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ABSTRACT. A celebrated conjecture due to De Giorgi states that any bounded solution of the
equation Au+(1—u?)u = 0 in RN with 8y, u > 0 must be such that its level sets {u = A} are all
hyperplanes, at least for dimension N < 8. A counterexample for N > 9 has long been believed
to exist. Starting from a minimal graph I which is not a hyperplane, found by Bombieri, De
Giorgi and Giusti in RV, N > 9, we prove that for any small a > 0 there is a bounded solution
Uq (y) with Oy yua > 0, which resembles tanh (%), where ¢t = t(y) denotes a choice of signed

distance to the blown-up minimal graph I's := o~ !I". This solution is a counterexample to De
Giorgi’s conjecture for N > 9.
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1. INTRODUCTION

This paper deals with entire solutions of the Allen-Cahn equation
Au+ (1 —uP)u=0 inRY. (1.1)

Equation (1.1) arises in the gradient theory of phase transitions by Cahn-Hilliard and Allen-Cahn,
in connection with the energy functional in bounded domains €2

1
Jo(u) = g/Q|Vu|2 + = /Q(l —u?)? >0, (1.2)

whose Euler-Lagrange equation corresponds precisely to an e-scaling of equation (1.1) in the ex-
panding domain e~ '€). The theory of I'-convergence developed in the 70’s and 80’s, showed a deep
connection between this problem and the theory of minimal surfaces, see Modica, Mortola, Kohn,
Sternberg, [21, 28, 29, 30, 36]. In fact, it is known that a family {u.}.>o of local minimizers of
J. with uniformly bounded energy must converge as ¢ — 0, up to subsequences, in L'-sense to
a function of the form yg — xg- where x denotes characteristic function of a set, and OF has
minimal perimeter. Thus the interface between the stable phases u = 1 and u = —1, represented
by the sets {u. = A} with |A\| < 1 approach a minimal hypersurface, see Caffarelli and Cérdoba
[7, 8] (also Roger and Tonegawa [32]) for stronger convergence and uniform regularity results on
these level surfaces.

The above described connection led E. De Giorgi [9] to formulate in 1978 the following celebrated
conjecture concerning entire solutions of equation (1.1).

De Giorgi’s Conjecture: Let u be a bounded solution of equation (1.1) such that O, ,u > 0. Then
the level sets {u = A} are all hyperplanes, at least for dimension N < 8.

Equivalently, u depends on just one Euclidean variable so that it must have the form

u(z) = tanh ( ”“‘ﬂ_b > , (1.3)

for some b € R and some a with |a| =1 and ay > 0. We observe that the function

w(t) = tanh (\2)

is the unique solution of the one-dimensional problem,

w’ + (1 —w?)w =0, w(0)=0, w(toc)==+1.

The monotonicity of v implies that the scaled functions u(z/e) are, in a suitable sense, local
minimizers of J., moreover the level sets of u are all graphs. In this setting, De Giorgi’s conjecture
is a natural, parallel statement to Bernstein theorem for minimal graphs, which in its most general
form, due to Simons [35], states that any minimal hypersurface in R", which is also a graph of a
function of N — 1 variables, must be a hyperplane if N < 8. Strikingly, Bombieri, De Giorgi and
Giusti [5] proved that this fact is false in dimension N > 9. This was most certainly the reason for
the particle at least in De Giorgi’s statement.

Great advance in De Giorgi’s conjecture has been achieved in recent years, having been fully
established in dimensions N = 2 by Ghoussoub and Gui [16] and for N = 3 by Ambrosio and
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Cabré [2]. Partial results in dimensions N = 4,5 were obtained by Ghoussoub and Gui [17]. More
recently Savin [33] established its validity for 4 < N < 8 under the following additional assumption
(see [1] for a discussion of this condition)

lim w(z,zy) =+l (1.4)

x N —Foo
Condition (1.4) is related to the so-called Gibbons’ Conjecture.

Gibbons’ Conjecture: Let u be a bounded solution of equation (1.1) satisfying

lim w(z,zy) = +1, uniformly in . (1.5)
N —Eoo

Then the level sets {u = A} are all hyperplanes.

Gibbons’ Conjecture has been proven in all dimensions with different methods by Barlow, Bass
and Gui [3], Berestycki, Hamel, and Monneau [4], Caffarelli and Cérdoba [8], and Farina [14]. In
references [3, 8] it is proven that the conjecture is true for any solution that has one level set which
is globally a Lipschitz graph. If the uniformity in (1.5) is dropped, a counterexample can be built
using the method by Pacard and the authors in [12], so that Savin’s result is nearly optimal.

A counterexample to De Giorgi’s conjecture in dimension N > 9 has been believed to exist
for a long time, but the issue has remained elusive. Partial progress in this direction was made
by Jerison and Monneau [19] and by Cabré and Terra [6]. See the survey article by Farina and
Valdinoci [15].

In this paper we show that De Giorgi’s conjecture is false in dimension N > 9 by constructing
a bounded solution of equation (1.1) which is monotone in one direction and whose level sets are
not hyperplanes. The basis of our construction is a minimal graph, different from a hyperplane,
found by Bombieri, De Giorgi and Giusti [5]. In this work a solution of the zero mean curvature

equation
v —YE__)_y in RV-1, (1.6)
V1+|VF]?

different from a linear affine function was found, provided that N > 9. This solution is, in other
words, a non-trivial minimal graph in RY. Let us observe that if F'(z’) solves equation (1.6) then
so does

Fo(z"):=a 'F(az’), a>0,
and hence
Lo = {(z',zn) | 2" e RV, oy = Fo(a')} (1.7)
is a minimal graph in RY. It turns out that the scaling parameter in (1.6) provides a natural

bridge between (1.1) and (1.6).
Our main result states as follows:

Theorem 1. Let N > 9. There is a solution F to equation (1.6) which is not a linear affine
function, such that for all a > 0 sufficiently small there exists a bounded solution uq(y) of equation
(1.1) such that us(0) =0,

Oyntia(y) >0 forall yeRY,
and
lua(y)] — 1  as dist(y,Tq) — +oo, (1.8)
uniformly for all small o > 0, where Ty, is given by (1.7).

Property (1.8) implies that the 0 level set of u,, lies inside the region dist (y,I'y) < R for some
fixed R > 0 and all small «, and hence it cannot be a hyperplane. Much more accurate information
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about the solution will be drawn from the proof. The idea is simple. If ¢(y) denotes a choice of
signed distance to the graph I, then, for a small fixed number § > 0, our solution looks like

ta(y) ~ tanh (\2) if [¢] < g

As we have mentioned, a key ingredient of our proof is the existence of a non-trivial solution
of equation (1.6) proven in [5]. We shall derive precise information about its asymptotic behavior,
which in particular will help us to find global estimates for its derivatives. This is a crucial
step since the mean curvature operator yields in general poor gradient estimates. In addition we
shall derive a theory of existence and a priori estimates for the Jacobi operator of the minimal
graph. Subsequently, a suitable first approximation for a solution of (1.1) is built. Next, we
linearize our problem around the approximate solution in order to carry out an infinite-dimensional
Lyapunov Schmidt reduction. This procedure eventually reduces the full problem (1.1) to one of
solving a nonlinear, nonlocal equation which involves as a main term the Jacobi operator of the
minimal graph. Schemes of this type have been successful in establishing existence of solutions to
singular perturbation elliptic problems in various settings. For the Allen-Cahn equation in compact
situations this has been done in the works del Pino, Kowalczyk and Wei [11], Kowalczyk [22], Pacard
and Ritore [31]. In particular in [31] solutions concentrating on a minimal submanifold of a compact
Riemannian manifold are found through an argument that shares some similarities with the one
used here. In the non-compact setting, for both (1.1) and nonlinear Schrédinger equation, solutions
have been constructed by del Pino, Kowalczyk and Wei [10], del Pino, Kowalczyk, Pacard and Wei
[12, 13], and Malchiodi [26]. See also Malchiodi and Montenegro [24, 25]. We should emphasize
here the importance of our earlier works [12, 13] in the context of the present paper, and especially
the idea of constructing solutions concentrating on a family of unbounded sets, all coming from
a suitably rescaled basic set. While in [12, 13] the concentration set was determined by solving a
Toda system and the rescaling was the one appropriate to this system, here the concentration set is
the minimal graph and the rescaling is the one that leaves invariant the mean curvature operator.
We mention that our work are partly motivated by earlier works of Kapouleas [20], Mazzeo and
Pacard [27], and Mahmoudi, Mazzeo and Pacard [23] on construction of non-compact constant
mean curvature surfaces in Euclidean three space.

Let us observe that a counterexample to De Giorgi’s conjecture in N = 9 gives one in RY =
RY x R¥=9 for any N > 9, by extending the solution in R? to the remaining variables in a constant
manner. For this reason, in what follows we shall assume N =9 in Problem (1.1). We will also
denote

flu) = (1 —vu?)u.

We shall devote the rest of the paper to prove Theorem 1. The proof is rather long and technical,
but has steps that are logically independent and can be divided into nearly independent blocks.
The exposition is designed so that the proof is completed by page 17, except for some steps which
are isolated in the form of lemmas and propositions, and whose full proofs, postponed to the
subsequent sections, are not necessary to follow the logical thread of the proof of Theorem 1. That
is the purpose of the sections 2—4.

In §2 the BDG graph and its asymptotic behavior are described. The proof of the main result
there, Theorem 2, which involves a delicate improvement of the supersolution in [5], is carried out
in §9. In §3 a first approximation, about which we linearize, is built and the error of approximation
and its features are analyzed in detail. In §4 we present the full proof of the theorem in various
steps, with several intermediate results stated, with proofs in turn are given in the proceeding
sections §5—89. Each of these last five sections is largely independent and can be read individually.
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2. THE BDG MINIMAL GRAPH

The minimal surface equation for a graph in R? corresponds to the Euler-Lagrange equation for

the functional
A(F) = / V1+ |VF|2dz,

integrated over subsets of R®. In other words, F' represents a minimal graph if for any compactly

supported test function ¢
VF -Vo¢

- V1+|VF?

A(F)[] = — / HIF) $dr,

H[F] := V- (VF> =0 inR" (2.1)

V1+|VF]?
Quantity H|[F] corresponds to the mean curvature of the hypersurface in R,
I:={(a/,F(2))) | 2’ € R®}.

The Bombieri-De Giorgi-Giusti minimal graph [5] is a non-trivial, entire smooth solution of equa-
tion (2.1) that enjoys some simple symmetries which we describe next.

A(F)[¢] dz = 0.

We observe that

where

Let us write 2’ € R® as 2/ = (u,v) € R* x R* and denote u = |u|, v = |v|. Let us consider the
set

T = {(u,v)ER¥| v>u>0}. (2.2)
We should remark here the set {u = v} € R® is the famous Simons minimal cone [35]. The solution
found in [5] is radially symmetric in both variables, namely F' = F(u,v). In addition, F is positive
in T and it vanishes along the Simons cone. Moreover, it satisfies

F(u,v) = —F(v,u) forall wu,v>0. (2.3)

Let us observe that for a function F' that depends on (u,v) only, the area functional becomes,
except for a multiplicative constant,

A(F) = /\/1 + F2 + F2 v*vidudv,

and hence equation (2.1) for such a function becomes

1 3 3Fu 1 3 3F’U
H[F] = B, “v +——0, vy
u3v? V1+ F2 + F2 udv? V1+ F2 + F2
It is useful to introduce in addition polar coordinates (u,v) = (r cos 8, rsin @) for which we get (up
to a multiplicative constant)

A(F) = /,/1 + F2 4+ r=2F7 r"sin® 20 dr df
so that (2.1) reads

7 i3 5 i3
HIF] = 1 P ( F,.r’sin” 260 >+ 1 P < Fyre sin” 260 ) ~ 0. (24)

rTsin®20  \ I+ FZ+r 2FZ)  rTsin®20 0 \ 1+ FZ+r 2k
Set Fy = r3g(6). Then we get

1 3r7g sin® 26 1 ’sin® 26
HIF) = ——5—0, | —n 0 g o TS
r7 sin” 26 V=4 +9¢2 4 g2 rsin” 26 V=t +9¢2 + g2
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FIGURE 1. Schematic view of the function F'(u,v) representing I' in the sector T =
{0 < u < v}

For Fy to be a good approximation of a solution of the minimal surface equation H[F]| = 0, we
neglect terms of order »~* in the denominators, and, additionally because of (2.3), we require that
g(0) solves the two-point boundary value problem

21g sin® 20 g’ sin® 26 . (T ™ s
=0 i (1.2). 9(§)=0=0(5) 2.6
V992 +g”° " (\/992+9’2 ERCIEIARAY T\ 20
Regarding (2.6), we have the following result.

Lemma 2.1. Problem (2.6) has a unique solution g € C*([5,%]) such that g and g’ are positive

in (§,%) and such that g'(§) = 1.
We fix in what follows the function g as above and we set Fy(x') = r3g(). Let us observe that
H[Fp) =O0(r™®) asr=|2/| = 400 (2.7)

The next result, crucial in the arguments to follow, refines the existence result in [5] in what
concerns the asymptotic behavior of the minimal graph, which turns out to be accurately described
by Fy, see also Figure 1.

Theorem 2. There exists an entire solution F = F(u,v) to equation (2.1) which satisfies (2.3)
and such that

C
Fh<F<Fy+— min{FO, 1}, mT, 1> R, (28)
TAO'
where 0 < 0 <1, C>1, and Ry, are positive constants.

We will carry out the proofs of Lemma 2.1 and Theorem 2 in §9. In what remains of this paper
we will denote, for F' and Fj as in Theorem 2,

I ={(,F))| o €R®}, Ty={(a,F(z'))| 2/ €R®}.
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By I', we will denote the dilated surfaces I'y, = o !TI". Also, in the rest of this paper we shall use
the notation:

r(x) == |2'|, ro(z) := rlaz), z=(2',19) € R® xR =R’ (2.9)

We conclude this section by introducing the linearization of the mean curvature operator, corre-
sponding to the second variation of the area functional, namely the linear operator H'(F") defined

by
d Vo (VF -V¢)
H'(F = —H(F +1td)|i=0 = V- — VF |.
When the second variation is measured with respect to normal, rather than to vertical pertur-
bations, we obtain the Jacobi operator of I', defined for smooth functions h on I" as

Jrlh] = Arh + |Ar(y)|*h,

where Ar is the Laplace-Beltrami operator on I' and |Ar|? is the Euclidean norm of its second

fundamental form, namely |Ap|? = Zle k? where ki, ..., ks are the principal curvatures. See [35]
Theorem 3.2.2.
These two operators are linked through the simple relation

Jrlh] = H'(F)[¢], where ¢(z') =+/1+ |VF(2")]?h(z', F(z)). (2.10)
Similarly, using formula (2.4), we compute for vertical perturbations ¢ = ¢(r,8) of Ty,

1 5 - . .
H'(Fo)l¢] = #{(992 W gg)y + (r°g’* W), — 3(gg’ wrie,)o — 3(gg’ U”"4¢9)r}
r7 sin”(26)

L1
77 sin®(26)

sin® 26 (2.11)

(r-4 4992+ ¢g'%)2’

{(r*l Weg)o + (MI;@)T}, W(r,0) =

3. LOCAL COORDINATES NEAR I', AND THE CONSTRUCTION OF A FIRST APPROXIMATION

We are studying the equation
AU+ f(U)=0 inR? f(U)=U@1-U?). (3.1)
It is natural to look for a solution U(x) that obeys the symmetries of T',. Let us consider the linear
isometry in R® given by
Q(u,v,zg9) = (Pv,Qu, —x9) (3.2)
where P and @ are orthogonal transformations of R*. We observe that this isometry leaves T,

invariant and that if U(x) solves (3.1) then so does the function —U(Qx). We look for a solution
with the property

U(Qx) =-U(z) (3.3)
for any Q of the form (3.2). In other words, we look for U = U(u, v, x9) with
U('U, U, —£E9) = —U(U, v, ‘TQ)‘

The proof of Theorem 1 relies on constructing a first, rather accurate approximation to a solution
whose level sets are nearly parallel to I',, and then linearize the equation around it to find an actual
solution by fixed point arguments. A neighborhood of I', can be parametrized as the set of all
points of the form

x=Xa(y,2) =y +zv(ay), yeT,, (3.4)
where |z| is conveniently restricted for each y. We observe that v(ay) corresponds to the normal
vector to 'y, at the point y. It seems logical to consider ug(z) = w(z) as a first approximation to
a solution near I',. Rather than doing this, we consider a smooth small function h defined on T"
and set

ug(z) = w(z — h(ay)).
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The function & is left as a parameter which will be later adjusted. Consistently, we ask that h
obeys the symmetries of I' requiring that for any Q of the form (3.2) we have

h(y) = —h(Qy) forall yel. (3.5)

We notice that this requirement implies that A = 0 on Simons cone {u = v}.
Suitably adapted to this initial guess is the change of variables

= Xn(y,t) =y + (t+hlay)v(ay), ye€Tla, (3.6)

so that ug(x) = w(t).
Since F'(u,v) = F(u,v) = —F(v,u), we have that Qu(ay) = —v(aQy), and hence

Xh(Qy7 _t) = _QXh(y7t) (37)
Thus, if V = V(x) and we set with some abuse of notation V(y,t) := V(X(y,t)), then
V(Qzx) = -V (z) ifand onlyif V(y,t)=—-V(Qy,—t). (3.8)

In particular ug(z) satisfies the symmetry requirement (3.3) where it is defined since the function
w is odd.

To measure the accuracy of this approximation, and to set up the linearization scheme, we shall
derive an expression for the Euclidean Laplacian A, in terms of the coordinates (y,t) in a region
where the map X}, defines a diffeomorphism onto an open neighborhood of T',.

At this point we make explicit our assumptions on the parameter function h besides (3.5). We
require that h is of size of order o and that it decays at infinity along I' at a rate O(r(y)~!),
while its first and second derivatives decay at respective rates O(r=2) and O(r—3). Precisely, let
us consider the norms

lglloe.r = L+ 77) gllzoerys gllpw = sup (1+7®)") lgllzewnpe.) -
Yy

Let us fix numbers M > 0, p > 9 and assume that h satisfies
8]l := [[Alloo,1 + [IDrhlloc,2 + [ DRAlps < Ma. (3.9)

In order to find the desired expression for the Laplacian in coordinates (3.6), we do so first in
coordinates (3.4) for & = 1. Let us consider the smooth map

(y,2) ET xR +— o= X(y,2) =y + 2v(y) € R°. (3.10)

As we will justify below (Remark 8.1), there is a number ¢ > 0 such that the map X is one-to-one
inside the open set
O={(y,z) eI'xR| |z|<do(r(y)+1)}. (3.11)
It follows that X is actually a diffeomorphism onto its image, N' = X (O).
The Euclidean Laplacian A, can be computed by a well-known formula (see for instance [31])
in terms of the coordinates (y, z) € O as

Am = 822 + AFZ - HFZ (y)am T = X(y7 Z)a (y,Z) S 07 (312)

where I', is the manifold

L={y+z2v(y) | yel}
By identification, the operator Ar, is understood to act on functions of the variable y, and Hr, (y)
is the mean curvature of I', measured at y 4+ zv(y). To make expression (3.12) more explicit, we
consider local coordinates around each point of T'.

