right hand side and used the fact that

2uvϕψ(w2 − w1)w1η
2 + 2uvϕψ(w1 − w2)w2η

2 = −2uvϕψ(w1 − w2)2η2 ≥ 0,

because ϕ > 0 and ψ < 0.

On the other hand, testing the equation ∆u ≥ 0 with uη2 (η as above) and integrating by
parts, we get ∫

|∇u|2η2 ≤ 16
∫

u2|∇η|2.

The same estimate also holds for v. For any r > 0, take η ≡ 1 in Br(0), η ≡ 0 outside B2r(0) and
|∇η| ≤ 2/r. By the linear growth of u and v, we obtain a constant C such that

∫

Br(0)
|∇u|2 + |∇v|2 ≤ Cr2. (3.6)

Now for any R > 0, in (3.5), we take η to be

η(z) =





1, x ∈ BR(0),
0, x ∈ BR2(0)c,

1− log(|z|/R)
log R x ∈ BR2(0) \BR(0).

With this η, we infer from (3.5)
∫

BR(0)
ϕ2|∇w1|2 + ψ2|∇w2|2

≤ C

(log R)2

∫

BR2 (0)\BR(0)

1
|z|2 (|∇u|2 + |∇v|2)

≤ C

(log R)2

∫ R2

R
r−2(

∫

∂Br(0)
|∇u|2 + |∇v|2)dr

=
C

(log R)2

∫ R2

R
r−2(

d

dr

∫

Br(0)
|∇u|2 + |∇v|2)dr

12



=
C

(log R)2
[r−2

∫

∂Br(0)
|∇u|2 + |∇v|2)|R2

R + 2
∫ R2

R
r−3(

∫

Br(0)
|∇u|2 + |∇v|2)dr]

≤ C

log R
.

By letting R → +∞, we see ∇w1 ≡ 0 and ∇w2 ≡ 0 in R2. Thus, there is a constant c such that

(uξ, vξ) = c(ϕ, ψ).

Because ξ is an arbitrary unit vector, from this we actually know that after changing the coordi-
nates suitably,

uy ≡ 0, vy ≡ 0 in R2.

That is, u and v depend on x only and they are one dimensional.

4 Existence in bounded balls

In this section we first construct a solution (u, v) to the problem
{

∆u = uv2 in BR(0),

∆v = vu2 in BR(0),
(4.1)

satisfying the boundary condition

u = Φ+, v = Φ− on ∂BR(0) ⊂ R2. (4.2)

More precisely, we prove

Theorem 4.1. There exists a solution (uR, vR) to problem (4.1), satisfying

1. uR − vR > 0 in {Φ > 0} and uR − vR < 0 in {Φ < 0};
2. uR ≥ Φ+ and vR ≥ Φ−;

3. ∀i = 1, · · · , d, uR(Tiz) = vR(z);

4. ∀r ∈ (0, R),

N(r; uR, vR) :=
r
∫
Br(0) |∇uR|2 + |∇vR|2 + u2

Rv2
R∫

∂Br(0) u2
R + v2

R

≤ d.

Proof. Let us denote U ⊂ H1(BR(0))2 the set of pairs satisfying the boundary condition (4.2),
together with conditions (1, 2, 3) of the statement of the Theorem (with the strict inequality <
replaced by ≤, and so now U is a closed set).

13



The desired solution will be a minimizer of the energy functional

ER(u, v) :=
∫

BR(0)
|∇u|2 + |∇v|2 + u2v2

over U . Existence of at least one minimizer follows easily from the direct method of the Calculus
of Variations. To prove that the minimizer also satisfies equation (4.1), we use the heat flow
method. More precisely, we consider the following parabolic problem

{
Ut −∆U = −UV 2, in [0, +∞)×BR(0),

Vt −∆V = −V U2, in [0,+∞)×BR(0),
(4.3)

with the boundary conditions U = Φ+ and V = Φ− on (0, +∞) × ∂BR(0) and initial conditions
in U .

