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Chemotaxis is one of the simplest mechanisms for aggregation of biological
species. The term refers to a situation where organisms, for instance bacte-
ria, move towards high concentrations of a chemical which they secrete. A basic
model in chemotaxis was introduced by Keller and Segel [27]. They considered
an advection-diffusion system consisting of two coupled parabolic equations for
the concentration of the considered species and that of the chemical released,
represented respectively by positive quantities v(z,t) and u(x,t) defined on a
bounded, smooth domain Q in RY under no-flux boundary conditions. The
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Abstract
We consider the boundary value problem
Au—au+e2e® =0, u>0in Q, ? =0 on 99,
174

which is equivalent to the stationary Keller-Segel system from chemotaxis.
Here Q C R? is a smooth and bounded domain. We show that given any
two non-negative integers k,l with k + 1 > 1, for ¢ sufficiently small,
there exists a solution u. for which with e2e%s develops asymptotically k
interior Dirac deltas with weight 87 and [ boundary deltas with weight 4.
Location of blow-up points is characterized explicitly in terms of Green’s
function of the Neumann problem.

Introduction

system reads as follows.

vy = Av — V(vVu),
Tuy = Au —u + v,

u,v > 0in €, %:%:Oonaﬂ.



Here 7 is a positive constant. After the seminal works by Nanjudiah [32], and
Childress and Percus [8], many contributions have been made to the under-
standing of different analytical aspects of this system and its variations. We
refer the reader for instance to [3, 4, 7, 9, 15, 17], [22]-[26], [30]-[44]. It is well
known that if space dimension is N = 2 then classical solutions may blow-up in
finite time. Structure of this phenomenon has been widely treated in the liter-
ature for the two-dimensional case. It is known that blow-up for the quantity
v (whose mass is clearly preserved in time) takes place as a finite sum of Dirac
measures at points with masses greater than or equal to respectively 87 or 47
depending on whether they are located inside the domain or at the boundary.
This phenomenon, commonly referred to as “chemotactic collapse”, has become
fairly well understood. Asymptotic local profiles, forms of stability of blow-up
and dynamics post blow-up have also been analyzed. Relatively less is known
about steady states of the problem, namely solutions of the elliptic system

Av—V((@Vu) =0 in Q,
(2) Au—u+v=0 in{Q,

u,v > 0in , g—gz%ZOOHQQ.
Steady states are of basic importance for the understanding of the global dy-
namics of the system since, as pointed out in [33], a Lyapunov functional for
(1) is present, see [21, 39]. This problem was first studied by Schaaf, [36]
in the one-dimensional case. Biler [3] established existence of nontrivial solu-
tions of (2) in higher dimensions in the radially symmetric case. In the general
two-dimensional domain case, Wang and Wei ([44]), independently Senba and
Suzuki ([37]), proved the following result: given any positive number A with
A € (0, ﬁ + A1)\{4mm}m=1,... (where A\; is the first positive eigenvalue of —A
with Neumann boundary condition), there exists a non-constant solution to (2)
with [, v = A|2].

The purpose of this paper is to construct non-trivial solutions to (2) with
masses in the v coordinate close to 4mm for each given m > 1. More precisely,
if 2k + 1 = m, we are able to find solutions which exhibit in the limit [ Dirac
measures on the boundary and k inside the domain, with respective weights 47
and 87. Our main result reads as follows.

Theorem 1.1 Given non-negative integers k,l with k + 1 > 1, there ezists a

family of non-constant solutions (u-,v:), € > 0 to problem (2) such that

lim [ ve =4nw(2k +1).
€0 Jo

More precisely, up to subsequences, there exist k points &1,...,& € Q and ]
points g1y - - -5 Epyr € O such that as e — 0,

k !
Ve = Z 8mde; + Z Amde, -
i=1 i=1



This limiting phenomenon for steady states is a form of chemotactic collapse
which would be interesting to relate with that present in finite time blow-up.
Stability of these solutions opens as a basic question for a better understanding
of global dynamics of (1). Hints toward a global phase portrait in a simpli-
fied radially symmetric model have been found in [4], in particular connections
between blow-up and steady state solutions are conjectured.

As we will state in Theorem 1.2 below, much more accurate information
on these solutions, is available, in particular location of points &; is explicitly
described in terms of Green’s function of the domain.

A basic feature of Problem (2) is that it can be reduced to a scalar equation
as follows. It is easy to check that solutions of (2) satisfy the relation

/ v|V(logv — u)|? =0,
Q

so that v = g2e for some positive constant £. Thus system (2) is equivalent to
the boundary value problem
2 u H Ou

(3) Au—u+e“e*=0,u>0in Q, $=00n89.
In what follows, we assume that N = 2 and look for non-trivial solutions of this
problem when € > 0 is a small number.

In [37, 40], Senba and Suzuki characterized the asymptotic behavior of fam-
ilies of solutions to (3) with uniformly bounded mass as ¢ — 0. For y € Q we
denote by G(z,y) Green’s function of the problem

4) A,G—-G+6,=0in 0, 37G200n89.

The regular part of G(z,y) is defined depending on whether y lies in the domain
or on its boundary as

G(z,y) + = loglz —y|, ifyeq,

(5) H(w,y): { G(:L.yy)_‘_;]og'm—yh if y € 99Q.