Let p € T be a point such that r(p) = R. Then a neighborhood of p in I' can be locally
represented in coordinates as the graph of a smooth function defined on its tangent space T,,I". Let
us fix an orthonormal basis II;,...,IIg of T,I'. Then there is a neighborhood ¢/ of 0 in R® and a
transformation of the form

8
yEUCR® =Y, (y) =p+ Y yilli + Gp(y)v(p), (3.13)

i=1
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onto a neighborhood of p in I'. Here G, is a smooth function with DyG,(0) = 0. As we will prove
in §8.1, the fact that curvatures at y € I' are of order O(r(y)~1), as it follows from a result by L.
Simon [34], yields:

Proposition 3.1. There exists a number g > 0 independent of p € I such that U can be taken to
be the ball B(0,6pR) whenever R = r(p) > 1. Moreover the following estimates hold:

DG, < Dy, (y) < m>2 forall |y <0R

Rm—1’

The explicit dependence on p will be dropped below for notational simplicity. Let us denote by
g:; the metric on I' expressed in these local coordinates, namely

gij = (0iYy, 0;Yp) = bij + 0iGy(y) 9;Gp(y)- (3.14)
Then, by Propoisition 3.1,
gi; =0+ O(ly’R™?), D}'gij = O(R™™").
The Laplace-Beltrami operator on I' is represented in coordinates y € U as

1
Ar = m@-( detgg” 9;) = ai;(y)0i + b} (v)9;, (3.15)

where

1

Vdet g

We should point out that here as well as throughout the remainder of this paper we use Einstein
summation convention for repeated indices. Let us observe in addition that for y = Y, (y) we have
that

ag;(y) == g” =6 + O(ly|?R™?), b)(y) := 9;(\/detgg”) = O(ly| R?).

1
v(y) = T+ 1D,G,5)F (v(p) — 0:Gp(y) 1L,
hence
Dyv=0O(R™"), Djv=0(R?). (3.16)

3.1. Coordinates in R’ near I" and the Euclidean Laplacian. ;From estimate (3.16) it can be
proven that, normal rays emanating from two points y1, yo of T’ for which 7(y1),r(y2) > R cannot
intersect before a distance of order R from I', which justifies the definiteness of the coordinates
(y,2) in (3.11) (see Remark 8.1).

Local coordinates y = Y,(y), y € U C R® as in (3.13) induce natural local coordinates in I';,
Y, (y) + zv(y). The metric g;;(z) on I', can be computed:

gij(2) = (8Y,0;Y) + z((BiY, jv) + (9;Y, 0v)) + 2 (v, 9v) , (3.17)
and hence for r = r(y), and g;; as in (3.14),
gij(2) =gij + 20(lylr ™) +220(r™®), Dygij(2) = Dygij + 20(r™?) +2°0(r™?).
Thus,
= ¥8,»( detg(z)g7(2) ;) = ai;(y,2)0i; + bi(y, 2)0; (3.18)

Ar =
BT /et g(2)

where a;;, b; are smooth functions which can be expanded as
aij(y, 2) = aj;(y) + 2a55(y,2),  biy, 2) = b (y) + 2 (b5 (y) + 2 b7 (. 2)), (3.19)

bl (y,x)

with
a}j(y,z) = O(T72), b} (y) = 0(7"72), b?(y,z) = O(r*?’) for all |y| < 1.
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Let us consider the remaining term in the expression (3.12). We have the validity of the formula

8 o'} 8
. ki —1 . j
H(y,2):= Hr.(y) = ; e j;zj Hy(y), Hi(y):= ; K, (3.20)
where k; = k;(y), ¢ = 1,...,8 are the principal curvatures of I' at y, namely the eigenvalues of

the second fundamental form Ar(y), which correspond to the eigenvalues of D}Q,G(O) for y =pin
the local coordinates (3.13). Since T' is a minimal surface, we have that H; = 0. We will denote
|Ar(y)|? := Hz(y). We write, for later reference, for m > 2,

H(y,z) = zHo(y) + 22H3(y) 4+ ... + 2" 2H, 1 (y) + 2™ Hy(y, 2), (3.21)
where, since k; = O(r~1!), we have
Hj(y) = O(r™), Hpy(y,z) = O(r™™).
Thus in local coordinates (y, z), y = Y,(y), we have the validity of the expression
Ay = 0ss + a5(y,2)0ij + bi(y,2)0; — H(y,2) 0., (3.22)

with the coefficients described above.
We can use the above formula to derive an expression for the Laplacian near I', by simple
dilation as follows: We consider now the coordinates near I',,

= Xa(y,2) =y +2v(y), (y,2) € Oa={y Ty, [2| < g(r(ay) + 1D} (3.23)

If p e Ty, and p, := ap € T, then the local coordinates y = Y, (y) defined in (3.13) inherit
corresponding coordinates in an a~!-neighborhood of p by setting, with some 6 > 0 (depending in
),

Y= Yoaly) =a Wy, (ay), Iyl <2 (3.24)
Let us consider a function u(z) defined near I',,. Then letting v(y, z) = u(X4(y, 2)), and defining
u(z) =: t(ax) we find
Aguly=x,(ys) = 0*D50E)|s=x (ay,a2)
=a® (9zz + aij(§,2) 0ij + bi(§.2) 0 — H(9,%2) 0z ) v(a™ 7,07 2) |5.2)=(0y,02):
which means precisely that for the coordinates (3.23) we have
Ay = 0., + a;j(ay, az)0;; + ab(ay,az)0; — aH(ay, az)0,. (3.25)

Let us fix now a smooth, small function h defined on T' as in (3.9) and consider coordinates
(3.23) defined near T',, as

= Xn(y,t) =y+({t+hlay)) viay), (y,t) € On={y € Lo, [z+h(ay)| < g(r(ay)ﬂ)}- (3.26)
If v(y,t) = w(Xn(y,t)) = 0(y,t + h(ay)), then
Aptle=x, (y,t) = Datllo=X, (y,t+h(ay))
= (022 + aij(ay,a2) 0 + abi(ay,az)9; — aH(ay, az)0;) [0(y, 2 — h(ay))]ly,2)=(,t+h(ay)»

where by slight abuse of notation we are denoting by h(ay) the function h o Y (ay). Carrying out
the differentiations and using the symmetry of a;;, we arrive at the following expression for the
Laplacian in coordinates (3.26)

Ax = (1+a2aij6¢h8jh)8tt + Qi 8ij —2aaij8ih8jt + Oébi (91' - (Oé2 (aijaijh+bi8ih)+ O(H)) (9,5, (327)
where all coefficients are evaluated at ay or (ay, a(t + h(ay)).

We observe that for y =Y, o(y) we have that (with some 6 > 0 small)

0
Ar, = af)(ay)dy; + ab(@y)d;, Iyl < - (3.28)
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Therefore if we write
Am == 8tt + AFQ + B (329)
then, with the notation (3.19), the operator B acting on functions of (y,t) € O C 'y, x R is given
by
B = aQaijaithh O + Oé(t + h)( allj Bij + abi@z) - 2aaij(’)ih8jt — (OéQ(Gijaijh + bzalh) + aH)) O .
(3.30)

3.2. Error of approximation. Let us take as a first approximation to a solution of the Allen-
Cahn equation simply the function ug(z) := w(t). We set

S(u) = Au+ f(u).
Since w” () + f(w(t)) = 0, we find that
S(ug) = a?a;;0;h0;hw" (t) — (®(ai;0ijh + b;0ih) + aH) w'(t).
We expand H (ay, a(t + h)) according to (3.21) as
H = a(t+ h)|Ar(ay)* + o (t + h)* Hy(ay) + o*(t + h)* Hy(ay, alt + h)).
We expand also
a;;0i;h + b;0;h = Arh(ay) + ot + h)(a}ja,»jh + b%@ih).

Next we improve the approximation by eliminating the only term of size order o? in the error,
namely —a?|Ar(ay)|*tw’ (t). Let us consider the differential equation

0 () + f'(w(t))ho(t) = tw'(2),
which has a unique bounded solution with y(0) = 0, given explicitly by the formula
t s
Po(t) = w’(t)/ w’(t)_Q/ sw'(s)%ds .
0 —o0
Observe that this function is well defined and it is bounded since [*_sw’(s)?ds = 0 and w'(t) ~

e It as t — +o0, any o < v/2. We consider as a second approximation

uy =ug+d1,  G1(y,t) = |Ap(ay)*1ho(t) . (3.31)

Let us observe that

S(uo + @) = S(uo) + Aud + f'(uo)p + No(8), No(d) = f(uo + @) — fluo) — f'(uo)¢ .
We have that
A1 + f'(uo)pr = o?|A(oy) Ptw.
Hence we get that the largest term in the error is cancelled. Indeed, we have
S(ur) = S(uo) + o |Ar(ay)*tw’ +[Ay — Oulér + No(¢1).
Let us write Ha(ay) = |Ar(ay)[?>. We compute
S(uy) = —a?[Arh + |Ap|?h 4+ ot + h)*Hs + o (t + h)3 Hy | w'
+ OZQCLijaihajh ’LUH + Oég(t + h)(aijawh + b%@zh)w' - [Ode + Ol4( aijﬁijh + biazh)] H2 7/16
+ a4((aij6in2 + biaiHQ)’(/Jo — 2a4aij8ih8jH21/16 + Ol4aij(9ih8th2’(/J6/ + NQ(O[2H2¢0),
(3.32)
where all coefficients are evaluated at ay or (ay, a(t+h(ay)). Roughly speaking, the largest terms
remaining in the above expression (recalling assumption (3.9)) are of size O(a®r;3(y)e=“M). We
introduce next a suitable norm to account for this type of decay. This norm will be used throughout

the paper in the functional analytic set up.
For numbers 0 < ¢ < v/2, p > 9, v > 0, and a function g defined on I'y, x R let us write

I9llpe == sup M) lglle (B (.00 (3.33)
(y,t)ETo XR
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Then, for instance

I(Arh) (ey)w'(t)

_s _s
p3o < Csu;lz ||D%hHLp(B(y’a)mr‘)a r < CMal >, (3.34)
ye

In all we get, assuming for instance that S(u;) is extended as zero outside O,

8

1S(u1)llp,se < CMa® > . (3.35)

3.3. Global first approximation. The function w; built above is sufficient for our purposes as
an approximation of the solution near I', but it is only defined in a neighborhood of it. Let us
consider the function H defined in R? \ T, as

1 if E,(z),
H(z):={ > %7 (z,) (3.36)
-1, if xg < Fy(z').

The global approximation we will use consists simply of interpolating u; with H outside of a large,
expanding neighborhood of T, using a cut-off function of |t].
We recall that the set O in T'y, x R was defined as (see (3.26)):

On = ) €Ta xR, [t +h(ay) < S(1+ralv)} (3.37)

where § is small positive number. We will denote N5 = X,(Op). The fact that Oy, is actually
expanding with r, along I', makes it possible to choose the cut-off in such a way that the error
created has both smallness in « and fast decay in r,,.

Let n(s) be a smooth cut-off function with n(s) = 1 for s < 1 and n(s) = 0 for s > 2. Let us
introduce the cut-off functions (,,, m = 1,2, ...,

t+h - 21 - if

o) o { MR = (1 raly) —m), i NG, 535

0, if v & Ns.

Then we let our global approximation w(z) be simply defined as

w = (su1 + (1 — <5)H, (339)

where H is given by (3.36) and uj(x) is just understood to be H(z) outside Nj.

The global error of approximation becomes

Sw) = Aw+ f(w) = S(u) +E, (3.40)

where
E =2V (sVuy + A (ur —H) + f(Cur + (1 —¢)H) ) — Cs5f(ur) -

The new error terms created are of exponentially small size and have fast decay with r,. In fact
we have

|E| < Cema(47a)

Remark 3.1. Tracking back the way w was built we see that it has the required symmetry near Iy,
namely w(Qy, —t) = —w(y,t), which is as well respected by the cut-off functions. Using relation
(3.8) we conclude that, globally in R, w(Qz) = —w(z). Since the orthogonal transformations
P,Q in the definition of Q in (3.2) are arbitrary, we get that w = w(u, v, zg) with w(v,u, —zg) =
—w(u,v,x9). It follows that exactly the same symmetry is obeyed by the error S(w).
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4. THE PROOF OF THEOREM 1

We look for a solution u of the Allen-Cahn equation (3.1) in the form
U=vw+p,
where w is the global approximation defined in (3.39) and ¢ is in some suitable sense small, with
the additional symmetry requirement
©(Qx) = —p(x) forall x€R? (4.1)

so that (3.3) holds.
Thus we need to solve the following problem
Ap + f'(w)p = =S(w) = N(p), (42)
where
N(p) = f(w+p) = f(w) = f'(w)e.
The procedure of construction of a solution is made up of several steps which we explain next,

postponing the proof of major facts for later sections.

4.1. Reduction by a gluing procedure. Here we perform a procedure that reduces (4.2) to
a similar problem on entire I', x R, which in O}, coincides with the expression of (4.2) in (y,t)
coordinates, except for the addition of a very small nonlocal, nonlinear operator.

Let us consider the cut-off functions ¢, introduced in (3.38). We look for a solution ¢(z) of
problem (4.2) of the following form

p(z) = G(x)d(y, 1) + ¢ (z) (4.3)
where ¢ is defined in entire I'y, x R, 1(z) is defined in R? and (o(2)¢(y,t) is understood to be zero
outside M. We see that (2(Qz) = (2(z). Thanks to relation (3.8), ¢ will satisfy (4.1) if we require

o(Qy, —t) = —¢(y,t), forall (y,t) €T, xR, (4.4)
P(Qx) = —(z) forall ze€RY. (4.5)
We compute, using that (o(; = (1,
Sw+¢) = Ap+ f'(w)e + N(p) + S(w)
=G [A¢+ f(u)¢ + G(f'(w) = F/(D))Y + GN (P + @) + S(ur)]
+AY+[(1 = G)f (w) + G f' (1) ]
+ (1= G)SW) + (1= G)N@W + o) + 2V Ve + dAG.

We recall that f/(+1) = —2.
Thus, we will construct a solution ¢ = (2¢+1 to problem (4.2) if we require that the pair (¢, )
satisfies the following coupled system

]
Ap+ f'(ur)p + G(f (u1) +2)¢ + QN (@ + @) + S(ur) = 0, for [t] < 5L Hraly) +3, (47)
A+ [(1=G)f (ur) = 2G 1 + (1= @)S@+(1 = Q)N + (29)
+2VG Vo + ¢AG = 0, in RY.
We will first extend equation (4.7) to entire I',, x R in the following manner. Let us set
B(#) = G[As = Ou = Ar, 16 = GB(9), (4.9)
where A, is expressed in (y,t) coordinates using expression (3.27) with B described in (3.30), and

B((;S) is understood to be zero for (y,t) outside the support of (4. Similarly, we extend the local
expression (3.32) for the error of approximation S(u1) in (y,t) coordinates, to entire T', X R as

S(u1) = ¢4S(ur),

with this expression understood to be zero outside the support of (4.

(4.6)

(4.8)
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Thus we consider the extension of equation (4.7) given by

Oud + Ar,¢ +B(9) + f'(w(t))d = —S(ur) — {[f'(ur) = f'(w)]é + Gu(f'(wa) +2)v }

: (4.10)
-GN+ ), in Ty xR.
Consistently with estimate (3.35) for the error, we consider the norm || - ||,»,. defined in (3.33)
and consider for a function ¢(y,t) the norm
[¢ll2,p,00 = HD2¢||p,mV + D900, + [[@lo0,00 - (4.11)

To solve the resulting system (4.7)-(4.8), we first solve equation (4.8) for ¢ with a given ¢, which
is a small function in the above norm. For a function 1 (z) defined in R? we define

]l = S:Hgg(l+r(a:v))”H¢IILP<B<x,1>>7 r(x', xg) = |2/ (4.12)
xT

Noting that the potential [(1 — (1) f/(u1) — 2¢1 ] is strictly negative, so that the linear operator in
(4.8) is qualitatively like A — 2 and using contraction mapping principle, a solution ¥ = U(¢) is
found according to the following lemma, whose detailed proof we carry out in §5.

Lemma 4.1. Let p > 0. Given ¢ satisfying the symmetry (4.4) and ||¢|2p3,0 < 1, for all

sufficiently small o there exists a unique solution 1» = ¥(¢) of problem (4.8) such that

ad

1 2p3+0, = 1D*Wllp 34106 + [Plloc 341, < Ce™a (4.13)
Besides, U satisfies the symmetry (4.5) and the Lipschitz condition
_as
W (1) = W(d2)ll2p31px < Ce™ «|[d1 = P2ll2ps.0 - (4.14)

Thus if we replace ¢ = ¥(¢) in the first equation (4.7) by setting
N(¢) = B(¢) + [f'(w1) = f'(w)]o + Gi(f'(wr) +2)¥(e) + GN(¥(4) + ¢), (4.15)

our problem is reduced to finding a solution ¢ to the following nonlinear, nonlocal problem in
', x R:

O + Ar,¢ + f'(w)¢ = =S(u1) —N(¢) inTq xR. (4.16)
Examining the terms in (4.15), we notice that if ¢ satisfies the symmetry (4.4) then so do N(¢)
and S(up). Thus we will solve the original problem (1.1) if we find a solution to problem (4.16).

We will be able to do this for a certain specific choice of the parameter function h on which all
elements in the right hand side of (4.16) depend on.

4.2. An infinite dimensional Lyapunov-Schmidt reduction. In order to find a solution of
problem (4.16) we follow an infinite dimensional Lyapunov-Schmidt reduction procedure: we con-
sider first the following projected problem

Oud + Ar. o+ f(w)p = —S(u1) —N(p) + e(y)w'(t), inT4 xR,

(4.17)
/ oy, ) w'(t)dt =0, forall yeTl,
R
where )
oly) == R /R (S (ur) + ()] ' (£) dt. (4.18)

The correction ¢(y) w’(t) to the right hand side provides unique solvability for any choice of the
parameter h satisfying (3.9) in the sense of the following result, whose proof will be given in §6.1.

