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Abstract. In this paper, we study the single-vortex solutions of a two-dimensional high-κ
high-field Ginzburg-Landau model of superconductivity with a constant applied current. Under a
nondegeneracy condition and for appropriate ranges of the applied magnetic field and applied current,
we construct some special solutions which, up to a constant shift of phase in time, are the stationary
solutions of the model equation. Our result provides partial justification to the existence of a critical
applied current which is the one important step towards a rigorous mathematical characterization of
the interactions between the quantized vortices and applied electric current.

1. Introduction. Quantized vortices have a long history that begins with the
studies of superconductors. It is well known that Type II superconductors are charac-
terized by the existence of the vortex state, which consists of many normal filaments
embedded in a superconductor material. Each filament carries with it a quantized
amount of magnetic flux with circulating supercurrent, which is thus named a vortex.

It is important to understand the features of the vortex state, since it is in this
state that most superconductors are utilized in applications [26]. The motion of
vortices is of particular interest, since this motion dissipates energy and results in an
effective resistivity. More specifically, in the vortex state, an applied current generally
exerts a Lorentz force on each vortex. The motion of vortices due to the Lorentz force
induces an electric field, and thus produces electrical resistance. In practice, many
important properties of the superconducting state can be preserved when the Lorentz
force can be effectively balanced by vortex pinning forces. The latter can take on
various forms, such as those from doping or spatial inhomogeneities.

Quantized vortex phenomena in superconductors have been extensively stud-
ied theoretically and computationally within the phenomenological Ginzburg-Landau
(GL) model [13, 26]. In particular, the time dependent Ginzburg-Landau (TDGL)
model may be used as a prototype model for the study of vortex-current interactions.
In recent years, much progress have been made on the mathematical studies of the vor-
tex state in the Ginzburg-Landau models, see for example, [1, 4, 5, 8, 15, 16, 20, 21, 24].
We refer to additional references given in the recent lecture notes [11] and the mono-
graph [20]. The computational studies given in [12] strongly suggest that it is equally
enlightening to study an even simpler system: the so-called high-κ high-field (HKHF)
model [10, 12] given by

∂ψ0

∂t
+ iΦaψ0 + (i∇ + A0)

2ψ0 +
1

ǫ2
(|ψ0|2 − 1)ψ0 = 0 in Ω, (1.1)

(i∇ + A0)ψ0 · ν = 0 on ∂Ω , (1.2)

ψ0(x, 0) = ϕ(x) in Ω . (1.3)

Here, A0 is a time-independent magnetic potential which, for a given applied magnetic
field, can be solved from the Maxwell equation. The scalar electric potential Φa,
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meanwhile, can be determined from ∇Φa being a constant applied current, that is,
∇Φa(x1, x2) = (0, J)T for some constant applied current J . The parameter ε may be
viewed as a rescaled coherence length, a measure of the vortex core size which is very
small in practice in comparison with the sample size.

The above HKHF model was first studied, in the time-independent case and with-
out the applied current, in [6]. The derivation of the time-dependent version and with
the applied current, was given in [12]. Beyond the rigorous derivation of HKHF from
the TDGL and the basic well-posedness theory [12], there exists very little rigorous
mathematical analysis on the solutions of the HKHF equation. Interestingly, with
the presence of Φa and A0, the HKHF model preserves much of the physics described
by the original full time-dependent Ginzburg-Landau model and retains much richer
dynamics than the special case of J = 0 [11]. In practical terms, the physical validity
of the HKHF model is more restrictive than the full time-dependepent Ginzburg-
Landau model in that the sample domain under consideration should be proportional
to the penetration depth. This would hinder its applicability to the study of certaint
problems related to type I superconductors where the spatial domain size is often far
bigger than the penetration depth of the applied magnetic field [13]. Yet, the HKHF
model remains a good simplied model for problems related to the vortex state in
type-II superconductors since such phenomena are often on the scale of the coherence
length. Moreover, for J = 0, the HKHF system (1.1-1.3) is a gradient flow of a simpli-
fied Ginzburg Landau free energy (with the induced magnetic field being equal to the
applied field). It is then expected that asymptotically the time dependent solutions
will approach to some steady state solution [16]. For an appropriate applied magnetic
field, such steady state solutions may contain a single vortex, that is, an isolated zero
for the complex order parameter [16]. Notice that the square of the magnitude of the
complex order parameter represents the local density of the superconducting carriers,
or the Cooper pairs. Moreover, in the dimensionless form considered here, the mate-
rial is in the superconducting phase where the magnitude is close to one, and it is in
the normal phase where |u| ≃ 0. The locations of quantized vortices are defined by
posititions where the order parameter vanishes.

For small enough J , solutions of the HKHF system (1.1-1.3) with a single station-
ary vortex have been shown to exist numerically, see Fig. 1.1 for two contour plots of
the magnitude of numerical solutions computed on the unit square domain for mag-
netic field near the lower critical value [11]. A constant current is applied along the
vertical axis direction which results in the horizontal stationary shift of the vortex
center under the influence of the Lorentz force in the direction perpendicular to the
applied current, away from the center of the domain. Further numerical experiments
in [12] suggest that for large enough J , there are solutions to (1.1-1.3) representing
periodic motion of vortices and the subsequent collapse to the normal state for even
greater applied current.

Our goal here is to rigorously construct the computationally observed stationary
single-vortex solutions for suitable ranges of the applied current and applied field. We
begin with an investigation of time-periodic solutions of the form ψ0(x, t) = e−idεtu(x)
of the HKHF equation, where dε is an unknown constant depending only on ε. Thus,
u = u(x) satisfies






(i∇ + A0)
2u+

1

ε2
(|u|2 − 1)u+ iΦau = idεu in Ω,

(i∇ + A0)u · ν = 0 on ∂Ω.

(1.4)
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Fig. 1.1. Contour plots of |u| numerically solved in a unit square domain with two different
values of the applied current [11].

The linear in time but constant in space shift of the phase (−dǫt) of the solution
ψ0 is connected to the freedom in specifying the scalar potential Φa up to a scalar
constant. The latter is a consequence of the gauge invariance of the original TDGL
model [9, 12] which, in turn, implies that the time-dependent solution of the HKHF
model is allowed to vary up to a global-in-space and linear-in-time shift of its phase.
Thus, the solution u of (1.4) can be effectively viewed as a stationary solution of the
time-dependent HKHF model in the sense of gauge equivalence. We illustrate later
that for some special geometric domain Ω (such as disks and rectangles) and special
functions Φa, it is possible to specify the exact value of the dε to be 1

|Ω|Φa due to

symmetry properties. In general, we have dǫ → 1
|Ω|Φa as ǫ→ 0.

In earlier works on the mathematical analysis of the vortex state within the GL
framework, such as the pioneering works on the study of vortex solutions given in [4]
and [5] and direct construction of multiple vortex solutions in [18], the appearance
of vortices is assured due to the boundary condition imposed artificially. Later, the
rigorous connection of the vortex nucleation due to an applied magnetic field was
made in studies like [3, 16, 21]. The approach we take in this study differs from the
above, mainly due to the fact that the equation (1.4) is not variational. Instead, we
follow the technique introduced in a recent work [19] to provide the constuction of
single-vortex solutions to the equation (1.4) with a non-zero applied current. The
construction of vortex solutions given in [19] was made for the problem

ε2∆u+ (1 − |u|2)u = 0 in Ω (1.5)

with Neumann or Dirichlet boundary conditions, using a reduction under the assump-
tion that Ω has a non-trivial topology. By assuming some appropriate nondegenerate
conditions, we provide, in this work, a more general construction of vortex solutions
via a non-variational reduction for problems like (1.4).

To put our work in a broader context, we note that given the technological in-
terests of studying vortex interactions with the applied current, there has been nu-
merous calls for in-depth mathematical analysis of the various issues related to the
time-dependent G-L models [10, 11]. Indeed, there is now growing attention on the
subject, see, for instance, the recent studies on the effect of applied current or voltage
using a one-dimensional TDGL models [2, 22, 23] and the study of finite time vor-
tex motion using the two dimensional TDGL with an approximate boundary current
condition [25]. In this work, we take a different angle and construct a single-vortex
solution by following the approach in [19]. We thus see that, if the applied current is
sufficiently weak, the geometric pinning force can counter the Lorentz force generated
by the applied current and prevents the vortex from moving across the sample. As
a consequence of such force balance, the stationary location of the vortex also varies
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with the applied current. While there could be an appreciable stationary shift in the
vortex position for relatively large values of the applied current, the shift reduces to
zero in the limit that the applied current diminishes to zero together with the vortex
core size. It can be further illustrated that the shift happens naturally along the
direction of the Lorentz force which is perpendicular to the applied current. Putting
together, we see that the results of this paper provide a partial justification to the
existence of a critical applied current for generating vortex motion. Moreover, the
results offer new insight into the rich vortex dynamics of the HKHF model, which in
turn shed light on the current driven dynamics of the full TDGL model.

To make the presentation of the key findings in more clear manner, the main
results are summarized in Section 2. The rest of the papers is organized as follows.
In Section 3, we introduce the approximate solution. In Section 4, an error estimate
is given. In Section 5 and Section 6, we study the linear problem and the nonlinear
problem respectively. In Section 7, we prove the theorem 2.2 while in Section 8,
we sketch the proofs of Theorems 2.3 and 2.4. Finally, connections of the results
presented here to other studies are discussed in Section 9.

Acknowledgment. The research of the first author is partially supported by US NSF
DMS-0712744, while the second and third authors are partially supported by RGC
of Hong Kong and “Focused Research Scheme” of CUHK. We thank the anonymous
referees for carefully reading the manuscripts and many constructive suggestions.

2. Main results. We now present the main results of the paper in this section.
First, we need to introduce some definitions and assumptions.

Definition 2.1. Let Ψ(ξ): Ω → R
N be a continuous vector-valued function, where

Ω ⊂ R
N is an open set. We say that ξ0 ∈ Ω is a stable zero point of Ψ if

i) Ψ(ξ0) = 0;

ii) there is a neighborhood U of ξ0 such that

Ψ(ξ) 6= 0 ∀ ξ ∈ ∂U ,

and

deg(Ψ,U , 0) 6= 0,

where deg denotes the Brouwer degree.