In this way, H(-,y) is of class C*® in (). In [37] and [40], the following fact was
established: if u. is a family of solutions to problem (3) such that

lims/e% =X>0
e—0 Q

then there exist non-negative integers k,! m > 1 for which \g = 47(2k + 1).
Moreover, up to subsequences, there exist points &, ¢ = 1,...,m with & € Q
for i <k and & € 99 for k < i < m for which

k m
u(e) > S 87G (&) + Y 4rG(a, ),

i=1 i=k+1



uniformly on compact subsets of Q \ {&,...,&m}. Moreover, the m-tuple
(&1, ...,&m) is a critical point of the functional,

m
(6) Om(T1, .., Tm) = Z 2 H (xi, ;) + Z cic;G(zs,2;).

i=1 ij
where ¢; = 87 for i = 1,...,k where ¢; = 4w for i = k+ 1,...,m, defined on
QF x (0Q)! where with no ambiguity we set ¢, (21, ..., Tm) = 400 if z; = z;

for some i # j.

Our main result then establishes the reciprocal of this property: Let k,[ be
any non-negative integers such that k+1 > 1. Then for any ¢ sufficiently small,
problem (3) admits a solution u. satisfying the above properties. In order to
make this statement more precise, let us denote

8 2
(7) Ulha:logm, /J/>0, G/G]R2.

It is well-known that these functions correspond to all solutions to the problem
(8) Au+e* = in R?, / e’ < 4o00.
R2

Our main result can be precised as follows:

Theorem 1.2 Let k,l be non-negative integers with k +1 > 1. Then for all
sufficiently small € there is a solution u. to problem (4) with the following prop-
erties:

(1) ue has exactly k+1 local mazimum points £5,i = 1,...,k+1 such that & € Q,
fori <k and & € 00 for k+1<i <k +1. Furthermore

I f e E5) = mi
i om (&1, -2 &) = moin

(2) There are constants p; > 0 such that
m
ue(x) = Z Usujfj- (z) + O(1).
j=1

(3) & [, e’ — 4n(2k +1) as e — 0.

The existence of a global minimum for the function ¢, in QF x (8Q)! fol-
lows from properties of the Green’s function, see the proof of Lemma 7.1. In
reality, associated to each topologically nontrivial for ¢,,, a bubbling solution at
a corresponding critical point exists, see §8.

It is important to remark the analogy existing between our results and those
known for the Liouville-type equation
{Au-l—sze” =0 inQ

9
©) u=0 on df.



Asymptotic behavior of solutions of (9) for which &? [, e* remains uniformly
bounded is well understood after the works [5, 28, 29]: e%e* approaches a super-
position of Dirac deltas in the interior of 2. Construction of solutions with this
behavior has been achieved in [1, 11, 16]. Related constructions for problems
involving nonlinear, exponential boundary conditions for which boundary con-
centration have been performed in [12] and [13]. A special feature of the problem
treated in this paper is the presence of mixed boundary-interior bubbling so-
lutions. A similar phenomenon had only been observed in [19], for a different
Neumann singularly perturbed problem. To capture such solutions, we use
the so-called “localized energy method”- a combination of Lyapunov-Schmidt
reduction method and variational techniques. Namely, we first use Lyapunov-
Schmidt reduction method to convert the problem into a finite dimensional one,
for a suitable asymptotic reduced energy, related with ¢,,. Such a scheme has
been used in many works, see for instance [2, 14, 10, 18, 19, 20, 11, 16, 35] and
references therein. Qur approach shares elements with that in [11], however, a
different, more delicate functional setting has to be introduced. In what remains
of this paper we shall prove Theorem 1.2.

2 Ansatz for the solution
Given &; € Q, p; > 0 we define

8u3
i eGP

uj(z) =log (

The choice of §; and p; will be made later on.
The ansatz is

(10) Ulz) = Z(Uj(w) + Hj (x))

where H j is a correction term defined as the solution of

—AH;? + HJE- = —u; in Q

(11) OH:¢ ou.;
J — _Z7)
% — o on 9N).
Lemma 2.1 Forany0<a <1
(12) HS(z) = ¢;H(z,§;) - logSN? + 0(e%)

uniformly in Q, where H is the regular part of Green’s function defined (5).

We will give the proof of this lemma at the end of the section.
It will be convenient to work with the scaling of u given by

v(y) = u(ey) + 4loge.



If w is a solution of (3) then v satisfies
—Av +e%(v —4loge) = e’ in Q.
(13) 0
@ _ 0 on 09,
ov
where Q. = Q/e. With this scaling u; becomes
8puj
vi(y) =log —5—F—"—F5
! (12 + |y — &)

where £} = ¢;/e and where we will write v for the exterior normal unit vector
to 002 and 01)..
Note that u; + H; satisfies

—A(uj + Hj) +e*(uj + Hj) = €% in Q.
(4 { 76(%(;; H;) =0 ondf..
We will seek a solution v of (13) of the form
v=V +¢,
where
(15) V(y) =Uley) +4loge

and U is defined by (10). Problem (13) can be stated as to find ¢ a solution to

—Ap+e’p=€e"p+N(p)+R in Q.
16
(16) % =0 on 0f),
ov
where the “nonlinear term” is
(17) N(¢)=e"(e? —1-9)
and the “error term” is given by
(18) R=AV —e%(V —4loge) +e€".