Proposition 4.1. Assume p > 9, 0 < o < /2. There exists a K > 0 such that for any sufficiently
small a and any h satisfying (3.9), problem (4.17) has a unique solution ¢ = ®(h) that satisfies
the symmetry (4.4) and such that

_8 _8
18]l2p3.0 < K", |N(9)ps.0 < Ka 5. (4.19)
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This proposition reduces the problem of finding a solution to problem (4.16) to that of finding
a function h satisfying the constraint (3.9) such that c¢(y) = 0 with ¢ given by (4.18) for ¢ = ®(h),
in other words such that

/[S(ul) +N(®(h)] (y,t)w'(t)dt = 0 forall yeTl, . (4.20)
R

4.3. Solving the reduced problem. We concentrate next in expressing the reduced problem
(4.20) in a convenient form. We begin by computing an expansion of the quantity [ S(u1) w'(t) dt
making use of the expression (3.32) for S(u;). Let us decompose, using also expansion (3.21) for
H,
—a2S(uy) = [Arh + |Ar)?h + at* H3Jw' + Ei(y,t) + Ea(y,t),
where
Ei(y,t) = 2ahHstw' — abj(ay,0)d;htw’ — af;0:hd;hw”
+ o? [Hyt*w' + Hitpy — H3 [/ (w)vh — (ag;0;Ha + b70; Ha )by |,
and
Es(y,t) = [ah® Hy+o?((t +h)* —t3)Hy + > (t + h)*Hs | w'
— a(t+ h)[a;;0;hd;hw” + aj;0;;hw'] — a d;h[(t + h)b} (ay, a(t + h)) — tb; (ay,0)]w’
+ [a®hHy + o®(t + h)?Hs + o®(ai;0;jh + b;0;h) ] Ha 1,
+ 20%a;;0;h0; Hatpy — o (t + h)((aj;0i;Ha + b;0; Ha)ho
- azaij&h@jhﬂz%' —a”? [No(a2H21/;0) - f”(w)(a2H2¢0)2 J;
(4.21)

and, we recall, evaluation of the coefficients is made in local coordinates at y or (ay, a(t + h(ay)).

The logic of this decomposition is that terms in E; decay at most like O(r;*) but the functions
of t involved in them are all odd, while those in Fy decay like O(r,?), according to assumption
(3.9) in h and the estimates we have obtained in the coefficients. We have

/ Ei(y,t)w'(t)dt =0,
R
while there is a constant C, possibly depending on the number M in constraint (3.9) such that for
all h satisfying those relations we have
|[Ba(y, )] < CA+r2)7" [al (1+73) Diblay)| + o®] . (4.22)

Thus, setting ¢; = [, w?dt, co = Iz 2w'? dt, we find
— a_2/ g(ul) (y,t) w'(t)dt = c1[Arh+ |Ar|?h](ay) + caa Hz(ay) — Gi[h] (o), (4.23)
R

8
where, we recall, H3 = >, , k?, and

Gi[h(ay) = /(C4 —D[(Arh+|Ar|*h+ot* Hs) w' + Ei(y. 1) Jw'dt + / GE(y, t)w'dt . (4.24)
R R
Let us observe that
(1= Ca)(jw'| + [w"]) < Cema7T,
hence the contribution of the first integral above is exponentially small in « and in r,,. Using (4.22)

we get
1Gi[h] [lp5 < Ca?. (4.25)

Now let us consider the operator

Ga[R] (o) :a_Q/RN(q)(h))w’dt. (4.26)



16 MANUEL DEL PINO, MICHAL KOWALCZYK, AND JUNCHENG WEI

More generally, it will be convenient to consider a function ¥(y,t) defined in ', x R and the
function g defined on I" by the relation

:/ql)(a_lyj) w'dt.
R

[lswravie) <oy ot [ A/t P v,
a—1 <

|k|>1

Then

If A= B(y,1)NT, then a~ 1A can be covered by O(a~8) balls of radius 1 in T',,. Thus

/ / Wy, P dE Ve, (y) < Cr(g) PP 2, |
a 1A J|t—k|<1

and hence

_8
19llp. = Sup(1+ D) gllrB@var) < Ca™? [¢lpp,o- (4.27)

Now, examining the expression (4.15) for the operator N and using the bound (4.19) for ®(h)
we have that

IN(@ (1)) [lp5.0 < Ca,

hence for G5 defined above we get

_s
G2 (1) [lp,5,0 < Ca®
uniformly in h satisfying (3.9). In summary, the reduced equation (4.20) reads

Tr[h(y) == Arh(y) + |Ar(y)[*h(y) = caHs(y) + G[hl(y), y €T, (4.28)
where
c=—cofer, G =~ H(Gi[h] + Ga[R)).
The operator G satisfies:
|Glh) 5 < Ca®7, (4.20)
for all h satisfying (3.9). Moreover, we observe that if p(y, t) satisfies p(Qy, —t) = —p(y, t), then

/ p(Qu.t)w'(t) dt = — / Py, t)w'(t) dt,
R R

since w’ is an even function. Since p = S(up) + N(®(h)) satisfies this requirement, we conclude
that so does the operator G[h] and it is hence consistent to look for a solution A in this class of
symmetries.

It seems natural to attempt to solve problem (4.28) for functions h, with ||h|/. < Ma (see (3.9))
by a fixed point argument that involves an inverse for the Jacobi operator Jr. Thus we consider
the linear problem

Arh+|Ar(y)*h =g, yeT. (4.30)

We stress here the fact that functions h and g belong to the admissible class of symmetries. The
solvability theory for (4.30) needs to consider separately the case g = caHs(y), which has a decay
of order O(r~?) and an additional vanishing property, and the case of a g with decay O(r=%). We
prove in §7:

Proposition 4.2. The following statements hold:

(a) If g(y) = cH3(y), then problem (4.30) has a solution ho with ||hol|« < +o00.
(b) Given g with ||g||ps < +00, there exists a unique solution h := T (g) to problem (4.30) with
|hll« < +o0. Moreover, for a certain C > 0, ||k« < Cllglps-
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Writing h := ahg + hy the equation becomes, in terms of hq,
Arhi + |Ar(y)‘2h1 = g[ho + hl], yel. (431)

Finally, we solve problem (4.31) by an application of contraction mapping principle. We write it
in the form

hy = T(G(ho+ h1)) = M(h1), |y <a?75 . (4.32

Bound (4.29) and the proposition above implies that the M applies the region ||kl < a2~
into itself if « is sufficiently small. Not only this, we will prove in §6.2:

~

©loo

Lemma 4.2.
1G(h1) = G(ha)llps < Ca' ™% |y = Bz, (4.33)
for all hy, hy satisfying (3.9).

Hence M is also a contraction mapping. The existence of a unique solution of (4.32) follows. It
is simply enough to choose the number M in (3.9) such that M > ||ho]|..

Remark 4.1. We emphasize that, as we will see in §7, equation (4.30) can actually be solved with
right hand sides g = O(r=4=#) for h = O(r=27#), whenever 0 < u < 1, but we do not expect in
general the existence of a solution h = O(r~!) when g = O(r~3). However assuming additionally
that g has the form g = g()"r~3 where 7 > £ we can establish statement (a) of Proposition 4.2.

We will prove that Hs = Z?Zl k3 is of the required form except for a term which decays fast in
r. Individually, the principal curvatures k; do not have this vanishing property but their mutual
cancelations gives it for the average of their cubic powers. To track this property it is necessary
to compare curvatures at a point of I' with those at its closest neighbor in I'g, and the suitably
defined closeness for large r of the Jacobi operator on I' to that on I'y. We discuss these issues in
§8.2 and §8.3, using as the basis the result of Theorem 2, whose self-contained proof we postpone

to the last part of the paper.

4.4. Conclusion. Let us summarize the results of our considerations so far. Given the solution
to the nonlinear projected problem ¢ and the corresponding solution h, to the reduced problem
found above we have found U, such that

Ua = v+ Qo+ ¥(0),
and
AU, + (1-UHU, =0, inR
Function U, is a bounded function which obeys the symmetry of the minimal graph I':
Ua(u,v,9) = —Uq(v,u, —xg), (4.34)

from which it follows in particular U, (0) = 0. We show next that U, is in fact monotone in the
xg-direction. Let us observe that the function v, := 9,,U, is a solution of the linear equation

Ao + [ (Us)he = 0.

We claim that the construction yields the following: given M > 0, at points within distance at
most M from I', we have 1, > 0 whenever « is sufficiently small. Indeed,

a2

042

o
=w (t)8x9t+0(1+r§).

The coordinates « and (y,t) are related by = = y + (t + h(ay))v(ay), hence
€9 = Ogoy + Onotv + a[Drh(ay)Op,ylv + a(t + h) [Drv gy .
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If |t| < M, we deduce that J,,y is uniformly bounded, and also
o 1 « c

)~ Jovrpe  Ohra) 2
by an estimate in [34], see (8.33) below. This shows our claim.

Taking M sufficiently large (but independent of «) we can achieve f'(U,) > —3/2 outside of
Ny = {]t| < M}. We claim that we cannot have that 1, < 0 in N§;. Indeed, a non-positive local
minimum of v, is discarded by maximum principle. If there was a sequence of points x, € R,
such that

Dzgt =19 + O(

Va(Tn) — iﬂggf Yo <0,

|z,| — o0, and at the same time dist (x,,,'s) > M, for a large M, the usual compactness argument
applied to the sequence 9, (z) = ¥ (x + x,) would give us a nontrivial bounded solution of
A —c(x)p =0, inR% ¢(0)>1,

with a negative minimum at the origin, hence a contradiction. We conclude that 1, > 0 in entire
R? and the proof of the theorem is concluded, except for the steps postponed. We shall devote the
rest of this paper to their proofs.

5. THE PROOF OF LEMMA 4.1

Here we prove Lemma 4.1, which reduces the system (4.7)-(4.8) to solving the nonlocal equation
(4.16). Let us consider equation (4.8),

AY = Wa(2) + (1= G)SW) + (1 = Q)N + (0) +2VGVe+¢AG = 0, inR?,  (5.1)
where
Wa(x) = [(1 =) (=f'(u1)) +2¢:]
and we assume that ¢ satisfies the symmetry (4.4) with ||¢||2,p,3 < 1. Let us observe that W, (Qx) =
Wy (z) for all z and hence that the function —i(Qx) solves (5.1) if ¢(x) does.
Let us consider first the linear problem
Aty — Wy (z)p +g(x) = 0, in R (5.2)
We observe that globally we have 2 — 7 < W, () < 2+ 7 for arbitrarily small 7 > 0.
We recall that for 1 < p < +o0, we defined

I9llp,w == sup (1 +7(a2))"llgllLe By, (@, z9) = |2’ .
z€R9
Lemma 5.1. Given p > 9, v > 0, there is a C > 0 such that for all sufficiently small o and any g

with ||g|p,v.« < +00 there exists a unique v solution to Problem (5.2) with ||1|| o« < +00. This
solution satisfies

ID*%lp,s + [¥llowe < Cllgllp,u,s- (5.3)
Proof. We claim that the a priori estimate
[¥lloos < Cligllpv.x, (5.4)

holds for solutions ¢ with ||¢)]|sc,v.« < +00 to problem (5.2) with ||g|/p.« < +oo provided that
« is small enough. This and local elliptic estimates in turn imply the validity of (5.3). To prove
the claim, let us assume the opposite, namely the existence «,, — 0, and solutions v,, to equation
(5.2) with ||¢n|lco,p« = 1, |gnllp,v.x — 0. Let us consider a point z,, with

1

(L4 r(anzn)) dn(zy) 2 3

and define
&n(m) = (1 +r(an(zy + I)))Vd)n(xn +x), gn(z) = (1 +r(an(zn + z)))ygn(xn + z),
Wo(z) = Wa, (@, + ).

n
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Then, we check that the equation satisfied by 1/~)n has the form
Additionally we know that 1;71 is uniformly bounded hence elliptic estimates imply L°°-bounds for

the gradient and the existence of a subsequence uniformly convergent over compact subsets of R?
to a bounded solution % # 0 to an equation of the form

AYp — W, (z)p =0, inR?,

where 0 < a < W, (z) < b. But maximum principle makes this situation impossible, hence estimate
(5.4) holds.

Now, for existence, let us consider g with ||g||, ..« < 400 and a collection of approximations g,
to g with ||gnlco,vx < +00, gn — g in L7 (R%) and ||gn|lpv« < C||gllp,,«. The problem

loc
Awn - Wn(m)wn = 9n, in Rg’

can be solved since this equation has a positive supersolution of the form C(1+r(ax) )™, provided
that « is sufficiently small, independently of n. Let us call ¥,, the solution thus found, which satisfies
[l ]lco,p« < +00. The a priori estimate shows that

HD2wn”p,V7* + HwnHOOﬂ/,* < C”Q“p%*'

Passing to the limit in the topology of uniform convergence over compacts we find a subsequence
which converges to a solution ¢ to problem (5.2), with ||9|/c0,v,« < 4+00. The proof is complete. [

We conclude next the Proof of Lemma 4.1. Let us call ¢ := O(g) the solution of problem (5.2)
predicted by Lemma 5.1. Let us write problem (5.1) as fixed point problem in the space X of
W2P-functions ¢ with [[t)]|2,p 34« < 400,

Y =0(g1 + K()), (5.5)
where
g1=(1—G)SWw)+ 2VOVo+oAG, K@) =(1-C)N@W + o) .

Let us consider a function ¢ defined in I'y, x R such that ||¢||2,p10c < 1. Let us observe that

derivatives of the function (; are supported inside the set of points x with

z=y+ (t+ h(ay)) v(ay), g(l +7a(y) =5 < |t + h(ay)| < g(l +ra(y))+5. (5.6)
Note that if x satisfies (5.6) then

are(y) <r(az) <bry(y), e 7l < e Faemora(®)
for some positive numbers a, b. Setting &' = £, we have that for any p > 0,

5!

12V Vo + ¢AG | < Ce o (14 71(ax) "> #|8ll2,p,0-

We also have that [S(®)]lp50 < Ca®%, hence (1 - G)S@)ps.o < Ce % (1+r(az) 5+ and
therefore

’

_s
lp3tu < Ce =

llg1
Let us consider the set
_s
2,D,3+ < Ae” @ }7

A={peX]| |yl

for a large number A > 0. Since

| K(¢1) — K(i2)| < C(1—=¢1) sup [ty + (1 = t)ha + Gl |1 — o ,

te(0,1)

we find that y
| K (¢1) — K (1)2) ||00,3+u < Ce oy — 1o ||oo,3+u
while || K(0)||oo,px < C e~ . It follows that the right hand side of equation (5.5) defines a contrac-

tion mapping of A, and hence a unique solution ) = ¥(¢) € A exists, provided that the number A
in the definition of A is taken sufficiently large and ||¢||2 3, < 1. In addition, it is direct to check
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the Lipschitz dependence of ¥ as stated in (4.14) on ||¢]|2,p.3,0 < 1. Since, as we have mentioned,

—1(Qx) satisfies the same equation, the symmetry assertion follows from uniqueness. The proof
is concluded. g

6. THE PROOFS OF PROPOSITION 4.1 AND LEMMA 4.2

To solve problem (4.17), we derive first a solvability theory for the following linear problem:

O + Ar_ o+ f (w)p = g(y,t) + c(y)w'(t), inTy xR,
,Hw'dt 6.1
/qb(y,t)w'(t)dtzo, forall yeT,, c(y):—ng(yig. (6.1)
R Jp w'=dt
We have the following result.
Proposition 6.1. Given p > 9 and 0 < o0 < \/2, there exists a constant C > 0 such that for

all sufficiently small o > 0 the following holds: given g with ||g||p.3,c < +00, problem (6.1) has a
unique solution ¢ with ||@||so,3, < +00, which in addition satisfies

19l12,p,3,0 < Cllgllp3,o - (6.2)

We will carry out the proof of Proposition 4.1 assuming for the moment the validity of the above
result.

6.1. Proof of Proposition 4.1. Let ¢ = T(g) be the linear operator defined as the solution of
(6.1) in Proposition 6.1. Then Problem (4.17) can be reformulated as the fixed point problem

0 = T(=S(w) =N(9)), [dlzpso < Ka® 5. (6:3)
We claim that there is a positive constant C, possibly dependent of M in (3.9), such that for all
small a and any ¢, ¢ with
|tll2p5.0 < Ka®77,
we have
IN(¢1) = N(P2)[lp5,0 < Callr = b2ll2,p,3,0- (6.4)

To prove this, we decompose the operator N as
N(¢) = B(¢) + [f'(w1) — f'(w)]¢ + G(f"(wr) +2)U(¢) + G N(¥()) + ¢). (6.5)
N1 (¢) N2(9) N3 (o)
Let us start with N;. This is a second order linear operator with coefficients of order o which

decay at least like O(r;'). We recall that B = (4B where in local coordinates B is given in (3.30).
It is direct to see that

N1 (D)llps0 < Calldllzps.e (6.6)
For instance, a computation similar to that in (3.34) yields that for p > 9 we have

_8 _8
lo?(ai;0:1)0e¢ llp 5.0 < Ca® 7 [|DE3p [|1DGllcc .0 < Ca’ 2o

2,p,3,0"

Now, let us assume that ||¢1]|2.p,3,0, [|@2]l2,p.3.0 < Ka*™ s, Then, using Lemma 4.1, we immediately
obtain

N2 (¢1) = Na(2) 30 < Ce™ 7% |1 — bollpso (6.7)
and

N (61) = N3(@2)llp.s.0 < C (161]lo03,0 + [2ll008.0 +€77%) |61 = b2llo0 3,0 (6.8)
(From (6.6), (6.7) and (6.8), inequality (6.4) follows. The proof of the claim is concluded.

To conclude the existence part of Proposition 4.1 we use contraction mapping principle to
deal with problem (6.3). First, using formula (3.32) we have that ||S(u1)||p3., < Co® 7. Let
Bo ={o | |9ll2.p,3.0 < Ka3_%} where K is a constant to be chosen. Second, we observe that for
small o, and all ¢ € B, we have ||N(¢)|/pa,0 < Ca® v, Then, from (6.4) we see that if K is fixed
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large enough independently of «, then the right hand side of equation (5.5) defines a contraction
mapping of B, into itself. Contraction mapping principle implies the existence of a unique ¢ as
stated. Finally, since the function —¢(Qy, —t) satisfies the same equation, the symmetry assertion
follows from uniqueness. g

6.2. Lipschitz dependence on h: The proof of Lemma 4.2. We claim first that the solution
¢ = ®(h) in Proposition 4.1 has a Lipschitz dependence on h satisfying (3.9) in the sense that

1D(h1) = D(hs)l|2,p,8.0 < Ko #[|hy = hol.. (6.9)

This is a consequence of various straightforward considerations of the Lipschitz character in h of
the operator in the right hand side of equation (4.17) for the norm || ||. defined in (3.9). Let us
recall expression (3.29) for the operator B, and consider as an example, two terms that depend
linearly on h:

A(h1, ¢) = agj athaitd) .
Then

|A(h1, 0)| < Caldjha]|0ig .

