REGULARIZATION OF POINT VORTICES PAIRS FOR THE EULER
EQUATION IN DIMENSION TWO
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ABSTRACT. In this paper, we construct stationary classical solutions of the incompress-
ible Euler equation approximating singular stationary solutions of this equation. This
procedure is carried out by Constructing solutions to the following elliptic problem

1
—EQAu—ZXQ+ u—q— ’ln ZXQ q——ng—u)i, x € Q,
i=1
u =0, x € 09,
where p > 1, Q C R? is a bounded domain, Qj‘ and QJ_ are mutually disjoint subdomains
of @ and xq+(resp. Xx(-) are characteristic functions of Qf (resp. Q;)7 q is a harmonic
i J

function.
We show that if  is a simply-connected smooth domain, then for any given C'-stable
critical point of Kirchhoff-Routh function W(z,--- 2}, 27, -+ ,2;) with k7 > 0(i =

sy Lmo
L,---,m)and k; >0(j =1,---,n), there is a stationary classical solution approximat-

ing stationary m +n pOiIltb vortex solution of incompressible Euler equations with total

vorticity >0 k7 — 377, k5 . The case that n = 0 can be dealt with in the same way as

well by taking each (2 as empty set and set xo- =0, ;7 =0.
J

1. INTRODUCTION AND MAIN RESULTS

The incompressible Euler equations

vi+ (v-V)v=-VP,

1.1
V-v=0, (1.1)

describe the evolution of the velocity v and the pressure P in an incompressible flow. In
R2, the vorticity of the flow is defined by w := V x v = 0,v5 — Oyv1, which satisfies the
equation

wt+v-Vw=0.
The velocity v of an incompressible fluid in two dimensions admits a stream function
such that v =JVy = (8%22/1, —8%1 ), where J denotes the symplectic matrix

(50,

By the definitions, 1 is a solution of the Poisson equation —Ay = w.
1



2 DAOMIN CAO, ZHONGYUAN LIU, AND JUNCHENG WEI

Suppose that w is known, then the velocity v can be recovered by the following Biot-
Savart law
B 1 —Jx
V=w % %W
One special singular solution of Euler equations is given by w = 221 Ki0gyy (ki 7# 0 s
called the strength of the i'* vortex z;), which is related to

B ki J(x — (1))
== 5 z — ()2
=1
The positions of the vortices z; : R — R? satisfy the following Kirchhoff law

e gvow,
dt i

where W is the so called Kirchhoff-Routh function defined by

1 o= Kk 1
W(xl,---,xm):—z ]log’

2 vy 2 .CC@—IJ|

For a simply connected bounded domain  C R2?, let v, be the normal component of
the velocity v on 09, that is v,(z) = v(z) - v(x), where v(x) is the unit outward normal
on 0Q at x € 0. Then by V-v =0, [,,v, = 0. It turns out that the Kirchhoff-Routh
function for bounded domain 2 is associated with Green function and v,. Suppose that
v is the unique harmonic field whose normal component on the boundary 052 is v,. If €2
is simply-connected, then v can be represented by vg = JV1)g, and v is determined up
to a constant by

—A’QDO = O, in Q,
1.2
—% = v, onof), (1.2)
or

where % denotes the tangential derivative on 0f). The Kirchhoff-Routh function associ-

ated to the vortex dynamics then is given by (see Lin [23])

1 m 1 m m
Wz, xm) = 2 Z kit G (i, T5) + ) Z K?H(%, i) + Z Kitho (), (1.3)
i#j i=1 i=1

where G is the Green function of —A on  with 0 Dirichlet boundary condition and H is
its regular part (the Robin function).

For m clockwise vortices motion (corresponding to ki > 0) and n anti-clockwise vortices
motion (corresponding to —«; < 0), the Kirchhoff-Routh function associated to the vortex
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dynamics becomes

+ + o= —
W(xlj“')'xm7aj1)‘..’xn)
1 n
ottt ot -
§ ki “kG(wiv$k)+§ § ky Ry Gy, a))
zk lz;ék Jl=1,5#1

+= Z o)+ % Z(/@'j_)gH(x] , 75 ) (1.4)

n

—ZZ/@;% G:U , L5 +Z/€+¢o Zﬁfwt)(x;)
j=1

=1 j=1

It is known that critical points of the Kirchhoff-Routh function WV give rise to stationary
vortex points solutions of the Euler equations(see the Kirchhoff law). As for the existence
and multiplicity of critical points of W given by (1.3), we refer to [5] and the references
therein, where the case 1y = 0 was studied. We expect that it is possible to obtain, at least
by add assumptions on 1y, the multiplicity and even non-degeneracy of critical points for
W.

There exist huge literatures dealing with the stationary incompressible Euler equations,
see [1, 2, 4], [6]-[11], [16]-[18], [19, 21, 22], [28]-[31] and references therein. Roughly speak-
ing, there are two methods to construct stationary solutions of the Euler equation, which
are the vorticity method and the stream-function method. The vorticity method was first
established by Arnold (see [3]). Benjamin [6] developed a new approach based on a varia-
tional principle for the vorticity to study the existence of vortex rings in three dimensions
which was adapted successfully by Burton [8] and Turkington [31].

The stream-function method consists in observing that if w = A f(¢), that is, if ¢ satisfies

—AY = Af(Y), xeq,
u = 1y, x € 09,

for some arbitrary function f € C'(R), then v = JV¢ and P = AF(¢) — [Vy[? is a

stationary solution to the Euler equations, where F'(¢ fo s)ds. Moreover, the velocity
v is irrotational on the set where f(¢) = 0. f is called Vortlclty function and A the vortex
strength parameter.

Set ¢ = —p and u = ¥ — 1y, then u satisfies the following Dirichlet boundary value
problem

(1.5)

—Au = \f(u—q), x € €,
u =0, x € 0.

One of our motivation to study (1.5) is to justify the weak formulation for point vortex
solutions of the incompressible Euler equations by approximating these solutions with
classical solutions. A lot of work has been done in this respect, see [1, 2, 4, 7, 19, 25, 27,
28, 30, 31, 33, 34] and the references therein. Our work is also motivated by a recent paper
of Smets and Van Schaftingen [30], which will be described in more detail later.
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In [18] Elcrat and Miller, by a rearrangements of functions, have studied steady, inviscid
flows in two dimensions which have concentrated regions of vorticity. In particular, they
studied such flows which ”desingularize” a configuration of point vortices in stable equilib-
rium with an irrotational flow, which generalized their earlier work for one vortex [16][17].
Saffman and Sheffield [29] have found an example of a steady flow in aerodynamics with
a single point vortex which is stable for a certain range of the parameters. This has been
generalized in [16], where some examples computationally of stable configurations of two
point vortices were briefly discussed. Further examples of multiple point vortex configu-
rations are given in [26], where a theorem on the existence of such configurations is also
given.

It is worthwhile to point out that except [18] the above approximations can just give
explanation for the formulation to single point vortex solutions. Smets and Van Schaftingen
[30] investigated the following problem

+ Y

—e?Au = (u —q—5-In %)p in €2, (1.6)
u =0, on 012,

where p > 1. They gave the exact asymptotic behavior and expansion of the least energy
solution by estimating the upper bounds on the energy. The solutions for (1.6) in [30]
were obtained by finding a minimizer of the corresponding functional in a suitable function
space, which gives approximation to a single point non-vanishing vortex.

Concerning regularization of pairs of vortices, Smets and Van Schaftingen [30] also stud-
ied the following problem

P _
—52Au:(u—q—%ln%> —(g—%Ini-wh, inQ,
+

2 e

u =0, on 052,

(1.7)

and obtained solution with least energy among sign-change solutions of (1.7). They also
obtained the exact asymptotic behavior and expansion of such solutions by similar methods

for (1.6).
In this paper, we try to establish, by a different method, existence of stationary solu-
tions concentrating near C''-stable critical points of W(x{ -+ ,x} a1, ,x,) with both

clockwise and anti-clockwise point vortex. To achieve our goal, we consider the following
semilinear elliptic problem

+

o K 1 " ki o1 .
—52Au:zlxgt(u—q— ﬁlng)i —legj (q— ﬁlﬂg —U)i, in €2, (1.8)
1= J=

u =0, on 02,

where p > 1, ¢ € C*(Q), QF(i = 1,--- ,m) and Q5 (j =1,---,n) are mutually disjoint
subdomains of Q such that z7, € QF, and x;, €425,
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To be more precise, we will consider an equivalent problem of (1.8) instead. Let w =
"y and 0 = 8(2—“|)pr1, then (1.8) becomes

2
[Ing| [Ine

—82Aw = Y Xo+ (W — K — 27”1 X Qﬂq k; —w)t, inQ

2 Xapw =l =t ZQ Mg~ ~ W 9

w =0, on 0f).