At this point it is convenient to make a choice of the parameters p;, the
objective being to make the error term small. We claim that if

(19) log 83 = ¢; H(&5,&) + Y ciG(&:, &),

i#]
then we achieve the following behavior for R: for any 0 < a < 1 there exists C
independent of € such that

m

(20) |R(y)| < Ce™ )

j=1

1

— Wy el
L+ 1y - &I°



and for W = eV
(21) W)=Y oy L W), e o
with 6. satisfying the following estimate
10:(y)| < Ce® + Ce Yy =&l Vy € Q.
j=1
Proof of (21).

W(y) =e*exp <i uj(ey) + Hf(sy))

i=1
m
8u?
= exp <10g—’ +Hf(6y)) .
@ Ty —EPP
Let us fix a small constant § > 0 and consider this expression for [y — £;| < g

8u2 = 8N2
"5 exp (H?(gy) + [log L 7
W + 1y = &) ’ ; (2} +e2ly = &)

W(y) =

+ Hi (=) ).
Using (12) and the fact that H is C*(9Q2) we have

Hf(ey) = ciH(ey, &) — log(8u7) + O(e®) Wy € Qe
= c;H(§;,&) —log(8) + O(e®) + O(ely — &) Yy € Q..

Hence for [y — & < ¢

m 8/1/2
H: (ey)+ log o+ Hi(ey)
! ; ( (€2pF + €2y — &[[*)? )
) i 8u? 2
= ¢;H(&,&;) —log(8u3) + > (log & —ap ol (&5, &) — log(8p; ))
i#j 7o

+0(*) + O(ely - &)

= ¢;H(&;,&5) —log(8u3) + Y ciG(§5,&) + O(e®) + O(ely — &)
i#£]
=0(e%) + O(ely = &)
by the choice of u;, c.f. (19). Therefore

(22) W)= e (14 06) + 0y~ &) Vil < 2.

(15 + Iy — &%)



If [y — & > g for all j =1,...,m we have W = O(g*), and this together with
(22) implies (21). O

Proof of (20). We defined R = AV — &2(V — 4loge) + e with V given by

(15).
By our definition and (14),

m
R = gteXim(ui+H;) _ E e
j=1

For |y — §;| < g, we have according to (22)
R=2¢"(1+0(%) + O(ely — &) —e™ + 0"

=0(e" (™ +ely — &) + O(e*)
which proves (20).

Proof of lemma 2.1. The boundary condition satisfied by H? is

OH; 0wy (&) -v(x)
(23) v v 462111? + |z = &2

Thus for §; € Q,j =1,...,k, we have

(24) 6HJE _4(3;—&-)-1/(3;)

5 = EEE +O(e®) on 99.
Y

For { € 0Q,j =k+1,...,k+1, we have

J2=&) v(@)

|z — &;?

The regular part of Green’s function H(z,¢;) satisfies

25 li OH;
(25) lim —-

(z) = Vo # &

4 1
—A H(z, &) + H(x, &) = —C—jlogm z €
OH _4(@-§) v(z)
%(x’fj) ¢ |ﬂ'3—J€j|2 reon

For the difference 2. (x) = H5(x) + log 83 — ¢;H(x,£;) we have

! +log 1 in Q
(€45 + |z = 7)) |z =&l
0z. _OH;  (z—y) v(z)

% = e 4 o —oP on 0.

—Az. + z. = —log




We claim that for any p > 1 there exists C' > 0 such that
HBHE w_éfvmw

|z —&?

For this it will be convenient to observe first that for §; € 9

< Cel/r.

2
(26) o) <

(27) l(z— &) v(x)| < Clz—§|*  Vaeon,

which can be proved, for example, assuming that &; = 0 and that near the origin
0N is the graph of a function G : (—a,a) — R with G(0) = G'(0) = 0. Now

OH;  (x—§&)-v(z) _ , (z - &) - v(z)
I R vt el Yoy o ey )
By (27)
OH;  (z—§) v(x) e
@) R

Fix p > 0 small. Then

OH; (2§
1 —4 J < - &l > Q.
(30) 5 E —§J|2 ‘ Ce? Vie—&| >p, x€0

Now let p > 1. Changing variables z — §; = ey we have

g2 1 P
/ ‘ ‘ dz = CE/ ‘272‘ dy
B, (¢)non | (€213 + |z — &%) B,.ne. |15 + [yl

ple 1 p
< R
_Cs/o it s

< Ce.

Combining this with (29) and (30) we conclude that (26) holds.
For p > 1 let us estimate now

1 1 P
log — log = / PP
H |.Z' - 6]'2 5211/? + |$ - §]|2 LP(Q) BlOs,uj (gj)ﬁQ
v
Q\B105uj (5.7)
=1 + Is.

For I; observe that

1 P Ce ) 1
/ ‘log 72‘ deC/ |logr|Prdr < Ce*(log =)P.
Broey; (€00 | 17— & 0 €



10

The same bound is true for the integral of |log mﬁ’ in Bioey, (&) N Q.
J J
Hence

1
1] < Ce(log ).

Let us estimate I as follows:

1 1 1 < Ce
—log < .
|l — & e2pf + |z — &2~ |z = &

log

Take 1 < p < 2 and integrate

D
|Iz] < Ce”/ P dr < CeP,
1

Ope
where D is the diameter of 2. In conclusion, for any 1 < p < 2 we have

1
e + |z — &5

1
lo —lo < Ce
H & |z — &2 & Lr(Q) —
By L? theory

0z
= lluron) + 182y ) < CEH/7

[EA[pe——el{l
for any 0 < s < %. By the Morrey embedding we obtain
”Zsllc"‘/(ﬁ) S Cal/p

for any 0 <y < % + 1. This proves the result (with o = %) O

=

<
J

Remark. The convergence (25) is not uniform in general because ng &) =0

while the function z 2% can be extended continuously to £; with a
value equal to the curvature of 00 at §;.