We remark that a nondegenerate zero of Ψ is a stable zero. Here a zero ξ0 of Ψ

is called nondegenerate if Ψ(ξ0) = 0, det(∇Ψ(ξ0)) 6= 0. If Ψ(x) = ∇ψ(x) for some
scalar function ψ, then any local minimum or local maximum points of ψ are stable
zeroes of Ψ.

Throughout the paper, the functions A0 and Φa are assumed to be smooth over
Ω. We postpone the definition of Ψ(ξ) to Section 3. Now we state our main results
on the existence of single-vortex solutions to (1.4) in general domains.

Theorem 2.1. Assume that A0 and Φa are independent of ε. If ξ0 ∈ Ω is a stable
zero point of Ψ defined in (3.6), then for small ε, there exist a constant dε and a
single-vortex solution uε satisfying (1.4). Moreover, the vortex is degree +1 (or −1)
and centered at ξε such that ξε → ξ0, and the constant dε → 1

|Ω|

∫
Ω

Φa as ε→ 0.
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In the above, both A0 and Φa are independend on ε so that we may see the effect
of nonvanishing applied magnetic field and applied current when the vortex core size
diminishes. In fact, we can also deal with the case that A0 and Φa do depend on ε.
In this case, Ψ depends upon ε too, which is thus denoted as Ψε (the specific form
is to be given later in the discussion). To give a proper definition of the degree, we
need a stronger non-degeneracy condition as follows.

Definition 2.2. Let Ψε(ξ): Ω → R
N be a smooth vector-valued function, where

Ω ⊂ R
N is an open set. We say that ξε0 is a uniformly non-degenerate inner zero

point of Ψε if
i) dist(ξε0 , ∂Ω) ≥ C (independent of ε);

ii) Ψε(ξε0) = 0;

iii) there is a constant C independent of ε such that all the eigenvalues of ∇Ψε(ξε0)
satisfy

|λε(∇Ψε(ξε0))| ≥ C.

Let

‖A0‖ = max
{
‖A01(x)‖C1,β(Ω), ‖A02(x)‖C1,β(Ω)

}
,

where 0 < β < 1 is an arbitrary constant and ‖ · ‖C1,β is the usual Hölder norm. We
then have the following theorem.
Theorem 2.2. Assume that A0 and Φa satisfy

‖A0‖ = O(ε−α), ‖Φa‖Cβ(Ω) = O(ε−α) for some 0 ≤ α <
1

6
. (2.1)

Then for small ε, if ξε0 is a uniformly non-degenerate inner zero point of Ψε(ξ) defined
in (3.6) below, there exists a constant dε and a single-vortex solution uε satisfying
(1.4). Moreover, the vortex is degree +1 (or −1) and centered at ξε such that |ξε−ξε0| =

O(ε
2
3
−4α| log ε|2), and the constant

∣∣dε − 1
|Ω|

∫
Ω Φa

∣∣ = O(ε1−α) as ε→ 0.

Remark 2.1. In the above two theorems, if
∫
Ω

Φa 6= 0, then the constant dε 6= 0. In
general even if

∫
Ω

Φa = 0, the constant dε may be nonzero. This is strikingly different
from the results in [19].

Next, we consider several specific cases with
∫
Ω Φa = 0 and dε = 0. More precisely,

assume that Ω is the unit disk D in R
2 and Φa = Jx2 for some small constant applied

current J 6= 0, then we may consider the steady state solution u = u(x) of (1.1)-(1.3)
that satisfies






(i∇ + A0)
2u+

1

ε2
(|u|2 − 1)u+ iΦau = 0 in D,

(i∇ + A0)u · ν = 0 on ∂D.

(2.2)

Theorem 2.3. Assume A0 = 0 and Φa(x) = Jx2 for some nonzero constant J
independent of ε. Then for small enough ε, there exists a single-vortex solution of
(2.2) with degree +1 or −1. Moreover, the location of the vortex has a slight nonzero
shift in x1 axis from the origin.
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Remark 2.2. Theorem 2.3 is also true for domains being symmetric in x-axis and
y-axis. The proof is similar by employing the symmetries.

Finally, we consider two examples with A0 given respectively by

A0(x) =
H

2
(−x2, x1), (2.3)

or

A0(x) =

(
−H

2
x2,

H

2
x1 −

J

2
x2

1

)
, (2.4)

for a magnetic field H close to the lower critical field HC1
, i.e. H ∼ | log ε|/2 [16, 20,

21]. The vector potential given in (2.4) satisfies in particular the Maxwell equation
for the corresponding electric potential Φa = Jx2 [12].

Theorem 2.4. Assume that Φa = Jx2, J is finite and independent of ε, and A0

satisfies (2.3) or (2.4) with H ∼ | log ǫ|/2. Then for small enough ε, there exists a
single-vortex solution of (2.2) with degree +1 or −1.

Moreover, for any fixed small ε and any J 6= 0, the location of the vortex has a
slight nonzero shift on x1 axis from origin, but the shift approaches to 0 as ε→ 0.

Remark 2.3. In Theorem 2.4, since H ∼ | log ε|/2 is very large, its impact on the
location of the vortex overshadows that of J . The distance of the vortex to the origin
is on the order of O( JH ), which still approaches to 0 as ε → 0. This is different from
the case in Theorem 2.3.

Remark 2.4. In Theorem 2.4, if H ∼ | log ε|/2 is very large, we can also allow J to
be large so that

J < cH (2.5)

where c < 2 is any fixed number. In this case, the distance of the vortex to the origin
is on the order of O( JH ). The proof is similar to that of Theorem 2.4 by using Theorem
2.2.

Theorems 2.1 and 2.2 can also be extended to multi-vortex. For simplicity, we
only deal with single-vortex case.

Our main idea of proving Theorem 2.1 is the finite-dimensional Liapunov-Schmidt
reduction method. In [19], del Pino, Kowalczyk and Musso performed a similar re-
duction method for the variational problem (1.5). Our analysis here utilizes the
ansatz u = v(y) = η(V0 + iV0ψ) + (1 − η)V0e

iψ similar to that given in [19] and
we adopt a degree-theoretic approach to provide a global construction of the solu-
tion. We note that Pacard and Riviere [18] has also developed a reduction theory
for Ginzburg-Landau equation which also works for non-variational problems. Their
approach takes a different ansatz with vortices glued together and is based on an
implicit function theorem. Our results here illustrate that the approach developed in
[19] for variational problems can be extended to non-variational problems as well.

Since dǫ can be replaced by d̂ǫ + (
∫
Ω Φa)/|Ω| with a change of notation, we may

assume that, with no loss of generality,

∫

Ω

Φa = 0 (2.6)
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in the rest of the paper.
In what follows we just deal with the case that A0 and Φa are dependent on ε.

As for the independent case, we put α = 0 directly.
The rest of the paper is organized as follows: The ansatz and preliminary esti-

mates are given in Section 3 and Section 4 respectively. In Section 5, we develop the
necessary projected linear theory and the nonlinear projected problem is solved in
Section 6. Section 7 contains the proofs of Theorem 2.1 and Theorem 2.2. Finally we
give a sketch proof of Theorem 2.3 and Theorem 2.4 in Section 8.

For convenience of notation, we denote x⊥ = (−x2, x1) for any vector x, and w̄
the conjugate of the complex-valued w. Moreover, we let C denote a generic constant
independent of ε which can take various values.

3. Ansatz. We first introduce the standard single-vortex solutions w±(z) of re-
spective degrees +1 and −1 in the plane, of the equation

−∆w + (|w|2 − 1)w = 0 in R
2,

which has the form

w±(z) = S(r0)e
±iθ0

with (r0, θ0) being the usual polar coordinates and S(r0) the unique solution to





S′′ +
S′

r0
− S

r20
+ (1 − |S|2)S = 0 in (0,∞),

S(0) = 0, S(∞) = 1.

(3.1)

It is well known, (see e.g. [7]), that S′(0) > 0 and

S(r0) = 1 − 1

2r20
+O(

1

r40
) as r0 → ∞. (3.2)

In general, w±(z) does not satisfy the boundary condition that (i∇+ A0)u · ν =
0 on ∂D. To this end, we need to add a phase function ϕ(x) so that both the equation
and the boundary conditions are simultaneously satisfied. In this sense, our choice of
ansatz provides a global construction. Our first approximation to a solution of (1.4)
can thus be written as

U0(x) = S

( |x− ξ|
ε

)
ei[θ(x)+ϕ(x)], (3.3)

where θ(x) = θ0(x − ξ) and, by (2.6), the phase function ϕ(x) is the unique real
solution of






∆ϕ− (∇ · A0) − Φa = 0 in Ω,

∂ϕ

∂ν
= −∂θ

∂ν
+ A0 · ν on ∂Ω,

∫

Ω

ϕ = 0.

(3.4)

Remark 3.1. Similar construction can be carried out for a solution with degree −1
just by replacing θ with −θ in (3.3) and then in (3.4) correspondingly.
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We assume that ξ stays in the following configuration set

Λ =
{
ξ ∈ Ω : dist(ξ, ∂Ω) > δ

}
.

Then since

∇θ(x) =
(x− ξ)⊥

|x− ξ|2 ∈ C∞(∂Ω),

in addition to the condition (2.1), it is easy to see from (3.4), by standard Schauder
estimates, that

‖ϕ‖C2,β(Ω) = O(ε−α). (3.5)

Here α and β are defined in (2.1).
Throughout the paper, we define

Ψε
0(x, ξ) = ∇ϕ(x, ξ) − A0(x),

and

Ψε(ξ) = Ψε
0(ξ, ξ). (3.6)

Remark 3.2. If A0 and Φa are independent of ε, so is Ψε obviously. Thus we use
Ψ to replace Ψε for the sake of convenience.

Remark 3.3. In the end, the vortex point ξǫ0 satisfies Ψǫ(ξǫ0) ∼ 0. The fact that
Ψǫ governs the location of the vortex comes from mathematical estimations carried
out later. Physically this means that the combination of the domain Green’s function,
representing the geometric pinning force and barrier provided by the magnetic field,
and the electric current, representing the effect of Lorentz force, determines the vortex
location.

Finally in this section, we introduce the set-up of our problem and an overall
strategy of solving the problem.