(1.9)

We will use a reduction argument to prove our main results. To this end, we need to
construct an approximate solution for (1.9). For the problem studied in this paper, the
corresponding “limit” problem in R? has no bounded nontrivial solution. So, we will follow
the method in [14, 15] to construct an approximate solution. Since there are two parame-
ters 0, € in (1.9) and two terms in nonlinearity, which causes some difficulty, we must take
this influence into careful consideration in order to perform the reduction argument. Let us
point out that, when studying pair of vortex solutions with both anti-clockwise and clock-
wise point vortex, except the difficulties mentioned above we have additional difficulties
due to the interactions between the positive part and the negative part of those solutions.

. . . + J’_ — —
For example, one can easily see that in the expressions of sy, -+, s, 5,874, .8, ; and
als, - ,at s,als a5 in Lemma 2.1 the effect of interactions has to be taken into

careful consideration and the estimates are much more involved. The method used in
the present paper could be applied to study related problems, for example, shallow water
vortices, which was studied recently by De Valeriola and Van Schaftingen in [32].

Our first main results concerning (1.1) is the following:

Theorem 1.1. Suppose that @ C R? is a bounded simply-connected smooth domain. Let
n o 000 — R be such that v, € LS((?Q) for some s > 1 satisfying fan v, = 0. Let

ki >0,k >0, i=1,---,m, j=1,--- ,n. Then, for any given C"-stable critical point
(2, x;; I ;*) of Kzrchhoﬁ Routh function W defined by (1.4), there exists

o > 0, such that for each e € (0,e9), (1.1) has a stationary solution v. with outward
m n

boundary flux given by v,, such that its vorticities w. = Zwig + Zw;a satisfies for

small €,
supp(w; ) C B(azf_,Ce), fori=1,--- ,m,
supp( )CB(]S,CéT) forj=1,--- m,
where € Qf (i=1,---,m), r;. €8y (j=1,---,n) and C > 0 is a constant indepen-
dent ofe.
Furthermore as ¢ — 0,
<x1+,57 T ,.T;’E,Qiie, T 7567:75) - (SUIC*, s ,,C(]:rn’*’xi*’ R ,l’;’*>7
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/ wi_,s_)_"{j_a.jzla"'ana
B(z; _,Ce)

Tj e
m n
+ —
/w5—> g K, — E Kj .
Q i=1 j=1

Remark 1.2. The case m = n = 1, corresponding to pairs of vortices, was studied by Smets

and Van Schaftingen [30] by minimizing the corresponding energy functional in the Nehari

manifold. In their paper W(z{ ., 27.) — sup W(z{,27) as e — 0. Our result
931+ ,xfEQ,xf;é:r:f

extends theirs to more general critical points (with additional assumption that the critical

point is non-degenerate or stable in the sense of C''). The method used here is constructive

and different from theirs.

Remark 1.3. In the case that m = n = 1, suppose that (mf*, x7,) is a strict local max-
imum (or minimum) point of Kirchhoff-Routh function W(z{, ) defined by (1.4), then
the C'! stability is not needed and statement of Theorem 1.1 still holds which can be proved
similarly (see Remark 1.5). Thus we can re-obtain corresponding existence result in [30].

Theorem 1.1 is proved via the following result concerning problem (1.8).

Theorem 1.4. Suppose g € C*(Q). Then for any given k7 > 0,k; >0, i=1,--- ,m, j=
1,...,n and for any given C'-stable critical point (xf*, e ,x;“%*, Ty T, ) of Kirchhoff-

Routh function W defined by (1.4), there exists g > 0, such that for each ¢ € (0,¢g¢), (1.8)
+
has a solution u., such that the set QF; = {x : u.(x) — 3= Int —¢(x) > 0} cC Qf i =

Lo m, Q;j={$iua($)—% lné—q(x) >0} CCQ;,j=1,---,nand ase — 0, each
QI (resp.Q_ ;) shrinks to x, € Q(resp. xj* € Q).

Remark 1.5. For the case m = n = 1, suppose that (a:f*, xl_*) is a strict local maximum (or
minimum) point of Kirchhoff-Routh function W(z{, x7) defined by (1.4), statement of
Theorem 1.4 still holds, which can be proved by making corresponding modification of the
proof of Theorem 1.4 in obtaining critical point of K(Z) defined by (4.1)(see Propositions
2.3, 2.5 and 2.6 in [13] for detailed arguments).

Remark 1.6. (1.9) can be considered as a free boundary problem. Similar problems have
been studied extensively. The reader can refer to [12, 14, 15, 22] for more results on this
kind of problems.

By the same way for the proof of Theorem 1.1 but simpler, we can extend the result
of least energy solution obtained via constrained minimization problem in [30] to non-
least energy solutions and show that multi-point vortex solutions can be approximated
by stationary classical solutions. Indeed we have the following result concerning problem
(1.1):

Theorem 1.7. Suppose that Q C R? is a bounded simply-connected smooth domain. Let
vy : O — R be such that v, € L¥(0Q) for some s > 1 satisfying [,, v, = 0. Let r; >
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0, i =1,---,m. Then, for any given C'- stable critical point (x%,--- %) of Kirchhoff-

Routh function W(x1,- - , &) defined by (1.3), there exists g > 0, such that for each
e € (0,g9), (1.1) has a stationary solution v. with outward boundary flux given by v,, such

that its vorticities w, = Zwi,g satisfies for small €,
i=1
supp(w;. ) C B(z; ., Ce), fori=1,--- m,

where x; . € ; (i =1,--- ,m), C >0 is a constant independent of c.
Furthermore as ¢ — 0,

/ wi,sﬁﬁiaizlf"am?
B(xi’&CE)
m
[w=Yn
& i=1

(xl,ea' o ,xm,€> - (f{v T 7x*m)

Remark 1.8. The case m = 1, corresponding to a point vortex, was studied by Smets and
Van Schaftingen [30] by minimizing the corresponding energy functional. In their paper
W(z1,.) — sup W(z) as € — 0.
€

We end this section by outlining the organization of our paper. In section 2, we construct
the approximate solution for (1.9). We will carry out a reduction argument in section 3
and the main results will be proved in section 4. We put some basic estimates used in
sections 3 and 4 in the appendix.

2. APPROXIMATE SOLUTIONS

In this section, as preliminary, we will construct approximate solutions for (1.9).
Let R > 0 be a large constant, such that for any z € Q, Q CC Bg(z). For any given
a > 0, it is well-known that the following problem

w =0, on dBg(0), '
has a unique (positive) solution Ws,, which can be represented by
a + 62/ =1 g2/ (=)l | < ss,
W§7a($) e |w‘ s é ¢(55) | | ) (22>
alnf/lniﬁ, ss < || < R,

where and henceforth ¢(x) = ¢(|z|) is the unique solution of
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and ss € (0, R) is determined by

52/(13*1)8(;2/(1)*1)(?/(1) _ a

= e (2.3)

By (2.3) we can obtain

(p—1)/2
55 ¢'(1)]
5|1 6|(P-1D72 - ( a >0, asd— 0.

Moreover, by Pohozaev identity, we can get

= ™D e, @ =aml)

B1(0 2 B1(0

For any z € Q, define W, ,(v) = Wy (2 — 2). Because W, , does not vanish on 0€2, we
need to make a projection as follows. Let PW;, , be the solution of

—8?Aw = Ws.0—a)f, in Q,
w =0, on 012,

then
a
PWé,z,a = Wﬁ,z,a - ln_ﬁg(x’ Z)? (24)
ss

where g(x, z) satisfies

g=In-L-  onoN.

lz—z|

{—Ag =0, in €,

It is easy to see that

g(x,z) =In R+ 2rh(zx, 2),

where h(zx,z) = —H(x, 2).
Let Z = (Z},Z7), where Z} = (21, - ,2%), ZF = (27, ,2,). We will construct
solutions for (1.9) of the form

m n
> PWy e — > PWs o+ 5,
i=1 j=1

where 27,27 € Q, ag; > 0,a5; > 0fori =1,--- ,m, j = 1,--- ,n, ws is a perturbation

term. To make ws as small as possible, we need to choose a;{i, as ; properly. Indeed we will
choose ay, as ; such that, together with (s7(2),--+ ,8t(Z),s7(Z), -+ ,5.(Z)), the system
in Lemma 2.1 to be given in the following will be satisfied.