3 Solvability of a linear equation

The main result of this section is the solvability of the following linear problem:
given h find ¢, c11,...,Cmy,, such that

( m
—Ap+e2p=Wo+h+> Y cijx;Zi; ink
j=1i=1,J;

(31) 1 g—f =0 on 0.




11

where m = k + 1, W is a function that satisfies (21), h € L* () and Z;;, x;
are defined as follows, J; =2if j=1,...,kand J; =1if j=k+1,...,k+1.
Let z;; be

i_z i g—= Y
Y 2, .
Hj IJ?"‘?J2 ! I~‘?‘|‘y2

205 =

It is well-known that any solution to
(32) Ap+e’p=0,¢| <C+y)7

is a linear combination of z;;,i = 0,1,2. (See Lemma 2.1 of [6].)

Next we choose a large but fixed number Ry and nonnegative smooth func-
tion x : R = R so that x(r) = 1 for r < Ry and x(r) = 0 for » > Ry + 1,
0<x<L

For j =1,...,k (corresponding to interior bubble case), we define

33 xi®) =x(ly =&, Zijy) = 2i5(y),i = 0,1,2,5 =1,..., k.

For j=k+1,...,k+1 (corresponding to boundary bubble case), we have
to strength the boundary first. More precisely, at the boundary point §; € 01,
we assume that &; = 0 and the unit outward normal at &; is —e, = (0, —1). Let
G(z1) be the defining function for the boundary 9} in a neighborhood B, (¢;)
of &, that is, QN B,(&;) = {(z1,22)|z2 > G(21), (x1,22) € B,(&;)}. Then, let
Fj : B,(&) NN — R? be defined by
(34)

I —G(.’L’l) ’
F; = (Fj1,Fjp), where Fji =z + WG (1), Fja2=mz2— G(z1)
Then we set

1
(35) Fﬂ@z;ﬂ@w

Note that F}; preserves the Neumann boundary condition. Define

(36)
xi(W) = x(F; W), Zij(y) = 2i;(Fj (v)) =01 j=k+1,....k+1l

It is important to note that
(37) AZoj +€" Zo; = O(e(1+ |y — &) ™°)

since
1

(1 +]y - &l)?
All functions above depend on & but we omit this dependence in the notation.

Furthermore, Z;; now all satisfies the Neumann boundary condition (since F}
preserves the Neumann boundary condition).

VZoj = 0( )
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Equation (31) will be solved for h € L () but we will be able to estimate
the size of the solution in terms of the following norm

|h(y)|
38 hlleo = sup |h(y)|, |[|h|[+ = sup = ,
(38) llAll yeﬂel @) Al D T L (R

where we fix 0 < ¢ < 1 although the precise choice will be made later on.

Proposition 3.1 Let d > 0 and m a positive integer. Then there exist €9 > 0,
C' such that for any 0 < € < &g, any family of points (&1,...,&m) € Mg and any
h € L*(Q.) there is a unique solution ¢ € L>°(f).), ¢;; € R to (31). Moreover

1
I6llz- (o) < Clog IIhll..

We begin by stating an a-priori estimate for solutions of (31) satisfying
orthogonality conditions with respect to Z;;,i =0,J;,5 =1...,m.

Lemma 3.2 There are Ry > 0 and g9 > 0 so that for 0 < € < g9 and any
solution ¢ of (31) with the orthogonality conditions

(39) / Zinj¢:0 ViZO,...,Jj Vj:l,...,m
Q

€

we have
19l (22.) < CllAll«

where C' is independent of €.
For the proof of this lemma we need to construct a suitable barrier.
Lemma 3.3 For e > 0 small enough there exist Ry > 0, and
¢ : Q. \UL Br, ({;) -R

smooth and positive so that

- 1 : m
—A¢+52¢—W¢22w+62 in Qe \ U Bg,(£))
=1 T8 ”
6’(b m !
5, >0 on 395\]_213121(5]-)
¥ >0 in 9\ U B (&)
m /
b>1 on 901 (0, 0B (67)

The constants Ry > 0, ¢ > 0 can be chosen independently of € and v is bounded
uniformly
0<y<C inQ:\UjLBg, (&)
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Proof of lemma 3.2. We take Ry = 2R;, R; being the constant of lemma 3.3.
Thanks to the barrier ¢ of that lemma we deduce that the following maximum
principle holds in Q. \ UL, Bg, (§}): if € H*(Q. \ UJL, B, (£})) satisfies

~A¢+e%9>Wo in 9\ U Br. (&)

9¢ _
ov

0 on 09 \ TLj Bg, (&)
J
>0 on . N (

[

I1C3

OBg, (5;'))

Jj=1

then ¢ > 0in Q¢ \ UJL, Bg, (£}).

Let h be bounded and ¢ a solution to (31) satisfying (39). Following [11] we
first claim that ||¢[| < (q.) can be controlled in terms of ||h||. and the following
inner norm of ¢:

lIgll: = sup 9]

Q.N(U7Ly B, (€)))
Indeed, set _
¢ =Cry (llglli + [1£1l+) »
with C a constant independent of €. By the above maximum principle we have
¢ < ¢ and —¢ < ¢ in Q. \ UL, Bg, (§;). Since 1) is uniformly bounded we
deduce

(40) ¢l (a.y < C(llolli +1£14)

for some constant C' independent of ¢ and e.