Hence

[A(h1,0)lpvr2.0 < Cal(1+72) djh oo 1066 |
Similarly, for A(¢, h1) = a?Arh; di¢ we have

|A(¢,h)| < Ca?|Arhi(ay)] (1+7a) e " d]l2pu.0 -

po < Ca4||h1H* ||¢||27P7Va0'

Hence

|02 Arhy 06 |lppsne < Ca 7| hals |0

2,p,v,0"

We should take into account that some terms involve nonlinear, however mild dependence, in h.
We recall for instance that a}; = aj;(ay, a(t + ho + h1)). Examining the rest of the terms involved
we find that the whole operator N produces a dependence on h; which is Lipschitz with small
constant, and gaining decay in rq,

IN(h1, ) = N(ha, O)llpw+1.0 < C®llhy = Dol [d]l2.p,0- (6.10)

Now, in the error term

R =—-5(uy)
we have that
IR(h) = R(h2) 30 < C0®7 5 11 = o]l (6.11)
To see this, again we check term by term expansion (4.21). For instance we have
| agj Dihod;hy| < Ca? (14 1a) 2 e 1t ||y,
so that
l? a; diho 01 |lp 3.0 < C?|[ha.,

the remaining terms are checked similarly. We observe that the factor o> % in (6.9) is due to
the term a?Arhjw’ in the expression for S(u;). Combining estimates (6.10), (6.11) and the fixed
point characterization (5.5) we obtain the desired Lipschitz dependence (6.9) of ®.

In particular, if we set ¢1 = ®(h1), ¢p2 = P(hs), we get, after invoking estimates (6.10) and (6.4)
[N(h1, ¢1) = N(h2, §2)llps0 < [[N(h1,¢1) = N(ha, @2)lp,5.0 + [N(h1, d2) — N(ha, ¢2)llp5.0
< Calgr = dal2ps0 + Co?llha = hall || @2]l2,p.3.0 (6.12)
< C(0® % + 0 2)||hy — halls.
Now we recall that G = G1 + Ga, with the latter operators defined in (4.24) and (4.26). We have

Ga(h) = Ga(he) = a_z/(N(‘P(hl)) = N(@®(h))) (o™ 'y, t)w' dt

R
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so that using relation (4.27) we get
1G2(1) = Gaha)llps < Ca'™7 [l = ha|.

The operator G; in (4.24) is analyzed in similar way, taking into account that the estimates in
(6.11) involve terms carrying one more power of a and O(r—°) as decay in r. We get again

_16
1G1 (1) = Ga(h2)llps < Ca'™ 7 [[hy = ha. -

This concludes the proof. O

6.3. Proof of Proposition 6.1. At the core of the proof of the stated a priori estimates is the

fact that the one-variable solution w of (1.1) is nondegenerate in L>(R®) in the sense that the
linearized operator

L(¢) = Ay + Oud + ' (w(t))d, (y.t) €R® =R® xR,
satisfies the following:
Lemma 6.1. Let ¢ be a bounded, smooth solution of the problem
L(¢)=0 inR®xR. (6.13)
Then ¢(y,t) = Cw'(t) for some C € R.

Proof. We begin by reviewing some known facts about the one-dimensional operator Lg(v¢) =
" + f'(w)y. Assuming that ¢(t) and its derivative decay sufficiently fast as |t| — +oo and
defining v (t) = w'(t)p(t), we get that

n2 _ g 2 dt = dt = /2/2d
/Rnw £ (w)y?) di /RLoumw /w PP dt.

therefore this quadratic form is positive unless @ is a constant multiple of w’. Using this and
a standard compactness argument we get that there is a constant v > 0 such that whenever
Jz Yw’ =0 with ¢ € H'(R) we have that

/ (W2 — Fw)? ) dt > ~ / ([0 + o) dt. (6.14)
R R

Now, let ¢ be a bounded solution of equation (7.3). We claim that ¢ has exponential decay in ¢,
uniform in y. Let us consider a small number o > 0 so that for a certain ¢y > 0 and all [t| > to we
have that

fl(w) < =202
Let us consider for € > 0 the function
2
ge(t,y) = e7ot=to) 4 EZcosh(oyi)
i=1
Then for || > ¢y we get that
L(ge) <0 if |t] > to.
As a conclusion, using maximum principle, we get
6] < |9lloo g if [t] > to,
and letting € — 0 we then get
6@y, )] < Clldllooe™ M if |t >t .

Let us observe the following fact: the function

50.0) = ott) — ( [ w0 00000 c) 12

Je w?
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also satisfies L(¢) = 0 and, in addition,
/ w' (t) p(y,t)dt =0 for all ye RS, (6.15)
In view of the above discussionﬂj{ it turns out that the function
o) = [ Pt

is well defined. In fact so are its first and second derivatives by elliptic regularity of ¢, and
differentiation under the integral sign is thus justified. Now, let us observe that

Ayo(y) :24Ay&-&dt+24\vy$|2

and hence

(6.16)
1 ~ - , -
= 58— (VP de = |G = 1)) .

Let us observe that because of relations (6.15) and (6.14), we have that
[ = rw)d®yat = .
It follows then that

1
iAy‘p — v > 0.

Since ¢ is bounded, from maximum principle we find that ¢ must be identically equal to zero. But
this means

/ w'(t)
o(.t) = ( [ w'(©) by, )¢ ) (6.17)
R Jrw
Then the bounded function
o) = [ Q) 0.0) ¢
satisfies the equation
A,g=0, inRS (6.18)
Liouville’s theorem implies that g = constant and relation (6.17) yields ¢(y,t) = Cw'(t) for some
C. This concludes the proof. O

6.4. A priori estimates. We shall consider problem (6.1) in a slightly more general form, also in
a domain finite in y-direction. For a large number R > 0 let us set

I ={yel.| r(ay) <R},
and consider the variation of Problem (6.1) given by
Oud+ Ar, ¢ + f'(w(t)o = g(y, 1) + c(y)w'(t), g xR,
¢ =0, onﬁffo,

(6.19)
/ By, t)w'(t)dt =0, forall yeTlZE

where we allow R = +o00 and

C(y)/Rw’th: */Rg(y,t) w'dt .

We begin by proving a priori estimates.
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Lemma 6.2. Let us assume that 0 < o < /2 and v > 0. Then there exists a constant C > 0 such
that for all small o and all large R, and every solution ¢ to problem (6.19) with ||¢||co,v.0 < +00
and right hand side g satisfying ||g/p.,c < +00 we have

ID*¢llpwc + 1DGllsc o + 0lloc,0 < Cllgllpoo (6.20)

Proof. For the purpose of establishing the a priori estimate (6.19), it clearly suffices to consider
the case ¢(y) = 0. By local elliptic estimates, it is enough to show that

[6lloo,v.0 < Cllgllp,v.o- (6.21)

Let us assume by contradiction that (6.21) does not hold. Then we have the existence of sequences
a=a, — 0, R=R, — 00, gy With ||gn|lpv.c — 0, ¢r, With ||@n]|co,v,c =1 such that

attgbn + AFu¢n + fl(w(t))¢n = 9gn in Fg X R,
on =0 01r18f‘§><R7

- (6.22)
/ by, t)w'(t)dt =0 forall yeTE.
— 00
Then we can find points (p,,t,) € T x R such that
—0 v 1
(14 r(@npn))” [ (pasta)| = 5. (6:23)

Let us consider the local coordinates for 'y, around p,,, defined by (3.24).

B 0
Voo (V) = 0 Yaup, (ny), Iyl < —,

where Y,(y) is given by (3.13). We observe that, read in these coordinates, ¢,(y,t) satisfies

|60 (0, £n)[ = 7 > 0.
We consider different possibilities. Let us assume first that

Ta(pn) + |tn] = O(1) as n — oo.
We recall that the Laplace-Beltrami operator of I',,, written in local coordinates has form
Ap,, = a?j(aTIY)aij +anbg(any)8j,
where, uniformly on |y| < a1, we have
ag;(oamy) = bij +o(1), b =0(1) asa—0.

Then
0
a?j(anY)aij¢n + anbg(an}’)ajﬁbn + Oudn + f(wt)pn = gn(y,t), |yl < o

Since ¢y, is bounded, and g, — 0 in L} (R?), we obtain local uniform W?P-bound. Hence we
may assume, passing to a subsequence, that ¢, converges uniformly in compact subsets of R? to a
function ¢(y,t) that satisfies

Ags¢+ Oud + f'(w(t)p =0.

Thus ¢ is non-zero and bounded. But Lemma 6.1 implies that, necessarily, ¢(y,t) = Cw’(t). On
the other hand, we have

Oz/Rngn(y,t)w’(t)dt—>/Rgz5(y,t)w’(t)dt as n — oo.

Hence, necessarily ¢ = 0. But we have |¢,,(0,¢,)| >~ > 0, and since t,, and r(,y,) were bounded,
the local uniform convergence implies ¢ # 0. We have reached a contradiction.
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If ro(pn) = O(1) but t,, is unbounded, say, t,, — +00, the situation is similar. The difference is
that we define now

Gn(y,t) = "o (vt + 1), Guly,t) =g, (v, 8, +1).

Then ¢, is uniformly bounded, and g, — 0 in LY (R?). Now by, satisfies

a?j(any)aij(;n + att(gn + anbj (any)ajén - 20'8t(5n + (f/(w(t + tn) + 0-2)(571 = Jn-
Passing to the limit we obtain
Agso + Oy — 200,0 — (2—0%) ¢ = 0, inR?, (6.24)

where gz~5 # 0. But since, by assumption 2 — ¢? > 0, maximum principle implies that é =0. We
obtain a contradiction.

Let us consider the case r(ay,p,) — +0o but r(a,p,) < R,. Assume first that the sequence t,,
is bounded and set

Pn(y,t) = (L +r(any))” én(y,t).
Direct differentiation yields
Oy(ra"dn) = 12" [ 850+ Olar: M6 ] |
Dij(ravdn) =137 [@jé + O0(arg o0 + 0(a?r;2)e |
and the equation satisfied by ¢, has therefore the form
Ay(gsn + attﬁgn + 0(1)5”(;% + 0(1) ajﬁgn + 0(1) an + f/(w(t))én = gn

where J)n is bounded, g, — 0 in Lfoc(]Rg). From elliptic estimates, we also get uniform bounds for

0;bn oo and [|0;dnllp.0.0- In the limit we obtain a ¢ # 0 bounded, solution of
Ay + 0ud + f'(w(t))d =0, / oy, t)w'(t)dt = 0, (6.25)
R

a situation which is discarded in the same way as before if ¢ is defined in R?.
Now, if t,, is still bounded but r(a,y,) — Ry, = O(1), we would see in the limit equation (6.25)
satisfied in a half-space, which after a rotation in the y-plane can be assumed to be

H={(y,t) eR*xR /ys <0}, with¢(§,0,t)=0 forall §=(y,...,y7) €R", tcR.

By Schwarz’s reflection, the odd extension of ¢, which is defined for ys > 0, by &(g,yg,t) =
f&(g, —ys, t), satisfies the same equation, and thus we fall into one of the previous cases, again
finding a contradiction.

Let us assume now r(a,p,) — +oo and [t,| — +oo. If t,, — 400 we define

On(y,t) = (14 (any))” e uly, tn + ).
In this case we end up in the limit with a J) = 0 bounded and satisfying the equation
Ay¢~> + Oud — 2006 — (2—0%) b =0,

either in entire space or in a Half-space under zero boundary condition. This implies again 6=0,
and a contradiction has been reached. All cases have been discarded, and the proof is concluded.
O
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6.5. Existence: conclusion of proof of Proposition 6.1. Let us prove now existence. We
assume first that g has compact support in I', x R.

Ot + Ar o+ f(w(t) = g(y.t) + c(y)w'(t), inTH xR,
¢ =0, ondl'? xR,

/ d(y, t)w'(t)dt =0, forall yeTE

(6.26)

where we allow R = +o00o and

C(y)/Rw'th= —/Rg(yﬂf) w'dt .

Problem (6.26) has a weak formulation which is the following: let
H={¢c Hy(I'F xR) | /Rqs(y,t)w’(t)dt =0 forall yeTH}.
H is a closed subspace of Hi (I'2® x R), hence a Hilbert space when endowed with its natural norm,
o= [ [[(10:0F + 91,0 = (w(0) 6V, at
Function ¢ is then a weak solut?on of Problem (6.26) if ¢ € H and satisfies

a(@b)i= [ (8000 + Ve,0- Vv — F(wlt) o) dVe, di

:—/ gdVr, dt forall e H.
IExR

Indeed, decomposing a general smooth compactly supported test function in the form

’L/J(y,t) = a(y)wl(t) + 1/;(1/7”7 1[} € H,
we obtain, after an integration by parts and using the orthogonality constraint in ¢, that equation
(6.26) is satisfied in the usual weak sense. Moreover, standard elliptic estimates yield that a weak
solution of problem (6.26) is also classical provided that g is regular enough.
Let us observe that because of the orthogonality condition defining H we have that

7/ 2dVp, dt < a(ip,p), forall o € H.
IExR

Hence the bilinear form a is coercive in H, and existence of a unique weak solution follows from
Riesz’s theorem. If g is regular and compactly supported, ¢ is also regular. Local elliptic regularity
implies in particular that ¢ is bounded. Indeed for some ty > 0, the equation satisfied by ¢ is

A¢+ f(w(t) ¢ = c(y)w'(t), [t >to, yeTF, (6.27)

and c¢(y) is bounded. Then, enlarging t, if necessary, we see that for o < V2, the function
v(y,t) == Ce Il + gell is a positive supersolution of equation (6.27), for a large enough choice
of C and arbitrary € > 0. Hence |¢| < Ce=?!l, from maximum principle. Since I'# is bounded, we
conclude that [|¢||, . < +00. From Lemma 6.2 we obtain that if R is large enough then

ID*¢llpwc + 1DPllsc o + 0lloc.0 < Cligllp.o- (6.28)

Now let us consider Problem (6.26) for R = +o0, allowed above, and for ||g||p,..c < +00. Then
solving the equation for finite R and suitable compactly supported ggr, we generate a sequence of
approximations ¢ g which is uniformly controlled in R by the above estimate. If gg is chosen so that
gr — gin L} (Pq xR) and ||ggr|lpv,ec < C|lgllp,v,0, we obtain that ¢ is locally uniformly bounded,
and by extracting a subsequence, it converges uniformly locally over compacts to a solution ¢ to
the full problem which respects the estimate (6.2). This concludes the proof of existence, and

hence that of the proposition. O
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6.6. An equation on I',. With arguments similar to those above we analyze the following equa-
tion that will be relevant in the study of the Jacobi operator in §7.

Ar h—h=g inT,. (6.29)
‘We prove:
Corollary 6.1. Let p > 8, v > 0. Then there exists C > 0 such that for all sufficiently small o

and any g € Ly, (Ta) with sup,cr (1+75)) |9/l r(B(y,1)nr.) < 400 there exists a unique solution

h of problem (6.29) with ||(1 + r%)h||eo < +00. This solution satisfies
||D12“ah pv T HDFahHoo,v + HhHOO,V <lg

lp.v-
Proof. With the notation used above, we consider the approximate problem

Ar,h—h=g inTE h=0 onaork (6.30)
where we allow R = +o00. Exactly the same arguments used in the proof of Lemma 6.2 lead to the
existence of a constant C' > 0 such that for all small « and all large R, such that for any solution
h with ||(1 + 7%)h||c < 400 we have the a priori estimate

sup (1 + raIDE Al Leseyynrs) + [1(1+75)Dr, hlle + [[(1+74)hlloo
yel'l

< C sup (1 +roy)gllr (Bey,1)nrE)-

yery
This estimate and Fredholm alternative yields the existence of a unique solution hr of (6.30).
Letting R — o0 possibly passing to a subsequence, we obtain the existence of a solution as
predicted. O

7. SOLVABILITY THEORY FOR THE JACOBI OPERATOR: PROOF OF PROPOSITION 4.2

In this section we consider the following linear problem
Jrlh] = Arh + |Ar(y)|*h = g(y) T, (7.1)

and derive estimates and existence results that lead to the proof of Proposition 4.2. For this, the

main tool we use is the method of barriers. This is suitable for the operator Jr since it has a
g P _ 1 gt } _

positive, bounded element in its kernel. In fact Z = WirZaE satisfies Jr[Z] = 0.

7.1. The approximate Jacobi operator. The surfaces I and I'y are uniformly close for r large.
Let p € T’ with r(p) > 1 and let v(p) be the unit normal to T at p. Let m(p) € Ty be a point such
that for some ¢, € R we have:

w(p) = p+tv(p). (7.2)
As we will see below, the point 7(p) exists and is unique when r(p) > 1, and the map p — 7(p)
is smooth.

Computations on I'g can be made in very explicit terms since Fy is explicit. Hence it is important
to relate them with analogous computations carried out on I', at least for  large. This leads us to
considering the approzimate Jacobi operator Jr,, corresponding to first variation of mean curvature
(or second variation of area) at Iy, measured along normal perturbations. This corresponds to the
operator acting on functions h : I'y — R given by

TIro[h](y) = H'(Fo)[¢l(2")  o(a') = V1+|VE(2)Ph(y), vy= (' Fo(a).  (7.3)
The expression for Jr, is similar to that in (4.28) for Jr but it involves a correction that gives
account of the fact that I'g is not a minimal surface, while very close to being so. In fact we have

Tro[h] := Aryh + [Ar, (y)[?h + O(r~")DE h + O(r~°)Dryh 4+ O(r~°)h. (7.4)
This expression follows from a standard calculation which we carry out in coordinates adapted to
the graph in the Appendix.
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For large r, Jr is “close to” the approzimate Jacobi operator Jr, in the sense of the following
result, whose proof we carry out in §8.3.

Lemma 7.1. Assume that h and hg are smooth functions defined respectively on T' and Ty for r
large, and related through the formula

ho(m(y)) = h(y), y €T, r(y)>ro.
There exists a o > 0 such that
TIr[h)(y) = [Trolhol + O(r=2=7)DE ho + O(r=>=7)Dp,ho + O(r~*~)ho ] (x(y)) - (7.5)

7.2. Supersolutions for the approximate Jacobi operator. We look for positive supersolu-
tions of Jr, far away from the origin, or in other words for positive functions h which satisfy a
differential inequality of the form

—Jrolh] = gly) inT, r(y) > ro, (7.6)
for a class of right hand sides that are decaying in r = r(y) and additionally satisfy either
1
gly) = R (7.7)
or ®
g9(0)"
8y) = ~ 5 (7.8)

where (7, 0) are the polar coordinates in R® introduced in section 2 and function g satisfies Lemma
12
2.1, and 12 S (0, 1),7' S (g, g)
We want to establish the following key result.
Lemma 7.2. For a function g as in (7.7) with 0 < p < 1 there exists a positive supersolution h
of (7.2) such that

er 2T < h(y) SOrYEHR r >,

Proof. We recall that Jr,[h] = H'(Fo)[\/1 + |V EFp|?h] and that in polar coordinates we can write
(see (2.7))

H'(Fy)[¢] =L := Lo + L, (7.9)
with
. 1
Lo(¢) = (20 {(992 wrtge)e + (r°g”° ©,)r — 3(g9' Wi, )e — (g9’ 1Dr4¢e)r} , (7.10)
and
. 1 o )
Li(¢) = 7T sin? (20) {(r="@g)g + (rie,),}, (7.11)
.3
S 0) = sin” 26 . 719
() (r=4 4 9g2 + g'*)% (7.12)
We can expand
w(0,r) = we(0) + r~*w, (r,0),
where X s
. _ sin”(20) 3 sin®(20) .
wo(e) T W, wl(r, 9) == _§W + O(’I" 4Sln3<26>).
We set
1 )
Lo(¢) = T sin® (20) {(992 worpe)e + (19" @ody)r — 3(g9" Wor'ér)e — 3(g9’ @07’4¢9)r} .