In this paper, we always assume that 2", z; € () satisfies
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U002 0 G, 00) 20 |5 = 2 ek bk=Losmitk
55—zl 20k, e — 2ok gl=1 o, £ |

where ¢ > 0 is a fixed small constant and L > 0 is a fixed large constant.

Lemma 2.1. For § > 0 small, there exist (s5,(Z), -, 85,,(Z),551(Z), - ,55,(Z)) and
@(Z), Gt (2),051(Z), a3, (2)) satisfying the following system

+
PN ()N = B =1 m, (2.6)
In %
-
52/(1071)(8;>72/(p71)¢/<1> = JS— ) .7 = 17 N, (27)
In %
2mq(z)  g(z, ) Gz, 2h) "Gz )
aj_:Hj_+ — + e (Z,?_— #GI—*_ s ap 2_17' U
|Inel lnﬁ az#z ln% — ln§ :
(2.8)
_ o 2mgl(zy) g(zrhzy) L mGlephy) o SGAD)
a; =hkj — |Ineg| * mE Y _Zm—ﬁaﬁ+z mE ko J=1-m
s; B#j s/g k=1 52—
) (2.9)
where G(z,y) = In —=— gl y| g(x,y) for x #y.
Proof. We will prove that if 6 > 0 is small enough then system (2.6)-(2.9) has a solution
(s7,,sh 87, ,8,,af,--- ,a’ a7, -+ a;)in D defined by
D 0 0] Ind| m+nxﬁ xﬁ1‘3‘
= n —/<a —K;, =K | .
o]’ le2“ r (2 2n
It is not difficult to see, for any fixed (s}, -,st,s7, -+ ,s,) and 0 < 5 < 0% small
enough, that the subsystem (2.8)-(2.9) has a solution (a{, - ,al, a; R depending
my 1 a,
on (sf, -+, sh,s7, -+ ,s,) such that 3x] <af <3 j_,;/ﬂj <a; <3kjfori=1,---,m
and j =1,--- ,n. For such (af,--- ,ajn,al_,- ,a,’) define
521 /
+( ot + oo N € LA C VT
Qi(sl""usmusl""78n>_ 11’18% + a;— ov 7'_17 , M,
e LT )
ej(sla »Smy 515 75n) In & + CL; L J=4 ) T,
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then it is easy to verify that for i,/ =1,--- . m, 5,k=1,--- | n,

0 (sf, -+ sk 87, ,8,) >0, s =d|ndl|, s, j‘e[‘n 0| Ind|] for ¢ # i,
Q:_(Sii-,- 7S:rm817 781;><07 Sj_: |135|a 32_7 S]_ [‘ 65 6|1n5|]f0r€752
0'_(‘91‘_7 7S7J7r’w317 757:)>O7 8;_5|1n5|78£78k [ 1(15 5|1n5|]f01‘k’7éj,
9‘_(5?_7 ,S:—n,Sl, ,8,) <0, S]_:|13(5|a 52_7 Sk E[ §5| 6| Ind|] for k # j.

By the Poincaré-Miranda Theorem in [20, 24], we can get (3571, e ,sgm, CISTRERE T
such that H;F(sgl, e ,s;{m,sgl, ey 85,) =0, 05 (851, e ,sgm,sgl, oy 85,) = 0 for i =
1,---,m, j=1,---,n. This completes our proof of Lemma 2.1.

Ul

In the sequel, to simplify notation, we will use agt,i, séz to denote aé (2), s ( ) for
given Z = (Z+ Z—). From now on we will always choose (a;u gy Oy g ) and
(s}l,--- s(‘{m,sg’l,--- ,sg’n) such that (2.6)—(2.9) hold. For (aél,--- aj{m,a&l,--- aa’n)
and (S5, 54055107 »55,) chosen in such a way define

P5Zz PW6z+ 3'7 P(;Zj_Pwéz oy (210)
Remark 2.2. Tt is not difficult to obtain the following asymptotic expansions:
1 1 In|lne|
— +0 | — ,1=1,---,m, 2.11
In £ lng ( |ln5|2) (2.11)
55,4
2nq(zh)  g(z",2") < Gz <ln | ln€|) .
+ — gt @ R AV =1 .-
Goi = Hit |Ine| * In £ az#z +Z |Ine|? T
(2.12)
( Oa}. 1 dst.
il:O( )’ —?—’l:O(L)7i7k:17"'7mvh:172;
oz, |Ine| 0z, |Ine|
dal. 1 Osi
—6_’220< )7 5_72:0( - >,i:1,---,m,j:1,---,n,h:1,2.
[ 025, |Ine| 025}, |Ine
(2.13)
Moreover, ag; and sy ; have similar expansions.
To simplify notations, set
Piy=) Pz Fiz =) Fizp (2.14)
a=1 p=1

Then, for any fixed constant L > 0, we have that for x € B Lsgr_(zj ),
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2mq(x) ag; 2mq()
P o (x) — kT — =W — ’ )k —
5,Z,z($) K; Hne\ 6z1 ,aél(x) ln%g(xvzz ) K; Hng‘
55,1
+_ %4+ o+ as; + o+ + 412
W5z+ ot () — K — R 9(z" 2" ) — TR <D9(Zi V23 )T — 2 >+O(|x_zi *)
UL IHT IHT
S5, S5,
2mq(z") 27
_ s Dy(z}),x — =) + 0|z — 2|
|Ine| |Ine << =)o = >+ (Jo =21 ))
2mq(z") 27
=W +_ L Da(z+ +
4,2 (x) K; |1Il€| |1Il6| < q(’Zz )7x Z >
+ + 12
as; + o+ 0,8 + o+ + (Séi)
— — D —z; O :
ln ]Eg(Z’L7 Z) l %< g(zl’zl )’x Zl>+ ‘lng‘ Y
55,1 85,1
andfork;ézand:cEBLs ( ), by (2.2)
+ aj{k + a;{k +
Pyzi(®) = W&zk ,aM(x) - In%g(LZ’“) = IH%G(%ZIC)
S5,k S5,k
+ ot +2
a5k a5k (S )
S T DG(2 — )+ o)
In 2 < Zk)+ln < A)w =)+ |ln5| ’
S5,k Sék
and
53)°
Py (2) = 3G DG(= o 0( )
J,Z,j() 111_ (Z7j)+1n < z’y)’x Z7,>+ |1Il€|
85] 86"7'
So, by using (2.8), we obtain
_ 2mq(x)
P(SJ,FZ<x) P&,Z<x) — Ry = |111€|
Wy + o+ (x) —af, — 2 (Dq(zf),x —zF) — i (Dg(z}, ), — 2)
9,2 a5, 4,1 ‘1H€| i) 7 h’l% T 0~ ) 7
S5,
- agk + o+ + - U (ot + (2.15)
+§ln%<DG(Zzazk)vx_Zi _;1n£<DG('ziv’zl ),:L‘ zi>
4 S5,k = S5,
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Similarly, we have

_ _ 2mq(x)
Pé,Z(x) _P(;—Z(x) _K’j + HHE|

_ 2 _ _ -
i.(x>_a6,j+m<DQ(Zj)ux_Zj>_1 L <Dg Zj s J),I—Zj>

- 6,2;,a5]
85,j
. ot (2.16)
—l—Z = <DG(Z],ZZ ),x—z-_>—zl (DG (2,27 ), . — z7)
[ —1 ST
J 5, 8,k
(55,)" _
+0 |1n| : xeBLsé—,j(zj).