We prove the lemma by contradiction. Assume that there exist a sequence
en — 0, points (&7, ... &p,) € Ms and functions ¢, f, and hy, with ||y ||z~ (., ) =
1 and ||hy||« — 0 so that for each n ¢, solves (31) and satisfies (39). By (40)
we see that ||¢n||; stays away from zero. For one of the indices, say j, we can
assume that supp,, () |fn| > ¢ > 0 for all n. Consider ¢, (2) = ¢n(z — §;) and
let us translate and rotate €., so that €2, approaches the upper half plane Rﬁ_
and f; = 0. Then by elliptic estimates qASn converges uniformly on compact sets
to a nontrivial solution of

Ap+e'i¢p=0,|¢ <C.

Thus qg is a linear combination of z;;,¢ = 0,...,J;. On the other hand we can

take the limit in the orthogonality relations (39), observing that limits of the

functions Z;; are just rotations and translations of z;;, and we find fR2 X¢zi; =0
+

for ¢ = 0, J;. This contradicts the fact that <Z) # 0. |

Proof of lemma 3.3.
We take

1 '
(41) P(r) =1-— s where r = [y — &;|.
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Then
_ 2
—Ay =0

If 5;- € (1., then we have

O
ov.

= 0(e'*) on 89..
If & € Q. and |y — & > R, we have

Oy _U<Z/_fj>’/s >

ov. r2to

As before, we write 99, near £} as the graph {(y1,y2) : y2 = 2G(ey1)} with
G(0) =0 and G'(0) = 0. Then

8’¢1j o 1 _ ) 1
Sy  r2to G’(€y1)2 F1 ( ylG (6y1)7 6G(5(y1)>
o 1 9
= 5 OE 10(57" ) VR <r<d/e
= O(T%) VRi <r < d/e.

Combining together, we see that

(42) 6616: = o(g) on 99)..
Now let 9y be the unique solution of
Adpg — %thg + €% =0 in ., ‘Zi =¢ on 9.
Set
(43) b= s+ Co

Jj=1

Then for |y — §;| >R,j=1,....k+ 1 where R is large

(44)
1
—AY+ 2 —Wep > Ce2 402y — > e
Jz; €j|2+0 2 Z |y é’ |2+o’
since

Z1+Iy &l
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On 99,
o S €
ov, — 2
It is easy to see that %1& satisfies all the properties of the lemma. O

We will establish next an a priori estimate for solutions to problem (31) that
satisfy orthogonality conditions with respect to Z;;,¢ = 1, J; only.

Lemma 3.4 For e sufficiently small, if ¢ solves

9¢

(45) —Ap+e2p+Wo=h inQ., 35, =0 on o0,
and satisfies

(46) / ZijX; ¢ = Vi=1,...,m,i=1,J;
then

(47) 19llz(e.) < Clog - [l

where C' is independent of €.

Proof. Let ¢ satisfy (45) and (46). We will modify ¢ to satisfy all orthogonality
relations in (39) and for this purpose we consider modifications with compact
support of the functions Zp;. Let R > Ry + 1 be large and fixed.

Let

1
48 ;= .
1) i g % + HEL)
Set,
(49) Zoi () = Zo;(y) — ui + a0, G (&, ).
J

Note that by our definition, Z\O’j satisfies the Neumann boundary condition.
Let 7 be radial smooth cut-off function on R? so that

0<n<1,|Vp <CinR*, n=1 in B(0) and =0 in R* \ Bg;1(0).
Set
(50)
i) =y —§&l) for j=1,...k n;(y) =n(F(y)) for j=k+1,...k+1.
Now define

(51) Zoj = n;Zo; + (1 — ;) Zo;.
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Given ¢ satisfying (45) and (46) let

$:¢+Zdj20j, where d]‘:—w.
j=1 fQ Z ]X]
Estimate (47) is a direct consequence of:
Claim.
1
(52) 45| < Clog Zllhll. ¥j=1,...,m

We start proving this by observing, using the notation L = —A + 2 — W, that

(53) L(§) =h+ Y d;L(Zy;) in O,
7j=1
and
9
(54) 5 =0 on BQE

Thus by lemma 3.2 we have
~ m ~
(55) 19llz(.) < C Y 14 lI1L(Zoj) |« + CllAll
j=1
Multiplying equation (53) by Zox, integrating by parts and using (54) we find
(56) Zd / L(Zoj) Zo < C|[R]l.[1 +ZIIL Zoj)||s] +CZId I1Z(Zog)II2
j=1 j=1

We now measure the size of ||L(Zoj)||*. To this end, we have for |y —§;-| > R,
according to (37)

(57)
L(Zoj) = —€% Zog 4 W Zo + O(e(1Hly—E}) ) = &% (aojG@j,sy)—uij>+0(e<1+|y—s;-|)
Thus
(58) 1@ = n) Loyl < -
Mj 0j /1% = log—

where the number C' depends in principle of the chosen large constant R.
So

(ZOJ) = n;L(Zo;) + (1 — ;) L(Zoj) + 2Vn;V (Zoj — Zoz) + Anj(Zoj — Zoj)

/\
v

. 1 ~ ~
0( 2T+ (1—n;)e% (ao; G(&5,y) — ;)+2V77jv(z0j —Z0j)+An;(Zoj— Zoj)-
]