Let us compute this last operator for a function of the form

(r,0) = rq(6).
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We obtain
r7sin®(260) Lo(r%q(8)) = r**P [9(g® @oq') — 38(g9'q To) + wo(B +4) (B9 q — 399'd)].

B
It is clear by direct substitution, that Lo(F) = Lo(rﬁgg) = 0. Hence ¢ = gg annihilates the
operator on the right hand side. As a consequence, the operator takes a divergence form with
h= g,gq, namely
!
r7sin®(20) Lo(r7q(0)) = 97 g*F* [iing? (75 q)
We want to find a positive function g such that the following equation holds.

_900)" L
_LO(Tﬁq(G)) =9 7"4_’6 ) 0 (Zv 5)7

or equivalently
li
- [@09% (g‘gqy] = g7 % sin’(20).

Then we can solve explicitly for ¢ by direct integration getting

or

m™T

42

wlw

q0) =g ds ) /5 977%(7/)81113(27")6&',, 0e( ), (7.13)

sin®(2s

)
©) [ 97395 +4")%
T
provided of course that the choices of 7 and 8 make this formula well-defined. We will analyze this
formula in the two cases of our interest.
Let us consider the case 7 =0, 8 = —pu, 0 < p < 1, corresponding to the right hand side (7.7).
Then

™

’ 2
Q(e)zg_%(ﬁ)/ﬂ g_§(9g2+g’2)3'd‘9)/ ,

Ed sin®(2s

=

4 ’ ™ T
3

(s )sm (2s)d , 96(1,5].

Since ¢'(§) > 0, ¢ is Well—deﬁned positive and smooth in (%, %]. More than this: for instance

112
expanding g(0) = g1z + gza® + -+ for x = 0 — T, and similarly with the other functions involved
in the formula, we realize that ¢ in reality extends smoothly up to # = I in the form

q(0) = qo + q2a” + qaz* + ...,
and we have go = q(%) > 0, ¢'(§) = 0. Hence if we extend ¢ by even reflection around F: ¢(0) =
q(5 —0) if 6 € (0, 7], then the symmetric, positive function ¢ := q(0)r—* satisties —Lo(¢o) =
9r~4=# in R8®. Since ¢ is smooth, we also find that the remaining terms in the expansion of
H'(Fy)[¢o] contribute quantities of size O(r=8=#). Thus

, 1
—H (FO)[(éO} > ma

or

1 . T
7‘71"0 [ho] Z ’r‘4+l‘ 1mn Fo, > T, ¢0 = 1+ |VF0‘2h0.
which is what we were looking for since hg = O(r=2=#). O

In the case of g given by (7.8) we consider the problem in the sector
0

Poi ={yeT o}, D)), (7.14)
— To[h] = 9(7?7 inToyp, 7(y)>ro. (7.15)

We prove:
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Lemma 7.3. If% <T< % there exists a supersolution h of (7.15), smooth and positive in Toq
with h =0 on oy and
h(y) < Cr', yeTlo., >0

Proof. We consider now the case g = 1, % <7< % in formula (7.13), corresponding to the case
(7.8). Now we get

T
72

¢ 3
q(9)=g%(9)/ 9_3(992+g'2)g,§l(82)/ g7 i (s')sin?(28) ds’, 0 € (
e sin®(2s) Js

(7.16)

q is smooth up to § = 7 with ¢/(3) = 0 and it extends continuously to § = § with ¢(§) = 0.

Again setting z = 0 — 7 we see that now h becomes expanded near 7 as

q(0) = 2° (qo + @2 + quz* +...), qo > 0.

Here we have used that fact that % <T< % In particular

q"(0) = —7(1 = T)goz™ 2+ 0(z7) = —cg(0)" 2+ O(g(#)"), c>0. (7.17)
By direct substitution, we see that for large r
~ 9)" _
~Lofra(6)) = 929" 1 09(0)r),

while, for  — 7 < 1, we have, using (7.11) and (7.17),
~Li(rq(0)) = cg” *r T+ O(g" *r ) + O(g"r ), >0,

and in general —L;(rq(f)) = O(g"~2r~7). Combining the above estimates, we see that for all
sufficiently large r,
= 9(0)

—L(rq(9)) >

and the desired conclusion follows with h = ——29__ — O(r=h). O

V1+|VE|?

Remark 7.1. The result of Lemma 7.3 is of course true if 7 > % The supersolution found will

then be near # = 7 of the order O(g(f)"r~!) for any 7 < 2. On the other hand, if we choose

directly 7 > 2 in formula (7.16), this boundary behavior gets refined to O(g(0)3 log g(0)r—1) if
7= 2 and to O(g(0)5r—1) if 7 > 2. In all cases these supersolutions are not smooth up 6 = .

7.3. Proof of Proposition 4.2 part (b). This result is just a special case of the following

Proposition 7.1. Let 4 < v < 5. There exists a positive constant C' > 0 such that if g satisfies
lgllp,. < 400 then there is a unique solution of the equation

Jrlh] =g, inT, (7.18)
such that ||h||co,y—2 < +00. This solution satisfies

IDER],,—s + [Drhllcs—1 + Ihlecw—2 < Cllglp.o-

For the proof, we first show the existence of the supersolution in Lemma 7.2 for I'y replaced
with T'.

Lemma 7.4. For 0 < p <1, there exists a positive supersolution h of

— Jrlh] >

iy inT, r(y)>ro, (7.19)

such that
h(y) < Cr=27F,  r>ry.
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Proof. Let hy be the supersolution built in Lemma 7.2 for

— Jro[ho) >

and consider the function h defined on I' as h(y) = 2ho(7(y)). Then according to Lemma 7.1 we
have that

e in Ty, 7(y) > ro, (7.20)

2
r(m(y))tHe

O(y) = O(r~?77)DE ho + O(r~>=7)Dr ho + O(r~*=)hg
Using the explicit form of hg in the proof of the previous lemma, we compute directly that
O(y) = O(r=°7771).

Finally, since 7(p) is uniformly close to p we have that r(7(y)) = r(y) + O(1), and thus we find
that for all large rq

Jrlh)(y) = +0(r(y)

where

.
—Jrlh] = preeTRER r(y) > ro.

The proof is concluded. O
A second element needed is a regularity estimate for equation (7.30).

Lemma 7.5. Let p > 8, v > 2. Then there exists a C > 0 such that if ||g]lcc,y + ||P]lco,y—2 < +o0
and h solves (7.30) then

IDER] s + [Drhllcs—1 < C([Allcw—2 + llglloo.y )- (7.21)

Proof. Without loss of generality, we may assume that [|h]/oc,v—2 + |gllcc,, < 1. We use the local

coordinates (3.13). Then, around a point p with r(p) = R, for any sufficiently large R, the equation
reads on B(0,260R) for a small, fixed § > 0 as

ag;(y)0ijh + b0 (y)0ih = —|Ar(y)’h + g(y) in B(0,260R).
Consider the scalings ~
] h(y) = R"“*h(Ry), g&(y) = R"g(Ry).
Then |Ar(Ry)|?|h| + |g| < C in B(0,260), and
ad;(Ry)dijh + b (Ry)d;h = g, in B(0,260), §:=|Ar(Ry)[h+ g,
where a;; = ¢;; + O(0). By interior elliptic regularity we find that
||6i}~lHL°°(B(O,9)) + ||aij71”Lp(B(0,0)) <G,
and in particular |[9;(0)] = R*~1d;h(p)| < C so that
|Drh(p)| < CR'™, / R"P=%19;;h|P(Ry) R® dy = R””’S/ |00 (y) dy < C.
B(0,0) B(0,6R)
Hence .
()"~ | Drh(p)| + ()" 7 |DRAl|Lr 31y < C
provided that r(p) is large enough. On a bounded region the corresponding estimate follows from
interior elliptic estimates, and hence estimate (7.21) follows. O
Proof of Proposition 7.1 — We begin by proving existence assuming that ||g|leo,, < +00. Let us
consider the approximate problems

Jrh]l =gly), imI'nB(0,R), h=0, ond(INBO,R)) (7.22)

where we allow R = 4o00.
We claim the existence of a C' > 0 uniform in R and g such that the a priori estimate

[hllocy—2 < Cllglloo,w (7.23)

holds. Let us assume the opposite, namely the existence of sequences R = R,, — +o0, h = h,, and
g = gn such that (7.30) holds, but ||hn]lcc,v—2 =1, [|8nllco,, — 0.
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Passing to a subsequence, we may assume that h,, — h locally uniformly in I", where h satisfies

the homogeneous equation Jr[h] = 0 and ||Al|e,p—2 < 1. We claim that h = 0. To prove this, we
_ 1 — . _ 72 . .

let Z = Wireaae and observe that Jr[Z] = 0. Since h = o(r~?) as r — +00, it follows that given

e > 0 we have that |h(y)| < eZ whenever r(y) is large enough. It follows from maximum principle

that
€

VI+|VF?
and hence that h = 0, as claimed.

Now, from Lemma 7.4, we know that there is a positive supersolution h of —Jr[h] > r~" for
r > 1o such that h>Cr?~". We also have that |g,| < p,7?~" with p,, — 0. Furthermore,

Ih(y)] <

—Jr[thn, —o(1)h] <0 in{ro <r < R,} NT,
and +h,, —o(1)h < 0 on the boundary of this set, where we are using that h,, — 0 locally uniformly.

From maximum principle, we conclude that for all large n, |h,| < o(1)h and thus ||, [/ce,—2 — 0,
a contradiction that proves the validity of the a priori estimate (6.2).

Now, as for existence of a solution to (7.18) for a given g, we use the a priori estimate found. The
approximate problem is indeed uniquely solvable when R < +oo thanks to the a priori estimate
and Fredholm alternative. Possibly passing to a subsequence, we get that hr converges locally
uniformly to a solution h of the equation. The limiting function clearly satisfies the estimate (6.2).
Now, Lemma 7.5 yields the stronger estimate

IDER, -5 + 1Drhlloo—1 + [z < Cllglloo, (7.24)

for any p > 8.

Let us assume now that we only have ||g||,,, < +00. We find a solution to equation (7.18) by
reducing the problem to one in which g is replaced by a g with ||g||cc,, < +00. We do this using
the result of Corollary 6.1. Let us consider the equation

—AF¢ + )\72,(# =8 in Fa

where A > 0 is a small number, to be chosen. The transformation 1 (y) := 1()\y) makes this
equation is equivalent to

—Ar, ¥+ ¥ = Ng(\y), inTy.

(From the result of Corollary 6.1 with A replacing «, we find a sufficiently small A for which this
problem has a unique solution respecting the corresponding decay estimate for the right hand side.
In terms of 9 the estimate achieved reads

”DIQ“@[’HPW + HDF¢||00,V + ||w||oo,y < Cilgl

We denote ¢ := 1(g). Then writing in equation (4.24) h = 1 (g) + h; we obtain the following
equation for hq:

p,v:

Arhi + |Ar(y)[Phn = g(y) inT, (7.25)
where
g=\v(g) — |Ar(y)|*¥(g).

Clearly ||glco,v < Cllgllp,n- But we know by the previous step that there exists a unique solution

hi to (7.25), which satisfies
||D12“h1‘|p,u—% + ”DFthoo,Vfl + ||h1||oo,l/f2 <C HgHoo,w

and the result follows. O
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7.4. Proof of Proposition 4.2 part (a).

Lemma 7.6. The results of Lemma 7.5 and Proposition 7.1 remain unchanged when T is replaced
by Ty, for the problem
Jreh]l =g inTo.

Proof. The proof of the analog of Lemma 7.5 is identical, taking into account suitable local co-

ordinates y = Yy (y) for Ty, for instance for large r one can use those introduced in (8.28) below

that lead to exactly the same asymptotic properties for the Laplace Beltrami operator. The proof

of the corresponding result to Proposition 7.1 is also the same, on the basis of the supersolution
71 =

found on I'y and the fact that jro[\/m] 0. O

Our next task is to solve the problem
Jre[h] =g inTo, (7.26)
where we assume now that g decays only at rate O(r~3) but it is symmetric in the sense that
g(Qy) = —g(Qy), forall yeTy,

and for all Q of the form (3.2). In particular g = g(r,0).
We look for a solution to (7.26) that shares the same symmetries. Thus it suffices to solve the
problem in I'gy with A symmetric and vanishing at its boundary, namely

Jrolhl=g inToy, h=0 ondlg,, (7.27)
since then the odd extension of h = h(r,#) through 6 = 7 will satisfy (7.26). We require in addition

that in polar coordinates the function g is dominated in the following way:

Cyg(0
)l < G2

in Toy, (7.28)

and prove:

Lemma 7.7. Let p > 8 and assume that g satisfies (7.28). Then there exists a solution h to
Problem (7.27) such that

IDE kil -5 + 1 Drohllso,2 + [I7]loo,1 < +00. (7.29)

P

Proof. Let us consider the supersolution hg for (7.27) defined by r > rg given by Lemma 7.3. (We
fix an arbitrary exponent 7 € (3, 2)). Let (r) be a smooth cut-off function such that n(r) =1 for
r <rg and n(r) =0 for r > ro + 1. We consider the function, defined in entire 'y as

h1 = 77+ (1 — ’l’])ho
Then
—Tre[h1] = —(1 =) Tr,[ho] + 80 = (1 = n)g" (0)r > + &0 = <(1 —n)g" (O)(1 +r)~* + g0,

where gy is compactly supported and ¢ > 0 is a constant depending in 9. Let ho be the unique
solution of

=T, [ha] = |go| +<ng ()™ (1 +1) 77,
given by Lemma 7.6, which is positive in 'y and symmetric. Then if hg := hy + hy we get
~Trlhs] 2 <g(0)" (1 +7)7% = Ceg()(1 +1)7°,

and hence hg is a positive supersolution of the problem (7.27)-(7.28).
Since Jr, satisfies maximum principle, we have that the approximation scheme

Trolhr] = gly) inToy NB(0,R), h=0 ondTes NB(0,R)), (7.30)

is such that its unique solution satisfies |hr| < Chsz. Standard diagonal argument gives a subse-
quence of hr which converges locally uniformly to a smooth solution h of

Jrolhl =g inToy, h=0 ondloy, (7.31)
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with the property that ||h|/s,1 < C. Observe that we also have ||g|/c,3 < C. From Lemma 7.6 we

then get that for any p > 8,
1D, llps—s + 1 Drohllsc,2 + [Allcs < C, (7.32)

as desired. g
To conclude with the proof of the proposition, we need to consider the equation

Jr[h] = Hs(y) = Zkﬁ?(yL inT. (7.33)

A main fact we need is the following lemma, whose proof is postponed to §8.4.

Lemma 7.8. Let kY(y) denote the principal curvatures at a point y € Loy (see (7.15) for the
definition of Toy ). Then we have that for all large enough r(y),

: 90) . o5
i=1
8 8
k) = 3 kh(r(0) + 06~ | (7.35)

Let us conclude the proof of the proposition. From Lemma 7.7 and using an odd extension by
reflection, we see that there exists a solution hg of

8
TIrolho] =Y kY, inT,
i=1

satisfying the appropriate estimates. Let hq(y) = ho(7(y)) for r(y) > ro, and extended smoothly
in arbitrary way to all of I'. Then according to Lemma 7.1, we find that for large r,

8
Trlhal(y) =D k(x(y) + [0(r>"7)DE ho + O(r=*"7)Dryho + O(r*" 7)o ] (n(y)),  inT.
= (7.36)
To solve problem (7.33) we set h = hy + ho and get then the equation for hoy
Jrlha] =O(y), inT,
where, using relation (7.35) and Lemma 7.6, we get
[©llp,5 < +oo.

Then we choose hs to be unique solution to that problem given by Proposition 7.1. The function
h built this way satisfies the requirements of the proposition. O

8. LOCAL COORDINATES ON I': THE EFFECT OF CURVATURE AND CLOSENESS TO Iy

8.1. The proof of Proposition 3.1. Let py = (xo, F(z0)), with |zg] = R. Then there is a
function G(y) such that, for some p,a > 0,

I'NB,(po) =po+ {(y,G(y)) | Iyl <a}

where y = (y1,...,ys) are the Euclidean coordinates on T,,,I". More precisely, F'(x) and G(y) are
linked through the following relation:

[fo)} - [ngﬁo)} + 1y + G(y)v(po) (8.1)

Here
8

My =Y yl, yeRS,

Jj=1
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where {II;,II,,...,IIg} is a choice of an orthonormal basis for the tangent space to the minimal
graph at the point py = (z¢, F(z0)), and

V(o) = 1 [VF(xo)] ’

1+ |VF(x)]? -1

so that
1

Gy = 5
1+ |VFE(x0)?
The implicit function theorem implies that G and x, given in equation (8.1), are smooth functions

of y, at least while |y| < a for a sufficiently small number a > 0. Clearly when pg is restricted to
some fixed compact set than there exists a 8 > 0 such that

a=0(1+R), R=lul.

(F(x) — F(z9) — VF(zq) - (x — xo)).

To show a similar bound for all py € ' we will assume |zo| = R > 1. The bound we are seeking
amounts to estimating (from below) the largest a so that

sup |[DyG(y)| < +o0.

lyl<a
Here and below by Dy, D}2, etc. we will denote the derivatives with respect to the local variable y.
Let v(z) denote unit normal at the point z = (y, G(y)) (with some abuse of notation v(pg) = v(0)).

Let us set
6 J

Iyl
and consider the following curve on the minimal surface:
r=a(r) = (ry,G0ry)), 0<r<lyl.
Then,
Orv(y(r)) = Ar(y(r)I(F, DyG(ry) - 3)]
where Ar is the second fundamental form on I' and DyG(ry) = DyG(y) ‘y:”;. Thus
() = #(0) < sup [Ar(a(s)] [ (1+1D,Glsp) .