Denote v(y) = u(εy). Obviously u satisfies (1.4) if and only if v is a solution to




(i∇ + εÃ0)

2v + (|v|2 − 1)v + iε2Φ̃av = iε2dεv in Ωε,

(i∇ + εÃ0)v · ν = 0 on ∂Ωε,
(3.7)

where Ã0(y) = A0(εy), Φ̃a(y) = Φa(εy) and Ωε = Ω/ε. We shall set in what follows

V0(y) = U0(εy) = S(|y − ξ′|)ei[θ̃(y)+ϕ̃(y)],

where ξ′ = ξ/ε, θ̃(y) = θ(εy) and ϕ̃(y) = ϕ(εy). Let η̃: R → R be a smooth cut-off
function such that η̃(s) = 1 for s ≤ 1 and η̃(s) = 0 for s ≥ 2. Define

η(y) = η̃(|y − ξ′|).

Following the ideas in [19], we shall look for the solutions of (3.7) with the form

v(y) = η(V0 + iV0ψ) + (1 − η)V0e
iψ, (3.8)

where ψ is small away from the vortex and possibly unbounded nearby, whereas iV0ψ
is always bounded.

8



Remark 3.4. When |y− ξ′ | ≤ 1, we have v(y) = V0 + iV0ψ and when |y− ξ′ | ≥ 2, we
have v(y) = V0e

iψ. This choice of ansatz helps us to effectively represent and analyze
the nonlinear term, that is, outside the vortex, |v|2 = Se−ψ2 where ψ = ψ1 + iψ2

with ψ1 and ψ2 being real-valued. If instead we set v = V0 + φ with φ small, then the
nonlinear term |v|2v becomes very complicated.

Setting

φ = iV0ψ, (3.9)

we require that φ is bounded (and smooth) near the vortex. Direct computation
shows that ψ should satisfy






Lε(ψ) = R+N(ψ) in Ωε,

∂ψ

∂ν
= F on ∂Ωε.

(3.10)

Here

Lε(ψ) = ∆ψ + 2

(∇V0

V0
− iεÃ0

)
∇ψ − 2i|V0|2ψ2 −

η

η + (1 − η)eiψ
E

V0
ψ, (3.11)

N(ψ) =
1

iV0[η + (1 − η)eiψ ]

{
∆ηV0(e

iψ − 1 − iψ) + 2∇η∇V0(e
iψ − 1 − iψ)

− 2∇ηεÃ0iV0(e
iψ − 1 − iψ) + 2i∇η∇ψ(eiψ − 1)

− 2η|V0|2ψ2iV0ψ − η(1 − η)2|V0|2(e−2ψ2 − 1 + 2ψ2)iV0ψ

+ η2(2 − η)|V0|2|ψ|2iV0ψ

}
− iη(2 − η)|V0|2|ψ|2

− i
(1 − η)eiψ

η + (1 − η)eiψ
(∇ψ)2 − i(1 − η)2|V0|2(e−2ψ2 − 1 + 2ψ2), (3.12)

R(y) = (iV0)
−1E(y), (3.13)

F (y) = iV −1
0

∂V0

∂ν
+ εA0 · ν, (3.14)

where

E(y) = (i∇ + εÃ0)
2V0 + (|V0|2 − 1)V0 + iε2Φ̃aV0 − iε2dεV0. (3.15)

In the above computations, we have already used the equation (3.4).
In the rest of the paper, we proceed to solve (3.10). This will be done in two

steps:
Step 1: First, we fix the vortex position ξ and the scalar constant d and solve a
projected nonlinear problem for ψ





Lε(ψ) = R+N(ψ) + c0ǫ
2χΩǫ\B(ξ′ ,δ/ǫ)

+
∑
ℓ cℓ

1
iw(y−ξ′)χ{r<1/2}

∂w
∂yℓ

(y − ξ′) in Ωε,
∂ψ

∂ν
= F on ∂Ωε,∫

Ωε\B(ξ′,δ/ε)

|V0|2ψ1 = 0, Re
∫
|z|<1

φ̂w̄zℓ
= 0, l = 1, 2.

(3.16)
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Here c0, cℓ are coefficients (Larange multipliers) which depend on ξ and d contin-
uously.

Step 2: Then we use a degree argument to solve the reduced finite-dimensional
problem c0 = cℓ = 0, ℓ = 1, 2 for ξ.

Remark 3.5. Pacard and Riviere [18] developed a reduction theory for Ginzburg-
Landau equation by using Hölder spaces. The difference between their approach and
del Pino-Kowalczyk-Musso’s approach has two parts: First the ansatzes are different.
Pacard and Riviere expand the solution simply as u = V0+φ while del Pino, Kowalczyk
and Musso expand the solution u as u = v(y) = η(V0 + iV0ψ)+(1−η)V0e

iψ. Secondly
the reduced problems are solved differently. Del Pino, Kowalczyk and Musso use the
variational reduction method to reduce the problem to a finite dimensional variational
problem and make use of topological methods. Pacard and Riviere uss degree-theoretic
method to solve the reduced problem. In summary, both approaches are almost identical
in the reduction step, and they only differ in the reduced problem step. The approach
in [19] is variational (can be used for variational problems), while the approach in [18]
is more analytical (can be used for variational and non-variational problems as well).

4. Preliminary Estimates. In this section we estimate the error term E(y)
defined at (3.15) and boundary term F (y) defined at (3.14).

Lemma 1. There exists a constant C, depending on δ such that for small ε and all
points ξ ∈ Λ, we have

‖E‖C1(|y−ξ′|<3) ≤ Cε2|dε| + Cε1−α. (4.1)

Moreover, we have that E(y) = iV0

[
− ε2dε+R1(y)+ iR2(y)

]
with R1, R2 real-valued

and

|R1(y)| ≤ Cε1−α
1

|y − ξ′|3 , (4.2)

|R2(y)| ≤ Cε1−α
1

|y − ξ′| + Cε2−2α (4.3)

if |y − ξ′| > 1. Finally, we have F (y) = iF2(y) where F2 is real-valued and

‖F2‖L∞(∂Ωε) + ε−1‖∇F2‖L∞(∂Ωε) ≤ Cε3.

Proof. Straightforward computation gives

∇V0(y) = V0(y)

{∇S(|y − ξ′|)
S(|y − ξ′|) + i(∇θ̃ + ∇ϕ̃)

}
, (4.4)

and

∆V0(y) = iV0

{
(∆θ̃ + ∆ϕ̃) + 2

∇S(|y − ξ′|)
S(|y − ξ′|) (∇θ̃ + ∇ϕ̃)

−i∆S(|y − ξ′|)
S(|y − ξ′|) + i(∇θ̃ + ∇ϕ̃)2

}
.
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Thus, since θ̃ is harmonic, we have

(i∇ + εÃ0)
2V0

= iV0

{
− ∆ϕ̃− 2

∇S(|y − ξ′|)
S(|y − ξ′|) (∇θ̃ + ∇ϕ̃− εÃ0) + ε(∇ · Ã0)

+ i
∆S(|y − ξ′|)
S(|y − ξ′|) − i(∇θ̃ + ∇ϕ̃)2 + 2iεÃ0(∇θ̃ + ∇ϕ̃) − iε2|Ã0|2

}
.

Using (3.4) and the fact that ∇S(|y − ξ′|)∇θ̃ = 0, we easily get

(i∇ + εÃ0)
2V0 + iε2Φ̃aV0 − iε2dεV0

= iV0

{
− ε2dε − 2

∇S(|y − ξ′j |)
S(|y − ξ′j |)

(∇ϕ̃− εÃ0)

+ i
∆S(|y − ξ′|)
S(|y − ξ′|) − i|∇θ̃|2 − 2i∇θ̃(∇ϕ̃ − εÃ0) − i|∇ϕ̃− εÃ0|2

}
.

Observe that |∇θ̃| = 1
|y−ξ′| and

(|V0|2 − 1)V0 =
[
S2(|y − ξ′|) − 1

]
V0.

The above estimates allow us to conclude that

E = iV0

{
− ε2dε − 2

∇S(|y − ξ′|)
S(|y − ξ′|) (∇ϕ̃− εÃ0)

−2i∇θ̃(∇ϕ̃ − εÃ0) − i|∇ϕ̃− εÃ0|2
}
. (4.5)

From (4.5), the desired estimate (4.2) follows. Recalling that S(r) ∼ Cr as r → 0,
(4.1) also holds.

On ∂Ωε, by (3.4) and (4.4), we have

F (y) = i
1

S(|y − ξ′|)
∂S(|y − ξ′|)

∂ν
:= iF2(y).

Since now |y − ξ′| > δ
ε , it is easy to see that

F2 = O(ε3).

Direct calculation also shows that

∇F2(y) = O(ε4).

The proof is concluded.
Using the form of the ansatz in the region |y − ξ′| > 2, we see that (3.10) takes

the simple form

Lε(ψ) = −R− i(∇ψ)2 − i|V0|2(e−2ψ2 − 1 + 2ψ2). (4.6)
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In terms of the real part and the imaginary part, (4.6) becomes

∆ψ1 + 2
∇S(|y − ξ′|)
S(|y − ξ′|) ∇ψ1 − 2

(
∇θ̃ + ∇ϕ̃− εÃ0

)
∇ψ2

−2∇ψ1∇ψ2 − ε2dε +R1 = 0 (4.7)

and

∆ψ2 + 2
∇S(|y − ξ′|)
S(|y − ξ′|) ∇ψ2 + 2

(
∇θ̃ + ∇ϕ̃− εÃ0

)
∇ψ1

− 2|V0|2ψ2 + |∇ψ1|2 − |∇ψ2|2 + |V0|2(e−2ψ2 − 1 + 2ψ2) +R2 = 0,

where R1(y), R2(y) are defined in Lemma 1 and, as defined below (3.7),

V0(y) = w(y − ξ′)eiϕ̃. (4.8)

To study the ansatz near the point ξ′, it is more convenient to do this in the
translated variable z = y − ξ′. We define the function φ̂(z) such that

φ̂(z) = iw(z)ψ(z + ξ′), (4.9)

which implies, from (3.9) and (4.8),

φ(y) = eiϕ̃φ̂(y − ξ′).

We shall write Problem (3.10) in terms of the function φ̂. Let us consider the operator
Lε defined by

Lε(φ̂)(z) = iw(z)Lε(ψ)(z + ξ′).

Thus φ̂ should satisfy

Lε(φ̂) = R̂+ N̂(φ̂).