We end this section by giving the following expansion which can be obtained by direct
computation and will be used in the next two sections.

aW&zl 7“61( )
azi,h
(1 a(;i- (p+1)/2 |x—zi| z,ih—;ph 1
% i, +o(—), zeB e 7
spomE) O <|1ng|) )
86, ’
B + _+
Asi Zip — Th 1 N
- ’ I zeQ\B.x(z5).
In £ |z — 272 (|ln5]) \ sttz( i)
S5,

3. THE REDUCTION

In this section, letting ng 2 and Py, be given as in (2.14), we are to look for solutions of
the form P(;,FZ — PéjZ +w;s 7, where ws 7 is a small perturbation when 0 is small. We will show
the existence of ws z for given Z so that Py, — P; ,+ws 7 solves (1.9) in W*?(Q)NHg ()\ H.,
where H, is a finite dimension subspace of W?(Q) N H (). In the next section, we will

show that if Z is a critical point of
52 )
K(2) =5 [ DB, = iy +i2)
N | _ omq(z) "
— — P, — P, +wsz— Kk — )

0 1 o2mq(x - - ptl
_Zp+1 ‘(“n5| Kj_PﬁJ,rZ"‘Pa,Z_Wé,Z) )
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then P, — P;, + wsz is indeed a solution of (1.9). Finding critical points of K(Z) is
a problém of finite dimension, so in this sense, we are trying to reduce the problem to a
finite dimension one in this section.

To this end we need to study the kernel of linearized problem of (1.9) at P;, — P;,.
First let us study the kernel of the following problem in R:

—Av—pu? v =0, wve L®R?), (3.1)

where

w(z

y_[oted, i<t
d()lal, |z > 1,

is the solution of
—Aw=w", inR%. (3.2)

Since ¢/(1) < 0 and In |z| is harmonic for |z| > 1, we see that w € C'(R?). Moreover,
since w, is Lip-continuous, by the Schauder estimate, w € C%“ for any « € (0, 1).

It is easy to see that for ¢ = 1,2, g—;‘: is a solution of (3.1). Moreover, from Dancer
and Yan [15], we know that w is also non-degenerate, in the sense that the kernel of the
operator Lv := —Av — pwﬁ_lv, v € DY?(R?) is spanned by { Jw  Ow

dz1 dwz S
Let Py, ;, P;,; be the functions defined in (2.10). Set

Py, OP-, .
Fs, = {u Tu € LP(Q),/ 0.2, 07/ 025, — 0,
Q

_l’_ —

izl)"'ama jzla"'ana h:172}7

and

opr;,. 0P;s, .
Esz=qu: u€W2’p(Q)ﬂHé(Q),/A Ef’l u=0, /A 020 ) 4y =0,
h

For any u € L*(Q2), define Qsu as follows:

m 2

aPJr ; n 2 3 0P, .
aw=u-33u (a3 ) - (- (52).

i=1 h=1

where the constants b:h, bj_ﬁ satisfy
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™ o aP&TZ,i 8P5J,rz,k
S (o [ ()0

i=1 h=1
LS ib‘ (_52/A<8P6727j)apfz,k) _/uapgz,k
i R = T = T
j=1 ph=1 " Q azj,ﬁ azk,h Q azk,h

and

LA OP;, .\ OF;.
ZZb:h <_52/QA( 8;5) 5,2,1)

i=1 h=1 82;13
I g 22: b= | —g2 A<6P5jz,j) ap&jz,z . ap&jz,z
Gh 02— ) o | )y 0
7=1 h=1 Q@ 5.h Lk Q Lk

. 0Py, P 7,
Since /8—;7Q5u =0, / 3 “~Qsu = 0, the operator )5 can be regarded as a
Q Q

Zk,iz Zl,iz

projection from LP(2) to Fs z. In order to show that we can solve (3.3) and (3.4) to obtain

b;fh and b, we just need the following estimate ( by (2.13) and (2.17))
B 52/ A(@P{Zi) aP{Z’k
Q 6zi7h 8zkﬁ

+\p—1 OW&ZT ag, 8a¢—{i OF, 5J,rz,k
=p Q(Wé,zj,a;’i - aé,i)+

+ T gt +
8zi7h 82’1-7,1 8zkﬁ

c €
:5ikhﬁ\ln€\1’+1 +0 (|lne|p+1) ’

where ¢ > 0 is a constant, 0,,,; = 1,if i =k and h = h: otherwise, 5z‘jhﬁ = 0.

Similarly,

OP; , .\ OF;. c €
2 0,2, 6Z1 _ ¢
- /A< 0z, ) 0z 5jlhh|ln€|i”+1 0 (|1n£\1’+1) ’
& jh Lh

where ¢ > 0 is a constant, d,;;;, = 1, if j = [ and h = h; otherwise, Oy, = 0-
Set

m B 27‘(‘(] A Pl
Lsu = —6*Au — ZPXQj (PJTZ — Py i - \1n(e|)> !

i=1 +
- . . 27T61(37)>p_1
— Xo- | Py, — P, — Kk, +——2 u,
; Q] < 6,7 6,7 J \ln€| .

(3.5)

(3.6)
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and

Bsz = (U?llBLs;i(Zj» U( ?:1BLs;j<ZJ'_)>~

We have the following lemma.

Lemma 3.1. There are constants py > 0 and oy > 0, such that for any § € (0,8, Z
satisfying (2.5), u € Esz with QsLsu =0 in Q\ Bsz for some L > 0 large, then

b’
Po
1Qs Loul| Lr (o) = o lullzee(e
|Ino|
Proof. Set s]iv,j = SchEN,j‘ Henceforth, we will use || - ||, and || - ||« to denote || - ||zr() and

| - || oo () respectively.
We argue by contradiction. Suppose that there are oy — 0, Zy satisfying (2.5) and
uy € Esy zy with Qs Lsyun = 01in Q\ Bsy 7, and |Jun|le = 1 such that

2
1 O
1Qon Layun|lp < NW

First, we estimate the bl no U5 corresponding to Lsyun, which satisty

3,h,N

R
Q5NL5NUN - L5NUN - Zzbth ( %

i=1 h=1 i,h

n 2 —
— aPtSN ZN,'
-3 ay (e ).
J=1 h=1

+

For each fixed k, multiplying (3.7) by M , noting that

8 SN2k
/Q(QCSNLCSNUN)# =0,

k,h
we obtain

oF, 5 ZN,k oP, 5 ZN,\k
UN L6 Ns>4N > — / L6 UN N4 N>
/9 i ( 0%, o) ot

kb
m 2

=D >0 / I YN

. i,h,N Q N a ;:h az X

2 _
oP . (9P
— 2 ON,ZN ] ON,ZN kK
—1—' ij,B,N/Q<_5NA aN*_N ) aZ+N .

Zj,h k,h

Using (2.15), (2.16) and Lemma A.1, we obtain
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aP(;r Zn,k
uN L6 NH>& N,
fose (i

P 2mq(z)\* "' OP5, 7ok
= —2A o Ak _ P ot TN Znk
/Q [ N ( ZpXm 5N Zn onZn i ey . 9x+.

k.
n - _ 2mq(x)\P Tt 0P Nk
~ > PXo- (PaN,zN ~ Play kit o

In .
j=1 | 8N‘ k.h
/ <W + Wiy N 8a$N’k
= 5N,Z;N,a;r k - a(SN, + + un
Q N + sz’il 0z, P
1
m + p— +
S OP;
+ N,O[ NvZN7k
—p E / (W(;N 2t ot — A5 o + O <— —+ UnN
+ Ca, NN, N> ln N
n - +
s OP;
§ : - N3 N, ZN,k
-p / (W(sN 2T aT - a5 8 —+ O <—)> —Q UnN
_ 23 N5 B N> In +
=1 Q N | ENl N 8zk’h

—0 _
|111€N|p .

