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ABSTRACT. We construct solutions of the equation
_ M+ [Vul?)

-2
in a bounded smooth domain of R? with Dirichlet boundary condition, for
A > 0 small. These solutions approach 1 as A — 0 at one point, and if £ is not
simply connected we find solutions forming singularities at many points. The
equation arises in the modeling of a MEMS with fringing field. A surprising
connection with plasma problem is found.

—Auy O0<ux<l1

1. INTRODUCTION

The following elliptic equation arises in the modeling of electrostatic Micro-
Electromechanical Systems (MEMS),

A
“Au=-——-=,0 1 inQ
(1.1) u (1 — u)2’ <u< in

u=20 on 0N}

where (2 is a bounded domain in R? with smooth boundary and A > 0. Taking into
account a fringing field in the modeling of the MEMS yields an extra term:

1+ 6| Vul?

Ay =\ avVEL

(1.2) =TT
u=20 on 99,

where § > 0, see [13, 14, 15].

Of special interest are solutions that give rise to singularities in the equation,
that is such that v & 1 in some region, which in the physical model represents a
rupture in the device. We will say that a family of classical solutions uy of (1.1) or
(1.2) develops ruptures as A approaches a critical parameter if supg uy — 1.

As observed by Ye and Wei [17], there is a striking difference between (1.2) with
d > 0 and (1.1). On one hand, for (1.1) in the unit ball, one knows that there is a
family of solutions u) developing a rupture at the origin for A — Ao # 0. In this
case Ag and the limit function ug are explicit, see [12]. More properties on equation
(1.1) can be found in [6, 7, 9, 10, 11]. On the other hand, for (1.2) with § > 0, if A
has a fixed positive lower bound, then there is an a-priori estimate u < C < 1 for
any solution u of (1.2), see Theorem 4 in [17]. Then the implicit function theorem

O<u<l inQ
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and the global bifurcation theorem of Rabinowitz [16], imply that there is a family
(A, u) of solutions of (1.2) with A — 0 and supg u — 1.

The precise behavior of solutions developing ruptures as A — 0 and the set
of possible ruptures is not known so far. We give an answer to this question by
constructing families of solutions that develop one or more ruptures as A — 0, and
obtain a precise asymptotic description. The analysis also reveals connections with
the plasma problem and the Liouville equation. This seems to be the first result
for the construction of multiple point ruptures.

For simplicity we will work with 6 = 1, namely we work with

1+ |Vul?

Ay = VUl

(1.3) T A —w)2
u=20 on 09,

O<u<l inQ

but the results are valid for any 6 > 0. Let m > 1 be an integer. We say that
a family of solutions uy of (1.3) defined for all A > 0 small develops m isolated
ruptures as A — 0, if there are points & x,...,&m,x € Q, uniformly separated
between them and from the boundary, such that for any § > 0

lim sup sup u<l
A=0 Q\UTL, Bs(€50)

and forany d >0 and alli =1,...,m:

sup u—1 as A —0.
Bs(&i,x)

Our main results are the following.

Theorem 1.1. There exists Ag > 0 such that for X € (0, \g) there is a solution uy
of (1.3) developing one isolated rupture as A — 0.

Theorem 1.2. If Q is not simply connected, for any integer m > 1 there exists
Am > 0 such that for A € (0,\,,) there is a solution uy of (1.3) developing m
isolated ruptures as A — 0.

The location of the ruptures is determined by the Green function and its regular
part. Let G denote the Green function for the Laplacian with Dirichlet boundary
condition:

-AG(hy) =46, inQ
G(z,y) =0 for all z € 0N

and H its regular part, given by
1

1

1.4 H =G — —log(——).
(14) (a,) = Glayy) ~ 5 Toa(——)
For an integer m > 1 and &, ..., &, different points in Q we define

m
(1.5) Om(&rser&m) =Y HE &) + ) G(6i, &)

i=1 j#i
Then in Theorems 1.1 and 1.2, after passing to a subsequence, the rupture points
&a -, &m,x € Q of the solution uy, converge to a critical point of ¢p,.

Also we obtain the following result.
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Theorem 1.3. For any non-degenerate critical point £ = (&1, ...,&m) of om there
is Ao > 0 such that X € (0, Ag) there is a solution uy of (1.3) developing m isolated
ruptures as X — 0 at points & x, ..., &mx € Q that converge to (&1,...,&m).

Regarding the asymptotic behavior of the solutions we construct, if uy is the

solution of any of the three theorems above developing m ruptures & ,...,&m,x €
Q, then
m
)(1 1
|10g)\| Z z 6.77 + 0( ))
as A = 0, for points z € ) away from & »,...,&m,x. Very close to the points &; x
we have an expansion of the form
(1.6)
A Alog [log A| A |log A|?

=1- — 1 1% —&; lLo.t.

u(z) |log Al | log A2 |log A2 8 (ao o A = f”’\D) tLo

where l.o.t. contains smaller order terms and the function Vj is the unique radial
function satisfying

—AVy = (Vo)4 inR2, H]%R%XVO =1.
The number aq is given by ag = (# fRz(Vo )_ The expansion (1.6) is valid for
points z € Q such that |z — & x| < (Ro — 0)
which V5(Rp) =0 and 0 < § < Ry.
The key behind these results is a change of variables introduced in Ye and Wei
[17], which allows us to rewrite problem (1.3) in the form
/\2
-————A
(1.7) Tog AT ="
v=20 on 01,

\1og 2 where Ry > 0 is the radius for

=pa(v—1) inQ

with a nonlinearity p, that satisfies
pa(z) > x4 asA—0

for all z € R, where z; = max(z,0). See the derivation in Section 2 and the
definition of py in (2.13). For A > 0 we may expect solutions of (1.3) to be related
to solutions of
)‘2
———Av=(v—1 in Q
Tog AT v=(w-—1)y in

v=20 on 0f).

This problem is, after some transformations, the same as the plasma problem stud-
ied in [3, 2] and also presents similarities with the Liouville equation [1, 4, 5, 8].
For both problems there are existence and classification results of solutions exhibit-
ing point concentration. In both problems the location of the concentration points
is determined by an energy expansion that at main nontrivial order involves the
Green function and its regular part.