%)
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Note that for r = |y — §;| € (R,R+1), we have

Zoj — Zoj = ag;G(&j, €y)
Hj

1 1
=a0j< log ———— € =] H(@,sy)) T
j
Henc we derive that for r € (R, R+ 1)
e 5 ¢ 1 e
, V(Zoj— Zoj) = ———~+
) ( 0j 0]) log% r (log%)

C 1
—Zpj = ——log—+0
0j log% Og’l'+ (

60) Zo,
), we conclude that

From (59) and (60
o

(61) 1Ll < .
Now we estimate the left hand side integral of (56). From (59), we see that
for j £k,
= 1
O(—— A Zor =0 2
)+ | Ol o1+ 1mD) Zox = Ol(gor))

/ L(Zo;) Zor, =
Qe

For j = k, we decompose
/ L(Zow) Zox = I + IT + O(e)
QE

II = / O(E***) + (1 — mk)e (aorG (&, €y) — —) Zok
Q k

where
. 11
=0(") + O(E @)
and
I= / 2V NV (Zok — Zok) + Ank(Zok — Zor)) Zok
Qe

Thus integrating by parts we find
/VWV Zok — Zok) Zor — /vnj(ZOk — Zo)V Zoi + O(e)

Now, we observe that in the considered region, r € (R,R+ 1) with r = |y —
L Thus

I | Zok — Zox| < &5 while |VZy, | < 25 + AT
1

(Zok — Zok)VZok| < =
|/V7h( ok — Zok)V 0k|_Rglogg
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where D may be chosen independent of R. Now

R+1

I

SN 1 .
/VnkV(ZOk — Zok) Zok = / n (%k; + O(¢e)) Zogrdr

R
1

=)

R+1 ,
=a0k/ 7 (1+0() + 0(
R

E 1

=———[1+0(=
where F is a positive constant independent of €. Thus we conlude, choosing R
large enough, that I ~ —Zr. Combining this and the estimate for I we find

log
(62)
E 1

L~ 1 -~ 1
=—— - L(Zo;) Zor, = O(= ——) for j #k
1070 =~ 1+ O [ 1B o = O for

e

This, combined with (56), proves the lemma.

Proof of proposition 3.1.
First we prove that for any ¢, d;, ..., d,, solution to (31) the bound

1
(63) 91120 < Clog Il
holds.
The previous lemma yields
1 ™
(64) I6llz<(0) < Clog — (Il + > 3" less)
j=1i=1

So it suffices to estimate the values of the constants c;;.
To this end, we multiple (31) by Z;; and integrate to find

(65) /Q L($)(Zij) = /Q Wi+ ci /Q 312512

Note that for i # 0

1
Zii = O(———
=00 =g
So
(66) / hZi; = O(|hll.)
and

(67) /Q L@&)Zs = [ L(Z)6 = 0Cl6ll)

€
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Substituting (66) and (67) into (65), we obtain (64).
Now consider the Hilbert space

H={¢€H1(QE):/ XjZij¢=0 Vj:l,...,m,izl,.]j}
o0,

with the norm ||¢l|3, = [, |V4|* + e*¢®. Equation (31) is equivalent to find
¢ € H such that

/QE(V"W“W)_/QEWWZ/{MEW Vo € H.

By Fredholm’s alternative this is equivalent to the uniqueness of solutions to
this problem, which is guaranteed by (63).
O

The result of Proposition 3.1 implies that the unique solution ¢ = T'(h) of
(31) defines a continuous linear map from the Banach space C, of all functions
h in L% for which ||h]|« < oo, into L.

It is important for later purposes to understand the differentiability of the
operator T' with respect to the variables ¢ ;. Fix h € C. and let ¢ = T'(h). We
want to compute derivatives of ¢ with respect to, say, 5271. Similar to that of
[11], we obtain the following estimate

1
(68) 118 T(h)l < C(log E)2||h||*, forall k=1,...,m,l =1, J.

4 The nonlinear problem
Consider the nonlinear equation

(69)
—Ap+e?p—Wo=R+N(p)+ > cijx;Zij inQ
ij

%=0 on 09,
/ XjZij¢ =0 Vi=1,...,m,i=1,J

€

where W is as in (21) and N, R are defined in (17) and (18) respectively.

Lemma 4.1 Let m > 0, d > 0. Then there exist ¢ > 0, C' > 0 such that
for 0 < e < g9 and any (&1,...,&n) € Mg the problem (69) admits a unique
solution ¢, c1,...,cm such that

(70) |6l o (2.) < Ce®|loge|
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where a is_any number in the interval (0,1). Furthermore, the function & —
#(&") € C(Q.) is C* and
(71) |Der gl Lo () < Ce®|logel?.
Proof.
The proof of this lemma can be done along the lines of those of Lemma 4.1

of [11]. We omit the details.
O

5 Variational reduction

In view of lemma 4.1, given § = (&,...,&m) € M, we define ¢(§) and ¢;;(&)
to be the unique solution to (69) satisfying the bound (70).
Given & = (&1,...,&m) € QF x (0Q)! we write

UE© = (uj(z) + H; (z))

=
the ansatz defined in (10). Set

(72) F:(§) = J-(U (&) + $(¢)),
where J; is the functional defined by

(73) J.(v) = %/QGVUP +0?) = e /Q e
and

(74) HO)(@) = #(O(5), ze.