Using (3.5) and (3.6), we obtain that b, v = O (e}|Iney|). Similarly, by, v = O (e3/|Iney]).
Therefore,

3 A2F oP-
thbjw ( 5N’ZN’ > + ZZb* < %)

i=1 1 7=1 h=1 j,h
mo2 aW5 at 8a+ .
=Y Y b <W N —at > s oy
i,h,N oN,z; af ON i + +
i=1 h=1 NN + 0z}, 0z,
n 2 p—1 aW6N7z._N,a5_ . 3@5 :
+ p b ( 5 a(;— > J» N»J _ N»J
] N»Z N7a6 NsJ - -
o[ a) o 5oy e
B In p In P
| €N| ‘= e |Iney]
5N
O in LP(Q)
’ In €N‘p 1

Thus, we obtain
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2 1 2

For any fixed 7, j, define

Uiy () = un(syy + 2y), Uy (1Y) = un(sy,y+2n)-
Let
LEu = o
—Au — pz ( Njg\j) Xaj (Pz;;v,zN (sji\,zy + ZfN) - Pé:V,ZN(Si,iy + Zz:tN) - ’f; -
k=1
n ( + )2

SN - + + + + -
—pz 512V Xa; (PéN,ZN(SN,iy + Zi,N) - P&TV,ZN(SN,iy + Zi,N) — K+

Then
+ 2 512\1 Fto~t
(SN,i)p X (Si )2 HLNui,NHp = ”L5NUNHP'
Nji
Noting that
2
oN 1
Nl o ——
(N) (| 1n6N|p—1) |
we find that ,
55
L(SNUN =0 N(p_l)Q
‘ In 5N| P
As a result,

[N/f,ﬂfN =o(1), in Lp(Qﬁ),

where Q% = {y : Sﬁiy + Zz‘j,EN € Q}

21q )p_l
Uu
|IHEN| +

2mq

|1D€N|

17

)

Since H’&f vl = 1, by the regularity theory of elliptic equations, we may assume that

az:',tN - Uzi7 n Ozloc(Rz)-
It is easy to see that

k

p—1
(s}i)Q + SEi
- 0% WJN’ZZN’CL;N!Z' ~ G+ O |Iney| ol
+

p—1

m 2
(Sjtu) _

Z 5—2’XQ+ P(Stv,ZN(Sx,iy + Z;,FN) — P57 (3;\?@3/ + Z;,FN) — Ky,

k=1 N

2mq
|1D€N|

+

p—

+

1
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Similarly,

zn:(sN’j)Q Py s (snsy+ zin) = By g (sSny+ 258) — K + 2mg )"
— 0% Xoj | Fon,zy SNsY T 25N o 2y INGY T E N TR T e +

—
Then, by Lemma A.1, uf satisfies
—Au — puw? " u = 0.

Now from Proposition 3.1 in [15], we have

2 ow
2 a$2

(3.8)

Taking limit of

oP5- , .
/ A(ToZdyy g,
Q

I
821.’ W

109
/R2 ¢+ azhu’ 07

which, together with (3.8), gives ui = 0. Thus for any L > 0,

we get

iy — 0, inC'(B(0)),

which implies that uy = o(1) on 0B+ (zliN)
On one hand, by our assumption, Qs Lsyun = 01in Q\ By, z,. On the other hand, by
Lemma A.1, fori=1,---,m, j=1,--- ,n, we have

_ 2mq(x)
+ + _ + +
(P(SN,ZN = Psyzy =R — m>+ =0, zeQ\ B (zn),

B _ 2mq(x)
+
(P5N7ZN - P5N,ZN — Ry + Hn 5N|

) =0, T\ By ().
_l’_
Thus,

—AUN == O, in Q \ B(SN,ZN'

However, uy = 0 on 0f2 and uy = o(1) on 0Bjs, z,. So by maximum principle uy = o(1).

This is a contradiction since ||uy|/c = 1.
U

Proposition 3.2. (QsLs is one to one and onto from Esz to Fs z.
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Proof. Suppose that QsLsu = 0. Then, by Lemma 3.1, u = 0. Thus, ()5Ls is one to one.
Next, we prove that ()5L; is an onto map from Ej z to Fs ;. Denote

. oP;, . oP;, .
E = u:uEH&(Q),/D # DU—O,/D 020 | Dy = ,
QO ath Q 3Zj7h

i=1,-,m, j=1,--n, h:1,2}.

Note that Es z = ENW?2p (©2). On one hand, for any he F5 7, by the Riesz representation
theorem there is a unique u € H; () such that

(52/DuD90:/iLgo, Ve H Q). (3.9)
Q Q

On the other hand, from h € Fs 7, we find that v € E. Moreover, by the LP-estimate
u € W?(Q). So, u € Esz. Thus, Qs(—6*A) = —4%A is a one to one and onto map from
Es 7 to Fsz. Meanwhile, QsLsu = h is equivalent to

p—1
u=pd2(—QsA)! {Qé (Z;’;l X (P(;Z — Py, — kK — %q(m))Jr u

m T — _ p—1 3.10
_ ijl Xo: <®q(a¢) —K; + P&Z — P(;FZ>+ u)} ( )
+672(—QsA)h, u € Esz.
It is easy to check that

m — T p_l
5= 0u) Qs (S xar (P = P =7 = izgat@)
n T — — p_l

is a compact operator in Es 7. By the Fredholm alternative, (3.10) is solvable if and only
if

p—1

= pd(~QsA)! [Qa (Z?il Xor (Piz = Py =l = ial@)) w

n T — — p_l
- Zj:l Xa; <|12n—5|9(1’) —K; + Pa,z - P&J,FZ)Jr “)}

has only trivial solutions, which is true since (Q5Ls is one to one. Thus the result follows.

U

Now consider the equation

QsLsw = Qslf — Qsly + Qs R (w) — Qs Ry (w), (3.11)
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where

2mq(z " p
Iy = E XQ+( sz — Psz — ki — Tne] ) E :<W62 af, — ,i>+7 (3.12)
_l’_

i=1

_ 27Tq - NP
ls _ZXQ < P6+Z Kj + Hng‘) < 8,25 aéj_a5,j>+> (3.13)

J=1

~.

and

. 2mq(z)\” . omq(z)\”
ZXW (az 5,Z+W_"%+— |1n5\>+_ PgZ_Pa,z_/‘ﬁ;r— ne] .

_ 2mq(z)\ "
—p(PgZ_P(s,Z_’fj_ ()) W];
+

|Ine|
(3.14)
_ 27rq(:c)>p < _ |, 2mq(z)\”
Xo- - P, —w—k; + — |\ P, - P, — K +
Z Q < 6Z 6,7 j Hng‘ N 6,72 6,7 j Hng‘ .
| 2mg(x)\"
Py — P - .

*p( JZ*%+wm)+”
(3.15)

Using Proposition 3.2, we can rewrite (3.11) as
w = Gsw =: (Q(;L(;)ilQ(;(lgr — l(; -+ R;(W) — Rg(w)) (316)

The next proposition will enable us to reduce the problem of finding a solution for (1.9)
to a finite dimensional problem.

Proposition 3.3. There is an &y > 0, such that for any § € (0,d] and Z satisfying (2.5),
(3.11) has a unique solution ws € Ej 7, with

Jwslloe = O8] 6]"").

Proof. Tt follows from Lemma A.1 that if L is large enough and ¢ is small then

_ 2mq(x) .
<P5J,FZ_P57Z_I€;F— |1n€|) =0, IGQ;L\BLSZ{Z.(Z;);Z:L”' ,m,

- _ 2mq(x) '
(PE’Z_P;Z_KJJ + ’lng’ ) :O, Z'EQ \BLS(;](])?]:l;"',n-
+

Let
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M= Eszn {HwHOO < | 1n5|’%1}.

Then M is complete under L norm and G is a map from Ejz to Esz. Next we show

that G5 is indeed a contraction map from M to M by the following two steps.