The proof of all theorems is carried out with equation (1.7), or more precisely,
with a rescaled version of it, equation (3.1) below. We construct an approximate
solution for this equation, in the same spirit as in [2, 4, 5], which is precise enough to
perform a finite dimensional reduction using a Lyapunov-Schmidt procedure. The
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main difficulty in this process is that the nonlinearity p) converges to z,, which
is only Lipschitz and hence, some estimates of derivatives of the solution, which
involve pY, become delicate as A — 0. This is similar to the difficulty in [2], except
that for us the nonlinearity is not explicit but smooth. After the reduction, the
problem becomes one of finding critical points of a function that is close in C* norm
to ,, on compact subsets of its domain of definition. In the case of two or more
points of concentration in a non-simply connected domain, this is the guaranteed
by a result in [5], which has also appeared in [2].

2. CHANGE OF VARIABLES
Equation (1.3) is equivalent to

1 2
Au:)\LZM

u=1 on 0N.

,0<u<1l inQ

Let us write w in the form u(z) = Aw(z/A), z € Q, so that w satisfies

1+ |Vwl? 1.
A’U}ZT,O<'IU<X IHQ/)\
1
w:X on 00N/ A.

Motivated by [17] we introduce the change of variables

1
v=g(w) where g(w) =/ el/s ds,

w

and we compute

Av = —Lel/w.
w2

Note that g : (0,+00) — R is a decreasing convex function with range equal to R.
Therefore g1 : R — (0, +00) is well defined. Let

1 1/w
h(w) = Ee/ for all w >0

and

(2.1) f() = h(g™" (v)).

Then v satisfies

—Av = f(v) in Q/A
22) fv) /
v=—c\ ondN/A

where

/A
(2.3) ex = —g(1/)) = / e\/s ds.

1
Note that

1
cA:X+|10g)\|+O(1) asA—=0
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and that f : R — (0,00) is a convex increasing function. Moreover
(2.4) f(w) = v(logv)* + o(v(logv)?) as v — +oo
1
(2.5) flv) = O(v_2) as v — —0o.
We perform one more change of variables

v(z) = M#((log M)%z) z € lQ,

A

where M > 0 is a new large parameter to be chosen later on. We find

. 1 . (logM)?

A= ———f(M ——0.

v M (log M)? f(M7) i A

By (2.4), (2.5)
1 - -
Wf(M’U) — V4 as M — 400

for any ¥ € R, where
x4 = max(z,0) VzreR.
If we choose M such that max© = 1, then ¥ solves at main order

2
—Ab=#, in MQ
max v = 1.
Let Ry > 0 be the unique number such that the principal Dirichlet eigenvalue of
—A in Bg,(0) is 1, that is, the problem
—Ap1 =1, @1 >0 in Bg,(0)
w1 =0 on 0Bg,(0)

has a solution. We normalize the principal eigenfunction so that ¢1(0) =1 and let

Define
(@) if z € Bg,(0)
(27) Vo(e) = {_dORO log(||/Ro) if « ¢ Br, (0).

Then V} is a radially symmetric function, with maxg2 V5 = 1 and V}, satisfies
~AVp = (V)4 in R%.
Heuristically we can expect that
() ~ Vo(z)
on compact sets, and this means
v(z) = MVy((log M)%x).

Evaluating this relation on the boundary of %Q we find

_ (log M)?D
C\ = MdORO IOg ()\7_&))
where D represents the diameter of the domain. Note that this gives the relation
1 1
2.8 My = A—0.
(28) = Thonog N T o) 4
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Since log(My) = |logA| + o(|log A|) as A — 0 it is natural to choose from the
beginning M = |log A|. Thus, we start from (2.2) and rewrite it as

[SH

—Ab=f(0—cy\) inQ/X
=0 on 90/

where ¢, is defined in (2.3). Motivated by (2.8), we write ¥ as

. C) 2
(2.9) o(x) = |1Og)\|v(|log/\| x)

which leads to

: log A2
(2.10) —Av = fr(v— |logA]) in 0y = %Q
v=0 on 09y,
where
— 1 Cx
(2.11) At) = C/\|10g/\|3f<|log)\|t)'

Then, thanks to (2.4), (2.5), fa(z) > 24 as A — 0.

Remark 2.1. If instead of the change of variables (2.9) we choose
#(x) = cxv(|log A z)

then we obtain

—Av=pr(v—1) in Q)
(2.12) { v=0 on O
where
1
. =—— flext
(2.13) pa(t) ex[Tog A fleat)

and f is given by (2.1). For this nonlinearity we also have p(z) = x4 as A — 0.
Here we see the similarity of (2.12) with the plasma problem studied in [2].

Finally, we collect here some useful estimates for the non-linearity (we omit the
computations).
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Lemma 2.2. Let f be defined by (2.1) and fx be the function (2.11). Then the
following properties hold:

f(w) = v((logv)* + O((logv)®loglogv))  asv — 400

flv) < L forallz <0

1+ 0?2
log |log A| :
(2.14) fa(z) =24 + O(W) as A = 0, uniformly for x on bounded sets
23

. < <
(2.15) fa(#) < C|10g/\|(t2 2 log \] fort <0

(2.16) fi(t) = O(1) wuniformly for t in bounded sets
Ccx3
!
. <
A0 B = fiog3[(ip + 3710 )
(2.18) fy(t) =O(1/X) wuniformly for t in bounded sets

for all t <0

(219) F0)<S it/ logA) - oo

)\3
2.2 ) < <
(2.20) fy(®) < C|10g/\|(|t|4 3 [Tog \[1) for allt <0

3. FIRST APPROXIMATION AND ITS ENERGY

We will work mainly with the following reformulation of problem (1.3),

—Av = fa(v—|logl]) inQ

3.1) fa(v —|log Al) A
v=>0 on 0N,

where 1

M) = c,\|10g)\|3f(|10g)\|m)
with f defined in (2.1) and

| log A2
Qy=—"—"-0Q.
A )

We will define an initial approximation of a solution to (3.1) based on the solu-
tions wy o of the following problem

1
(3.2) WX,a(r) + —wh o (r) = =fa(wra) >0
UJ)\,Q(O) =a, wl)\,a(o) =0,
where a > 0.

Lemma 3.1. We have:

a)

log | log Al

3.3 o=V + O0(——7—
(3.3) Wx,a = aVo + O( Tog \ )
as A = 0 in the C* norm over compact sets of R?, where Vj is the function defined
in (2.7).

b) There is o unique Ry o > 0 such that

w}\,a(R)\,a) = 0;
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and it satisfies

log |log A| d log | log Al
4 o= 0808y 4 p = 028108
(3-4) R, Bo + O |log Al ) daR’\’ o |log Al )
as A — 0 where Ry is the number defined just before (2.7) and O(lolglngoi"\‘) is
uniform for a in compact sets of (0,+00).
c)
(3.5) —w) o(Raa) = doa as A =0

uniformly for a in compact sets of (0,+00), where dy is defined in (2.6).