Here explicitly, designating that V1(z) = V0(z + ξ′), Â0(z) = Ã0(z + ξ′), Φ̂a(z) =

Φ̃a(z + ξ′), ϕ̂(z) = ϕ̃(z + ξ′),

Lε(φ̂) = L0(φ̂) + 2i
(
∇ϕ̂− εÂ0

)
∇φ̂

− 2i
(
∇ϕ̂− εÂ0

) ∇w
w
φ̂− η̃(|z|)

η̃ + (1 − η̃)e
φ̂
w

E1

V1
φ̂ (4.10)

where L0 is the linear operator defined by

L0(φ̂) = ∆φ̂+ (1 − |w(z)|2)φ̂ − 2 Re(w̄φ̂)w(z),

and E1 is given by

E1(z) = (i∇ + εÂ0)
2V1 + (|V1|2 − 1)V1 + iε2Φ̂aV1 − iε2dεV1.

The term R̂ is

R̂(z) = iw(z)R(z + ξ′) = e−iϕ̂E1(z), (4.11)

while the nonlinear term N̂(φ̂) is given by

N̂(φ̂) = iwN(ψ)(z + ξ′). (4.12)

Observe that, in terms of w, E1 takes the form

E1 = V1

[
|∇ϕ̂− εÂ0|2 − 2i

∇w
w

(∇ϕ̂− εÂ0) − iε2dε

]
.
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5. Projected linear theory. To solve the problem (3.10), we need first to an-
alyze the possibility to invert the operator Lε. It is not expected that this operator
to be in general invertible. Indeed, its version Lε in the φ̂ -variable is a small pertur-
bation of the operator L0 defined in the above section. When regarded in entire R

2

this operator does have a kernel: functions wzℓ
(the derivative with respect to zℓ such

that z = z1 + iz2) and iw annihilate it. In suitable spaces, these functions are known
to span the entire kernel, see [17, 18]. In a suitable “orthogonal” to this kernel, the
bilinear form associated to this operator turns out to be uniformly positive definite
and hence invertible.

As in [19], we consider the following linear problem, for fixed small δ > 0,




Lε(ψ) = h+ c0ε
2χΩε\B(ξ′,δ/ε) in Ωε,

∂ψ

∂ν
= g on ∂Ωε,

∫

Ωε\B(ξ′,δ/ε)

|V0|2ψ1 = 0,

Re

∫

|z|<1

φ̂(z)w̄zℓ
(z) = 0 for any ℓ = 1, 2,

(5.1)

where h(y) = h1(y) + ih2(y), g(y) = g1(y) + ig2(y) are two complex-valued functions,
wzℓ

is the derivative of w with respect to zℓ, w̄zℓ
is the conjugate of wzℓ

and c0 is a
real constant.

We shall establish a priori estimates for this problem. To this aim we shall
conveniently introduce adapted norms. In our proof, in order to get the best upper
bound 1/6 for α, we let

σ2 =
1

6

and σ1 be any number such that

0 < σ1 < σ2 − α.

We set 0 < β < 1. Denote r = |y − ξ′| and define

‖ψ‖∗ = ‖φ̂‖C2,β(|z|<2) + ‖φ̂‖C1,β(|z|<3)

+ ‖ψ1‖L∞(r>2) + ‖r∇ψ1‖L∞(r>2)

+ ‖r1+σ2ψ2‖L∞(r>2) + ‖r1+σ2∇ψ2‖L∞(r>2), (5.2)

‖h‖∗∗ = ‖ĥ‖C0,β(|z|<3) + ‖r2+σ1h1‖L∞(r>2) + ‖r1+σ2h2‖L∞(r>2), (5.3)

where ĥ(z) = iw(z)h(z + ξ′). In addition, we define

‖g‖∗∗∗ = ε−1‖g1‖L∞(∂Ωε) + ε−2‖∇g1‖L∞(∂Ωε)

+ ε−1−σ2‖g2‖L∞(∂Ωε) + ε−2−σ2‖∇g2‖L∞(∂Ωε). (5.4)

Lemma 2. Assume that ξ ∈ Λ. There exists a constant C > 0, dependent on δ but
independent of c0, such that for ε sufficient small, any solution of (5.1) satisfies

‖ψ‖∗ ≤ C
[
| log ε|‖h‖∗∗ + ‖g‖∗∗∗

]
.
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Proof. The proof is similar to that of Lemma 4.1 of [19]. The minor difference is
the effect of A0. For the sake of completeness, we include the proof here.

We argue by contradiction. Let us assume the existence of sequence εn → 0, and
the function ψn, hn and gn which satisfy






Lεn(ψn) = hn + cnε
2
nχΩεn\B(ξ′,δ/εn) in Ωεn

,

∂ψn

∂ν
= gn on ∂Ωεn

,

∫

Ωεn\B(ξ′,δ/εn)

|V0|2ψn1 = 0,

Re

∫

|z|<1

φ̂nw̄zℓ
= 0,

(5.5)

with

‖ψn‖∗ = 1, | log εn|‖hn‖∗∗ + ‖gn‖∗∗∗ → 0.

We observe from (3.11) that the real part of the equation is such that

ReLεn(ψn) = ∆ψn1 +O(ε3n)∇ψn1 +O(ε1−αn )∇ψn2 in Ωεn
\B(ξ′,

δ

εn
).

and hence, integrating on Ωεn
\B(ξ′, δ/εn), we get the estimate

|cn| ≤ C

∣∣∣∣∣

( ∫

∂B(ξ′, δ
εn

)

−
∫

∂Ωεn

)
∂ψn1
∂ν

∣∣∣∣∣ + Cεσ2−α
n ‖ψn‖∗ + Cεσ1‖hn‖∗∗

≤ C [‖ψn‖∗ + ‖gn‖∗∗∗ + εσ1‖hn‖∗∗] .

It follows that cn is bounded. We then assume that cn → c∗.

Next we will find that actually c∗ = 0 and that ψn approaches 0. Let us set
ψ̃n(x) = ψn(x/εn). It can be directly checked, from the bounds assumed, that given
a small number δ′ > 0 we have






∆ψ̃n1 = O(εσ2−α
n ) +O(

εσ1
n

| log εn|
) + cnχΩ\B(ξ,δ) in Ω \B(ξ, δ′),

∂ψ̃n1
∂ν

= o(1) on ∂Ω.

Moreover,

‖ψ̃n1 ‖∞ ≤ 1, ‖∇ψ̃n1 ‖∞ ≤ Cδ′ .

Passing to a subsequence, we then get that ψ̃n1 converges uniformly over compact
subsets of Ω \ {ξ} to a function ψ̃∗

1 with |ψ̃∗
1 | ≤ 1 which solves





∆ψ̃∗
1 = c∗χΩ\B(ξ,δ) in Ω \B(ξ, δ′),

∂ψ̃∗
1

∂ν
= 0 on ∂Ω.
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This clearly implies c∗ = 0 and hence ψ̃∗
1 is a constant. But by passing the third

equality in (5.5) to the limit we see that ψ̃∗
1 = 0. It follows that ψ̃n1 → 0 uniformly

and in C1 sense away from the points ξ. This implies in particular that

|ψn1 | + ε−1|∇ψn1 | → 0 in Ωεn
\B(ξ′,

δ

2εn
). (5.6)

Let us now consider the imaginary part of the equation. From (3.11) we then argue
that






−∆ψn2 + 2|V0|2ψn2 = o(ε1+σ2
n ) in Ωεn

\B(ξ′, δ
2εn

),

∂ψn2
∂ν

= o(ε1+σ2

n ) on ∂Ωεn
,

while in this region ψn2 = O(ε1+σ2
n ). A suitable use of barriers yields then that

|ψn2 | + |∇ψn2 | = o(ε1+σ2

n ) in Ωεn
\B(ξ′,

δ

2εn
). (5.7)

Consider now a smooth cut-off function η̌ with η̌(s) = 1 if s < 1
2 , η̌(s) = 0 if

s > 1, and define

ψ̌n(y) = η̌

(
εn|y − ξ′|

δ

)
ψn(y)..

Let us compute the equation satisfied by ψ̌n. By (5.6) and (5.7), we observe that, for
real and imaginary parts,

∇y η̌∇ψn =

[
o(ε2n)

o(ε2+σ2
n )

]
, ψn∆y η̌ =

[
o(ε2n)

o(ε3+σ2
n )

]
,

2

(∇V0

V0
− iεÃn

0

)
∇y η̌ψ

n =

[
o(ε3+σ2−α

n )

o(ε2−αn )

]
,

η̌Lεn(ψn) = o(1)

[
1

| log εn|(r+r2+σ1)

1
| log εn|(r+r1+σ2)

]
.

Thus we get




Lεn(ψ̌n) = o(1)




1

| log εn|(r+r2+σ1)
+ ε2n

1
| log εn|(r+r1+σ2)



 in B(ξ′, δεn
),

ψ̌n = 0 on ∂B(ξ′, δεn
).

(5.8)

Before we proceed with the rest of the proof of Lemma 2, we need to establish the fol-
lowing intermediate result which provides an outer estimate. For notational simplicity
we shall omit the subscript n in the quantities involved.
Lemma 3. There exists positive numbers R0, C such that for all large n

‖ψ̌1‖L∞(r>R0) + ‖r∇ψ̌1‖L∞(r>R0) + ‖r1+σ2 ψ̌2‖L∞(r>R0)

+ ‖r1+σ2∇ψ̌2‖L∞(r>R0) ≤ C
[
‖φ̌‖L∞(r<2R0) + o(1)

]
, (5.9)

where φ̌ = iV0ψ̌.
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Proof. From (4.7) it can be directly checked that the following relations hold for
r > 2,

−∆ψ̌1 = O(
1

r3
)∇ψ̌1 +O(

1

r
+ ε1−α)∇ψ̌2 + o(

1

| log ε| )
1

r2+σ1
+ o(ε2), (5.10)

−∆ψ̌2 + 2|V0|2ψ̌2 +O(
1

r3
)∇ψ̌2 = O(

1

r
+ ε1−α)∇ψ̌1 + o(

1

| log ε| )
1

r1+σ2
. (5.11)

Let us call p1, p2 the respective right hand sides of (5.10) and (5.11). Then we see,
provided that σ′ < 1 − σ2 − α,

|p2| ≤ C
B

r1+σ2
, B = ‖r1−σ′∇ψ̌1‖L∞(r>2) + o(

1

| log ε| )..