By the standard parabolic theory, there exists a unique local solution (U, V ). Then by the
maximum principle, 0 ≤ U ≤ supBR(0) Φ+, 0 ≤ V ≤ supBR(0) Φ−, hence the solution can be
extended to a global one, for all t ∈ (0, +∞). By noting the energy inequality

d

dt
ER(U(t), V (t)) = −

∫

BR(0)
|∂U

∂t
|2 + |∂V

∂t
|2 (4.4)

and the fact that ER ≥ 0, standard parabolic theory implies that for any sequence ti → +∞,
there exists a subsequence of ti such that (U(ti), V (ti)) converges to a solution (u, v) of (4.1).

Next we show that U is positively invariant by the parabolic flow. First of all, by the symmetry
of initial and boundary data, (V (t, Tiz), U(t, Tiz)) is also a solution to the problem (4.3). By the
uniqueness of solutions to the parabolic system (4.3), (U, V ) inherits the symmetry of (Φ+,Φ−).
That is, for all t ∈ [0, +∞) and i = 1, · · · , d,

U(t, z) = V (t, Tiz).

This implies
U − V = 0 on {Φ = 0}.

Thus, in the open set DR := BR(0) ∩ {Φ > 0}, we have, for any initial datum (u0, v0) ∈ U ,




(U − V )t −∆(U − V ) = UV (U − V ), in [0, +∞)×DR(0),
U − V ≥ 0, on [0, +∞)× ∂DR(0),
U − V ≥ 0, on {0} ×DR(0).

(4.5)

The strong maximum principle implies U − V > 0 in (0, +∞) ×DR(0). By letting t → +∞, we
obtain that the limit satisfies

u− v ≥ 0 in DR(0). (4.6)
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(u, v) also has the symmetry, ∀i = 1, · · · , d

u(Tiz) = v(z).

Similar to (4.5), noting (4.6), we have
{
−∆(u− v) ≥ 0, in DR(0),
u− v = Φ+, on ∂DR(0).

(4.7)

Comparing with Φ+ on DR(0), we obtain

u− v > Φ+ > 0, in DR(0). (4.8)

Because u > 0 and v > 0 in BR(0), we in fact have

u > Φ+, in BR(0). (4.9)

In conclusion, (u, v) satisfies conditions (1, 2, 3) in the statement of the theorem.
Let (uR, vR) be a minimizer of ER over U . Now we consider the parabolic equation (4.3) with

the initial condition
U(x, t) = uR(x), V (x, t) = vR(x). (4.10)

By (4.4), we deduce that

ER(uR, vR) ≤ ER(U, V ) ≤ ER(uR, vR)

and hence (U(x, t), V (x, t)) ≡ (uR(x), vR(x)) for all t ≥ 0. By the arguments above, we see that
(uR, vR) satisfies (4.1)and conditions (1, 2, 3) in the statement of the theorem.

In order to prove (4), we firstly note that, as (uR, vR) minimizes the energy and (Φ+, Φ−) ∈ U ,
there holds ∫

BR(0)
|∇uR|2 + |∇vR|2 + u2

Rv2
R ≤

∫

BR(0)
|∇Φ|2.

Now by the Almgren monotonicity formula (Proposition 5.2 below) and the boundary conditions,
∀r ∈ (0, R), we derive

N(r; uR, vR) ≤ N(R;uR, vR) ≤
R

∫
BR(0) |∇Φ|2∫

∂BR(0) |Φ|2
= d.

This completes the proof of Theorem 4.1.

Let us now turn to the system with many components. In a similar way we shall prove the
existence on bounded sets. Let d be an integer or a half-integer and 2d = hk be a multiple of the
number of components k, and G denote the rotation of order 2d. Take the fundamental domain
F of the rotations group of degree 2d, that is F = {z ∈ C : θ = arg(z) ∈ (−π/2d, π/2d)}.
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Ψ(z) =

{
rd cos(dθ) if z ∈ ∪h−1

i=0 Gik(F ),
0 otherwise in C.

(4.11)

Note that Ψ(z) is positive whenever it is not zero. Next we construct a solution (u1, . . . , uk) to
the system

∆ui = ui

k∑

j 6=i,j=1

u2
j , in BR(0), i = 1, . . . , k (4.12)

satisfying the symmetry and boundary condition (here z is the complex conjugate of z)




ui(z) = ui(Ghz), on BR(0) , i = 1, . . . , k,
ui(z) = ui+1(Gz), on BR(0) , i = 1, . . . , k,
uk+2−i(z) = ui(z), on BR(0) , i = 1, . . . , k,
uk+1(z) = u1(z), on BR(0),

(4.13)

ui+1(z) = Ψ(Gi(z)), on ∂BR(0) , i = 0, . . . , k − 1. (4.14)

More precisely, we prove the following.