Step 1. G is a map from M to M.
For any w € M, similar to Lemma A.1, it is not difficult to show that for large L > 0

and ¢ small

_ 2mq(z)
(PJZ_P&Z_'—M_H?_ “ngl ) =0, CIZEQ?\BLS&(Z;F%

. _ ., 2mq(x) - -

(3.17)

Note also that for any u € L®(),

Qsu=u inQ\ Bsz.
Therefore, using Lemma A.1, (3.12)—(3.15), we have for any w € M,
Qs(ly —15) + Qs(Ry (w) — Ry () =I5 =I5 + R (w) — By (w) =0, inQ\ Bz,

So, we can apply Lemma 3.1 to obtain

II(QaLa)’l(Q (I = 15) + Qs(Rf (w) — Ry ()l

1Qs(ly — 1) + Qs(Ry (w) = Ry ())lp-

Thus, for any w € M,

1Gs(w)lloe = ||(Q5L5);11Q5(l+ — I + Ry (w) — R; (W)l i1
< C|1n(;| HQ&(Z+ —l +R+( ) Ra_(w))Hp ( . )

corresponding to u € L*(2), satisfies

0P 4,
HZ/!—’” |ur>-
el 04

— Ry (w), satisfies

It follows from (3.3)—(3.6) that the constant b:h,

b= |<0|1n5|p+1<2/] R

Since

IF — Iy + Rf(w) — R; (w) =0, inQ)\ Bsz,

we deduce that the constant b: ;» corresponding to IF =15 + R (w)
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5Zz

!l* Iy + Ry (w) — Ry (w)]

byl <Clino 3 Z /

8P5_Z ¥

\u*—z + R (@) - By ()|

+C| gy Z /
gh \A=1 5

<Ce | el |lf — 15 + R;<w> — Ry (@),

As a consequence,

1Qs(ly =I5 + By (w) = Ry ()l

<N =1 + By (@) = By (@)l +C Y 1bi,
i, h

()

“jh

P (3.19)

+CZ]bjh]
p

(Hla*IIp 15 1 + 1B @)l + 175 (@)]lp)-

To estimate ||Gs(w)||o0, by (3.18) it suffices to estimate each term in the right hand side
of (3.19). From Lemma A.1 and (2.15), we have

15711 =
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For the estimate of ||R] (w)||,, we have

2mq(x)\P
HRJ Ny = {( Z JZ‘H‘) ’fj |1n5|)
N 2mq(z)\P
_ + +_
(P‘;’Z Psz = #i \ln5|>
_ 2mq(x
_ + S
PPz = Poz =i = Hm| 4 (3.20)
_ 2mq
<Cllul?, wa P, — Py — it — L)Y’
|Inel
p
57 ||wl|?
o el )
| In o737
Similarly,
i 51+ . o7 [lwllZ,
1 lly =0\ ——=z |» B h=0—""7 ]
|Ing|" 7 * [In 5|73+
Thus,
Cllnd| _
|G @)loc _—(||z+||p+|u o+ 1 (@)l + 11 R5 () )
(=12 ) N |wlZ (3.21)
o> *5  |IndP s

<§|Ins|"=

Step 2. G5 is a contraction map.
In fact, for any w; € M, i = 1,2, we have

Gswi — Gswy = (QsLs) ' Qs [Rf (w1) — R (wa) — (Ry (w1) — Ry (w2))].
Noting that

Rf(wn) = Rf(w2) =0, inQ\ UL, By (=),

and
Ry () = By (@) =0, mQ\UL By, (),
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we can deduce as in Step 1 that

|Gswr — Gswalloo < (I1R5 (w1) = By (wa)llp + [R5 (w1) — Ry (w2)llp)

P

o nlle - llwalloo
<C| P’ (|1n5|p_2+|1n5|p_2 Jor — welloo

1 1
<Co[ 0% Jwr = walloo < S llwn = waloe.

By Step 1 and Step 2, Gy is a contraction map from M to M and thus there is a unique
-1
ws € M such that ws = Gsws. Moreover, from (3.21), ||lws|leo < 8|Ind|"z .
O

4. PROOF OF THE MAIN RESULTS

In this section, we will give proofs for our main results Theorem 1.1 and Theorem
1.7. As the first step, we need to show Theorem 1.4. First we will choose Z, such that
Pg 7 — Psz +ws is a solution of (1.9), where ws is the map obtained in Proposition 3.3.

Define
52 G| omq(z)\ "
= — [ |Dul? - I — ki =
2/9‘ u .Zp—i-l/XQ;r (u i |Ine| >+

27Tq p+1
-3t o (gt =)

K(Z)=1(P;t; — Py, +ws) . (4.1)

and set

It is well-known that if Z is a critical point of K(Z), then Py, — Py, + ws is a solution of
(1.9). We will prove that K(Z) has a critical point. To do this we need two preliminary

lemmas, which together with estimates in the Appendix, give expansions of K(Z), aaK (+Z)
Zish
and 2

respectlvely

7,h

Lemma 4.1. We have

3

_ 13
KZ)=1 (P;Z — PM) +0 (W) .
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Proof. Recalling that Py, =" P, and Py, = > -1 P54, we have

52
K(Z) = I(P{Z — P(;Z) + 62/ D(P(;Z — P(;Z)Dw(; + 5/ | Dws|?
Q Q

1
“X T
B 27q(z) ptl
(Pt — P, — kT —
( 6,7 6,7 Ky Hn€| >+
By
j=1p+1 o

. | 2mg(x)\"
— (P&Z—P;,FZ—/{j + ne] ) .
+

Using Proposition 3.3 and (3.17), we find

~ |Ine N

(z+) | ln€|

J,

_/BL5+ T
5,
(85:)° [lwsll oo g

_O< |Inelp _O<|lng|l’>'

On the other hand,

_l’_

(P(;Z — P, tws—kK

- +
<P5’Z — P&Z —ws — K

) 27g(x)\"" .
(PE,LZ_ sz +Ws — K ) — |\ Py — Py —

_ omq(z)\ "
(PE,LZ_ (S,Z“‘C‘)é_”;r ()) - Pc;,rz_

N 27?(1(96))

i |Ine

- 27rq(:v))

3 |Ine|

o 2mg(@)\"
’ |Ine| /|
a 2mq(x)
Pkt
6,7 /ﬁz ‘ In €|

p+1

+

p+1

+

25
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Next, we estimate 6% [, |Dws|?. Note that

B 2rq(x)\" = p
—0%Aw; = ZXQ+ ( 5+Z Pygtws — = ( )) - Z <W5’Z‘+’a6+,i B a;’i)+

i=1 + i=1
_ _ 27rq(a:))p = \P
_ E P Pt — KT+ + E (W = >
XQ ( 8,72 ,Z Ws l{] | ln5| . = 5,zj oy a’é,j i
m 2 + n 2 —
opr;, . OP-., .
2:2: 2\ 0,2, 2:2: - 2 4,2,
i=1 h=1 ,h j=1 h=1 7,k

j=17%

m 2 —
33 [ (-ratE 3o (eatie )
i=1 h=1 Q =1 h=1 jh

i=1 V% h=1
i p—1 S_
— W, - — —a_.>
p]z_}/aj( s~ ) (“ 2 )
szb h|||w5||00
|Inelp
J=1 h=1

54
=0 (| 1narp1) '

Other terms can be estimated as above. So our assertion follows.

Lemma 4.2. We have

OK(Z) 0 N _ e .
82:_]1 _8zghI(P5’Z_P‘S’Z)+O<W>72_1""’m7
OK(Z) 0 3

€
= I(Pf, — P +()(—)7 i=1,---,n.
azj_ﬁ 0z ( 0% 6’Z) J "

h | Inelp—t

- _ | 2mq(2)’ Y
(P&Z e R g ) = (Wosga, = i) |

m 2
p=1( s elbul llwslloo
_ 117 _ +.) 08 O
pZ/er ( 572?76‘(4{1' o, + <|ln€| ws + ; \lne\P

)
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Proof. We give her the proof of the first one only. The second one can be proved similarly.
By the definition, we have

0K (Z) . oP;, 0P, = Ows
g _ 1’(P+ _P ) z _ 28,
82;7% < 82 62 T W 82;51 8,2:,1 + 82;’%

0 _ _ 30)5 3P5+Z aP&jz
’" ) 2mg(2)\’ ] N
_ P+ - P P _ P+ - P P
;/ﬂi ( 5.7 — L5z T WwWs — Ky e >+ 5.2 — sz — Ky el /,
GP(STZ 8P52
% 82*,I 82Z h
) | 2ma@)\’ N
— P, — P — —_— P, — P, —
Z/_ ( 5,2 6,2 — Ws ]ln5|) 57 5z — H + |1n€| .
X = I
az:h 8z:h
Since ws € Es z, we have

p—1 [OWy = + da*
<W n aﬁ:) kY8 k 4,k ws = 0
5,25 a 5,k + - + 6 — Y

(9] k 778,k + aZkJL aZkJL

Differentiating the above relation with respect to 2., we deduce

_ Ows
<I’(P;Z - P&Z +w5),_az+ >
ih

8P 5z Ows & OP;, Ows
I b s 4,0 b— QA 3 ,ﬁ
DI / ( oz, ) AP IPD ﬁ,h/g ) o,

a=1j—1 B=1 p=1
S (1o e (i85
= Po,; ( Sadal, — aé,a) ¥ ¥
a=1 j—1 @ Q 5 + azo&,ib azaﬁ azi’h
n_o 2 1 [OWs — _ =
p—1 0,25 ,a aaﬁﬁ (%)5
ISty [ (W, ) (T - 0
B7h 23 ,a R 7ﬂ - - +
=1 1 Qb O " P25 D255) P

m. 2 6b+h no 2 €|b§h 3
=0 = ’ =0(——|.
2.2 Thep * 2 2 Tincp (HM‘M)
h=1
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On the other hand, using (3.20) (for the definition of R} (w), see (3.14)), we obtain