The use of a barrier and elliptic estimates then yield

|∇ψ̌2| + |ψ̌2| ≤ C
B + ‖ψ̌2‖L∞(r=2)

r1+σ2
, 2 < r <

δ

ε
. (5.12)

We now use the above to estimate p1. Since σ1 < σ2 − α, we get

|p1| ≤
C

r2+σ1

[
‖∇ψ̌1‖L∞(r>2) + ‖r1+σ2∇ψ̌2‖L∞(r>2) + o(

1

| log ε|)
]

+ o(ε2),

hence by (5.12)

|p1| ≤ C
B′

r2+σ1
+ o(ε2),

where

B′ = ‖r1−σ′∇ψ̌1‖L∞(r>2) + ‖ψ̌2‖L∞(r=2) + o(
1

| log ε| )

It is easy to see that a supersolution for (5.10) is given by

ω(z) =
B′

σ2
1

(1 − 1

rσ1
) + o(

1

| log ε| )(δ
2 − r2ε2) + ‖ψ̌1‖L∞(r=2),

and hence

‖ψ̌1‖L∞(r>1) ≤ CB′ + ‖ψ̌1‖L∞(r=1).

Next we estimate ∇ψ̌1. Let us define ψ̃1(z) = ψ̌1(ξ
′ + R(e + z)) where |e| = 1 and

R < δ
ε . Then for |z| ≤ 1

2 we have

|∆ψ̃1| ≤ CB′ + o(1).

Since we also have |ψ̃1| ≤ CB′ in this region, it follows from elliptic estimates that
|∇ψ̃1(0)| ≤ CB′. Since R and e are arbitrary, what we have established is

|ψ̌1| + |r∇ψ̌1| ≤
[
‖r1−σ′∇ψ̌1‖L∞(r>2) + ‖ψ̌1‖L∞(1<r<2) + o(

1

| log ε| )
]
.
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Now,

‖r1−σ′∇ψ̌1‖L∞(r>1) ≤ R1−σ′

0 ‖∇ψ̌1‖L∞(1<r<R0) +
1

Rσ
′

0

‖r∇ψ̌1‖L∞(r>R0),

thus fixing R0 sufficiently large, we obtain

|ψ̌1| + |r∇ψ̌1| ≤ C

[
‖ψ̌1‖C1(1<r<R0) + o(1)

1

| log ε|

]
for r > 2,

and also

|ψ̌2| + |∇ψ̌2| ≤
C

r1+σ2

[
‖ψ̌‖C1(1<r<R0) + o(1)

1

| log ε|

]
for r > 2.

The lemma is proven.
Proof. [Continuation of the proof of Lemma 2] Let us go back to the contradiction

argument. Since ‖ψ‖∗ = 1, and the corresponding portion of this norm of ψ goes to

zero on the region r > δ′

ε for any given δ′ > 0, we conclude from the previous lemma
that necessarily, for some C > 0,

‖φ̌‖C2(|z|<R0) ≥ C,

where φ̌(z) = iw(z)ψ̌(ξ′ + z).
The rest of the proof is similar to the corresponding part of [19, Lemma 4.1].

Namely, we consider the limiting function of φ̌(z), called φ0. φ0 will satisfy L0(φ0) = 0

and φ0 = α0(iw)+
∑2

l=1 αl
∂w
∂zl

. By the orthogonality condition

∫

Ωε\B(ξ′,δ/ε)

|V0|2ψ1 =

0, Re

∫

|z|<1

φ̂w̄zℓ
= 0, we then conclude that α0 = α1 = α2 = 0 and hence φ0 ≡ 0,

which is a contradiction to (5). The proof is completed.
We next come to the following linear problem





Lε(ψ) = h+ c0ε
2χΩε\B(ξ′,δ/ε)

+
∑

ℓ

cℓ
1

iw(y − ξ′)
χ{r<1/2}

∂w

∂yℓ
(y − ξ′) in Ωε,

∂ψ

∂ν
= g on ∂Ωε,

∫

Ωε\B(ξ′,δ/ε)

|V0|2ψ1 = 0, Re

∫

|z|<1

φ̂w̄zℓ
= 0,

(5.13)

Proposition 5.1. Assume that dε = O(ε1+σ1−σ2−2α). There exists a constant C > 0,
dependent on δ but independent of c0, such that for all small ε the following holds: if
| log ε|‖h‖∗∗+‖g‖∗∗∗ <∞, then there exists a unique solution ψ = Tε(h, g) to Problem
(5.13). In addition,

‖Tε(h, g)‖∗ ≤ C
[
| log ε|‖h‖∗∗ + ‖g‖∗∗∗

]
. (5.14)

Proof. Near the point ξ′, we recall the definition (4.9) of φ̂ and the deduction
below it. Equation (5.13) is then equivalent to

Lε(φ̂) = ĥ+
∑

ℓ

cℓχ{r<1/2}wzℓ
, (5.15)
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where ĥ(z) = iw(z)h(ξ′ + z). Multiplying (5.15) against w̄zℓ
, integrating over B(0, δε )

and taking the real part, one gets

Re

∫

B(0, δ
ε
)

Lε(φ̂)w̄zℓ
= Re

∫

B(0, δ
ε
)

ĥw̄zℓ
+ cℓRe

∫

B(0, 1
2
)

|wzℓ
|2. (5.16)

Integrating by parts, we write

Re

∫

B(0, δ
ε
)

Lε(φ̂)w̄zℓ
= Re

∫

∂B(0, δ
ε
)

(
∂φ̂

∂ν
w̄zℓ

− φ̂
∂w̄zℓ

∂ν
)

+ Re

∫

B(0, δ
ε
)

¯̂
φ(Lεwzℓ

− L0wzℓ
). (5.17)

Since |∇w| = O(ε), |∇2w| = O(ε2) and |φ̂| ≤ C|ψ|, |∇φ̂| ≤ C(ε|ψ| + |∇ψ|) on
∂B(0, δε ), the boundary integrals can be estimated as

∣∣∣∣∣Re

∫

∂B(0, δ
ε
)

(
∂φ̂

∂ν
w̄zℓ

− φ̂
∂w̄zℓ

∂ν
)

∣∣∣∣∣ ≤ Cε‖ψ‖∗. (5.18)

Recall the definition (4.10) of Lε,

(Lε − L0)wzℓ
= 2i

(
∇ϕ̂− εÂ0

)
∇wzℓ

− 2i
(
∇ϕ̂− εÂ0

) ∇w
w
wzℓ

− η̃(|z|)
η̃ + (1 − η̃)e

φ̂
w

E1

V1
wzℓ

.

Since |∇w| ≤ C
1+r , |∇2w| ≤ C

1+r2 , it is easy to get

∣∣∣
(
∇ϕ̂− εÂ0

)
∇wzℓ

∣∣∣ ≤ Cε1−α

1 + r2
,

and
∣∣∣∣∣2i

(
∇ϕ̂− εÂ0

) ∇w
w
wzℓ

+
η̃(|z|)

η̃ + (1 − η̃)e
φ̂
w

E1

V1
wzℓ

∣∣∣∣∣ ≤
Cε1−α

1 + r2
+
Cε2−2α

1 + r
.

Thus we obtain
∣∣∣∣∣Re

∫

B(0, δ
ε
)

¯̂
φ(Lεwzℓ

− L0wzℓ
)

∣∣∣∣∣ = o(| log ε|−1)‖ψ‖∗. (5.19)

Then it holds that by (5.17), (5.18) and (5.19)

∣∣∣∣∣Re

∫

B(0, δ
ε
)

Lε(φ̂)w̄zℓ

∣∣∣∣∣ = o(| log ε|−1)‖ψ‖∗. (5.20)

On the other hand, it can be easily checked that
∣∣∣∣∣Re

∫

B(0, δ
ε
)

ĥw̄zℓ

∣∣∣∣∣ ≤ C‖h‖∗∗.
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Therefore we conclude that, combining (5.16), (5.20) and the estimate above,

|cℓ| ≤ o(| log ε|−1)‖ψ‖∗ + C‖h‖∗∗. (5.21)

Finally, applying Lemma 2 one gets

‖ψ‖∗ ≤ C
[
| log ε|‖h‖∗∗ + | log ε|

∑

ℓ

|cℓ| + ‖g‖∗∗∗
]
,

which implies (5.14).
Next we prove the existence. Consider the relations that ̺ = iV0ς and ˆ̺(z) =

iw(z)ς(z + ξ′). Let us define the space

H =

{
̺ ∈ H1(Ωε) :

∫

Ωε\B(ξ′, δ
ε
)

|V0|2ς1 = 0, Re

∫

|z|<1/2

ˆ̺w̄zℓ
= 0 for all ℓ

}

endowed with the usual inner product (̺, ϑ) =
∫
Ωε

∇̺∇ϑ. Problem (5.13) can be

written via Riesz’s representation theorem in the form φ + K(φ) = P , where K is
a linear, compact operator in H, P is determined by h and g. Fredholm alternative
then yields the existence and uniqueness assertion.
Remark 5.1. The previous result implies that the unique solution ψ = Tε(h, g) of
(5.13) defines a continuous linear map between the corresponding spaces. In addition
we can easily know that ψ is continuous with respect to dε by the implicit function
theorem.

6. The projected nonlinear problem. This section is devoted to solving
Problem (3.10) for a suitable small ψ. Rather than solving this directly, we con-
sider the following intermediate case:

Lε(ψ) = R +N(ψ) + c0ε
2χΩε\B(ξ′,δ/ε)

+
2∑

ℓ=1

cℓ
1

iw(y − ξ′)
χ{r<1/2}

∂w

∂yℓ
(y − ξ′) in Ωε, (6.1)

∂ψ

∂ν
= F on ∂Ωε, (6.2)

∫

Ωε\B(ξ′,δ/ε)

|V0|2ψ1 = 0, Re

∫

|z|<1

φ̂wzℓ
= 0 ∀ ℓ = 1, 2. (6.3)

Lemma 4. Assume that dε = O(ε1+σ1−σ2−2α). There is a constant C > 0 depending
only on δ such that for all points ξ ∈ Λ and ε small, Problem (6.1)-(6.3) possesses a
unique solution ψ with

‖ψ‖∗ ≤ Cε1−σ2−2α| log ε|.

Proof. Using Proposition 5.1, Problem (6.1)-(6.3) is equivalent to the fixed point
problem

ψ = Tε(−R−N(ψ), F ) := Aε(ψ).

Let

S =
{
ψ : ‖ψ‖∗ ≤ Cε1−σ2−2α| log ε|

}
.
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Regarding the error R = −ε2dε +R1 + iR2, Lemma 1 yields, for r > 1,

R1 = O(ε1−α)
1

r3
, R2 = O(ε1−α)

1

r
+O(ε2−2α).