For the proof see the end of this section.

We proceed now with the construction of an initial approximation of a solution
to (3.1). Let m > 1 be a fixed integer, &1,...,&m € Q, and p1, ..., iy > 0. We will
always assume that for some small § > 0

(3.6) |6 — & > 6 foralli#j
(3.7 dist(&;,00) > 6, foralll<j<m,
(3.8) §<p; <6t foralll <j<m.
Let us use the notation ,

& = %&' € M.

The parameters p; will be chosen later on.
Thanks to (3.5), we can find for A > 0 small a unique positive number a; such
that

(3.9) _wi\,aj (Raa;)Baa; = 15
Let us write
(3.10) wi(r) = wx,a; (1), Rj = Rxrq,.
We define
wj(|z — &) + |log | if |2 — & < Ry
Vi(e) = |z — &

—pjlog(—5==) + |log Al if |z — &l > R;.

J

The function V; is radial about the point Ej and it is C' across the boundary of
the ball B, (&;), thanks to (3.9). It satisfies

—AV; = iV - |10g)‘|)XBRj (&) on R?,

3.11 _
(311 maxV; = V;(&) = a; +|log

Since the function V; does not satisfy the boundary condition on 91 we consider
V; — Hj where H; is the solution of the problem

AHJ' =0 in Q)\
(3.12)
Hj = V, on 89,\.
Then _
H;(z) = —p; log(m) +|log Al for all z € 90y,

R;
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and we get the formula

A
Hj(z) = —2ﬂu15(wx,£j) —2p;log|log Al + pjlog Rj + (1 — pj)|log Al

where H is the regular part of the Green function, c.f. (1.4). We define the initial
approximation as:

(3.13) Va=) V;—Hj.
j=1

We look for a solution v of (3.1) of the form v = V), 4+ ¢ where ¢ is small compared
to V. Then problem (3.1) gets reformulated in terms of ¢ as follows:

(3.14) Ap+ f(Va = |log A)¢ + Ex + N(¢) =0 in Qy
' ¢=0 on 0Ny,

where
E\x = AVy + fa(Va —|log A|)

N(¢) = fa(Va+ ¢ — [log A]) = fa(Va = [log A) — fA(Va —[log A])¢.
Up to now the parameters p; were free in the interval (6,67!) (6 > 0 a small
constant). To ensure that E) is small in an appropriate norm to be introduced
later it is necessary to adjust the numbers u; in a suitable way.
Lemma 3.2. Assume that pi,. .., pwyn > 0 satisfy the system of equations
(3.15)
log | log A log R; 2w
pi=1 =2 |g1|og§| | iTrogal ~ Tiog

wiH (&, &) + E wiG (&, &5)
i#£]
foralli=1,...,m. Then for all R > 0, we have

(3.16) Va(z) = wi(|lz — &) + |log A| + O(m), for all z € Br(&;)

as A = 0, where the term O(mg) is in C' norm in Br(&;)

We note that the system of equations (3.15) is nonlinear since the functions R;
depend on p;. Nevertheless this system is solvable for small A > 0 and we obtain
the following expansion for the solution

(3.17)
log|logA|  log(Rg) — 27 (log | log A|)?
pi=1-2 H(, &)+ ) G, &§)| +0(——=m —
|log A| [log A| (&i: &) ; (& &) ( [Tog A2 )
as A — 0.

Because of Lemma 3.2 we will work in the sequel only with u; satisfying (3.15)
and in particular we will always assume that

log | log Al

1 =1
(3.18) I +O( og )|

) as A —0.
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Also, thanks to Lemma 3.1, we will assume

log | log A|

Ri=Ro+0( log A|

) as A —0.

To solve (3.14) with ¢ small in a convenient sense we need to choose the points
&1,- .., Em € Q) appropriately, and for this we use a variational formulation of (3.1):
v is a solution of (3.1) if and only if v € H () is a critical point of the energy
functional

(3.19) I*(”)Z;/Q Vo2 / Fy(w — |Tog A))

v= [ " fa(s) ds

We note that I is a C! functional on Hg(2). It ¢ is a small solution of (3.14)
one may expect that Iy(Vy + ¢) is critical with respect to &1,...,&y. Therefore,
in order to find the good choice of the points &1, ...,&,, it becomes important to
compute I (Vy).

where

Lemma 3.3. Suppose &, ...,&n € Q satisfy the separation conditions (3.6), (3.7),
and let p; satisfy (3.15). Then

(3.20) Iy(Va) = a1|log A| — 2aq log|log A\| — a2pm (&1, .-, &m) + o(1)
as A = 0, where ., is defined in (1.5),

a1 = ™Ry, as = TRo(2m — log Ry),
and o(1) is uniform with respect to the C* norm in the region (3.6), (3.7).

Proof. We compute

1
(V) = 5/ VA2 = [ Fa(Va - [Tog A)).
Qax

Qi

Using (3.11) and (3.12) we have

2 _ - 72 = - , _ £
/Q VAP = /Q 1SV, - ) g /B gy Pille =&,

A g=1

Therefore By Lemma 3.2

/ VYA
Qa

_ A
- Z/BR o, P =&D) (wjux—s,-n T |log Al +O(W)> dz
(3.21)

m m A
= |log | j;/BRj o H(w;(z))dz + ]:21 /BRJ- © Ia(wj(2))w;(x) de + 0(—| log/\|2)
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as A — 0. Integrating (3.11) in Bg, ({;) and then sing (3.4) and (3.17) we obtain

log | log |

(3.22) / Falw; (@) do = 27 R;p; = 2nRo — 4 Ro
Bgr. (0) ! o |log A|

log Ry — 2
+ 27 Ry |10g)\| H(€Ja§]) +;G(§Jafz)]
(log [log A])*
O Tiogar )

For the terms fBR.(o) fa(w;)wj, we note that multiplying (3.11) by w; and inte-
J
grating in Bg, we obtain

/ Ia(wj)w; =/ [V, [*.
Br; (0) Br, (0)

But by (3.5)
log | log Al
= sV + O(—=2 125
wj = a;Vo + O |log A| )
in the C' norm over compact sets of R?, where a; satisfies (3.9), which gives
log | log Al
i = doRoa; + O(——=—).
Hj oRoaj + O [log )
This gives
1 log | log A|
Vw;|? = ——|VV,|* + O(——=).