Theorem 4.2. For every R > 0, there exists a solution (u1,R, . . . , uk,R) to the system (4.12) with
symmetries (4.13) and boundary conditions (4.14), satisfying,

N(r) :=
r
∫
Br(0)

∑k
1 |∇ui,R|2 +

∑
i<j u2

i,Ru2
j,R∫

∂Br(0)

∑k
1 u2

i,R

≤ d, ∀r ∈ (0, R).

Proof. Let us denote by U ⊂ H1(BR(0))k the set of pairs satisfying the symmetry and boundary
condition (4.13), (4.14). The desired solution will be the minimizer of the energy functional

∫

Br(0)

k∑

1

|∇ui,R|2 +
∑

i<j

u2
i,Ru2

j,R

over U . Once more, to deal with the constraints, we may take advantage of the positive invariance
of the associated heat flow:

{
∂Ui

∂t
−∆Ui = −Ui

∑

j 6=i

U2
j , in [0,+∞)×BR(0), (4.15)

which can be solved under conditions (1.20), (4.14) and initial conditions in U . Thus, the min-
imizer of the energy (u1,R, . . . , uk,R) solves the differential system. In addition, using the test
function (Ψ1, . . . , Ψk), where Ψi = Ψ ◦Gi−1, i = 1, . . . , k, we have

∫

BR(0)

k∑

1

|∇ui,R|2 +
∑

i<j

u2
i,Ru2

j,R ≤ k

∫

BR(0)
|∇Ψ|2.
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Now by the Almgren monotonicity formula below (Proposition 5.2) and the boundary conditions,
we get

N(r) ≤ N(R) ≤
R

∫
BR(0) |∇Ψ|2∫

∂BR(0) |Ψ|2
= d, ∀r ∈ (0, R).

In order to conclude the proof of Theorems 4.1 and 4.2, we need to find upper and lower
bounds for the solutions, uniform with respect to R on bounded subsets of C. That is, we will
prove that for any r > 0, there exists positive constants 0 < c(r) < C(r) (independent of R) such
that

c(r) < sup
Br(0)

uR ≤ C(r). (4.16)

Once we have this estimate, then by letting R → +∞, a subsequence of (uR, vR) will converge
to a solution (u, v) of problem (1.10), uniformly on any compact set of R2. It is easily seen that
properties (1), (2), (3) and (4) in Theorem 4.1 can be derived by passing to the limit, and we
obtain the main results stated in Theorem 1.3 and 1.6. It then remains to establish the bound
(4.16). In the next section, we shall obtain this estimate by using the monotonicity formula.

5 Monotonicity formula

Let us start by stating some monotonicity formulae for solutions to (1.10), for any dimension
n ≥ 2. The first two are well-known and we include them here for completeness. But we will also
require some refinements.

Proposition 5.1. For r > 0 and x ∈ Rn,

E(r) = r2−n

∫

Br(x)

k∑

1

|∇ui|2 +
∑

i<j

u2
i u

2
j

is nondecreasing in r.

For a proof, see [12]. The next statement is an Almgren-type monotonicity formula with
remainder.

Proposition 5.2. For r > 0 and x ∈ Rn, let us define

H(r) = r1−n

∫

∂Br(x)

k∑

1

u2
i .

Then
N(r; x) :=

E(r)
H(r)
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is nondecreasing in r. In addition there holds

∫ r

0

2
∫
Bs

∑k
i<j u2

i u
2
j∫

∂Bs

∑k
1 u2

i

ds ≤ N(r) . (5.1)

Proof. For simplicity, take x to be the origin 0 and let k = 2. We have

H(r) = r1−n

∫

∂Br

u2 + v2 , E(r) = r2−n

∫

Br

|∇u|2 + |∇v|2 + u2v2 .