Recalling R̂ the error in φ̂− coordinates (see (4.11)) we also find

‖R̂‖C0,β(|z|<3) = O(ε1−α),

and thus we conclude

‖R‖∗∗ ≤ Cε1−σ2−2α. (6.4)

Next we make the following claim:

‖N(ψ)‖∗∗ ≤ C‖ψ‖2
∗. (6.5)

In fact, if r > 2, N(ψ) reduces to (see (4.6))

N(ψ)1 = −2∇ψ1∇ψ2, N(ψ)2 = |∇ψ1|2 − |∇ψ2|2 + |V0|2(e−2ψ2 − 1 + 2ψ2).

The definitions of the ∗ − norm easily yields that in this region

|r2+σ1N(ψ)1| ≤ C
‖ψ‖2

∗

rσ2−σ1
, |r1+σ2N(ψ)2| ≤ C

‖ψ‖2
∗

r1−σ2
.

On the other hand, if r < 3, recall N̂(φ̂) the operator in the φ̂− variable, as defined
in (4.12). Direct computations obviously show that, from (3.12),

|N̂(φ̂)| ≤ C(|φ̂|2 + |∇φ̂|2).

Thus we have

‖N̂(φ̂)‖C0,β(|z|<3) < C‖ψ‖2
∗,

from where the claim (6.5) follows.
Finally, it is obviously from Lemma 1 that

‖F‖∗∗∗ ≤ Cε2−σ2 .

Combining (6.4), (6.5) and the estimate above, since

Aε(ψ) ≤ C
(
| log ε|‖R‖∗∗ + | log ε|‖N(ψ)‖∗∗ + ‖F‖∗∗∗

)
,

we know Aε: S −→ S.
On the other hand, if ψ1, ψ2 ∈ S and r > 2, it is easy to prove

‖N(ψ1) −N(ψ2)‖∗∗ ≤ Cε1−σ2−2α| log ε|‖ψ1 − ψ2‖∗.

While if r < 3 , it is also true that

‖N̂(φ̂1) − N̂(φ̂2)‖C0,β(|z|<3) ≤ Cε1−σ2−2α| log ε|‖φ̂1 − φ̂2‖C2(|z|<3).

Then we conclude that

‖Aε(ψ
1 − ψ2)‖∗∗ ≤ Cε1−σ2−2α| log ε|‖ψ1 − ψ2‖∗,

which tell us Aε is a contraction mapping on S. Hence the existence of a unique
solution in S is proven.
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Remark 6.1. By the implicit function theorem we can show that (dε, ξ
′) 7→ ψ(dε, ξ

′)
is continuous. Moreover, given dε, d

′
ε = O(ε1+σ1−σ2−2α), the unique solutions ψ, ψ′

of Lemma 4 satisfy

‖ψ − ψ′‖∗ ≤ Cε1−σ2−2α| log ε|2|dε − d′ε|. (6.6)

Indeed, note that ψ − ψ′ = Tε[−(R−R′)− (N(ψ)−N ′(ψ′)), 0], where R′, N ′ are the
corresponding terms to dε, d

′
ε. Since ‖R−R′‖∗∗ ≤ Cε2|dε − d′ε| and

‖N(ψ) −N ′(ψ′)‖∗∗ ≤ Cε1−σ2−2α| log ε|(|dε − d′ε| + ‖ψ − ψ′‖∗),

using Lemma 2, we get the estimate (6.6).

Proposition 6.1. There is a unique dε = O(ε1−α) such that Problem (6.1)-(6.3)
possesses a unique solution ψ with c0 = 0.

Proof. Testing |V0|2 against (6.1), since
∫
Ωε

1
iwχ

∂w
∂yℓ

|V0|2 = 0, we have

c0ε
2

∫

Ωε\B(ξ′,δ/ε)

|V0|2 = Re

∫

Ωε

|V0|2
[
Lε(ψ) +R+N(ψ)

]
. (6.7)

we will show that there exists a dε such that the right hand side is 0. Recall that

ReLε(ψ) = ∆ψ1 + 2 Re
∇V0

V0
∇ψ1 − 2(Im

∇V0

V0
− εÃ0)∇ψ2 + Re

η

η + (1 − η)eiψ
E

V0
ψ

= ∆ψ1 + 2 Re
∇V0

V0
∇ψ1 − 2(∇θ̃ + ∇ϕ̃− εÃ0)∇ψ2

+ Re
η

η + (1 − η)eiψ
E

V0
ψ. (6.8)

Direct computation shows that, on account of ∂ψ1

∂ν = 0 on ∂Ωε,

∫

Ωε

|V0|2∆ψ1 = −
∫

Ωε

2 Re(V 0∇V0)∇ψ1 +

∫

∂Ωε

|V0|2
∂ψ1

∂ν

= −
∫

Ωε

2 Re(V 0∇V0)∇ψ1.

Note that ∇S(|y− ξ′|)∇θ̃ = 0, ∆θ̃ = 0 and on the boundary ∂ν(θ̃+ ϕ̃) = εÃ0 · ν. We
know that

∫

Ωε

|V0|2(∇θ̃ + ∇ϕ̃− εÃ0)∇ψ2

= −
∫

Ωε

2|V0|2
∇S(|y − ξ′|)
S(|y − ξ′|) (∇θ̃ + ∇ϕ̃− εÃ0)ψ2

−
∫

Ωε

|V0|2
[
∆θ̃ + ∆ϕ̃− ε(∇ · Ã0)

]
ψ2 +

∫

∂Ωε

|V0|2ψ2

[
∂(θ̃ + ϕ̃)

∂ν
− εÃ0 · ν

]

= O(ε1−α)‖ψ‖∗.

We also easily get
∣∣∣∣
∫

Ωε

η

η + (1 − η)eiψ
|V0|2

E

V0
ψ

∣∣∣∣ ≤
∫

r<2

|E||V0ψ| ≤ C
[
|dε|ε2 + ε1−α

]
‖ψ‖∗. (6.9)
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Combining (6.8) and (6.9), we know that

Re

∫

Ωε

|V0|2Lε(ψ) ≤ C
[
|dε|ε2 + ε1−α

]
‖ψ‖∗. (6.10)

We directly have, using Lemma 1,

Re

∫

Ωε

|V0|2R = −dεε2
∫

Ωε

|V0|2 +

∫

Ωε

|V0|2R1

= −dεε2
∫

Ωε

|V0|2 +O(ε1−α).

It is easy to check that

Re

∫

Ωε

|V0|2N(ψ) ≤ C‖ψ‖2
∗.

Now since ε2
∫
Ωε

|V0|2 > 0, there must exist a

dε = O(ε1−α)

such that the right hand side of (6.7) is 0, which then gives c0 = 0.

Suppose we have dε, d
′
ε = O(ε1−α) and solutions ψ, ψ′ such that c0 = c′0 = 0.

From (6.7) and the estimates that follow we obtain

|dε − d′ε| ≤ Cε1−σ2−2α| log ε|‖ψ − ψ′‖∗ + Cε3−σ2−2α| log ε||dε − d′ε|.

Using (6.6) we deduce dε = d′ε. The proof is complete.

7. Proof of Theorem 2.1 and 2.2. By Proposition 6.1, there exists a unique
dǫ = O(ǫ1−α) such that

Lε(ψ) = R+N(ψ)

+

2∑

ℓ=1

cℓ
1

iw(y − ξ′)
χ{r<1/2}

∂w

∂yℓ
(y − ξ′) in Ωε, (7.1)

∂ψ

∂ν
= F on ∂Ωε, (7.2)

∫

Ωε\B(ξ′,δ/ε)

|V0|2ψ1 = 0, Re

∫

|z|<1

φ̂wzℓ
= 0 ∀ ℓ = 1, 2 (7.3)

has a unique solution ψ with ‖ψ‖∗ ≤ Cǫ1−σ2−2α| log ǫ|.
In this section we will choose a suitable ξε to make cℓ = 0 in (7.1)-(7.2), which

completes the proofs of Theorems 2.1-2.2.

In the following, we calculate the expansions of cℓ.

Testing (6.1) against iw ∂w̄
∂yℓ

(y − ξ′) and integrating over Ωε, we have

cℓ

∫

r<1/2

∣∣∣∣
∂w

∂yℓ
(y − ξ′)

∣∣∣∣
2

= Re

∫

Ωε

[Lε(ψ) + R+N(ψ)] iw
∂w̄

∂yℓ
(y − ξ′) dy.
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Noting that iwLε(ψ) = Lε(φ̂), we have

Re

∫

Ωε

iwLε(ψ)
∂w̄

∂yℓ
(y − ξ′) = Re

∫

Ωε

Lε(φ̂)
∂w̄

∂yℓ
(y − ξ′)

= Re

∫

Ωε

L0(φ̂)
∂w̄

∂yℓ
(y − ξ′)

+ Re

∫

Ωε

[
2i(∇ϕ̃− εÃ0)∇φ̂− 2i(∇ϕ̃− εÃ0)

∇w
w
φ̂− η

η + (1 − η)eφ̂/w
E

V0
φ̂

]
∂w̄

∂yℓ

= Re

∫

Ωε

L0(φ̂)
∂w̄

∂yℓ
(y − ξ′) dy +O(ε2−σ2−3α)| log ε|2.

It is direct to check that, since L0( ∂w∂yℓ
) = 0,

∣∣∣∣Re

∫

Ωε

L0(φ̂)
∂w̄

∂yℓ
(y − ξ′)

∣∣∣∣ ≤
∣∣∣∣∣Re

∫

∂Ωε

∂φ̂

∂ν

∂w̄

∂yℓ
− ∂

∂ν
(
∂w̄

∂yℓ
)φ̂

∣∣∣∣∣ +

∣∣∣∣Re

∫

Ωε

L0(
∂w

∂yℓ
)
¯̂
φ

∣∣∣∣

≤ Cε2−σ2−2α| log ε|.

Thus,

Re

∫

Ωε

iwLε(ψ)
∂w̄

∂yℓ
(y − ξ′) = O(ε2−σ2−3α)| log ε|2. (7.4)

Recall that

iwR = iw(y − ξ′)

{
ε2dε + 2

∇S(|y − ξ′|)
S(|y − ξ′|) (∇ϕ̃− εÃ0)

+ 2i∇θ̃(∇ϕ̃− εÃ0) + i|∇ϕ̃− εÃ0|2
}
.