_ 277@($))p < - 2mq(x) opry, .
P, — P, +ws— K — pt _p n ’
k:_l/Q ( vz " |lnel /. S N
v 27rq(:r))p ( ) Ima(a)\”
P - -+ ws +_ P+ P _ /‘€+ .
;/&; ( 0,2 6,7 k |hl€| N 6,72 6,72 k |ln€| .
_ omq(z)\*~" | 0Py,
Pt — P, — kb — Zi
“p(Pie i )|
Y ; 2mg(a) \ " lops,,
+ Zp/ (Pé—j_Z - P&,Z - /f]i_ - Hne\ > - (Wé,z;r,a;fk — a(—{k)_;,_ ?w(s
k=1 2 + i
s Ws | oo
o (Gl
|Inelp
8P+ i m 27_‘_q($) p—1
— R-I— 0,2, / P+ P_ I
/ﬂ 5 (ws) 8% + ;p - 6,2 5,7 k ne]
oPT, . 3
+ \p—1 6,21 e
_ (Wé z;: G‘g—k - a&k)+ ] azjh ws + O <m>
3
o —°"_).
(|ln 5]1’—1>
In addition, we have
- 2mq(x)\" _ omq(z)\” OP; ,,
P, — Py, +ws — K — _(pt. _p et 2
/Ql+ ( i 7 ’ ! |Ine )+ 8,2 6,7 1 Mne] 82;h

_ 2mq(z)\"~ 0P 4, et
= P, — P, — Kk — - O +——
p/w 52 52— M | Ine| )+ 0z}, Wot |Inelp—1

Other teams can be estimated as above. Thus, the estimate follows. O
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Proof of Theorem 1.4. Recall that Z = (Z,1, Z"). Set
=S ) - YA ) + S ne )
i=1 j=1 '
D IUCARCIERED BT CIEED B CaEn
j=1

itk £l

+ zm: z”: 2rk; Ky G2, 2).

i=1 j=1

Note that the Kirchhoff-Routh function associated to the vortex dynamics now is

N 1 -
W(Zs 2) =5 > miR G ) + Y KRGl

i k=1 i;ék jl=1,j#
+: Z Sal) g S PH( 7))
j=1
_ZIZIH:»K G 17 ]) Zl +¢0 ZH wO
i J =

Recalling that h(z;, z;) = —H(z;, zj), we get

O(ZH Z7) = —4rW(Z,Z) + 7l R (Z )% + Z )

=1

Hence, ®(Z1, Z ) and W(Z, Z) possess the same critical points.
By Lemma 4.1, 4.2 and Proposition A.2, A.3, we have

Co% 7w(p—1)8° 52 6%In|In
K(Z)= g+ 1(12()1115))2 (Z +Z ) Mmep(9)+0 (ﬁ) (4.2)

and
0K(Z) 4725% OW(Z) 6?In|Ine]
= — O ————— . 4.3
823’2 |Inel? 8th * |Inel3 (43)
Thus, suppose that (xf*, e ,x;,g o Tl " 5 Ty, .) is a C'l-stable critical point of Kirchhoff-
Routh function W(Z), then K(Z) has a critical point («f_, -, &} ., ol - 2, .) =
(l’i*, 7x:;_1 *) Jli*, » L, *) +O(1)
1—
Thus we get a solution ws for (1.9). Let u. = “M|w ,0=¢ “ﬁf' = , 1t is not difficult

to check that u. has all the properties listed in Theorem 1.4 and thus the proof of Theorem
1.4 is complete. 0

Now we are in the position to prove Theorem 1.1.
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Proof of Theorem 1.1. By Theorem 1.4, we obtain that w, is a solution to (1.8).
Set

VgZJV(Ug—Q), Wa:VXVaa

N | ke \*™
Fe=)  ——Xot (ua —q- #)
—p i 2m n

Then (v., P.) forms a stationary solution for problem (1.1).
From our proof of Theorem 1.4, we see that as ¢ — 0

+ + - = + + - =
(Il,sv"' yTm,erL1,er """ ,]3”76) - (Il,*v”' y T Llso " 7In,*)‘

So we can find a positive constant C' independent of £ so small that for small ¢,
B(z;,,Ce) CQf, B(x;,Ce) €Q; fori=1,--- ,mand j=1,--- ,n.
We now verify that as ¢ — 0

/ w:_a—>ﬁ7?~_7i:1)"'7m) (44)
B(z}_,Ce) 7

i,€?

/ W;EH_HJ'_,]‘:L"‘,TL, (45)
B(z; _,Ce) 7

m]., e’
and
n

RS (46)
Q j=1 j=1
By direct calculations, we have

/ L 1 N (u . K| lna])p
i,e — 9 + e 4 — —(x——
Bz} .Ce) =g o 27

_l’_

|InglP / L 2mg \
= ws — Ky —
(27)Pe? o b |Inel

+
_|Inel? /
<27T>p€2 BL5+ +

+ p
W af, + O(—S‘“ )
+ + — s
0,2 ag 6,1 ’ In 8’
+
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Therefore, (4.4) follows. (4.5) can be proved exactly the same way. (4.6) follows directly
from (4.4) and (4.5). Therefore we complete our proof. d

Proof of Theorem 1.7. Theorem 1.7 can be proved simply by exactly the same arguments
above and taking k; =0, Q7 =0 and xo- =0for j=1,---,n

] O
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APPENDIX A. ENERGY EXPANSION

In this appendix, we give precise expansions of [ (P5 7 P({Z) and T[ (P5 P P({Z),

which have been used in sectlon 3 and section 4.
We always assume that 2", 27 €  satisfy

[N
d(zl7aQ)ZQ7 d(Z]_7aQ)ZQ7 |Z _Zk|>Q7 Zak‘:]-)amvl%k
|Z]__Zl_|zgiv |Z'L+_Z]_|ZQE7 jalzlavnaj%lv
where ¢ > 0 is a fixed small constant and L > 0 is a fixed large constant.
Lemma A.1. Forz € Qf (i=1,--- ,m) and x € Q; (j = 1,--- ,n), we have when & > 0
small 2ma(z)
_ mq(x
P{Z('x) - PS,Z(m> > ’iz—‘i_ + |1D€| ;X E BSL(l—TsL{i)(Zj_)?
_ _ 2mq(x) -
P&,Z(x) - P&TZ("E) > l{j - |ln5| T E Bsgj(l—ng’j)(zj )7
where T' > 0 1s a large constant; while
P (x) — P () < kj + 2mq(2) reQf\ B (zh)
6,2 6.2 i Ine| i sy (14(s5)7)\ =i )
N N _ 2mq(x) N
Pa,z(l’) - Pa,z(l’) < k; — |1n—5|> x €8y \Bs(S] (1+(s5,)° )(Zj ),

where o > 0 is a small constant.

Proof. Suppose that = € BS;(PTS;_)(Z;F). It follows from (2.15) and ¢}(s) < 0 that

_ 2mq(x S5,
Pyiy(x) = Psz(x) — ki — Un(g‘) Wiz asb( *) = a52+0<]ln5]>

+ + |

SR E z |¢<|xs_+«2i )+ 0(z) >0

4,1
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if T > 0 is large. On the other hand, if x € QF \ B(s;)&(z;r), where ¢ > 0 > 0 is a fixed

small constant, then

_ 2mq(x
P(;_Z(x)_PJ,Z('I)_/{;__ |1H<€‘>
R 2mq(x)
< In— — K — 1
Za(h |/n851 Kq |1Il€| +0()

SCU — K7 + 0(1) < 0.