Then, direct calculations show that

d

dr
H(r) = 2r1−n

∫

Br

|∇u|2 + |∇v|2 + 2u2v2. (5.2)

By the proof of Proposition 5.1, we have

d

dr
E(r) = 2r2−n

∫

∂Br

[u2
r + v2

r ] + 2r1−n

∫

Br

u2v2. (5.3)

With these two identities, we obtain

d

dr

E

H
(r) =

H[2r2−n
∫
∂Br

(u2
r + v2

r ) + 2r1−n
∫
Br

u2v2]−E[2r1−n
∫
∂Br

uur + vvr]
H2

≥
2r3−2n

∫
∂Br

(u2 + v2)
∫
∂Br

(u2
r + v2

r )− 2r3−2n
[∫

∂Br
uur + vrr

]2

H2
+

+
2r1−n

∫
Br

u2v2

H
≥ 2r1−n

∫
Br

u2v2

H
.

Here we have used the following inequality

E(r) ≤
∫

Br

|∇u|2 + |∇v|2 + 2u2v2 =
∫

∂Br

uur + vrr.

Hence this yields monotonicity of the Almgren quotient. In addition, by integrating the above
inequality we obtain ∫ r

r0

2
∫
Bs

u2v2

∫
∂Bs

u2 + v2
ds ≤ N(r) .

If x = 0, we simply denote N(r; x) as N(r). Assuming an upper bound on N(r), we establish
a doubling property by the Almgren monotonicity formula.
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Proposition 5.3. Let R > 1 and let (u1, . . . , uk) be a solution of (1.19) on BR. If N(R) ≤ d,
then for any 1 < r1 ≤ r2 ≤ R

H(r2)
H(r1)

≤ ed r2d
2

r2d
1

. (5.4)

Proof. For simplicity of notation, we expose the proof for the case of two components. By direct
calculation using (5.2), we obtain

d

dr
log

[
r1−n(

∫

∂Br(0)
u2 + v2)

]
=

2
∫
Br
|∇u|2 + |∇v|2 + 2u2v2

∫
∂Br(0) u2 + v2

≤ 2N(r)
r

+
2

∫
Br

u2v2

∫
∂Br(0) u2 + v2

≤ 2d

r
+

2
∫
Br

u2v2

∫
∂Br(0) u2 + v2

Thanks to (5.1), by integrating, we find that, if r1 ≤ r2 ≤ 2r0 then

H(r2)
H(r1)

≤ ed r2d
2

r2d
1

. (5.5)

An immediate consequence of Proposition 5.3 is the lower bound on bounded sets for the
solutions found in Theorems 4.1 and 4.2.

Proposition 5.4. Ler (u1,R, . . . , uk,R) be a family of solutions to (1.19) such that N(R) ≤ d and
H(R) = CR2d. Then, for every fixed r < R, there holds

H(r) ≥ Ce−dr2d.

Another byproduct of the monotonicity formula with the remainder (5.1) is the existence of
the limit of H(r)/r2d.

Corollary 5.5. Let R > 1 and let (u1, . . . , uk) be a solution of (1.19) on C such that limr→+∞N(r) ≤
d, then there exists

lim
r→+∞

H(r)
r2d

< +∞ . (5.6)

Now we prove the optimal lower bound on the growth of the solution. To this aim, we need a
fine estimate on the asymptotics of the lowest eigenvalue as the competition term diverges. The
following result is an extension of Theorem 1.6 in [8], where the estimate was proved in case of
two components.
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Theorem 5.6. Let d be a fixed integer and let us consider

L(d, Λ) = min





∫ 2π

0

d∑

i

|u′i|2 + Λ
d∑

i<j

u2
i u

2
j

∣∣∣∣∣
∫ 2π
0

∑
i u

2
i = 1, ui+1(x) = ui(x− 2π/d),

u1(−x) = u1(x) , ud+1 = u1



 . (5.7)

Then, there exists a constant C such that for all Λ > 1 we have

d2 − CΛ−1/4 ≤ L(d,Λ) ≤ d2 . (5.8)

Proof. Any minimizer (u1,Λ, . . . , ud,Λ) solves the system of ordinary differential equations

u
′′
i = Λui

∑

j 6=i

u2
j − λui , i = 1, . . . , d, (5.9)

together with the associated energy conservation law

d∑

1

(u
′
i)

2 + λu2
i − Λ

d∑

i<j

u2
i u

2
j = h . (5.10)

Note that the Lagrange multiplier satisfies

λ =
∫ 2π

0

d∑

i

|u′i|2 + 2Λ
d∑

i<j

u2
i u

2
j = L(d,Λ) +

∫ 2π

0
Λ

d∑

i<j

u2
i u

2
j .