It is easy to check that, since ‖A0‖ = O(ε−α),

Re

∫

Ωε

iwR
∂w̄

∂yℓ
(y − ξ′)

= 2

∫

Ωε

(
∂ℓθ̃

∇S(|y − ξ′|)
S(|y − ξ′|) − ∂ℓS(|y − ξ′|)

S(|y − ξ′|) ∇θ̃
)
|w(y − ξ′)|2Ψ̃ε

0 dy +O(ε2−2α)

= 2Ψ̃ε(ξ′)

∫

Ωε

(
∂ℓθ̃

∇S(|y − ξ′|)
S(|y − ξ′|) − ∂ℓS(|y − ξ′|)

S(|y − ξ′|) ∇θ̃
)
|w(y − ξ′)|2dy +O(ε2−2α),

(7.5)

where Ψ̃ε
0(y, ξ

′) = ∇ϕ̃− εÃ0 = εΨε
0(x, ξ) and Ψ̃ε(ξ′) = Ψ̃ε

0(ξ
′, ξ′). We can also easily

get that

∣∣∣∣Re

∫

Ωε

iwN(ψ)
∂w̄

∂yℓ
(y − ξ′)

∣∣∣∣ ≤ Cε2−2σ2−4α| log ε|2. (7.6)
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Combining (7.4), (7.5) and (7.6), we get that

cℓ

∫

r<1/2

∣∣∣∣
∂w

∂yℓ
(y − ξ′)

∣∣∣∣
2

= 2Ψ̃ε(ξ′)

∫

Ωε

(
∂ℓθ̃

∇S(|y − ξ′|)
S(|y − ξ′|) − ∂ℓS(|y − ξ′|)

S(|y − ξ′|) ∇θ̃
)
|w(y − ξ′)|2dy

+O(ε2−2σ2−4α| log ε|2). (7.7)

Direct computation shows that

(
∂y1 θ̃

∇S(|y − ξ′|)
S(|y − ξ′|) − ∂y1S(|y − ξ′|)

S(|y − ξ′|) ∇θ̃
)
|w|2 =

(
0,−S(|y − ξ′|)S′(|y − ξ′|)

|y − ξ′|

)
,

(7.8)
(
∂y2 θ̃

∇S(|y − ξ′|)
S(|y − ξ′|) − ∂y2S(|y − ξ′|)

S(|y − ξ′|) ∇θ̃
)
|w|2 =

(
−S(|y − ξ′|)S′(|y − ξ′|)

|y − ξ′| , 0

)
.

Proof. [Proof of Theorem 2.1] Now A0 and Φa are independent of ε, so we can
make α = 0 in all the previous estimates and Ψε is replaced by Ψ. Since ξ0 ∈ Ω is

a stable zero point of Ψ and
∫
Ωε

S(|y−ξ′|)S′(|y−ξ′|)
|y−ξ′| → C > 0, there exists a ξε such

that the right side hand of (7.7) equals 0, which implies cℓ = 0. Moreover ξε → ξ0.
Proposition 6.1 already tells us that there exists a small dε → 0 such that c0 = 0.
Thus we completely solved the problem (3.10) and therefore Theorem 2.1 follows.

Proof. [Proof of Theorem 2.2] Since ξε0 is a uniformly non-degenerate inner zero

point of Ψε and
∫
Ωε

S(|y−ξ′|)S′(|y−ξ′|)
|y−ξ′| → C > 0, there exists a ξε such that the right

side hand of (7.7) equals 0, which implies cℓ = 0. Recalling σ2 = 1
6 and from (7.7),

we also easily get |ξε − ξε0 | = O(ε
2
3
−4α). Recall Proposition 6.1 again, Theorem 2.2

follows directly.

8. Sketch proof of Theorems 2.3 and 2.4. Since the proof is similar to
Theorem 2.2, we will give a sketch in this section. Our main idea, different from the
proof of Theorem 2.1-2.2, is to use the symmetry of the unit disk and invariance of
the equation to make dǫ = 0.

Observe that (2.2) is invariant under the transformation

u(x1,−x2) = u(x1, x2). (8.1)

Thus we may consider ξ in the set

ΛD =
{
ξ = (ξ1, ξ2) ∈ D : ξ2 = 0 and dist(ξ, ∂D) > δ

}
.

The first approximate solution for degree +1 is same as before

U0(x) = S

( |x− ξ|
ε

)
ei[θ(x)+ϕ(x)],

where ϕ satisfies (3.4). The degree −1 case is also given as stated in Remark 3.1. It
is easy to see that, for ξ ∈ ΛD,

θ(x1,−x2) = −θ(x1, x2), ϕ(x1,−x2) = −ϕ(x1, x2).
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So we have

U0(x1,−x2) = U0(x1, x2).

Note that u(x) is a solution of (2.2) if and only if v(y) = u(εy) satisfies




(i∇ + εÃ0)

2v + (|v|2 − 1)v + iΦ̃av = 0 in Dε,

(i∇ + εÃ0)v · ν = 0 on ∂Dε.

We will look for a solution v with the form

v = η(V0 + iV0ψ) + (1 − η)V0e
iψ

where V0, η are defined as before. For the symmetry (8.1), we impose now that ψ(y)
is such that

ψ(y1,−y2) = −ψ(y1, y2), (8.2)

and ψ satisfy





Lε(ψ) = R+N(ψ) in Dε,

∂ψ

∂ν
= F on ∂Dε,

where Lε(ψ), R, N(ψ) and F are defined as in Section 3. Just note that now

E(y) = (i∇ + εÃ0)
2V0 + (|V0|2 − 1)V0 + iε2Φ̃aV0,

and

R(y1,−y2) = −R(y1, y2), N(ψ)(y1,−y2) = −N(ψ)(y1, y2).

There is only a slight change in the following proof. First consider




Lε(ψ) = h in Dε,

∂ψ

∂ν
= g on ∂Dε,

Re

∫

|z|<1

φ̂(z)w̄zℓ
(z) = 0.

(8.3)

Of course, we should assume h(y1,−y2) = −h(y1, y2), g(y1,−y2) = −g(y1, y2). By
(8.2), we have ψ1(y1, 0) = 0 so that the constant c0 in (5.1) is not needed. By the
same reduction process, the same result as Lemma 2 also holds for any solution of
(8.3). Second, it is then easy to know that Proposition 5.1 holds for the problem






Lε(ψ) = h+
∑

ℓ

cℓ
1

iw(y − ξ′)
χ{r<1/2}

∂w

∂yℓ
(y − ξ′) in Dε,

∂ψ

∂ν
= g on ∂Dε,

Re

∫

|z|<1

φ̂(z)w̄zℓ
(z) = 0.
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The process for the corresponding nonlinear problem discussed in later sections is
similar and even simpler due to the disappearance of dε. We only remark here that
we have c2 = 0 automatically in Section 7 because of the symmetry. Note that
Ψε(ξ) = Ψε(ξ1, 0) = (Ψε

1(ξ1),Ψ
ε
2(ξ1)) and denote ξε0 = (ξε01, 0). Considering (7.8),

we only need to assume that ξε01 is a uniformly non-degenerate inner zero point of
Ψε

2 (or for ε-independent case, ξ0 ∈ Ω is a stable zero point of Ψ2). Then there is a
ξε = (ξε1, 0) such that c1 = 0.

Proof. [Continuation Proof of Theorem 2.3] From Theorem 2.1, we should prove
the existence of a stable zero point of Ψ2. Decompose the solution of (3.4) to ϕ =
ϕ1 + ϕ2, which satisfy the following equations






∆ϕ1 − Jx2 = 0 in D,

∂ϕ1

∂ν
= 0 on ∂D,

∫

D

ϕ1 = 0

(8.4)

and, for degree +1,




∆ϕ2 = 0 in D,

∂ϕ2

∂ν
= − (x− ξ)⊥ · ν

|x− ξ|2 on ∂D,

∫

D

ϕ2 = 0,

(8.5)

while for degree −1,




∆ϕ2 = 0 in D,

∂ϕ2

∂ν
=

(x− ξ)⊥ · ν
|x− ξ|2 on ∂D,

∫

D

ϕ2 = 0.

(8.6)

By the method of Fourier series, we obtain the unique solution of (8.4)

ϕ1(x) =
J

8
sin θ0(r

3
0 − 3r0) (8.7)

where (r0(x), θ0(x)) is the usual polar coordinates centered at 0.
As for (8.5), note that there exists a harmonic conjugate of ϕ2, namely a harmonic

function ϕ⊥
2 satisfying

∂x1
ϕ⊥

2 = −∂x2
ϕ2, ∂x2

ϕ⊥
2 = ∂x1

ϕ2.

It is easy to check that on ∂D, denote ρ as the unit tangent of ∂D,

∂ρ

(
ϕ⊥

2 + log
1

|x− ξ|

)
= 0.

Since the harmonic conjugate is defined up to an additive constant, we impose

ϕ⊥
2 + log

1

|x− ξ| = 0 on ∂D.
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Let G(x, ξ) be the Green’s function on D under the Dirichlet boundary condition, i.
e.

{
−∆xG(x, ξ) = 2πδx=ξ x ∈ D,

G(x, ξ) = 0 x ∈ ∂D.

It is known that the Green’s function can be written as

G(x, ξ) = log
1

|x− ξ| + log(|ξ||x − ξ̄|)

where ξ̄ = ξ
|ξ|2 . Therefore, by the uniqueness of ϕ⊥

2 , we get

ϕ⊥
2 (x) = log(|ξ||x − ξ̄|) in D.

So

∂x1
ϕ2 =

(x − ξ̄)2

|x − ξ̄|2 , ∂x2
ϕ2 = − (x− ξ̄)1

|x− ξ̄|2 ,

which implies, for degree +1,

∂x1
ϕ2(ξ) = − ξ2

1 − |ξ|2 , ∂x2
ϕ2(ξ) =

ξ1
1 − |ξ|2 . (8.8)

Obviously for degree −1, we have

∂x1
ϕ2(ξ) =

ξ2
1 − |ξ|2 , ∂x2

ϕ2(ξ) = − ξ1
1 − |ξ|2 . (8.9)

By Remark 2.1, we shall find a ξ0 = (ξ01, 0) ∈ ΛD such that ξ01 is a non-degenerate
zero point of Ψ2. For degree +1, we get

Ψ(ξ) =




J

4
|ξ|2 sin θ0(ξ) cos θ0(ξ) −

|ξ| sin θ0(ξ)
1 − |ξ|2

−3

8
J +

3

8
J |ξ|2 − 1

4
J |ξ|2 cos2 θ0(ξ) +

|ξ| cos θ0(ξ)

1 − |ξ|2


 .