We will now make use of Simon’s estimate (Theorem 4, p. 673 and Remark 2, p. 674 in [34]) which
yields:

c
sup [Ar(1(s))] < %
0<s<r
since we can assume that |y| < OR, with some small § > 0. In addition we have that
[DyG(rg)|
lv(y(r)) —v(0)] = >
DO b,
hence DG .
STy < E/ 1+ 1D.G(s5))d
TH D05 = Ry T IPEEID
Let us write e = £ and

R
v = [+ DG ds
The above inequality reads

1
- W < Ew(T%

(1 —ep(r)d'(r) <1,

so that for all sufficiently small (relative to the size of €) r > 0 we have that
1—(1—ep(r))? < 2er.

or
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Since ¥(0) = 0 it follows that
(1- 25r)% < (1 —eyp(r)),

hence
1

L TTD,a0y) S V) 1o - 2en?,

which implies
1
[DyG(y)l < (1 —2¢ly])™> —1 < &elyl,

provided that e|y| < %. Hence we have established that there are positive numbers 6, ¢, independent
of R such that

C
D,Gy)| < Iyl forall |y| <6R . (8.2)

In particular, we obtain a uniform bound on DyG(y) for |y| < 0R, while at the same time
c
v(y, G(y)) —v(0)] < Iyl forall [y] <6R. (8.3)

This guarantees the fact that our minimal surface indeed defines a graph over the tangent plane at
Po, at least for |y| < OR. The quantities z(y) and G(y) linked by equation (8.1) are thus well defined,
provided that |y| < @R. The implicit function theorem yields in addition their differentiability. We
have

Dya(y) _
[DxF(x) gyx(y)] =1+ DyG(y)v(po), (8.4)

and in particular |Dyz(y)| is uniformly bounded in |y| < §R. The above relation also tells us that
DPa(y)] < IDPGE)|, m=2 |yl <OR. (8.5)

Let us estimate now the derivatives of G. Since G(y) represents a minimal graph, we have that

V,G
H[G=V, (————) =0 in B(0,0R) C R%. 8.6
A= (=) (0.0R) (56)
Let us consider now the change of variable

G(y) = 1G(RY),

and observe that G is bounded and satisfies
5 ( v,G

HG| =Vy - (———=
\/ 1+ |V,G]2

|C~¥(y)\ <C forall |y| <8,

) =0 in B(0,0). (8.7)
In fact from (8.2) we have

hence, potentially reducing 6, from standard estimates for the minimal surface equation (see for
instance [18]) we find

|D,G(y)| < C forall |y <0, (8.8)

with a similar estimate for D?CNJ, and in general the same bound for D;”C?7 m > 2 in this region.
As a conclusion, using also (8.5) we obtain

m m O
Dy(y)| + DG < oy forall Jy] < OR (8.9)

for m = 2,3,.... This estimate and (8.2) provide in particular the result of the lemma. O
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Remark 8.1. From the above considerations it follows that the local coordinates near I" in (3.11)
are well defined. Indeed this is the case as long as the function = +— (y, z) is invertible. We claim
that this holds, and consequently that the Fermi coordinates are well defined if

2| < 0]Ar(y)| (8.10)

whenever 7(y), the distance from the origin of the projection of y € T' onto R®, is large enough,
and 6 is chosen to be a small number. We argue by contradiction, i.e. we assume that z — (y, z)
is not one-to-one. Because of the symmetry of the surface I, it is enough to consider the situation
in which, for certain & = (2, z9) such that 2’ € T we have the existence of two different points
y1,y2 € I'NT such that

x=y; +z2v(y;), =12, (8.11)
with z satisfying (8.10). We may assume that |r(y;1)| = Ry is large. Then it follows:
[yr — yol < [2llv(yr) — v(y2)] < 0]Ar(y1)| " (8.12)

In the portion of I" where (8.12) holds we have in fact:
ly1 = w2l < J2[[v(y1) — v(y2)]

< 0| Ar(y1)| " sup |Ar (y)|ly1 — vl
ly1—y|<6] Ar(y1)] (8.13)

Ry +1

1
We get a contradiction if we take 6 > 0 to be sufficiently small and thus the claim follows.

<Cf ly1 — y2l-

8.2. Comparing G and Gy. We want to estimate with higher accuracy derivatives of G, in their
relation with the approximate minimal graph T'g, 29 = Fy(z). We shall establish next that in the
situation considered above we also have that Iy can be represented as the graph of a function
Go(y) over the tangent plane to I at the point pg, at least in a ball on that plane of radius R for
a sufficiently small, fixed 6 > 0 and for all large R. Below we let n and v denote respective normal
vectors to 'y and I', with the convention n - v > 0. For convenience the situation is presented
schematically in Figure 2.

To prove the above claim we will show that for fixed, sufficiently small 6 we have the estimate

|n(q) —v(po)| < CO for all ¢ e T'yN B(pg,bR). (8.14)

Since by Theorem 2
F(z) — Fo(x) = O(|z|77), some o € (0,1),
we have that the points py = (20, F(z0)) and qo = (20, Fo(xo)) satisfy
C
[Po = qol < 55 (8.15)
Let T,,,I', T4, I'g be the corresponding tangent hyperplanes, namely
T,, [ ={z€R?| (2 —po) - v(po) = 0},
Ty To = {z € R?| (2 — qo) - n(qo) = 0}.
We assume that v(pg) - n(go) > 0. We claim that there is a number M > 0 such that for all large
R,

oM

[v(po) = n(q0)l < = (8.16)

Let us assume the opposite and let us consider a point z € T, Iy with

0
OR > |2 =l > SR,
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Zg

RS

FIGURE 2. Local configuration of the two surfaces I" and T'y.

with 6 > 0 as in (8.2). Let us write cosa = v(po) - n(qo) with 0 < a < 7. Then, using (8.15) we
get

dist (2, T,,I') > |z — po|sina > (gR — R™)|v(po) — n(qo)| > M0. (8.17)

Let now ¢ € I'g be the point whose projection onto T, I'g is z. Point ¢ is unique by the analog
of (8.3) for the surface I'y. Let us denote ¢ = (Z, Fo(Z)). Notice that |Z| ~ R. We will also set
p = (%, F(Z)) € T. Since the second fundamental form of the surface T'y satisfies an estimate
similar to the one for I' we may assume, reducing 6 if necessary,

dist (¢, T, I'o) < cf.
Now, estimate (8.2) implies that
dist (p, Tp,I') < cb.
If M is fixed so that M# is sufficiently large, the above two relations and (8.15) are not compatible
with (8.17), indeed we get:
MO < dist (z,Tp,I") < dist (p, §) + dist (p, Tp,T'o) + dist (¢, T4,T0)
< cf + dist (p, §)
c
< ==+,
= Ro &
hence (8.16) holds. Moreover, using estimate (8.3) and the analogous estimate for the variation of
n we have the validity of the estimate

In(q) —n(qo)| + [v(p) — v(po)| < CO, VpeT NB(po,0R), YqeToN B(qo,0R).

Furthermore, we observe that analog of the estimate (8.3) implies that in the set To N B(qo, O R)
the distance between 'y and its tangent plane at gy varies by no more that c¢f. From this and
(8.15) and (8.16) the desired conclusion (8.14) immediately follows (taking 6 smaller if necessary).
Hence the function Gy(y) is well-defined for |y| < 0R.
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Let us observe that F{; and G are linked through the following relation:

|:F0dé.i‘):| - [Fﬁo)] + y + Go(y)v(po)- (8.18)

By the implicit function theorem, & and G(y) define differentiable functions of y for |y| < 6R. We
shall establish derivative estimates for Gg similar to those found for G. We claim that

mz m ¢

1Dy 2(y)| +Dy* Go(y)l < 7oy forall  [y| < OR, (8.19)

for m =1,2,.... Differentiation of relation (8.18) yields

9T | 1145,
{DFo(iz)@ji"] =1II; + 0;Gov(po). (8.20)

Let ¢ = (&, Fo(Z)) and
1 DFy(z
L[]
V1+HI[VE(2)?

From (8.20) and the fact that n(q) - v(pg) > ¢ > 0 we then get
0;Go(y)| < ClIL; - n(q)| < C.
Using again relation (8.20) we also get
|0;2(y)| < C.
Let us differentiate again. Now we get
0ji 0 _a
DRG] * (2R o,3] = 2000l
Again, taking the dot product against v(py) we get
|D?Fy ()]
1+ |VFy(2)?

(8.21)

C
0j1Go(y)| < C <3z

and thus
oy < &
ik Y= R
Iterating this argument, using that
|ID™Fo(%)] < CR*™, m=1,2,...
the desired result (8.19) follows.

Let us write

G(y) = Go(y) + h(y).
We will estimate first the size of h(y) in the ball |y| < §R. We claim that we have

h(y)| < CR™'77 forall |y|<6R. (8.22)

First observation we make is that when y = 0 we have:

C

()] = [Go(0)] <~

(8.23)

To show this let £ be such that

and let y be such that
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Comparing these two expressions and using |F'(z) — Fy(Z)| ~ R~7 we see that |[§J| ~ R~ hence, by
(8.2) we get that |G(§)| ~ R~1729. Now multiplying the above relations by v(py) and subtracting
them we infer (8.23) since by Theorem 4 p.673 and Theorem 5 p. 680 [34], we have that

C

I+ [DF(p)P ~ R
To prove (8.22) now we let p1 = (z1, F(x1)) € T'N B(po, OR) so that:
p1=po + 1y + G(y)v(po), [yl <OR.

Then |G(y) — Go(y)| corresponds to the length of the segment in the direction v(pg) starting at
p1, which ends on the surface I'y. Let po = (21, Fy(z1)). Then

|p1 — p2| < CR™°.

Let us consider the tangent plane T,,I'y to I'g at ps, with normal v(p2). Then, I'o N B(p2, CR™7)
lies within a distance O(R~*77) from 7,,T'o, more precisely,

FO n B(pQ,CRig) C CR,

v (po)| =

where Cg is the cylinder
Cr={Z+sv(p2) | 2 € Tp,To, |2 —po| <CR77, |s| <CR™'7}.

Using (8.23) we may assume that p; € Cgr. In particular, the line starting from p; with direction
v(p1) intersects Iy inside this cylinder. Since v(p1)-v(p2) > ¢ > 0, the length of this segment is of
the same order as the height of the cylinder, and we then get

G(y) = Go(y)| < CR™'7°,
hence (8.22) holds.
Next we shall improve the previous estimate. We claim that we have

m C :
1Dy byl < pogs In Iyl <R, (8.24)
form=0,1,2,.... Let us set

~ 1 ~ 1 ~ 1

G(y) = zG(Ry), Goly) = ;Go(Ry), h(y) = h(Ry)

We compute (for brevity dropping the subscript in the derivatives):

. _ D2 INCVE
J14 vapRaG) = ac - VG VG,
1+ |VG]?

Now,
DG [VG,VG]  D*n[VG,VG] DGy [VG,VG]
1+ |VG|? 1+ |VG|? 1+|VG]?2
and ~ _ ~ ~ ~ _ ~ ~
D2G0 [VG, VG] . D2G0 [VG(), VG()} D2G0 [QVGO + Vh, Vh]
14 |VG|2 14 |VG|? 14 |VG)? '
Furthermore,

DGy [VGo,VGy|  D*Gy [VGy, VG
1+|VG]2 14 ]|VG?
D2Gy [VGy, VGo] (2VGy 4 Vh) - Vi
W [VGPa+[VER)
Collecting terms we see that h satisfies the equation
i D?h [vé,yé]
1+ |VG?

+b-Vh+E=0, in B(0,0),
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where

~ 2 ~ g g ~ ~
E=AGy — D C1:O+[TVGCQ:’ ZGO] =\/1+|VGo|2H(Gy),
0

DGy [VGo, VG| (2VGo + Vh) | DGy [2VGo + V]
(14 |VGo|2)(1 4 [VG]?) 1+ |VG]?2

and

b:

Notice that:
IVG(y)| <C, |h(y)|<CR™>™, inly|<6.

Also by (9.36) to follow the mean curvature of T’y decays like R=5. From

D2G0 [VGO, VGO]
1+ [VGol? )#9)
= R\/1+ [VGo|2H[Go)(Ry)

= R\/1+ [VGo(Ry)[?H[Fo)(Z(Ry)),

|B(y)| = R|(AGo -

(in the notation of (8.18)) we then find

and, as a conclusion, reducing 6 if needed,
. c .
|Dyh<Y)‘ S R2+a' m ‘Y| < 9,
so that for h we get accordingly
c .
|Dyh(y)| < Fare o ly| < OR.
On the other hand, using (8.19) we have for instance that
DyH|[Go(y) = D H[Fo]((y)) Dyi(y) = O(R™°),
hence
|DyE(y)| = O(R™).
More generally, since
D H[Fy)(z) = O(|z|~>™™),
we get
m _ —4
Dy'E(y) = O(R™%).
This, estimates (8.19), (8.9) and standard higher regularity elliptic estimates yield

Cc

e in ly| < 6R.

|Dy"h(y)] <

Hence

|Dy"h(y) in |y| < 6R.

C
| < ——
— R'm—i—l—i—a

for m > 1.
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8.3. Approximating I' by I'y and their Jacobi operators: proof of Lemma 7.1. The
surfaces I' and Ty are uniformly close for r large. Let p € T with r(p) > 1. Let us consider the
point m(p) € 'y defined in (7.2). Using local coordinates (8.18) around p, we have

m(p) =p+ Go(0)v(p).

Here of course the function Gy depends on p. From this it follows that 7(p) exists and is unique
when r(p) > 1. As we will see below, the map p — 7(p) is smooth.
We recall that the Jacobi operators associated to I' and I'g, respectively, are:

Jr[h] = Arh +|Ar*h, Ty [h] = H'(Fo)[V/1 + [V Fo[?]

where we recall, that from (7.4), Jr, is the sum of Ar, + |Ar,|? perturbed by a second order
operator with very rapidly decaying coefficients.

Let us consider two smooth functions h and hg defined on I'" and I’y for r large, and related
through the formula

ho(m(y)) = h(y), yeT, r(y) > ro.

Then, to prove Lemma 7.1 we have to establish the relation

Tr[h)(y) = [Trolho] + O(r~*77)DE ho + O(r=*=7) D ho + O(r—*~7)ho ] (n(y)) . (8.25)

8.3.1. Projection map w(p) and its derivatives. We show next that this map is smooth and estimate
its derivatives. In local coordinates y we have that in a neighborhood of y = 0:

8 8
7(y) = p+ 3 il + GH(0) + (Gol0) + Ouly) = p+ S Il + Go(Hr(0)  (8.26)

i=1 i=1

for certain scalar function #(y) and vector function y(y). Here and in what follows, with some
abuse of notation, we write f(y) to mean f(Y (y)). Thus we should have ¢(0) = 0, 7(0) = 0. Local
existence and smoothness of these functions can be found by implicit function theorem. Indeed
(8.26) is equivalent to the system

y1 — 31+ (Go(0) + t)v(y) - 1

AW = | g5 —§s+ (Go0) + hu(y) - Ts | =0

LG(y) + (Go(0) + t)v(y) - v(0) = Go(3)
Note that A(0,0,0) = 0 and that

[Tdgs + Go(0)D2G(0) 0
Dy7tA(Oa 0; O) - * DyOGgO()O)y ( ) 1

= Idge + O(r=>77),
is invertible, hence the existence of the smooth functions y(y) and ¢(y) as required follows. Moreover
implicit differentiation yields
Dyt(o) = [Dy,tA(Ov 0, 0)]71G6 (O) = O(Tizia)a
while
Dy(0) = Idgs + O(r—277).

Iterating the implicit differentiation, using that one negative power of r is gained in successive
differentiations of the coefficients G(y) and v(y), we find that

mg, m —m—1—0o
Dy*y(0), D't(0) = O(r ), m>2.
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8.3.2. Comparing Ar and Ar,. Given a smooth function f(y) defined on T for all large r, it is
natural to associate to it the function f defined on I'g for large r by the formula

fo(m(y)) = f(y). (8.27)

The question is now that of comparing the quantities [Arf](y) and [Ar, fo ](7(y)). Given a point
p on I', the corresponding local coordinates y are good, both for parametrizing locally I' near p
and 'y near 7(p) respectively by

Y(y) =p+ylli + G(y)v(p) and Yo(y) =p+yilli + Go(y)v(p)- (8.28)

The observation is that, by definition, 7(Y (y)) = Y5(¥(y)) and thus the relation (fo o 7)(Y(y)) =
f(Y(y)) means fo(Yo(3(y))) = f(Y(y)). In other words, with the usual abuse of notation,

and the question is to compare Ar f(y) and (Ar, fo)(7(y)) where these two operators are expressed
in the local coordinates y.
Let us recall that the metric tensor g on I' near p satisfies the estimate

gi; = 0ij + 0;G(y)0;G(y) = 6i; + O(lyl*r™%), |yl <0r, r=r(p), (8.29)

where 0; = Jy,. Similar estimates hold for the metric tensor gy on the surface I'g expressed in the
same local coordinates. In fact we have:

g0,ij = (0;Y0,0;Y0) = 6ij + 9iGo(y)0;Gol(y)
= gij — 0:G(y)0;h(y) — 0;,G(y)9:h(y) + 9;h(y)0;h(y) (8.30)
=gi; + lylO(r—>7).

Hence if we write

Ar = ag;(y)0; + 0)(y)0i, Ar, = a;(y)0i; + b (y)0;,
then we now find for |y| < 1,

Ar = [ag;(y) + O(r > =)0y + [0} (y) + O(r—>77)]0;.
We compute

9i(foo§) = (Ocfooy)0iyk,  9ij(foo§) = (Orifoo¥)0iFk 0;¥1 + (O fo o) 0T
We recall that we found at y = 0
OiFk = 0k + O(r77), 95K = O(r—>77),
and hence
Ar(fo 0 7)(0) = Ary fo(0) + O(r™*77)(45.£0)(0) + O(r~>=7)(9; fo)(0),

so that

Arf(p) = Ar,fo(m(p)) +O(r—>=7)[DZ, fol (x(p)) + O(r~>=7)[Dr, fo] (x(p)) . (8.31)
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8.3.3. Comparing curvatures: conclusion of proof of Lemma 7.1. Let us consider the second fun-
damental form on I', Ar and the second fundamental form on I'y, Ar,. We observe that for a given
point p € T, we get that in the local coordinates y (3.13), the matrix representing Ar(p) in the
basis Iy, ..., TIg of T,T' is A = —DZ?G(0) since DyG(0) = 0.

We consider next Ty described by the coordinates Yy(y) near the point ¢ = w(p). The tangent
space Tr(,)I'o is spanned by the vectors

ﬁj = Hj + 8jG0(O)V0 = H]‘ + 0(7’7270),
and the the normal vector to I’y at the point p + Iy + G(y)vp is given by

n(y) = !

V1+[VGo(y)

(=0;Go(y)IL; + vo) .
We have that
8
@n(()) = Zaijﬁi,
i=1

for certain numbers a;;. By definition, the matrix of the second fundamental form of Ar,(p) with
respect to the basis II; corresponds to the 8 x 8 matrix Ay = [aij]. Now,

1  9,;G0(0)9;Go(0)

6]n(0) = _mauc‘fb(o) J (1 I |VG0(O)|2)% (—81](;0(0)1_[] + 1/0) ,
hence
95m(0) = —8i;Go(0)IL; + O(r~*"7) = =05 Go(0)I1; + O(r~—>=7).

and therefore
aij = —0iGo(0) + O(r=377) = —8;;G(0) + O(r—37).
In summary, the matrix representing Ar, (7(p)) is
Ag = —D}G(0) + O(r~*77).