Lemma 5.1 If§ = (&1,...,6m) € M is a critical point of F. then u = U(§) +
@(€) is a critical point of J., that is, a solution to (4).

/|Vv|2+6v /e”.

Q.

Then F.(£) = J.(U€) + ¢(€)) = L(V(€') + #(€')) where & = &/e. Therefore

Proof. Let

OF. _10L(V(¢)+¢(¢) _1 ' m [V () | 9¢(£)
i AU QU bl oyl
Since v = V(&) + ¢(¢') solves (69)

o(¢
OF, _ 1 3 L, [OV(&) | 9¢(&")
Oy € Z i ~/895 XJZ“[ 3% - 9¢},; ]

i=1,J;,j=L,...,m
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Let us assume that DF(£) = 0. From the previous equation we conclude that

! 6 !
Z Cij/ XjZijI:6V(,§) + ¢(,€)] =0 VeE=1,...,m,l=1,J.
F=1,eemyi=1,J; Qe 0% 0%

. ag(¢’ o av (g .
Since || ad’g(fl)||Loo(Qs) < Ce%|loge|? and Bﬁgfl) = +Zp; + o(1) where o(1) is

in the L norin, it follows that

Z Cij / XjZij(£Zw +0(1))  Vk=1,...,m,

§=1,...,m,J=1,J; Q.

which is a strictly diagonal dominant system. This implies that ¢;; = 0 Vi =
1,....,m,j =1,J;.
O

In order to solve for critical points of the function F, a key step is its expected
closeness to the function J.(U), which we will analyze in the next section.

Lemma 5.2 The following expansion holds

Fe(§) = J(U) +60:(¢),

where
16| + |VO:| = 0,

uniformly on M.

Proof. Let (¢') = I.(V + ¢) — I.(V). In order to get the proof of this lemma,
we need to show that ~ ~
|0| + 571|V§/05| = 0(1).

Taking into account DI, (V + ¢)[¢] = 0, a Taylor expansion and an integration
by parts give

1
LV +¢)-L(V) = / D2L(V +t6)[g] (1 — 1) dt

(75) =/01 (/QE[N(@+R]¢+/Q€ev[1—et¢]¢2) (1 1) d,

so we get .
IE(V + d)) - Is(V) =0, = 0(52a| 10g5|3) .

taking into account that [|¢[|p~(q.) < Ce*|loge|. Let us differentiate with
respect to &, ;

0, 110V +0) - L) = [ ([0 [0 + R4
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+ /Q Jg;, [e"[1 — '] ¢2]> (1—1t)dt.

Using the fact that ||0g¢l|. < Ce®|loge|? and the estimates of the previous
sections we get

aﬂc,l [LV+¢)—L(V) = a&;c)lég = 0(g**|logel*).

The continuity in £ of all these expressions is inherited from that of ¢ and its
derivatives in £ in the L® norm. The proof is complete. O

6 Expansion of the energy
Lemma 6.1 Let p; be given by (19). Then for any 0 < a <1

1 m

J.(U) = (87k + 4x1) (8 — 1 + log 8) + 2(8k + 4nl) log % -3¢ [ch(gj,gj) +3 c,-G(.g,-,gj)]

2 <
=1 ii#j

+ O(e®).

where

b 1 1
= 1 .
B /0 T+ 22 B arap ®
Proof. Define
Uj(z) = uj(z) + Hj (2)

so we may rewrite (10) in equivalent form U = 377" | U;. Then

1 m ) 1 m o . m |
JE<U)=§/Q|;W,-| w/ﬂ(ém) K o)

m

= Z/Q 5(|VU,-|2 +U;) + 2 > /Q(VUNUJ' +Uilj) — 62/ exp() | Uj)
j=1

i#j 2 =1
=Is+1Ip+ Ic.

Let us analyze the behavior of I4. Note that U; satisfies

AU; —Uj +€%e% =01in Q, %:001169

which gives

(76) /Q(|VUJ<|2+UJ?) :62/96”1'(uj+Hj).



Let us find the asymptotic behavior of the expression:

2

A A 82 8113
VU-2+U?=52/ . lo .
Jjovoe ) =2 || e (s G g

+c¢;jH(z, &) + O(s"‘)).

Changing variables eu;y =z — §;

8 1
VU'2+U-2:/ lo + ¢ H(& + epy, &
Jyrvour s = [ G (s + 6 o)

— 4log(euj)) + O(g%).

But

8 8 1
7:20-%—06,/ Io
/Qj(1+|y|2)2 i+ 06 ., T PP B APy

ep

andfor0<a <1

8 al, |
/Q W(H(&U‘jy:gj) g];é-] / 1+| | (E |y| )

epj

Therefore
(77) / VU2 + U2 = 26,8 + 2H(&;, ) — Ac; log(eps;) + O(®).