Using this, (3.4) and (3.18) we see that

1 log | log A|
A(wjw; = —/ VVo|?> + O(=—=1).
/BRJ. o T diRg BR0(0)| o |log Al

Therefore we find

1
—/ [VVAl* = mmRo|log A| — mmRo log | log A| + wRo(log Ro — 2m)pm (&1, - -+ &m)
Qx

2
m (log | log A|)?
— Vo2 + O(r =22V ),
T oER2 /BRO VYol + Oy

Now we compute

/ Fx(Vx — |log A) = Z/

where Q) = Q\ UL, B, (¢;). First we have, using (3.2)

(3.23)

Fu(Vs — |Tog A)) /F,\ V3 — | log A

Br; (§5)

A
3.24 / F\(V\ — log/\ Z/ Fy(w;)+ O0(——=).
@y [ RG-leg)= [ Bw) 0
Using Lemma 3.2, F)(t) = 3t + O(loﬁl}g’i’\‘ ), (3.4) and (3.18), we obtain
1 log | log A|
3.25 / Va — |log A V2 4+ 0(——=4
529 Br, (&) P = llogAh = 203R; /g, ° ( [ Tog A )
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as A = 0. To estimate the integral in €25 we use the inequality (2.15) which implies
that for any fixed M >0

A
3.26 F S R 1 —M<z<
( ) | )\(.’L‘)|_C|10g/\|2 or a <z<0
and
)\3
2 <(C—— fi < —M.
(3.27) |Ex(z)] < C|log)\| orallz < —M
We write
F(Va - [logAl) = Z / F\(Va — [log A)
Qx5 Bior; SED y\Br. SED

' / FA(Va = |log )
2 \UB1or; (€;)

and estimate, using Lemma 3.2 and (3.26),

A
/ FA(VA = [1ogA) = [ By, + O(25)
BlORj(fj)\BRj(fj) BlORj(éj)\BRj(Ej) 8
A
= Fy(wj) + O(—37)
‘/BNRJ‘(EJ')\BR,‘(EJ‘) |10g)\|2
A
2 —o(—2
329 Olrm)

Far away from the points {; we argue as follows. For points z in dBigg, (&;) we
have, because of Lemma 3.2, that Vy(z) — |log\| < —M where M > 0 is a fixed
constant. But Vi —|log A| is harmonic in Q\UJ, Bigg, (§;) and equal to —|log A| on
90, and therefore Vy(z) — [log A| < —M holds for all points in Q\ UL, Biog; (&;)-
Thus we can use (3.27) and deduce

/ F(Va — [log Al) = O(A[log A®).
Qx\UB1or. (&)

Combining the estimates for each term, and noting that

/ wwlr= [ v
BRO BRO

we conclude that formula (3.20) is valid with o(1) in the C° norm over the region
(3.6), (3.7).
. . 1 . . (log | log A|)?

Regarding the estimate in C' norm, the error term in (3.23) is also O(W)
in C! norm for the parameters in the region (3.6), (3.7), since we can use (3.16) for
the error in (3.21) and the dependence on the ; in the terms appearing in (3.21)
is through the pu; in expression (3.22). Similarly, the errors in (3.24), (3.25) and
(3.28) are also C! with respect to &;. O

Proof of Lemma 3.1. Firs we remark that for A > 0 the nonlinearity fy is smooth,
and that the solution wy  of (3.2) exists for all » > 0. It is also smooth with
respect to a > 0, A > 0.

a) Estimate (3.3) follows from fy(t) =t + O(IOFILI;E‘)") as A — 0 uniformly on
compact subsets of R (c.f. (2.14)).
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b) The existence of R),, follows from the convergence in part a), and the unique-
ness because Zwy q(r) < 0. The estimate for Ry o in (3.4) follows by the implicit
function theorem, noting that wj o(r) is C! in r, that wy , and %w,\,a(r) have
continuous extensions to A = 0, and Zwj o(Ro) < 0 (with a uniform distance as
A — 0). What needs to be verified is that the expansion

Wi, (r) = wa,o(Ro) + %wx,a(Ro)(r — Ro) + o(|r — Ro|)

as 7 — Rg, has an error of|r — Ro|) which is uniform as A — 0. This estimate
can be obtained from elliptic estimates, since Aw) , remains bounded, and so is
uniformly C1* on compact sets.

We prove now the estimate -L R, , = O(IOFILI;E‘M) in (3.4). Differentiating the
relation wy o (Rx,o) = 0 with respect to a we obtain

d %wk,a(Rk,a)
Jo e = — I R
Q W'w)\,a (R)\,a)
Since %wx,a (Rh,a) is bounded away from zero, we need only to estimate %w&a (Rx,a)-
Let z),o = %w&a which is smooth and satisfies
(3.29) Az o = fA(Wra)Zre in R
We claim that
log | log Al
[log A| ~
To prove this we let ¢(r) = zx o(r) — Vo(r) and note that

(3.30) 2xa(Ro)| < C

A¢ = fi(wra)2ra — XBr, Vo = XBr, @ + (fA(Wx,a) = XBr, )220
Multiplying this equation by V; and integrating in Bg, gives:

_2nRo¢(Ro)V" (Ro) = / (4 (a0) = XBag ) 200V

BRO

and the integral on the right hand side can be verified to be O(%) as A — 0.

Equation (3.29) shows that 2,4 is C™* on compact set, for any p € (0,1). Using
this property and (3.30) we deduce

log | log |

<
|z)\7a(R>\,Ct)| — C |10g)\|

¢) This property follows from the convergence wy o, — aVy as A = 0 in C"*# on
compact sets of R? and Ry o — Ry as A = 0. O

Proof of Lemma 3.2. Fix i =1,...,m. For x € Bg,(&;) we have

- A
Vi(z) — Hiy(z) = w;i(|Jz — &) + |log | + QWMiH(WCU;&)

+ 2u;log |log A| — pilog R; — (1 — pi)|log Al
For z € Bg, (&), if we take j # i then

A
Vg(ﬂf) - H](l") = ZWM]'G(W%@')-
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(This is valid actually for |z — £;| > R;.) Therefore, for x € Bg, (&)
m

Va(@) = > (Vi(e) — H;(2)) = wille = &]) + |log Al + 2mu; H(

j=1

A
| A|2$ fl)
+ 2p;log[log Al — pilog R — (1 — ;)| log Al

A
+2WMJG(W$5§7)'

Using the equations satisfied by u;, (3.15), we find, for = € B, (&;)

(831)  Va@) = willz — &) + [log A| + 27 | H (5550, &) — H(&, &)

A
|Tog A|
+27TZ[ |10gA|2 7{7) (6176.7)]

- A
=wi(|$—5i|)+|108)\|+0(w)7

where the O( is in C'! norm. O

A
[log /\\2)

4. LINEAR THEORY
Here we study the invertibility of the operator
Lop=Ap+Wo

in Q) where
W = fi(Va — [log AJ).