The eigenvalues of this symmetric matrix, which are of order O(r~1), differ at most O(r=3=7) from
those of A = —D?G(0). As a conclusion, we get in particular that

[Ar(p)]” = |Ar, (7(p))]* + O(r~*77). (8.32)
Let us consider now the operators Jr and Jr,. According to relations (8.31) and (3.33), and
using formula (7.4), we find that if ho(7(y)) = h(y), y € T, then

Telhl(y) = [Try[ho] + O(r=*77) D ho + O(r~>=7) Dryho + O(r™*=7)ho ] (n(y)) ,
and the proof of the Lemma 7.1 is thus concluded. O

Remark 8.2. The estimates obtained for the second fundamental form of I' in comparison to that
in Iy makes it simple to see that for some a > 0

1 —1
L S S S (8.33)

T VIHIVE@R)P? T o

for all r(p) sufficiently large, which is a special case of the estimate in Theorem & p. 679 in [34].

S

8.4. The proof of Lemma 7.8.

8.4.1. Proof of estimate (7.35). Denoting by k; and k;o the principal curvatures respectively on I'
and Iy we get, according to the considerations above on the second fundamental forms,
8 8 8
D o Kp) =D (ko +0(r*77)) (x(p)) = Y_ kio(p) + O(r~°77).
i=1 i=1 i=1
and thus estimate (7.35) in Lemma 7.8 holds.
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8.4.2. Proof of estimate (7.34). To prove (7.34) on I'g, we compute explicitly its second funda-
mental form. The surface I'g given by the graph of Fy = Fy(u,v) can be parametrized by the
map

(u,v,0,v) € Ry xRy x 8% x 83— (utr,v¥, Fy(u,v)) .

Let us consider an arbitrary point p € T, p = (uit, vV, Fy(u,v)) and local parametrizations of S3
given by u = u(t), v = v(s), t, s € R® with

u0) =1, v(0)=v, ,u(0)=m, 9,v(0)=o0;,

where 7;, 0; i = 1,2,3 are the vectors of an orthonormal basis, respectively of T4S? and TS3.
Then we have

TPF = Span{(ﬁ703 FOu)> (0307 FO’U)? (UTi7 0) 0)7 (O,UUi7O),i = 17 27 3}
:= span{ey, es, fi, 9,1 = 1,2,3},

and
Fo, 1, Fy,v,—1
n(p) _ ( 0wl L0y VY, )
V1+|VE|?
A direct computation yields:
FOuu FO'uu
Ny €1 = —F—c—05, M 2= —F———,
V14 |[VEy|? V14 |VE|?
FOuv FO’UU
Ny €] = ————=, Ny ey =

- ) v 2 = T Y/
/11 VR VIt [VEP?
Ny fi=0=ny g, Ny fi=0=n,-g;.

Likewise we get,

(FOuTia 07 O) (Oa FOuo-ia 0)
ng. = , Ng; = ’
"1+ VR VI+IVE?
hence
ukFp,
g, fi = —F——=—=, Ns, €1 ="MNs, " €2="Ng, g; =ng, - [, =0,
t; - fi T |VF0|2 1 2 si Y fe

’UFO,U

N, * 5 = —————
I Tt VR

nti-61:nti-ezznti'sznti'gkza

i=1,2,3, k#i.
The matrix of the second fundamental form Ar,(p) relative to the basis of T,,I'g,

Tplo = span{e1, ez, f1, f2, f3, 91,92, 93},
is by definition the 8 x 8 matrix A = (a;;) such that

5 8
Ny = ai1e; + ajzes + E ay; fj + E a1;9;5-5,
j=3 j=6

5 8
Ny = ag1€1 + ag2e2 + E ag; f; + E 25955,

Jj=3 j=6
5 8
Ng;, = A2441€1 + A2442€2 + g a2y fi + E asyijgj—s5, 1 =1,2,3,
=3 i=6
5 8

N, = as4q1€1 + 544262 + E astij fj + E as+ijgj—5, 1t = 1,2,3.
=3 j=6
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Using the above computations, we readily get that A is a block matrix of the form

A0 0
A = 0 Ay, 0],
0 0 A;s
where
Y [Fouu FOH L+ Ry 1+ FouFo, |
P \/1—|—|VF0|2 FOvu FO’U’U 1+F01)F0u 1+F03 ’
and

Fo, Fo,
A= UITIVEE o o Wit VAP
The principal curvatures are the eigenvalues k;o of the matrix A. Thus we find
kio = A1, k2o = Az,
Fo, Fo,
W:Nh kﬁozkmzksozv\/ﬁ:u%

where \;, i = 1,2 are the eigenvalues of the 2 x 2 block A;. Expressing p1, p2 in polar coordinates

1 00
As = 01 0
0 01

_ o O

k3o = kag = k5o =

FOu 1 / .
py = = (3g(0) cos — ¢'(0) sin h),
uy/1+ |VEp|? r\/992—|—g’2 (®) )
£ 1
g 1= < = (3g(8) sin 6 + ¢’ () cos b),
2 vy/14 |V Fy|? r\/992—|—g’2 ) )
hence
3 3 ! 3 ’ 3
+u;=——"—"—7/—7—/+—, R:=1(3g(0)costd — g (0)sinh)° + (3g(0)sinf + g' ()" cosh)”| .
Wi = o [ (39(0) cos 6 — g'(8) sin0)° + (39(6) sin 6+ g'(6)° cos 0)°]

Now, since g(0) vanishes at § with ¢'(§) > 0 we get
R =0(g(0)) + ¢'(6)°(cos® 6 — sin® ) = O(g(0))

and therefore
8
> ki =0(g(0)r™?).
i=3

It remains to estimate k3, + k3o-
We know that, globally, all principal curvatures are O(r~!). Let us consider the case 6 € (% 3T,
Since second derivatives of F' in (u,v) are of order O(r), we get then that

-1
=4 4+ 9¢%cos? 0 + ¢'* sin® 0 r~* —3¢'gsinf cosf ]

A = O(r™>
! (r™) { r~* —3g'gsinf cosf r=4 4+ 9¢%sin 0 + ¢'* cos2 0

9g2 cos? 0 + ¢'* sin? —3¢g'gsinf cos - + O
—3¢’gsin 6 cos 6 92 sin 0 + ¢'* cos? 6 '

— 0t |
The latter inverse is uniformly bounded in the region considered. As a conclusion we get that the

eigenvalues of this matrix are of size at most O(r=°) near 6 = T, while for 6 away from 7 the
eigenvalues are of the size O(r~!). Globally we then get

> K =0(g(0)r™?) +0(r™),
i=1

and the proof is concluded. O
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9. ASYMPTOTIC BEHAVIOR OF THE BDG GRAPH: PROOFS OF LEMMA 2.1 AND THEOREM 2

9.1. Equation for g: Proof of Lemma 2.1. We want to solve the problem

); (9.1)

2lsin3(29)g+(5m3(29)96> —o, pe(ZT
N BNV I v

with the boundary conditions

T T
Q(Z) =0, 90(5) =0. (9:2)
Let us observe that if g(6) is a solution of (9.1) then so is Cg(f), for any constant C. The following

lemma proves the existence of solutions to (9.1).
Lemma 9.1. Problem (9.1) has a solution such that:

9(0) >0, ges(0) <0, go(6) >0, (9.3)
and the last inequality is strict for 0 € [, 75).

Proof. If g is a solution to (9.1) then function

o) - 90(0) ) £ 0
vio) = 5 9(0) £0,
satisfies the following equation:
9 + (94 1?)[21 + 6 cot(20)y] = 0. (9.4)

Our strategy is to solve (9.4) first and then find the function g. To this end we will look for a
solution of (9.4) in the interval I = (7/4,7/2) with
Y(m/2) =0. (9.5)
In order to define the function g we also need 1 to be defined and positive in the whole interval
(7, 3] and limy_, =+ ¥(0) = +oo. Let (0%, 3], T < 6" be the maximal interval for which the solution
of (9.4) exists.
We set ¢4 (0) = —11tan(26). Then we have

0P, + (9 + ¥2)[21 + 6cot(20)1p,] <0, 0 € (%, g],
ea(5)=0=0(3), ¥ (5)=-22<-21=¥(3).
Substituting ¢_(0) = —2tan(26) for ¢ in (9.4) we get:
99"+ (94 ¥2)[21 4 6 cot(260)y_] > 0. (9.6)
We have ¢(7/2) = ¢_(mw/2) = 0 and, from (9.4),
P(m/2) = =21 < —4 =9 (m/2).
From this we get that the maximal solution of (9.4) satisfies:
Py (0) = —11tan(20) > ¢(0) > ¢_(0) = —2tan(20) >0, 6 € (0*,7/2), (9.7)
and that 6* = 7. Let us now define
7/2
o) =exp{~ [ viar}, 98)

where 1) is the unique solution of (9.4)—(9.5). Clearly we have gg(7/2) = 0 and from (9.7) it follows
g(m/4) = 0. Thus g defined in (9.8) is a solution of (9.1)—(9.2).

We have g > 0 in (%, 5), since gg = g1p. To show that go(%) > 0 we will improve the upper
bound on . Let us define:

1 = —2tan(260) + ¢, where ) = A( - tan(29))n,
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and % <n <1, A>1 are to be chosen. Direct calculations give
99, + (94 ¥2)[21 + 611 cot(20)] = 99 cos?(26) + 45 cos?(26)
+ 69 cot(20)[4 + 5 cos?(26)] + 364) sin(260)(— cos(26))
+ 992 cos?(260) + 6% cot(26)[4 sin(26) (— cos(26)) + v cos?(26)].

Using the definition of ’l[), after some calculation we find that the last expression is negative for

0 € (%,%5) when

0 > —18An + 45(— tan(20))' " cos?(26) — 6A[4 + 5 cos?(26)] + 36 A sin®(26)
— 15A%(—tan(20))' 1" cos?(20) — 6A%(— tan(26))' =" sin(20)(— cos(26)),

which can be achieved if % < n <1 and A is chosen sufficiently large. Since n < 1 it follows that

T
¢(9) Swl(e)v XS (777)3
4’ 2
hence, for certain constant C' > 0,
~Ccos(20) < g(0) < —cos(20), € [%, g]. (9.9)
In fact the inequalities in (9.3) are strict for 0 € (7, ). It follows in addition that:
90(6) > Csin(26), 0 € [T, 3],
This shows in particular gg > 0 in [F, 7). The remaining estimate for ggg follows from the second
order equation for g. (|
Given function g as above let us define:
cos ¢ = _39 sin¢ = N — (9.10)

We see from Lemma 9.1 that ¢ satisfies:

¢ + 7+ 6cot(20) tan ¢ = 0, ¢(%) = g ¢(g) = 0. (9.11)
We need the following lemma:
Lemma 9.2. It holds

Ty= 23 Ty =—" s> - T

§(P=-3 ¢ =—1 96 >-3froe(]0). (912)

Proof. To prove the first identity we observe that tan ¢ = %1/) which after differentiation yields
1 1
¢ = gW cos? ¢ = —5[21 + 6 cot(20)y)] > —3, (9.13)

since ¥(0) > —2tan(20). Now considering (9.11) we see that when § — 7/4" we can have
¢ (m/4T) = =3 or ¢/(r/4T) = —4. From (9.13) we get the required formula.
The second identity follows from simple analysis near 0 = 7.
To prove the last estimate, we suppose that there exists a point 61 € (%, %) such that ¢'(6;) =
—3. We claim that ¢”(61) < 0. This gives a contradiction. (We may take 67 to be the point closest

to 5. Then necessarily ¢”(61) > 0.) In fact, from (9.11), we deduce that
2sin(26;) cos ¢ + 3 cos(26; ) sin ¢ = 0,

which is equivalent to
5sin(26, + ¢) = sin(260; — ¢). (9.14)
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Note that 20 — ¢ € (0,7) and hence 0 < 20 — ¢ < 20 + ¢ < w. Now we compute

d)//(el) 6

sin? 6 cos? ¢

1
(sin2¢ — 3 sin46,¢")

6
= —5———sin(260; — ¢) cos(20;1) cos ¢ < 0,
sin” 6 cos? ¢ (261 = ) cos(261) cos ¢
which completes the proof.
O

9.2. A new system of coordinates. One of the key results of our paper is a refinement of the
results in [5] which amounts to finding more precise information about the asymptotic behavior of
the minimal graph of Bombieri, De Giorgi and Giusti. This is the purpose of introducing function
Fy. It is easy to see that far enough from the origin Fj is a subsolution of the mean curvature
equation and therefore, at least away from the origin, the BDG minimal should lie above the graph
of Fy. Finding a supersolution, which asymptotically behaves like Fjy is however a different story.
We observe that the supersolution found in [5] asymptotically resembles something like ~ M3
with M > 1 and therefore lies above a multiple of Fy. On the other hand our approach requires
more accurate estimate F' ~ Fy away from the origin.

For this reason we introduce next new coordinates (s,t) in the sector T, which depend on the
function Fy = r3g(6). These coordinates, which are given explicitly in (9.17)-(9.18), correspond to
“geographical” orthogonal coordinates for the graph of Fy. The coordinate ¢ is simply its height
and s measures a weighted length along the level sets. The weight takes into account the actual
higher dimensional character of the coordinate s (its two-dimensional analog would simply be
arclength on the level curves of Fy). Expressing the mean curvature operator in these coordinates
leads to formula (9.24). Its main feature is that the degeneracy of the mean curvature operator for
a function close to Fy is removed. This expression is a useful tool for separating terms of the mean
curvature operator with distinct features when we examine suitable candidates for a supersolution
of the minimal surface equation.

Lemma 9.3. There exists a diffeomorphism ® : Q — T, where Q = {(t,s) | t > 0,s > 0} such
that ®(t,s) = u(t,s) = (u(t,s),v(t,s)) and u satisfies the coupled system of differential equations

du  VF, du 1 VE§ (9.15)
o |VF|?’ ds  (w)3 |[VEF|’ '
where we denote
VFE = (Fy, F,), VF* = (F,,—F,).
Moreover ® maps (t =0, s) onto the line u=v and (t,s = 0) onto (u = 0,v).
Proof. Introducing polar coordinates
u=rcosf, v=rsinb,
and using (9.15) we find:
or Fo,r _ 3g
at VFo? 72(99%+93)
a0 FO«TQ g0 ’
at [V Fol m3(99%+97)
or 8Fgg 890 (9'16)
s r7 sin3(20)|V Fo| 76 Sin3(26)\/m
a0 —8F, _ 24g
ds r7sin3(20)[VF| 7 sin3(29)\/m

Using the formal relations

tr tG Tt
Sy Sgl| |0:

b )
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we arrive in particular at the equations for s

395, + 9—939 =0,
r

8995y 24gsg 1
rOsin®20,/9g2 + g2 r7sin®20/9¢% + g7
or
9s  _  _3r7sin’20g
00 8 /992_;’_93
9s % sin® 20g, ’
or 8 /9_(]2"‘,(]5
which are satisfied by the function
7 i3
r’sin” (260
5= ' sin”(20)ge (9.17)

561/99° + g3

because of the equation satisfied by g. Similarly we obtain the solution for ¢

t =1r3g(0). (9.18)
Using the properties of the function g we can directly check that function given by the formulas
(9.17)—(9.18) is a diffeomorphism with the required properties. O

For future references let us keep in mind that setting sin ¢, cos ¢ as in formula (9.10), we find
simply

& - sin? ¢,
S 9.19)
a0 1 .
95 = 11s sin(2¢),
and
% - cos? ¢,
ot 3t (9.20)
00 1 .
il sin(2¢).

Our next goal is to express the mean curvature operator in terms of the variables (¢, s). Denoting
by u’ the matrix (u, us) the minimal surface equation is transformed to

3 1 < (uv)3Vdet u'u/"
Vdetwu? V14 |VF|?
From Lemma (9.3) we find

(uv)~ (u'u'T)lvt,sF> = 0. (9.21)

1 1 _ 2

= == s) =Y, sy Us) = =P, .22
<utaut> |VF0|27 <utau > 0 <ll u > (UU)G P (9 )
hence we compute
_ IVFo)> 0
detu’ = 7/), wu ) = ) 9.23
N ( ) 0 (9.23)
Then equation (9.21) becomes
|V EFo|0:F p 20, F
VE |0 ————=) + |V Fb|0s = 9.24
VR 1+|VF|2) IV (|VF0\ 1+|VF|2) 524

Let us observe that:

VF — <VF VEy > VEy < VFOL> VFOL
"|VE|/ |V "|VF|/ |VF|

VE:
|VFo|

= FtVF[) + pilFs
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From this we have

72F2
1+|VF|2—1+|VF0|2( + )

[V Ep|?
1 p 2F?
= |V (=—s + F?
| 0| (‘VF0|2+ t+|VF |2)
Denoting by Q(V,,sF') the function
—2F2

1 p
Vi) = —— F? —_—
QVeF) |V Ey|2 o |V |2

we see the mean curvature equation is equivalent to

|V Fy

H[F] = Q3/2(vt,sF>

G[F]=0
where

GIF] = QY4 F)F — 30Q(VisF)F, + Q(V1,F)0, (f"”’)
2 VEP
p*F, (9.25)

1

—0;Q(Vy s F)———.

20:0(V, )|VF0|2

Now we derive the mean curvature operator for functions of the form
F= FO + A@(tvs) = t+A90(ta S)a

where A is constant parameter. Our goal is to write the resulting equation in the form of a
polynomial in A. In general we assume that for r > 1,

|903P71| _
los| + V| =o(1). (9.26)

We compute

VE \ VE VEL\ V&
VFZVFO+<WO>°|+<V °>°

"\VF|/ |VF, "|\VF|/ |V
VE&
= VEF, Fo+p to,—2.
v 0+<Ptv O+P @ |VFQ|

Then we have

—2 12
p¢>]

1+ |VF]? =1+ |VE[? [(1 + Apy)? + A SEP

= [VE[2(1+ ﬁ +24p + ARy,
where we denote
Ry = ¢} + fv;f%
It is convenient to introduce
R=(1+ |V117 5+ 2400+ A 2Ry ).
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With these notations we have:
|VFo| 'R¥?H[F, + Ayl

1 29,
- [AR@E@ — 5(1+ A00)0, R + ARD, (ﬁ)

1 1
= —5OIVE| ™ + A[|VF 2020 — SV 200

1 P05
Y |28R]

(9.27)

+ 0, (T;Ifosl;‘p)(l +|VER|™?) - 5 (waéf)asWFol‘ﬂ

+ A2 [atgoafgo - %&Rl + 20,00, (Tvgjf) (Tvgjf)a? ]

+ A3 [Rlafgo - %@(patRl + Rlas( |v1%|f) - 7( lvgjf)as}zl}.