Thus
(78) IA_Zc,ﬁ 2Zc,1ogeu] +Z cH§],§])+0( ),
j=1

We consider now

22/ VUVU; + U;Uj)

i#]

——Z/ uJ+H

i#]

A similar argument as for I4 shows that

(79) Ip = % Z cic;G(&i, &) + O(”).
i#£]

= C]',B + O(E

23

)
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Regarding the expression I we have

m
IC — _52/ ezl,’:;l Uy — _62 / 622"=1(uk+H§) + 0(82).
Q

j=1/9NBs(£;)

Using the definition of u; and (12) for each term we have
62/' ez&gw+ﬁ>zg{/ i 03 H(2.65) ~10g(815) +O") . ()
QNB;(£;) oQNBs(&;)

where

E;(x) = exp (Z log

i#j

1
(e2u + |z — &?)? +ciH(z, &) + 0(50‘))_

Changing variables ep;y = x — &; we have
€3 H (& eniy &) —1og(8uj)+O(e%) — oesH(&5:65)=108(3K3) 1 O(c*|y|*).

and

E;(& +ensy, &) = exp ( > Cz'G(Ej-&)) + O0(e*|y[®)-
i,i#]

Therefore, by the definition of p; in (19)

Ea/ ezgxwﬁﬁu:g/' Ui +O(Ee®)
QNBs(&;) QNBs(&;)

=cj + 0(e%).
Thus
(80) Ic = —ch + 0(e%).
J
Thanks to (78), (79) and (80) we have
Je(U) =) cj(B—1+1log8)+2) c;log ot > g [ — log(8u3) + 56H (& &)
j=1 j=1 j=1

+ % Z CiCjG(é‘ia é‘])] + O(e®).
i)

Employing again (19) we have
JE(U) = ZCj(ﬂ -1+ IOgS) + ZZCJ' log E - 5 ZC]' [Z CjH(é‘j,Ej) + Z CzG(é‘,,E])}
=1 Jj=1

i i=1 i=1 biti

+0(e%).
O
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7 Proof of theorem 1.2

Let
(81) )= e[ HE,6) + Y a6, 6)]
Jj=1 1,iF ]
We have
Lemma 7.1 We have
(82) min — 400 as & — 0.
£€EOM ;s

Proof: Let £ = (&,...,&m) € OM,;. There are two possibilities: either there
exists jo < k such that d(&;,,00) = J, or there exists io # jo, |&i, — &jo| = 0
In the first case, we claim that for all £ € Q

(83) H(E,€) > Clog m

In fact, if € is close to the boundary, let £ be the nearest point of 90 to £. It
is easily checked that

(84) H(z,6) = i SloB T +0()  as d(€.00) =0

1
— &

uniformly in Q, where £* is the reflection of £ across the boundary, that is the
symmetric point to £ with repect to &

(83) follows from (84), using the fact that G(z,y) > 0.

In the second case, we may assume that there exists a fixed constant C' such
that d(&;,00) > C,i =1,...,k, as otherwise it follows into the first case. But
then it is easy to see that

(85) (6155]) > ClOg ‘f EJ‘

From (83) and (85), the proof of this lemma is complete.
O

Proof of Theorem 1.2: For § > 0 sufficiently small, we define a configuration
space as:
(86)

M = {5 = (€1, ,&m) € ()T x(BQ)F (min  d(§,09) > 6, min [§-¢; > 5}-

According to Lemma 6.2, the function U (£)+¢(€), where U and ¢ are defined
respectively by (10) and (74), is a solution of Problem (3) if we adjust & so that
it is a critical point of F.(§) = J.(U (&) +¢(&)) defined by (72). This is obviously
equivalent to finding a critical point of

F(6) =2 (F (€) — (87k + 4r1)(8 — 1 + log 8) — 2(87k + 4rl) log %)
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On the other hand, from Lemmas 5.2 and 6.1, we have that for £ € My,

(87) Fs(g) = pm(§) +e%0:()

where ¢, is give by (81), ©, and V0, are uniformly bounded in the considered
region as € —+ 0.
From the above Lemma, the function ¢,, is C!, bounded from below in M
and such that
Om(&1y...y&m) = +ooas 6 =0

Hence, for § is arbitrarily small, ¢, has an absolute minimum M in M;. This
implies that F.(§) also has an absolute minimum (&5,...,£5,) € M; such that

m(&5,..., &) = mi m — 0,
om(&] &) [in ¢ (€) ase

Hence Lemma 5.1 guarantees the existence of a solution u. for (4). Fur-
thermore, from the ansatz (10), we get that, as € — 0, u. remains uniformly
bounded on 2\ UTL, B5(&;), and

sup ug — +00,
Bs(&5)

for any § > 0.
O

Remark 7.2 By using Ljusternik-Schnirelmann theory, one can get a second,
distinct solution satisfying Theorem 1.2. The proof is similar to [12].

Remark 7.3 As mentioned in the introduction, one can get a stronger result
than Theorem 1.2 under the assumption that the function ¢, has, in addition
to the ones described in the proof of Theorem 1.2, some other critical points in
Q,, with the property of being topologically non trivial, for instance (possibly
degenerate) local minima or maxima, or saddle points.

Let us define what we mean with topologically non trivial critical point for
pm- Let X be an open set compactly contained in My with smooth boundary.
We recall that ., links in X at critical level C relative to B and By if B and By
are closed subsets of ¥ with B connected and By C B such that the following
conditions hold: Let us set T' to be the class of all maps & € C(B,X) with the
property that there exists a function ¥ € C([0, 1] x B, ¥) such that

U(0,)=Idg, ¥(Q,)=®, U(,-)|p, =Idg, for all t €[0,1].
We assume

(88) sup o, (y) <C = inf sup o (®(y)),
yEBy eel’ yEB

and for all y € 0% such that ¢, (y) = C, there exists a vector 7, tangent to 9%
at y such that

(89) Vom(y) -7y #0.
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Under these conditions a critical point § € X of ¢, with ¢, (7) = C exists.
Not only this: any function C* close to ¢,, inherits such critical point.
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