Throughout this section we assume that &;,...,&, € ( satisfy the separation con-
— 2

ditions (3.6), (3.7) and §; = Mﬁj € Q. We also assume that p1, ..., .y, satisfy

(3.8).

We consider the linear problem of given h in an appropriate space, finding ¢ and
¢ij, i =1,...,m, j = 1,2, such that

Lo = h+z Z Cz'jZij in Qy
(4.1) i=1 j=1,2
=0 on 0,
(4.2) ¢Z;; =0 foralli=1,2,j=1,...,m,
Qax

where the functions Z;; are defined by
Zij(x) = zij(z)no(x — &)
with

(43) Zij (w) = 6% ¢,

5.~ ),

and 7 is a smooth radial function in R? with support in Bg,(0) and identically 1
in Bg,/2(0), and Vp is defined in (2.7). Note that BVO (m &;) is continuous but not

C*. The choice of ny makes Z;; a smooth functlon w1th compact support.
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Let Y be the space of measurable functions h : Q) — R such that
h € L®(2,) and h € LP(Bypyg,) forallj=1,...,m,
where
O\ = QW \ UL Bag, ()
and 2 < p < 4oo is fixed. We will consider the following norm on Y:
m B 1 m
Ihlly = sup (D 1e=&[7277) 1h@)| + 3 IhllerBang e, -
TEQN =1 j=1
where 0 < ¢ < 1 is a small constant. Note that since p > 2, if h € Y then any
solution ¢ € H () of (4.1) is C1(Qy).

Proposition 4.1. There is Ag > 0 such that for any 0 < A < Ao and for allh €Y
there is a unique ¢ € L*°(2y) and unique c;; € R that solve (4.1), (4.2). Moreover

(4.4) ¢llze ) + Y D leisl < Clilly-
i=1 j=1,2

In addition, the maps &1, . ..,&m — @,ci; are differentiable and

(4.5) 106, Bl o= (2,) + 10, i3] < CAYP~H||R]ly-

The proof of this result relies on the non-degeneracy of Vp (defined in (2.7)),
which satisfies

—AVp = (Vo) in B2,
and is radially symmetric with maxp2Vy = 1.

Proposition 4.2. Let ¢ € L®(R?) be a solution of

_Ad) = X[Vo>0]¢ in Rz:
where X[v,>0] s the characteristic function of the set [Vo > 0] = Bg,(0). Then ¢
is a linear combination of
Vo Vo
81171 ’ 6.(132 )
For the proof see [2, Proposition 3.1].
To prove Proposition 4.1 we start with an apriori estimate.

Lemma 4.3. There is C > 0 such that for all A > 0 small, and for any h € Y,
¢ € L>®(Q)), and ¢;; € R that verify (4.1), (4.2) we have

@llzoecon) + D D leijl < Clihlly-

i=1 j=1,2
Proof. We first prove that
(4.6) leij| < Cllhlly + o(D)[|¢ll L= (0,)

as A — 0. For this let  be a radial function in C*°(R*) with support in By(0) and
n = 1in By(0). Let nx(x) = n(A\'/?(z — &)) and

Zij = Zijnx
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where z;; is defined in (4.3). Multiplying (4.1) by Zij we find
(ﬁ(AZU + WZ”) = hZij + Cij/ Z,'jZij.
Qx Qax Qx
This gives
5] < Ol + lll=ion) [ 1824+ W,

Qx
We compute

AZ,']' + WZij = nA(AZU + Wz,-j) +2VnaVz; + An,\zij.
Using that |2;;(2)| < Clz — &|™! and |Vz(z)| < Clz — &|72 for |z — &| > 2R,
we see that
/ 2VIaVzs; + Amazis| = O(A2)
Qx
as A = 0. The other term can be estimated as follows:

/Q Ina(Azij + Wzig)| < ||77A||L<><>||Zz'j||L°°/Q IXBr, &) — fA(Va = [log A)| = 0
A A

as A — 0. Therefore

A
as A — 0 and this proves (4.6).
Now we claim that if R > 0 is large enough, then

(4.7) [ ¢llz=(0x) < CUIBN: + [1Ally + D D leil)

i=1j=1,2

where

Iglli = sup |-

UL, Br(&:)
For this we use a barrier argument. Let

m

Y@) =) (1—|z = &™)

=1
Fix R > 2Ry. By (2.17), W(z) < CX3/|log )| for = € Q) \ U™, Br(&;). Then
Ay + W(.CL')’Qb <0 in Qy \ U?;IBR(E,'),

provided A > 0 is small. This shows that the operator A+ W satisfies the maximum
principle in this region. Appyling the maximum principle to (||h|ly + > |eij| +
[|#]]:)¢ + ¢ we arrive at (4.7).

Using (4.6) and (4.7) we obtain

8l (2x) < CUlglli + llAlly)-

Therefore to prove the lemma it suffices to show
(4.8) lglls < CllAlly-

We prove this estimate by contradiction. Assume that there are sequences A, — 0,
(¢n) in L®(2y,), (&™) in R and (hy,) in Y that satisfy (4.1), (4.2) and

ij
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By linearity we can assume that ||@,||; = 1. Then (4.6) implies that ||h,||ly — 0

and cﬁ?) — 0 as n — 4o00. Then for a fixed i € {1,...,m} and a subsequence
(denoted the same as the original sequence)
Sup |pn| > c
Br(&:)

for some ¢ > 0. By translating we can assume that & = 0. Using the equation, we
get that up to another subsequence, ¢, — ¢ uniformly on compact sets of R2 and
that ¢ # 0 is a bounded solution of

A¢ + XBRO(0)¢ =0 in R2.

By Proposition 4.2, ¢ = ay2;1 + asz;s for some aq,as € R. But ¢ also satisfies

/ ¢ZZJ:0 j:1:27
R2

which shows that a; = a2 = 0 so ¢ = 0, a contradiction. This proves (4.8) and
finishes the proof of the lemma. a

Proof of Proposition 4.1. Consider the Hilbert space

H:{d)eHg(m) :/ Zijp =0 i:l,...,m,j:l,Q}
Qx

with inner product (¢, ¢2) = fm V@$1Vgy. For h € Y, the variational problem:
find ¢ € H such that

($,0) = /Q (=W¢+h)p forall p € H

is a weak formulation of (4.1), (4.2). Using the Riesz representation theorem, this
variational problem is equivalent to solve

(4.9) o+ K(9) = h

where h € H and K : H — H is a compact operator. When h = 0 then A = 0 and
by Lemma 4.3 ¢ = 0. By the Fredholm alternative there is a solution ¢ € H of (4.9)
giving a weak solution of (4.1), (4.2). By standard regularity theory ¢ € C(f,)
and we get the estimate (4.4) from Lemma 4.3.