Finally, if = € Bt )5 (2 (z7)\ B+ 4 T(sE) 5y(%") for some i and if T > 0 is large then

P;Z(x) - Pajz(x) - ’fj ~ Tlne

ln‘ i | S+ )o‘
— ot e ML o 5,
i %t O nw
58, 55,
In(1+T(s5,)° s5.)°
< gt TG o (61
- i In £ In £
Sg—i Sg_i

Note that by the choice of &, BSL(H(SL)g)(Zj) D Byt aimist o) (z) for small . We
U

therefore derive our conclusion.

Proposition A.2. We have when € > 0 small

_ C6%  w(p—1)62 i " i 4772(52/§;rq zj
10 o) <l P (S Sy« S
i=1 B

ne 4(In £) =1 j=1

ATk q(z) O otk ) g (=
" B T (i

j:l |Ine||In —

2 i 7T52(f£;)2g(zj_,zj_)
(In %)2

=1
_ Z mo%ky k+G(Zk? a) i mo*; Ky Gz 25)
Ry2
i n )’ oy (In 2)
27T(52I€+/£ Gzt 7)) 0(621n|1n8|)

533 aF TP

=1 j5=1

where C' 1s a positive constant.

Proof. Taking advantage of (2.4), we have
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/ |D P5+Z 6_Z ZZ/ ézk a;k ag_k)+P5Zz

k=1 i=1

+ZZ/ 0,2, 7“61 5l 5Z7j QZZ/ W(Sz a(s -

=1 j=1 7j=1 i=1

First, we estimate

p Qs -

+ 0,3 +

/ (Wé,z:,a;i - aé,i) Wé,z?’,a}'i - R g(.’lf, 2 )
B4 () ’ + ’

— 4\ P+l + +\P
= <W5 2t at %,i) +as, (W5 et T %,i)
. (Z+) 7 5,1 B [ 5,1

S5,

S, B1(0)

+ 2 +\3
Qs d \po1 (s5:)
- <T> g(zf,ZT)(SIi)Q o o'+ 0 (W

In Ij S5 B
S5, ’
Cw(p+ 1) 0%(ag;)® | 2md*(ag,)?  2md%(ag,)? (2F, )
S iyt mE iy

Ss,i 5, 5,

2n6%al at, _ e3
84 0k Gz z)+0 (—) .
S k

0\ N
p— p—
:< +> (5;,2')2/ A +a;{i< +> (Szi)Q ol
B1(0) §

)

°(

)+P(5 Z,j

3
|Inelptt )
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Moreover, we have

s, _
/B; (W5,z+,a}:i - a;tz)i W6,z._,a6_’j - ]j{ g<x7 ’Zj )

B In 2
Sil(z:r ! n S5
0 )z;z—pl @55 |z — %"\ A
NEAC Y QIS e
<8;{i In % B 4 (Z;r) ngi J
3, %5,
:<i>;pl—a‘”(sg’iyé<z.— [ ool Ll
S5 In & 7 o) | Inefrt!
K 85,]-
2r6af,ay . g3
= % G )+ O ——— .
|In £ |] In £-| (=:27) |Inept!
S5, 55,4
By Lemma A.1 and (2.15),
. . 27q(x)\""
Z/XQX(P(STZ_P(S,Z_Kz_ |ln£|)
k=1 "% +
m 2 p+1
:Z/ (Pd,z_Pd,Z_“k qq(a: )
1 /B, + (D) [Inel /.
S,k
- Sek e
-3 Wystar, ot O (1o
k=1 BLsg’k(zi?) ’ |Ine] +
2(Hll) + \3
m p—
208) " L CEE o e
1 S5k Bsng(z’j) Ss.k |1n 5|p+1
Aot h) | (s£,)3
6\ S5k
— o (S+ )2/ ¢p+1 + 0] >
; (35%) " o | Inefrt!
e Pt ( e >
~ 2 (ln %)2 | Inelptt

Other terms can be estimated as above. So, we have proved
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PR o )L L L U
o7 oz 4 R [In 22
S5, S5, S5,

n i m(p+1) 52(a(;,j)2 WdQ(CL;j)2 779(%: Z;>62(a<;,j)2

4 |ln@|2 |ln§| |In £-)2

Se .
8,5

N Z WG(zk y2; )52%1&;,9 i WG(ZZ_, zj_)52a5_,lag7j
R R R R
ot |hl§\|hl§| I |1n§||hl§|
" 2nG(2, 25 )%y a5 ay)

m m 6
_Z \lnRHInR] B 2

Thus, the result follows from Remark 2.2.

Proposition A.3. We have

9 Ar?0%k; 0q(z) | 2m6*(k))? 0g(%', 7))
Y (Pt P = i : S
027, (Foz = Fiz) |Ine||In £ 02, (Inf)> 0z,

2%k R OG (25, ) N " 2m6%k Kk OG(2, 2) Lo (52 In|Ine|

- ki (11’1 §>2 aZ:—h —1 (11’1 §>2 aZ:—h | ln5|3

B B _ 471'252/{; dq(z;) N 2m0% (K K;
0z, : ’ |Ine||In & 0z (In £)2 82].’
" 2m0%k; Ky OG (2, 25)

Proof. Direct computation yields that

: , 2m0%K; K 0G (25, ) 6?In|lnel
j j
_ E E o ——=!
(In £)2 oz * (In £)2 02}7,—1 i ( |Inel3
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0 _
az_:hI (Pz;,rz - P&,Z)
m p 2 p 8P+
= Z/ [(Wé,z,j,agk - a;{k) - <P5J,FZ - P&TZ - ’iz - TZ(I)) } ) iz
= BLS;,;@ ) + |Ine| /. EANS
- P _ _, 2mq(x)\"] 9Fs 4
+ / [(W5z_a_ _%z) _<P5Z_P6+Z_’%l —) 7
lzl LS(S_Z(Z;) LT )+ ' ' |Ing| n az;h
" P B 2mq(z)\"] OFs
- Z/ [(Wé,z;,a;k - a;{k) - (P(;_Z - P6,Z - Hk+ - 1 ) B +
P BLSgL (=) : + [ In el +1 9%
—En:/ [(W a‘)p - (P— Pt ot QWQ(x))p] 0P
8,2z, ,a 6,1 6,7 6,72 1 :
1=1 7B~ ) e + [nel / az:h
For k # i, from (2.15), we have
i 0% +\P Pt _ p- . 2mq(z) 8 é)Pt;,rZ,i
B . (z;) ( 572;7‘1;,1@ - a’é,k)+ - 6,2 — L6z Ky — ’1D€| . 32’%
Lsé,k - )
:/ <W + .t ay )P—l S;{k L
BL N (z;‘) 8z A5k ok | In €| In IE
s L 85,1'

Using (2.15), Lemma A.1 and Remark 2.2, we find that

DAOMIN CAO, ZHONGYUAN LIU, AND JUNCHENG WEI
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P B 2mq(x)\*] OF 521
W - +.) (P, — P, — kit —
(Z%) |:< 6,z;~',a}:i a’&,z " < 6,7 6,72 A% |1n€| N a i,h

~ 2mq(x) OF, JZz
= (W6z+a+._a5+i)p _<P5+Z_Paz_’€j_ ) }
/B T (14t )cr)(zi) { e o , 7 | 1n€| aziﬁ

+
o[ W ) <Dq<zﬁ>,x—zﬁ>+1a (D(s )0 =5
+ (=

: ; i ,061 |]_ng| nsgr.
6,1 )
mo o+
Qs _ 0 A
_Zl i<DG(,Z+ Z),w — 2 —1—2 :r,zl),x—zi>]a :
ki ns;k 5(” Ziyh
240

. pial, (20, dh 00(:7 ) dha 96T )
| (1 )||1n | |Inel 0z, ln£ A o In - o 0z,
"L ay, 8G toz) / < g2te )
FRRE o, o e+ 0
= 5,1
B 47?262%1 5Q(ZZ-+) 2752(%) dg( j? f) B i 2752@}#3% 8@(21*,2,?)
|ln5||ln | ﬁzifh (In 5)2 A oy |ln Hln o | A
N i 27T(5 aj{iagl OG(z, 2]) n O< grte )
\ln £ Hlnil 0zt |Inelpt1/’

. , x2_ 2m .,
/B o @ b e = =)

Other terms can be estimated similarly. Thus, the result follows.
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