Note that

Ψ1((ξ01, 0)) = 0 , Ψ2((ξ01, 0)) = −3

8
J +

1

8
Jξ201 +

ξ01
1 − ξ201

.

It is easy to find a unique zero point ξ01 = 0 if J = 0, ξ01 ≈ 3J/8 6= 0 for small J 6= 0
in the considered region, which can also be checked using the software Mathematica
accurately. It is also easy to know that Ψ′

2(ξ01) 6= 0 at this ξ01, which implies that
it is stable. Therefore the vortex lies at ξε = (ξε1, 0) → (ξ01, 0). Similarly for degree
−1,

Ψ(ξ) =




J

4
|ξ|2 sin θ0(ξ) cos θ0(ξ) +

|ξ| sin θ0(ξ)
1 − |ξ|2

−3

8
J +

3

8
J |ξ|2 − 1

4
J |ξ|2 cos2 θ0(ξ) −

|ξ| cos θ0(ξ)

1 − |ξ|2


 .

There also exists a unique non-degenerate zero point of Ψ2 near −3J/8. The proof is
concluded.
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Proof. [Continuation Proof of Theorem 2.4] From Theorem 2.2, it is sufficient to
prove the existence of a uniformly non-degenerate inner zero point of Ψ2. Decompose
the solution of (3.4) to ϕ = ϕ1 + ϕ2. ϕ1 satisfies






∆ϕ1 − (∇ · A0) − Jx2 = 0 in D,

∂ϕ1

∂ν
= A0 · ν on ∂D,

∫

D

ϕ1 = 0,

(8.10)

and ϕ2 is just defined as in (8.5) and (8.6).

Case of A0 = H
2 (−x2, x1)

We obtain the unique solution of (8.10)

ϕ1(x) =
J

8
sin θ0(r

3
0 − 3r0).

For degree +1, recalling (8.8), we know that

Ψε(ξ) =




J

4
|ξ|2 sin θ0(ξ) cos θ0(ξ) −

|ξ| sin θ0(ξ)
1 − |ξ|2 +

H

2
|ξ| sin θ0(ξ)

−3

8
J +

3

8
J |ξ|2 − 1

4
J |ξ|2 cos2 θ0(ξ) +

|ξ| cos θ0(ξ)

1 − |ξ|2 − H

2
|ξ| cos θ0(ξ)


 .

Thus

Ψε
1((ξ01, 0)) = 0 , Ψε

2((ξ01, 0)) = −3

8
J +

1

8
Jξ201 +

ξ01
1 − ξ201

− H

2
ξ01,

and then for large H , there exists a unique zero point ξε01 = 0 if J = 0,

ξε01 ≈ − 3J

4(H − 2)
(8.11)

if J 6= 0. (Software Mathematica can be used to get the accurate solution.) It can be
easily checked that

dΨε
2

dξ01
=

2ξ201

(1 − ξ201)
2 +

Jξ01
4

− H

2
+

1

1 − ξ201
.

Thus at ξε01, | dΨε
2

dξ01
| ≥ C where C is independent of ε. So ξε01 is a uniformly non-

degenerate inner zero point. Furthermore we already know that the vortex position
ξε = (ξε1, 0) should satisfy |ξε1 − ξε01| = o(| log ε|−1) by Theorem 2.2, therefore if

J 6= 0, considering H ∼ | log ε|
2 , we conclude that the vortex must have a nonzero shift

on x1 axis from origin for any fixed small ε 6= 0. See some examples in Fig. 8.1.
For degree −1,

Ψε(ξ) =




J

4
|ξ|2 sin θ0(ξ) cos θ0(ξ) +

|ξ| sin θ0(ξ)
1 − |ξ|2 +

H

2
|ξ| sin θ0(ξ)

−3

8
J +

3

8
J |ξ|2 − 1

4
J |ξ|2 cos2 θ0(ξ) −

|ξ| cos θ0(ξ)

1 − |ξ|2 − H

2
|ξ| cos θ0(ξ)


 .
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Fig. 8.1. The figure of Ψε

2
(ξ01) for the solution with degree +1 when A0 = H

2
(−x2, x1)

Similar argument as degree +1 shows that for largeH , there exists a unique uniformly
non-degenerate inner zero point ξε01 = 0 if J = 0,

ξε01 ≈ − 3J

4(H + 2)
(8.12)

if J 6= 0. The remaining properties are due to the same reason. See some examples
in Fig. 8.2.

Case of A0 =
(
−H

2 x2,
H
2 x1 − J

2x
2
1

)

The unique solution of (8.10) is

ϕ1(x) =
J

6
r0 sin θ0(r

2
0 sin2 θ0 − 3).

For degree +1,

Ψε(ξ) =




−|ξ| sin θ0(ξ)
1 − |ξ|2 +

H

2
|ξ| sin θ0(ξ)

J

2
|ξ|2 − J

2
+

|ξ| cos θ0(ξ)

1 − |ξ|2 − H

2
|ξ| cos θ0(ξ)


 .

Thus

Ψε
1((ξ01, 0)) = 0 , Ψε

2((ξ01, 0)) =
J

2
ξ201 −

J

2
+

ξ01
1 − ξ201

− H

2
ξ01,

and then for large H , there exists a unique zero point ξε01 = 0 if J = 0, ξε01 ≈ − J
H−2

if J 6= 0 small. (In fact, when both J and H are large and J ∼ H , we have a zero

ξ01 ∼ 2H −
√

4H2 + 3J2

J
.) (8.13)
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We easily check that

dΨε
2

dξ01
=

2ξ201

(1 − ξ201)
2 + Jξ01 −

H

2
+

1

1 − ξ201
,

thus at ξε01, | dΨε
2

dξ01
| ≥ C where C is independent of ε. So ξε01 is a uniformly non-

degenerate inner zero point. Furthermore we already know that the vortex position
ξε = (ξε1, 0) should satisfy |ξε1 − ξε01| = o(| log ε|−1) by Theorem 2.2, therefore if

J 6= 0, considering H ∼ | log ε|
2 , we conclude that the vortex must have a nonzero shift

on x1 axis from origin for any fixed small ε 6= 0. See examples in Fig. 8.3.
For degree −1,

Ψε(ξ) =




|ξ| sin θ0(ξ)
1 − |ξ|2 +

H

2
|ξ| sin θ0(ξ)

J

2
|ξ|2 − J

2
− |ξ| cos θ0(ξ)

1 − |ξ|2 − H

2
|ξ| cos θ0(ξ)


 .

For large H , there exists a unique zero point ξε01 = 0 if J = 0, ξε01 ≈ − J
H+2 if J 6= 0

small. The remaining properties can also be checked as in the case of degree +1. See
some examples in Fig. 8.4. The proof is complete.

9. Conclusions and open questions. As a simplified Ginzburg-Landau model,
the HKHF model retains much of the features of the original Ginzburg-Landau model
of superconductivity and is useful in the study of vortex interactions in the presence
of both an applied magnetic field and an applied current. Given the applied mag-
netic field close to the lower critical field at which there are single vortex ground
state solutions being the ground state solutions, numerical simulations suggest that
for small applied current, solutions with stationary vortex locations still exist while
larger applied current can generate periodic vortex motion as depicted in Fig 9.1 [11].
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The change of stationary vortex solution to the time periodic vortex motion sug-
gests the existence of the critical applied current as conjectured in [10, 11]. As a
first step towards rigorously proving such a conjecture, based on the idea of [19], we
demonstrated in this paper the existence of stationary single vortex solutions of the
HKHF model for a range of applied current. This provides partial justification to the

31



Fig. 9.1. Motion of a single vortex in the presence of an applied current: contour plots of
|ψ0(x, t)| are shown at different values of time t (from left to right then top to bottom).

existence of the critical current in the context of the HKHF model. While we used a
more general technique for non-variational problems, the present theory only verified
the existence of the vortex solutions but makes no implication on their stability. We
note in particular the freedom in choosing the signs for the vortex in the constructed
solutions and it is obviously those having signs opposite to the applied magnetic field
that would be energetically less favorable. Such stability analysis require a closer
examination of the zeros of the functions Ψ(ξ) and Ψε(ξ) which we leave for future
studies. Moreover, our results are still limited to very small currents, in comparison
with the applied magnetic field so that the shift of vortex positions remains a small
perturbation. It remains to investigate the situation of a larger shift when the current
increases, and to show that for large enough applied current, periodic in time solutions
with vortices moving across the spatial domain can exist.

Concerning the existence of the critical current as characterized above, such a
theory provides only a partial picture for the solution of the HKHF or the original
Ginzburg-Landau model. In the existing literature, there have been lots of studies
of simpler diagrams, such as those for time-independent Ginzburg-Landau models in
the absence of the applied current (see for example [1]), and the more recent study of
a one-dimensional time-dependent model with an applied voltage but in the absence
of the applied magnetic field [22]. Yet, in [11], it has been suggested a much richer
bifurcation diagram can be studied with both the applied magnetic field and the
applied electric current as parameters. In this sense, much more analytical works
are needed. Furthermore, we have not introduced the variety of pinning mechanisms
discussed in the literature into our discussion. The result of the existence of the
stationary vortex solution in our setting, despite the effect of the applied current, is
due to the geometric construction and the barrier imposed by the applied magnetic
field. Similar studies can be made in the future to consider the effect of various pinning
mechanisms and the balance of pinning forces and the Lorentz force generated by the
applied current. We stress again that such studies can still be carried out using the
variants of the HKHF model such as the following equation

a(x)

[
∂ψ0

∂t
+ iΦaψ0

]
+(i∇+A0)

T a(x)M(x)(i∇+A0)ψ0 +
a(x)

ǫ2
(|ψ0|2−f(x))ψ0 = 0 ,

with the scalar functions a = a(x), f = f(x) and tensor functions M = M(x). This
is a generalization of (1.1) for which we have a = f ≡ 1, and M = I, but it can also
model various aspects of the pinning effect. For example, with a ≡ 1 and M = I,
we can use a variable function f to model the normal inclusions. Alternatively, we
can use f ≡ 1, M = I and a non-uniform a = a(x) to model inhomogeneities in film
thickness. These generalizations certainly open up more questions to be rigorously
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studied in the future.
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