Now we proceed with the differentiability properties of ¢, c;; with respect to
&, ..., &n. For this we proceed formally, assuming the differentiability, and obtain
estimate (4.5). This argument can then later be justified by applying it to finite
differences instead of derivatives. We recall that ¢ is the unique solution of

L¢:h+i Z cijZ; in Oy

i=1 j=1,2

satisfying ¢ = 0 on 0Q and the orthogonality conditions (4.2), and that the ¢;; are
uniquely determined. Assuming that ¢, ¢;; are differentiable and setting ¢ = O, ¢
we find

L’(/} = —8&W¢ + h + Z d,'sz'j + Z cij(‘)gk Zz'j
where d;; = O¢, c;;. Differentiating the orthogonality condition (4.2) we get

¢Z,'j + ¢6€k Zij =0.
Qx
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Setting

- POz, Zij

'1/1 == w + b,’jZij where b,’j = fg)‘i&;”

fo Z3;
we get that ¢ satisfies (4.2) and
L’(Z = —6&W¢ +h+ Z dijZij + Z cz-jangz-j + Z bz'jZij in Q.

Hence, applying the apriori estimate of Lemma 4.3 we deduce
[l Loy + Idisl < CU10g, Wlly + IRlly + D leiil10g, Zislly + D [bi; 1| Zijl)-

We claim that each term is bounded by CA/?~1||h||y. Let us verify this explicitly
for [|0g, W ||y, because the others are direct. Since ||¢[|r= < C||h||y, it suffices to
verify that

(4.10) 10g, Wlly < CA'/P 1.
But 9g, W = f/(Vx — [log A[)9¢, V. One can verify directly that |9, Vil (a,) <
C. We then conclude the validity of (4.10) by using the next lemma. O

Lemma 4.4. We have
(4.11) £V (VA = [Tog Al)|ly < CAY/P~t
for some C >0 and all A > 0 small.
Proof. Let us write Qx = Qy \ U Barg, (§)- Using (2.20) and that Vy — |log A| <
—a for some a > 0 on Q) we get
i _ —1
sup (D12 —&17277) (VA — [log )| < OX'2
TEQ N j=1

To estimate || f{(Vy — | log /\|)||LP(B2R0(E)) we split the integral

[ ism-nosr=[ o [
Baro @) Dy Ds

where D; = BRjJ’-LA(gj)\BRj—L)\(Ej)’ Dy = BQRO (éj)\Dl and L > 0 is some large
fixed number. In Dy, by (2.18) we estimate |fy'| < C'/A and we get

/ FU(Va — [ log ADIP < CA.
D1

To estimate the integral over Dy we recall that Vy(z) — [logA\| = w;(|z — &) +
O(W) for € Bog,(§;) (cf. (3.16)) in C! norm. Siflce w;j(R;) =0, Vx —
|log A| has a zero set that is at distance O(A) from 0Bg;(;), and Vi (z) — |log Al
separates linearly from this curve. So thanks to (2.19), |fy(Va(z) — [logA|)| <
Cdist(z,0Bg,;(§;))~" on A,. Therefore

c
/ |£X(Va — [log AP < C/ y Pdy < CAVP.
As L
It follows that

LA VA = 1108 ADll 1 (amg 65y < CAP7Y,
and taking o > 0 small we get the stated estimate (4.11). 0
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5. A NONLINEAR PROJECTED PROBLEM

In this section we solve the nonlinear problem

L¢+N(¢) +E)\ = Z Z Cz'jZij in Q,\
(5'1) =1 j=1,2

=0 on 0N
with ¢ satisfying
(5.2) 6Zi; =0 foralli=1,2j=1,...,m.
Qa
We always assume that &, ..., &, € Q satisfy the separation conditions (3.6), (3.7),
— 2
and & = %Q.
Proposition 5.1. Assume p, ..., pn sotisfy (3.15). Then there is Ao > 0 such

that for A € (0,X) (5.1) has a unigue solution ¢ = ¢(&,...,&m) and ¢;; =
cij(&1,...,&m) such that

m 2
(5.3) plloee + 3 lesl < CA2.

i=1 j=2

Proof. For the argument it is better to work with the space X defined as the set
of continuous functions ¢ on €y such that ¢ restricted to Bag,(¢;) belongs to
W1H°(Bsg, (&) for all j =1,...,m, equipped with the norm

[6llx = lI@llzoe(@r) + D 18llwre(Ban, &)

j=1
We rewrite problem (5.1), (5.2) as the fixed point problem
¢ =F(¢)

where FF = —T(N(¢) + E)) and T is the linear operator defined in Proposition 4.1,
which by estimate (4.4) satisfies

IT(h)llo < C||h|ly for all h €Y.
By elliptic estimates we also deduce

IT(R)lIx < Cllhlly

with a constant C' independent of A, and here it is important that p > 2.
Let us estimate ||Ey||y. Using (2.15) we have

m _ 1
sup (Z |z — §j|727”) |Ex(z)] < CA7|log APT27 < OAL727
EEQA j:1

for A > 0 small, where Oy = Oy \ UL, B2r, (€;). Also, using Lemma 3.2 we see
that

A .
|Ex| < CW in Bag, (&;)-

So we deduce
(5.4) [|Exlly < CA729,
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For fixed v > 0,let B={¢p € X : |[|¢]|lx < yA1727}. We claim that there exist
constants C, a > 0 such that for ¢1,¢2 € B

(5.5) [IN(¢1) — N(2)lly < CA|p1 — ¢allx,
and we can prove this with a = %.
Indeed,

N(¢1) — N(d2) = (r — o) /0 N'(¢s + 51 — o) ds.

Therefore, to obtain (5.5) it is enough to show that for all s € [0,1]
IN"(¢2 + s(¢1 — 62))lly < CA”.