In the sequel we will refer to the consecutive term in (9.27) as the A% A!, A% and A® terms
respectively. For future references we observe that the A° term can be written as

1
—iat\VFOH = |VEy| " (14 |VFy|72)%2H[Fy], (9.28)

and the Al term can be written as

{} = |[VFy|™" Lol¢]

_ _ 9.29)
3 9 _2 4 28550 Lrp 285@ -2 (
— SHIVE| 0+ |VE as( WFO‘Q) - 5( SRD >8S|VF0| ,
where
= Do p s
Lolg] = [VFy [at(WTOP) + as( e )} (9.30)

9.3. Proof of Theorem 2. Taking the existence result in [5] as the point of departure, we find
the asymptotic behavior of the minimal graph by proving Theorem 2. Our approach, which is
based on a comparison principle, relies on a refinement of the supersolution/subsolution in [5]. We
need the following comparison principle:

Lemma 9.4. Let Q be a smooth and open bounded domain. If I\ and Fy satisfies

Then
Fy > Fy in Q. (9.32)

Proof. The proof is simple since
62
H[F\] — H[F3] i - F
(7] 2] Z;ajaxm( 1~ F)
where the matrix (a;;) is uniformly elliptic in 2. By the usual Maximum Principle, we obtain the
desired result. O
Let us observe that from (9.9) we have

—cos(26) Tow
) > Z0). .
min( 70) ) > 1, 06(4,2) (9.33)
Thus for Fy = r3g(6) it holds
Fy =13g(0) < (v —u?)(v® + u?)?. (9.34)

We will now construct a subsolution to the mean curvature equation.
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Lemma 9.5. Let H[F| denote the mean curvature operator. We have
H[F,] > 0. (9.35)
It holds as well
H[Fy] = O(r™®). (9.36)

Proof. Since H[F| and G[F] (defined in (9.25)) differ only by a nonnegative factor it suffices to
show that

G[Fy] > 0. (9.37)
In fact, let F = Fy = t, we then have

GF) = _%atQ(Vt,sFO)

=39 (5mm):
where

IVFo|? (992 +g3) 92
By the formulas (9.20), we have

1 1 r2cos? ¢

2 2 2 2
() = 1 et - 2 L g sino

92 /) 93
2r2cos? g [2 1.5, (9.38)
=0 {Scos o+ 3 sin (o —1—3)}
>0,

where we have used the fact that ¢'(6) > —3. Estimate (9.36) follows easily from the expansions,
see also (2.7). This ends the proof. O

By the standard theory of the mean curvature equation for each fixed R > 0, there exists a
unique solution to the following problem

1 (w)3VF .
(uv)gv- ( = |VF|2> =0 inTg, F=Fy ondl'gr (9.39)

where 'r = B NT, T = {u,v > 0,u < v}. Let us denote the solution to (9.39) by Fg.
Using (9.34), the comparison principle and the supersolution found in [5], we have

Fy<Fgr< 'H((v2 —u?) + (0® — u®)(u? + )21+ A(] cos(29)|)>‘71)> (9.40)

t oo dt
H(t) ::/ exp B/ dw,
0 ( ] t27)\(1 +t2a/\72a))

A > 1 1is a positive fixed number, o = %, and A, B are sufficiently large positive constants. This

inequality, combined with standard elliptic estimates, imply that as R — +oo, Fr — F which is
a solution to the mean curvature equation H[F] = 0 with

where

F<F< H((U2 —u?) + (02 —u?)(u® +0*)V2 1+ A(| cos(29)|)’\_1)). (9.41)
Next we need the following key lemma:

Lemma 9.6. There exists og € (0,1) such that for each o € (0,0¢) there exists ag > 1 such that
for each sufficiently large A > 1, we have

AR,
H[F, + T‘O] <0, forr> ap. (9.42)
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Moreover, under the same assumptions for each sufficiently large A > 1 we have
A 1
H[Fo+ —] <0, forr>agAste. (9.43)
r

Proof. We will consider (9.42) first. We will use formula (9.27) to write H[Fy + &] multiplied

ro

by a nonnegative factor as a polynomial in A. Explicit computations (9.27) yield

AF, - . :
VES| ' RY2H(Fy + —2) = Ho + AHy + APHy + A°H,

where
. 2 2 2 1
Ho = [VFo|"L(1 + [VEo| 22 2H[Fo) = %2 12 0526+ Lsin? o0/ + 3)| |
9¢3 3 3 (9.44)
7o cos? ¢ / .9 cos?¢ ., .
Hy = W(7+ (2¢' — o) sin” ¢) + e o(r™).
Below we will show in addition that
2
Hy = COSU(bO(T_U) <0,
i (9.45)
Hy = C‘t’ig%(r—?f’) <0.

We assume for the moment the validity of these estimates. Let us observe that the first term in
(9.44) is bounded by
r2cos ¢ cos? ¢
é C1 .
t3 trd
Estimate (9.46) follows from (9.44) and the fact that ¢(7/4) = 7/2, ¢'((7/4)") = =3, ¢"((7/4)") =
0. Summarizing, we have

AF,

HO < C1 (946)

H[Fo“rrT] < Ho“v‘zZlHl
—~7Ao cos? ¢ cos? ¢ (9.47)
< r i2 —4+40c
gt (74 (2¢" — o) sin” ¢) + o O(r )
<0.

To prove (9.43) we use a similar argument. Writing H[Fy + 7%] as a polynomial in A we get that
the A° term is equal to Hy in (9.44) and

_ —To cos? ¢
= 5Oyt

1
r6+a‘

H, (74 (2¢) — o) sin® ¢) + o(r™1). (9.48)

The other terms satisfy

1 —3—0 2

Hy = EO(T ), (A® term),
1

Hs = O(r=%729), (A3 term).

716+G'
Since Hy = O(r~7) the lemma follows by combing the above estimates.

It remains to establish inequalities (9.45). We will collect first some terms appearing in the

expansion formula (9.27). We have ¢(t,s) = tr~—7 and
1 o otsin? ¢
= (1 — = cos? __ -0 ¥
81580 ro ( 3 COS ¢)7 8880 Trog )
D2p = 90015 cos? ¢p[ocos® p — 3 + 2¢ sin? 9, (9.49)
ro‘
2 / 2 2
osin® ¢ 2¢' cos®¢p  ocos®
B = — (1 - )
ts¥ Tros + 3 3
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We also have

p 20, 7s0 cos? ¢

|VE)|2 o 9tro ’

5 (p’2<ps ) - 77O'C082(15 14 sin? ¢
\IVR2/)  9tre 7
p~2p? _ o2 sin? ¢ cos? ¢
|VE |2 9r2e ’
5 ( p2p? ) o 202 sin? ¢ cos? ¢
\|VF2/) 63r20s

-2 .2

9 (p gps)  20?sin’® ¢ cos? ¢
\IVER]2/) — 271120

Using formula (9.27) we get

=) <) - (o

2,2 2,2 2 2 —2
PP o2, L P_"Ps 2, (PP p s
Hs = D2p — ~0,00 o) s 9.51
3 <|VF0\2> 1P T Y t(|VF0|2>+ [( ) +<|VF0|2)} (|VF0|2> (9:51)
_9 —2 -2 2
B P ps\  lrp s s
afw““”(wFoP) 2(|VF0|2>85(|VF0|2>'
From (9.49)—(9.51) we get by direct calculation
o2 sin? ¢ cos? ¢
27tr2e
20 cos? ¢ 9 / .9
_ R Py 20 —
I (3—0cos®¢)[7T+ (2¢ — 0)sin” @]
o cos? psin? ¢
2Ttr2e
2
= 02?;:2;;5 [—6(7 + 2¢ sin? @) + (3 4 2cos® ¢ ) sin? ¢ + O(0)]
ocos? ¢

= S [—42 + sin® ¢(—12¢  + 3+ 2¢' cos® ¢) + O(0)] < 0,

(26" - ),

(9.50)

(osin® ¢+ ¢ cos(29)),

[—o cos? ¢ + ¢ cos(2¢)].

Hy, = [0 cos® ¢ — cos(2¢)q§/]

(3 — o cos? ¢ + 2 cos® ¢¢/) (9.52)

and
o2sin? ¢ cos? ¢
81tr3e
o cos? ¢ 9 2 9 ’ . 9
S1tr3e (9 — 60 cos” ¢ + o cos” §)(7+ (290 — o) sin” @)
o3 sin? ¢ cos* ¢
81tr3e
o sin? ¢ cos? ¢
81tr3e
ocos? ¢

= 27130 {Sin2 ¢(3 + 2(}052 ¢¢') _ 3(7 + (2¢' . U) Sil’l2 ¢)

—o sin? cos(2¢)¢/ + O(0? cos? ¢)}

H, = [ cos? ¢ — 3cos 2] ¢

(o sin® ¢ + cos(2¢)q§/)

3—0 cos? $»)(B—0o cos? ¢ + 2 cos? ¢¢/) (9.53)

2
= 700 [21cos? o — (6 - o) sin® 9(¢' +3)

+(2 — 20) cos? ¢ sin® b + O(o? cos? (b)} <0,
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when o > 0 is sufficiently small. From this we get (9.42). The proof of (9.43) is similar. O
Now we can prove Theorem 2: In fact, from (9.40), we have

AF,
Fy < Fpr<Fy+ =2 forr=ay, (9.54)
7«0'
if we choose A > 1 such that

H (a0l cos(26)) + g/ *(~ cos(26))(1 + A(| cos(26) ) 1))
(aj + Aag~7)g(0)

<1 (9.55)

max ’
0

which is possible since sup, % < 400 (this follows from (9.9) and the fact that go(3) > 0).
Note that (9.55) holds for any A large. )
By comparison principle in the domain I'g \ B,,, (noting that the function Fy + % is a super-

solution for r > ag by Lemma 9.6 and the function Fj is a sub-solution by Lemma 9.5), we deduce
that

AF,
Fo < Fp < Fo+ =", inTg\ By, (9.56)
T

and hence
Fy < Fr<Fy+ Ar’°, inTg\ By, (9.57)

for A large.
Let A > 1 be a constant to be chosen later and let us consider the region I'r N {r > Ry}, where

Ry = agA5+% . From (9.57), we then have

- A
Fo<Fr<Fy+ AR} < Fy + T for r = Ry (9.58)
0

if we choose A A
A<= — = ag S AT, (9.59)
Ry a3AFe

By comparison principle applied now in T'r N {r > Ry}, using Lemma 9.6, we then obtain
A
Fy < Fp < Fy+ =, forr> Ry=agA¥7. (9.60)
TU

The assertion of the Theorem follows now by combing (9.56) and (9.60) and letting R — oo.
O

9.4. A refinement of the asymptotic behavior of F. While Theorem 2 is enough for our
purposes, we establish next a result that estimates accurately the BDG graph near 97", which is
interesting in its own right.

Theorem 3. There exists og € (0,1) such that for each o € (0,00) there exists ag > 1 such that
for each sufficiently large A > 1, we have

Atanh(Fyr—1
n anr(gor )

H[Fy 1<0, forr> ag AT . (9.61)

As a consequence there are constants C, Ry such that the solution to the mean curvature equation
described in Theorem 2 satisfies:

Ctanh(Fyr—1)
/’/-0'

Fo<F<Fy+ , forr > Ry. (9.62)
Proof. Let us prove (9.61) first. We will denote

A
F=F+ F@(ta S)a @(tv S) = tanh(t/r).
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Note that the A° and Al terms in (9.27) are:

at<|v11wo\2) |VF0|2

. 20,
+a(1+ |v11wo|2)88(|pVF§éz) - gas(wlvop) |pVF(j?

Oie Aa <|v11v |2)a“”

5 (9.63)
1 1 P "Ps
= [VR| " HIR] + AR VRN () + VR (7))
1 1 P s 1 L\ p %
[ at(|VF0|2)atSD |VF0|285(\VF0|2) * 285(|VF0|2> |VF0\2}'
We have by (9.46)
2
1 cos” ¢ cos ¢

Ho = |VFO| H[Fo] S C1 t’l"4 S C1 7"7 . (964)

Now we will deal with the first A! term in (9.63). This term is given explicitly in (9.29). We recall
here that in (9.30) we have defined the following operator

) + |VFO|68<&)~ (9.65)

Lo R
el = IVElok (s AP

\VF 2
We will prove the following Lemma:

Lemma 9.7. There exists og > 0 such that for each o € (0,0¢) there exist ag > 0 and cg > 0 such
that

Iio[rfa tanh(t/r)] <

T > ag. (9.66)
Proof. Let us denote

B(n) = tanh(n), n = ; Bi(n) = B(n) — %ﬁ’n,

and
©=p0mr"c, o> 0. (9.67)

Then we compute

hence

—2 —0
14 as(P r 2
85( V) ) —c100; (252 cos (;561)
where ¢; > 0. From now on, by ¢; > 0 we will denote generic positive constants. We obtain
—2
p
0 (FrEde)
VE277
6—0o

S e G ) - )

On the other hand, we have

(9.68)

2
(1= ) o

8t<p =

9

and

va;va = - "9;;)5 q’)[ 3 (g)cos ¢+< COS;(b)ﬁ/}
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hence
o (o) = |- g+ g 2 (- )
R (Y e (-0 ) o
+ O((;Z—if).

The first term in (9.69) is negative. The second term can be estimated as follows

7n_096t(382¢{_30<§)/(3082¢+ (1 _ COSSQ(ﬁ)ﬁ,,} (1 . coqu))

C2 —o (B 2 2
<  \ - .
= r6+”[ 3 (n) cos” o+ 36 }
Combining (9.68) and (9.70), we have
~ cs 2sin® ¢ /1 —o , nosin®¢ ,
Lolel < fiz{ o1+ == (F )] + 5 071)

() o]} o)

Denoting the term in brackets above by @ we can estimate as follows:
9 /
a<p’ (04172 sin? ¢ + g) - 050[5 —clB'n| — 7 <é>
n
Given small €g > 0, let 179 > 0 be such that

ﬂ /!
B — cs|B'n| —67‘(5) ‘ >0, 1= Mo,

(9.70)

]

hence for n > 19 we have

a < —cgego, for o € (0,1/2). (9.72)
On the other hand when 0 < 1 < 79 then we have
1 2
a< —0977(;772 + §) —c100m < —c117, (9.73)

where o € (0,0¢) with og > 0 small. Finally let us consider the last term in (9.71). When n < 1
then

oS @ < C121

rbto — 7-8+o"

while when 1 < 7 then

cos ¢ < 1

7-6+U — T-6+0' :
Summarizing the above and (9.71)—(9.73) we have that for each o € (0,0¢), where oy is small,
there exists rg > 0, ¢g such that

7 C13 Ci4 .
Lol¢] < (-5 — o) min{Lm}

‘ (9.74)
0 .
< ~ e min{l,n}, r>ro.
O
Continuing the proof of Theorem 3 we notice that
3 1 C15 COS @
——O(=m=)0p < ————
2 t(|VF0|2) S s (9.75)

< C15 min{n7 1}
— ’,"8+O- 9
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since cos ¢ < &, and

1 20,
as(/) 14 C16

‘VF0|2 |VFO‘2) S 7,8_._0- min{na 1} (976)
1 1 p2p, 181 (n)| min{n, 1}
TR WRE S 97 ot ST ok (9.77)

We analyze the A%-term and A3 terms in the expansion of H[Fy+ Ar~° tanh(t/r)]. A typical term
in (9.27) is

1. p 2F? o2 sin? ¢ cos? ¢ ) oo
_iat(|VF0|s2) - 2713120 [_UCOS (ZS_ 3+COS(2¢)¢ ]ﬁl
o2 sin? ¢ cos? ¢ / cos? ¢ (9.78)
- W2515W(1 - T)

= sin? ¢ min{n, 13O(r~7727).
Other A2 terms are estimated in a similar way. Direct calculations show that A% —term satisfy
Hs = sin? ¢ min{n, 1}O(r~8737). (9.79)
In conclusion, we have

a1 A csA? A3\ 1
7 p6to T pTt20 r7+3f’) min{1, 7} (9.80)

H[Fy + Ay~ tanh(Fo/r)] < (
0

if we choose ag large and r > aoAH%. This proves (9.61).
Now we will show (9.62). From (9.57), we have

Fy < Fr < Fy+ AFyr=°, forr > ag (9.81)

for some A > 1.
Let us consider the region

F
E::BRﬁ{v>u}ﬂ{r>Ro}ﬂ{0§70<1},

where Ry = ag AT+, and A is to be chosen. From (9.57), we have in X:

. Atanh(FyRy "'
Fo < Fr < Fo+ AFyRy° < Fy + %, for r = Ry, (9.82)
0
if we choose )
A< iitanh(ﬁbﬁo ) = A7+ g1 sup tanhn' (9.83)
Ry  FyR, nl<t 7
Consider now the boundary {£2 = 1}. We have by (9.60)
Fy < Fr < Fy 1 Atanh()

r (9.84)

, forr>Ry> ao(tanh(l)A)3%!7 and Fy/r =1,

<Rt Atanh{EFo/r)

,
if we choose (c.f. (9.59))

A < ag®(tanh(1)A)3% . (9.85)
Choosing A larger if necessary we can assume that in addition to (9.83) also (9.85) is satisfied. By
comparison principle applied to 3, we then obtain
Atanh(Fy/r)

Fo < Fp < Fo+
T-O'

, forr > Ry. (9.86)
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Passing to the limit R — oo we then get
Atanh(Fy/r)

TU

[y < F<Fy+ , for r > Ry, (9.87)

in 3. Combining this with the statement of Theorem 2 to estimate F' for r > Ry in the complement
of ¥ we complete the proof. O

10. APPENDIX: THE PROOF OF FORMULA (7.4)

In this appendix we carry out the main computation leading to Formula (7.4) for the approximate
Jacobi operator

Tro[h] := H (Fo)[\/1+ [V Fy|2h].

Following the notations in Section 9.2, the minimal surface equation H[F] = 0 becomes
|VF| ?

-
———— OF) + |V Fy|0s 0. F
VITIVER ) +IVE (|VF0\N/1—|—|VF|2 )

HIF] == |V EF|0( = 0. (10.1)

It is easy to see that

: _ |VEy| p?
H [Fol(p) = |VF0‘315(—(1 n ‘VF0|2)3/2 0d) + ‘VFO|85(|VFO|\/W 0s0). (10.2)

Let us set now
¢ =1+ |VF]?h.

Then after some simple computations we obtain

|V Fol IVEo|? ., |V Fy|
TrvrEee %) = T rdt T g o p ez VEiloh
(14 |VFy|?)3/2 1) 1+ |VE2 1+ [VE )2 t|V Fo|O

[VE|
@ wrE Yo

|V Fo|0(

+ |V E|04(

and

—2

P -2 1
Oy = 0 Osh) —
(|VF0|\/1+|VF0|2 ¢) (v ) IVEo|(1+ [VFy|?)

-2
+ |VF0‘8S(

|V Fy|0, 05|V Fo|p~20sh

p

W85|VFO|)’L

Note that
1

|V Fol 7
0|\ VFyl =0
VI =00, SR VAR

(1+[VFo[?)

The operator in terms of h then becomes

Jro[h = H [F)(v/1+ |[VEy|*h) = 07h + 04(p~20sh)

1 1
h Fylo? | ——— Fylo.(p~20, -
" ('V “'at( |VF0|) + VRl 8( |VF0|>))
+ O MO 4+ r7T|0:h] + 1775 p thy| + 778 A)).

p r0s|VEy| = O(r~). (10.3)

The desired expression (7.4) is then deduced from the following two identities
Ar,h = 0}h + 05(p~20sh),

and

1 1
Apg)? = (IVF|07 | — == Fpl0s(p20s | —
Ar,| <|v o|at( |VF0|> VR0, (p20 ( WFO))),

which follow from standard computations. We omit the details.
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