As Λ → ∞, we see convergence of the eigenvalues λ ' L(d, Λ) → d2, together with the energies
h → 2d2. Moreover, the solutions remain bounded in Lipschitz norm and converge in Sobolev
and Hölder spaces (see [8] for more details). Now, let us focus on the interval I = (a, a + 2π/d)
where the i-th component is active. The symmetry constraints imply

ui−1(a) = ui(a) , u
′
i−1(a) = −u

′
i(a) ,

ui+1(a + 2π/d) = ui(a + 2π/d) , u
′
i+1(a + 2π/d) = −u

′
i(a + 2π/d)

We observe that there is interaction only with the two prime neighboring components, while the
others are exponentially small (in Λ) on I. Close to the endpoint a, the component ui is increasing
and convex, while ui−1 is decreasing and again convex. Similarly to [8] we have that

ui(a) = ui−1(a) ' KΛ−1/4 , u′i(a) = −u
′
i−1(a) ' H = (h + K)/2 . (5.11)

Hence, in a right neighborhood of a, there holds ui(x) ≥ ui(a), and therefore, as u
′′
i−1 ≥

Λu2
i (a)ui−1, from the initial value problem (5.11) we infer

ui−1(x) ≤ Cui(a)e−Λ1/2ui(a)(x−a) , ∀x ∈ [a, b].

20



On the other hand, on the same interval we have

ui(x) ≤ ui(a) + C(x− a) , ∀x ∈ [a, b].

(here and below C denotes a constant independent of Λ). Consequently, there holds

Λ
∫

I
u2

i−1u
2
i + u3

i−1ui + ui−1u
2
i ≤ CΛ−1/2ui(a)−1 ' CΛ−1/4 . (5.12)

In particular, this yields
L(d,Λ) ≥ λ− CΛ−1/4 . (5.13)

In order to estimate λ, let us consider ûi =
(
ui −

∑
j=i±1 uj

)+
. Then, as ui(a) = ui−1(a) and

ui(a+2π/d) = ui+1(a+2π/d), ûi ∈ H1
0 (I). By testing the differential equation for ui−

∑
j=i±1 uj

with ûi on I we find ∫

I
|û′i|2 ≤ λ

∫

I
|ûi|2 + CΛ−1/4 ,

where in the last term we have majorized all the integrals of mixed fourth order monomials with
(5.12). As |I| = 2π/d, using Poincaré inequality and (5.13) we obtain the desired estimate on
L(d, Λ).

We are now ready to apply the estimate from below on L to derive a lower bound on the
energy growth. We recall that there holds

Ê(r) :=
∫

Br(x)

k∑

1

|∇ui|2 + 2
∑

i<j

u2
i u

2
j =

∫

∂Br(x)

k∑

1

ui
∂ui

∂r

Proposition 5.7. Let (u1,R, . . . , uk,R) be a solution of (1.19) having the symmetries (1.20) on
BR. There exists a constant C (independent of R) such that for all 1 ≤ r1 ≤ r2 ≤ R there holds

Ê(r2)

Ê(r1)
≥ C

r2d
2

r2d
1

(5.14)

Proof. Let us compute,

d

dr
log

(
r−2dÊ(r)

)
= −2d

r
+

∫
∂Br(x)

∑k
1 |∇ui|2 + 2

∑
i<j u2

i u
2
j

∫
∂Br(x)

∑k
1 ui

∂ui

∂r

= −2d

r
+

∫
∂Br(x)

∑k
1

(
∂ui

∂r

)2

+
1
r2

[
∑k

1

(
∂ui

∂θ

)2

+ 2r2
∑

i<j u2
i u

2
j

]

∫
∂Br(x)

∑k
1 ui

∂ui

∂r
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= −2d

r
+

∫ 2π
0

∑k
1

(
∂ui

∂r

)2

+
1
r2

[
∑k

1

(
∂ui

∂θ

)2

+ 2r2
∑

i<j u2
i u

2
j

]

∫ 2π
0

∑k
1 ui

∂ui

∂r

Now we use Theorem 5.6 and we continue the chain of inequalities:

d

dr
log

(
r−2dÊ(r)

)
≥ −2d

r
+

∫ 2π
0

∑k
1

(
∂ui

∂r

)2

+
L(d, 2r2)

r2

∫ 2π
0

∑k
1 u2

i

∫ 2π
0

∑k
1 ui

∂ui

∂r

≥ −2d− 2
√
L(d, 2r2)
r

≥ − C

r3/2
, (5.15)

where in the last line we have used Hölder inequality. By integration we easily obtain the assertion.