Part of this norm is || N'(¢2 + s(¢1 — ¢2))||LP(B2R0(§_J‘))' Write ¢ = ¢o + s(¢p1 — ¢2)
and note that ||¢||x < yA'~2?. Then

/B N@P = [ 1503+ 6 - logA) = Fi0A — [log )P = + I

2R (£5) B2R0(Ej)
where

Ik:/ FA(Va+ 6 — log Al) — FL(Va — [log AP, & =1,2
Ap

Ay = Br;yam (&) \ Br;-am (&), Ay = A\ A4,

the numbers R; are given in (3.10) and m > 0 is a parameter to be chosen. Since
f3 is uniformly bounded in the range of its arguments (see (2.16)), we find

(5.6) || < C|4:] < OX™.

On A, we obtain

L] < /A 1A (Vs + 6 — [log A]) = fA(Va — | log AP

1
S/ / |/ (Vs + 7¢ — |log A|)[P|9[P dr d.
A2 0

We recall that Vi (z) — |log\| = w;(|z — &) + O(W) for z € Bap,(§;) (cf.
(3.16)) in C' norm, and note that the gradient of 7¢ is small in uniform norm in
Bag, (§;), because ||@||x < yA!=27. This and w;(R;) = 0 yield

[Va+7¢ — |log A|| > cA™ in A
for some constant ¢ > 0. Therefore, from estimate (2.19)
|fA(Va + 7¢ — |log A|)| < Cdist(z,0Br, (&))"
on Az and we get
|Io| < CAMPjg|[E, < oy prTEr
Combining this last estimate with (5.6) we obtain
||NI(¢)2 + 5(¢1 _ ¢2))||LP(B2R0(E]')) < C()\m/l) + )\m(l/P—l)+1—2a).

We choose m = 1 — 20 and we obtain

1-20

(5.7) IN(OLe (Barg ) < CA
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Next we estimate the weighted L™ norm of N'(¢) away from the points £;. For
this we recall that if |z — ;| > 2R, for all j, then Vj —|log A\| < —M for some fixed
M > 0 and the same holds for V) + s¢ — |log A|. Therefore (2.17) yields
i _ -1
(58) sup (Y le—&1777) IN'(9)] < OX' 7.
TEQ j=1

The combination of (5.7), (5.8) proves (5.5).

Using (5.4) and (5.5), we see that choosing v > 0 fixed and large in the definition
of B, for A > 0 sufficiently small, F' is a contraction in B, and by the contraction
mapping principle F' has a unique fixed point in B. |

Proposition 5.2. For A > 0 sufficiently small, the maps &1, ...,&n — ¢,cij con-
structed in Proposition 5.1 are differentiable in the region defined by (3.6), (3.7)
and for any k=1,...,m, and A > 0 small

(5.9) 10, $llz~ + 185, cijll e < OA/P727.
For the proof we need the following lemma.

Lemma 5.3. We have
||a§_kE||Y < C)\min(l—2o,1/p)_

Proof. We compute O, Ex = Alg Vi + fi(Va — |log A|)0g, Va. It can be verified
that |0g, Va| < C in O, for some fixed constant.

Let us compute 9, Fx (z) for 2 € 0\ \UJL, Bg, (;)- In this region Vy is harmonic
and therefore 0g Ex = f{(Va — |logA|)0g, V. Therefore, using (2.17) and that
10, VallL (2y) < C we get

m _ -1 .
(5.10) sup (Z |z — ,5,-|—2—<f) |Ex| < CAY=7|log A[*+27 < CAL=20
weﬁ; j=1

for A > 0 small, where QO =0 \ UL, Bag, (EJ)

Let us estimate ”6&E>\”LP(B2RO(E,-))' We split ||6§—kE>\||’£p(B2RO(€_i)) =L+
where
11=/ ] RN 12=/  aEP
Barg (£:)\Br;+rx(&:) Br;+r(&)\Br; (&)

where L > 0 is some large constant. Using inequality (2.17) we can estimate

cx
dist(z,0Bg, (&))?

(5.11) [fA(Va —[log AJ)| <

for z € B2R0 (é_-z) \ BR,-+L/\ (g,) Therefore

2R
I <CX%P /

1
—dy < CA.
o Y v=

For I, we have, using the uniform bound for f} and Og Vj, [I2| < CA. Hence we
find

(5.12) |8§kE)\|p <CA

/BzRO (&)\Br; (&)
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To estimate inside Bg,(&;) we use (3.31) to write
Ex = fa(wi(lz = &) + 9(2)) — fa(wi(lz — &)
for = € Bg, (&), where

)\ )\
J#i

We recall that w; depends on p; because the initial condition ¢; in the ODE (3.2) is
determined by u; from the relation (3.9). We make the dependence of the solution
w of (3.2) explicit by writing w = w(r,a). We also note that u; depend on ¢;
through the formula (3.15). Then

O, Ex = Er + Es
where
By = [fi(wi(lz = &) + 9(2)) — fr(wi(|z — &)] O, wi(lz — &, o)
= f(wi(lz — &) + 9(2)) 0, 9

Then we compute

. awz §z sz Oa; O
Of Wi\| T — Gi|, O) = (5, ']
6ouila = Gl = =G G =+ TS e

and we get
(5.13) |0z, wi(|lz — &l,0)] < C for & € Bg, (&)

To estimate E; we write A; = BR,- (E’L) \BR,-fL/\(Ei); Ay = BR,’*L/\(E_Z') and L >0
is a large constant. Then, using the uniform bounds (5.13) and (2.16) we get
fAl |E1|P < CA. Since g(x) = O(A\/|log A|?), we estimate using (2.19)

/ B <C / | (wi(le — &) + g(@)) — £ (wi(lz — ED)IP
Az

<o [ [ 18wile & + ro@)Plopar e < O
Az
Also f B, |E2|P < C) and we conclude that
(5.14) / 10, ElP < CA.
Bg; (&)

Combining (5.10), (5.12) and (5.14) we obtain the result of the lemma. d
Proof of Proposition 5.2. The proof that ¢, c;; are differentiable with respect to
&1, ..., &y can be done with the contraction mapping principle, using that the linear
operator defined in Proposition 4.1 is differentiable with respect to to &i,...,&q,.-

We proceed to prove estimate (5.9). Differentiating the equation in (5.1) with
respect to { we obtain, for ¢ = O, ¢,

A+ W + (g, W)+ 05, E + 05, N(9) + >_(9g,¢i5) Zij + Y _ ¢ij0g, Zij =0



POINT RUPTURES FOR A MEMS EQUATION WITH FRINGING FIELD 23

in Qx. Let ¢ = ¢ — 3 dijZi; where dij = — [, ¢, Zij/ [, Z3- Tn this way,

j
1) satisfies the orthogonality conditions (4.2). Applying Proposition 4.1 we can
estimate

ldllze + > 18g,ci51 < € (11(0g, W)elly + 110g, Elly + 105, N(@)lly
+ > leislldg, Ziglly + D 1dis 1AZi; + W Zylv )

Estimate (5.3) gives that |c;;| = O(A}"27) and |d;;| = O(A1727) as A — 0.
Lemma 5.3 yields
||8§_kE||Y < C)\min(l—2a,1/p)‘

We compute
(9, W) + 05, N(6) = [ F3(Va + 6 — [1og Al) = f3(Va — |10g A))| (9, V& + ).

The same computations that lead to (5.7) and (5.8) show that

1—20

I(fA(Va + ¢ = [log Al) = £3(Va — [log AD)lly < CA™ 7

Therefore

1—

19, W) + 35, N (@) lly < COMP=27 4 X579 p=).

Collecting the estimates above, we obtain

1—

[¥llze < CAMP72 + CATFT ([ 2).
For X\ > 0 small we deduce (5.9). O

6. PROOF OF THE MAIN RESULTS
We work with points §; € Q satisfying (3.6), (3.7), that is, in the set
Q= {(&1s -, &m) € U™ 2 |& = &| > 6 Vi # j, dist(§;,09) > V1 < j <m},
where § > 0 is small. Recall that 5_]- = ij € Q). We also work with p; given
by (3.15). )
For £ = (&1,...,&m) € Qum, let ¢(£) denote the solution of (3.14) that satisfies
[|¢]loc < CA'™29 constructed in Proposition 5.1 and let ¢;;(€) denote the constants

appearing in equation (5.1).
Writing the initial approximation V = V() (defined in (3.13)), we set

Ia(§) = In(VA(§) + 6(8))

where I, is the functional given in (3.19).

Lemma 6.1. If ¢ = (&1,...,&) € Qu, is a critical point of Jy then ci;(€) = 0 for
ali=1,....,m and all j = 1,2, so that Vx(§) + ¢(&) is a solution of (3.1).

The proof of this lemma is very similar to Lemma 4.1 in [2] or Lemma 5.1 in [5].
Lemma 6.2. We have the expansion
I(Va + ) = Ix(Va) + Ox ()
as A = 0, where ©5(§) = o(1) in the C* norm in Qp,.
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Proof. Using that
DI\(Vx + éa)[oa] = Zcz] / Zijpxr =0

we compute

1
I,\(V,\+¢,\)—I/\(V,\)=—/O s A D2I\(Vy + s¢x)[éx, 2] dz ds
1
—/0 s [ (V5 + 65 = 1og A) = Fu(V5 = [1og ) 61

1
+/ s [ (fA(Va+sdxr —[logA|)px — Ex) o
0 Qax

We compute with detail the estimate for the derivative of Iy (Vi +¢x) — Ix(V) with
respect to . The estimate for the C° norm is similar. Differentiating with respect
to &k,

1
O, (I(Va + 62) — L(A)) = / s+ 1 +..) ds
0
where

(Fa(Va + ¢ = [log A]) = fA(Va — [log X)) (Og, Va) a
(Fa(Va + éx = [log A) = 2f3(Va + 5¢2)) (g, d2) Ha

L=-

-,
-,
L= - /Q SV + s — | 10g A (@, (Vs + 1))
/Q (0g, Ex)ox + Ex(0g, o)

Is = _/Q (AW + éx — [log A) — fa(Va — |1og A])) g, a-

Each term I; will be estimated below, but before, it will be convenient to have

(6.1) / FA(Va + 565 — [log A)| < C|log A,
Qax

by (2.16), (2.17), and

(6.2) / F2(Va + s — [log A)| < Clog A,
Qx

which is proved by a computation similar to Lemma 4.4.
We start with

AR / FA(Va + 6 — [Tog Al) — F4(Va — [1og A1, V2| [6]
A
< (18, Vallz |éa ]l e / FA(Va + 6x — | Jog A) — F4(Va — |log A])
A

1

< Cléall~ / / £ (Vs + 76 — [log A))| dr
0 A

< CX 7| log Al
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where we have used (5.3) and (6.2). Next we estimate

1
I S/O S/Q (IFA(Va + éx — [log A[)| + | fA(Va + séx — [log A|)[)| 0, dall¢al

< C10g, $all= lgallLe < CAVFL/P=de
by (5.3), (5.9) and (6.1). Similarly
0

1
I < / F1(Va + s — [log A%, (Vi + #)d3] < OA247log .
A
and
I < sl / 105, Ex| + 19z, éa |~ / |Ex| < CAVH/2-20 | 1og A3,
Qx

Qx

since outside big ball around the &, |fa|,|fx] < CA%/|log | and the area of Q, is
proportional to |log A|*/)\%. In summary

19, (In(Va + ¢3) — In(T2))| < OA+L/p=4e,

2
We choose now p > 2 close to 1 and o > 0 small. Since 9, = M@gk we deduce

|0e, In (Vs + 92) — 8e, In(Va)| < CA°

for some a > 0. O

Proof of Theorems 1.1, 1.2, 1.3. According to Lemma 6.1, the function Vy (£)+¢(€)
is a solution of problem (3.1) if we adjust & = (&,...,&mn) so that it is a critical
point of Jy(&) = In(Va(€) + ¢(£))). This is equivalent to finding a critical point of
= 1
JAE) = —
A(8) 7Ry (2w — log Ry)

Thanks to Lemmas 3.3 and 6.2 for ¢ € Q,,, we have
(6.3) () = om(€) + OA(6).

where ©) = 0(1) as A = 0 in the C* norm of Q,,. To prove Theorem 1.1, we note
that the function ¢,, is C', bounded from above in Q,,, and satisfies

Om(&1y.. o €m) = —00 as & — &| — 0 for some i # j.

Hence, choosing § > 0 small, ¢,, has a strict absolute maximum in Q,,. By (6.3), Jx
has also an absolute maximum in Q,, for A > 0 small, and this yields the existence
of a solution to problem (3.1).

Theorem 1.3 is a direct consequence of the 6.3, since a non-degenerate critical
point of ¢, gives rise to critical to a critical point of a small C' perturbation of
this function.

To prove Theorem 1.2 we invoke the work [5], where it is proved that if  is not
simply connected, then ¢,, and any sufficiently C' close map have critical points
in Q,, for 6 > 0 small enough. This result also appears in [2]. d

[I»(V)) — mmRy|log \| + 2em Ry log | log A[] -
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