A direct consequence of the above inequalities is the non vanishing of the quotient E/r2d:

Corollary 5.8. Let R > 1 and let (u1, . . . , uk) be a solution of (1.19) on C satisfying 1.20: then
there exists

lim
r→+∞

Ê(r)
r2d

= b ∈ (0, +∞] . (5.16)

If, in addition, limr→+∞N(r) ≤ d, then we have that b < +∞ and

lim
r→+∞N(r) = d, and lim

r→+∞
E(r)
r2d

= b . (5.17)

Proof. Note that (5.16) is a straightforward consequence of the monotonicity formula (5.15). To
prove (5.17), we first notice that

lim
r→+∞

E(r)
r2d

= lim
r→+∞N(r)

H(r)
r2d

.

So the limit of E(r)/r2d exists finite. Now we use (5.1)

∫ +∞

0

2
∫
Bs

∑k
i<j u2

i u
2
j∫

∂Bs

∑k
1 u2

i

ds < +∞

and we infer

lim inf
r→+∞

r
∫
Br

∑k
i<j u2

i u
2
j∫

∂Br

∑k
1 u2

i

= 0.
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Next, using Corollary 5.5 we can compute

lim inf
r→+∞

∫
Br

∑k
i<j u2

i u
2
j

r2d
= lim inf

r→+∞

∫
Br

∑k
i<j u2

i u
2
j

H(r)
H(r)
r2d

= 0,

and finally

lim inf
r→+∞

Ê(r)−E(r)
r2d

= 0; .

Was the limit of N(r) strictly less that d, the growth of H(r) would be in contradiction with that
of E(r).

Now we can combine the upper and lower estimates to obtain convergence of the approximating
solutions on compact sets and complete the proof of Theorems 1.6

Proof of Theorem 1.6. Let (u1,R, . . . , uk,R) be a family of solutions to (1.19) such that NR(R) ≤ d
and HR(R) = CR2d. Since HR(R) = CR2d, then, by Proposition 5.3 we deduce that, for every
fixed 1 < r < R, there holds

HR(r) ≥ Ce−dr2d .

Assume first that there holds a uniform bound for some r > 1,

HR(r) ≤ C . (5.18)

Then HR(r) and ER(r) are uniformly bounded on R. This implies a uniform bound on the
H1(Br) norm. As the components are subharmonic, standard elliptic estimates (Harnack inequal-
ity) yield actually a C2 bound on Br/2, which is independent on R. Note that, by Proposition 5.4,
HR(r) is bounded away from zero, so the weak limit cannot be zero. By the doubling Property
5.3 the uniform bound on HR(r2) ≤ Cr2d

2 holds for every r2 ∈ R larger than r. Thus, a diag-
onal procedure yields existence of a nontrivial limit solution of the differential system, defined
on the whole of C. It is worthwhile noticing that this solution inherits all the symmetries of the
approximating solutions together with the upper bound on the Almgren’s quotient. Finally, from
Corollary 5.5 and 5.8 infer the limit

lim
r→+∞

H(r)
r2d

= lim
r→+∞

1
N(r)

, lim
r→+∞

E(r)
r2d

=
b

d
∈ (0, +∞) . (5.19)

Let us now show that HR(r) is uniformly bounded with respect to R for fixed r. We argue by
contradiction and assume that, for a sequence Rn → +∞, there holds

lim
n→+∞HRn(r) = +∞ . (5.20)

Denote ui,n = ui,Rn and Hn, En, Nn the corresponding functions. Note that, as En is bounded,
we must have Nn(r) → 0. For each n, let λn ∈ (0, r) such that

λ2
nHn(λn) = 1
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(such λn exist right because of (5.20)) and scale

ũi,n(z) = λnui,n(λnz) , |z| < Rn/λn .

Note that the (ũi,n)i still solve system (1.19) on the disk B(0, Rn/λn) and enjoy all the symmetries
(1.20). Let us denote H̃n, Ẽn, Ñn the corresponding quantities. We have

H̃n(1) = λ2
nHn(λn) = 1,

Ẽn(1) = λ2
nEn(λn) → 0

Ñn(1) = Nn(λn) → 0

In addition there holds Ñn(s) ≤ d for s < Rn/λn. By the compactness argument exposed above,
we can extract a subsequence converging in the compact-open topology of C2 to a nontrivial
symmetric solution of (1.19) with Almgren quotient vanishing constantly. Thus, such solution
should be a nonzero constant in each component, but constant solution are not compatible with
the system of PDE’s (1.19) .

6 Asymptotics at infinity

We now come to the proof of Theorem 1.4. Note that by Proposition 5.3, the condition on N(r)
implies that u and v have a polynomial growth. (In fact, with more effort we can show the reverse
also holds. Namely, if u and v have polynomial growth, then N(r) approaches a positive integer
as r → +∞. We leave out the proof.)

Recall the blow down sequence is defined by

(uR(x), vR(x)) := (
1

L(R)
u(Rx),

1
L(R)

v(Rx)),

where L(R) is chosen so that
∫

∂B1(0)
u2

R + v2
R =

∫

∂B1(0)
Φ2. (6.1)

For the solutions in Theorem 1.3, by (5.19), we have

L(R) ∼ Rd. (6.2)

We will now analyze the limit of (uR, vR) as R → +∞.
Because for any r ∈ (0, +∞), N(r) ≤ d, (u, v) satisfies Proposition 5.3 for any r ∈ (1,+∞).

After rescaling, we see that Proposition 5.3 holds for (uR, vR) as well. Hence, there exists a
constant C > 0, such that for any R and r ∈ (1, +∞),

∫

∂Br(0)
u2

R + v2
R ≤ Cedrd. (6.3)
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Next, (uR, vR) satisfies the equation




∆uR = L(R)2R2uRv2
R,

∆vR = L(R)2R2vRu2
R,

uR, vR > 0 in R2.

(6.4)

Here we need to observe that, by (6.2),

lim
R→+∞

L(R)2R2 = +∞.

By (6.3), as R → +∞, uR and vR are uniformly bounded on any compact set of R2. Then by
the main result in [16], [24] and [26], there is a harmonic function Ψ defined in R2, such that (a
subsequence of) (uR, vR) → (Ψ+,Ψ−) in H1 and in Hölder spaces on any compact set of R2. By
(6.1), ∫

∂B1(0)
Ψ2 =

∫

∂B1(0)
Φ2,

so Ψ is nonzero. Because L(R) → +∞, uR(0) and vR(0) goes to 0, hence

Ψ(0) = 0. (6.5)

After rescaling in Proposition 5.2, we obtain a corresponding monotonicity formula for (uR, vR),

N(r; uR, vR) :=
r
∫
Br(0) |∇uR|2 + |∇vR|2 + L(R)2R2u2

Rv2
R∫

∂Br(0) u2
R + v2

R

= N(Rr)

is nondecreasing in r. By (4) in Theorem 1.3 and from Corollary 5.8,

N(r;uR, vR) ≤ d = lim
r→+∞N(r; uR, vR) , ∀ r ∈ (0,+∞). (6.6)

In [16], it’s also proved that (uR, vR) → (Ψ+,Ψ−) in H1
loc and for any r < +∞,

lim
R→+∞

∫

Br(0)
L(R)2R2u2

Rv2
R = 0.

After letting R → +∞ in (6.6), we get

N(r; Ψ) :=
r
∫
Br(0) |∇Ψ|2∫
∂Br(0) Ψ2

= lim
R→+∞

N(r; uR, vR) = lim
R→+∞

N(Rr) = d. (6.7)

In particular, N(r; Ψ) is a constant for all r ∈ (0, +∞). So Ψ is a homogeneous polynomial
of degree d. Actually the number d is the vanishing order of Ψ at 0, which must therefore be
a positive integer. Now it remains to prove that Ψ ≡ Φ: this is easily done by exploiting the
symmetry conditions on Ψ (point (3) of Theorem 1.3).
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