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We consider the problem of existence of entire solutions to the Allen-
Cahn equation ∆u + u−u3 = 0 in RN , usually regarded as a proto-
type for the modeling of phase transition phenomena. In particular,
exploiting the link between the Allen-Cahn equation and minimal
surface theory in dimensions N ≥ 9, we find a solution, u, with
∂xN u > 0, such that its level sets are close to a non planar, mini-
mal, entire graph. This provides a negative answer to a celebrated
question by Ennio de Giorgi [Proc. Int. Meeting on Recent Meth-
ods in Nonlinear Analysis (Rome, 1978), 131–188, Pitagora, Bologna
(1979)]. Our results suggest parallels of De Giorgi’s conjecture for
finite Morse index solutions in 2 and 3 dimensions and suggest a
possible program of classification of all entire solutions.
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Introduction
The Allen-Cahn equation in RN is the semilinear elliptic prob-
lem

∆u + u− u3 = 0 in RN . [1]

Originally formulated in the description of bi-phase separa-
tion in fluids and ordering in binary alloys [1], Equation [1]
has received extensive mathematical study. It is a prototype
for the modeling of phase transition phenomena in a variety
of contexts.

Introducing a small positive parameter ε and writing
v(x) := u(ε−1x), we get the scaled version of [1],

ε2∆v + v − v3 = 0 in RN . [2]

On every bounded domain Ω ⊂ RN , [1] is the Euler-Lagrange
equation for the action functional

Jε(v) =

∫

Ω

ε

2
|∇v|2 +

1

4ε
(1− v2)2.

Observe that the constant functions v = ±1 minimize Jε.
They are idealized as two stable phases of a material in Ω. It
is of interest to analyze configurations in which the two phases
coexist. These states are represented by stationary points of
Jε, or solutions vε of Equation [2], that aside from a small
set take values close to +1 in a subregion of Ω of and −1 in
its complement. Modica and Mortola [28] and Modica [27],
established that a family of local minimizers vε of Jε for which

sup
ε>0

Jε(vε) < +∞ [3]

must satisfy, after passing to a subsequence,

vε → χΛ − χΩ\Λ in L1
loc(Ω), [4]

as ε → 0. Here Λ is an open subset of Ω with Γ = ∂Λ ∩ Ω
having minimal perimeter. Therefore, Λ is a (generalized)
minimal surface. Moreover, as ε → 0:

Jε(vε) → 2

3

√
2Hn−1(Γ). [5]

The hypersurface Γ is close to the nodal set of vε (or more
generally, for a given λ ∈ (−1, 1), to any level set [vε = λ]
for small ε). Scaling back into equation [1], it is then plau-
sible to conjecture that a relation between the level sets of u
and the minimal surface ε−1Γ should exist, al least when u
corresponds to a local minimizer of the energy on each given
compact set.

What condition guarantees that u is a locally minimizing
(or stable) solution to the Allen-Cahn equation? For a solu-
tion u of [1], this is implied by the fact that the linearized
operator ∆+(1−3u2) satisfies the maximum principle. Since
the directional derivatives e · ∇u lie in the kernel of this op-
erator, the assumption that the solution is monotone in some
direction, say uxN > 0 is sufficient for this. De Giorgi’s con-
jecture which we state below is partly motivated by the above
facts.

For N = 1 the function

w(t) := tanh

(
t√
2

)

connects the stable values −1 and +1 in a monotone fashion
and solves [1]:

w′′ + w − w3 = 0, w(±∞) = ±1, w′ > 0.

This solution generates a class of solutions to (AC) in the
following manner: For any p, ν ∈ RN , |ν| = 1, the functions

u(x) := w(z), z = (x− p) · ν
solve equation [1]. Here, the variable z = represents the nor-
mal coordinate to the hyperplane through p in the direction
of its unit normal ν. A question is whether or not there exist
solutions connecting the values −1 and 1 monotonically along
some direction, which are different from these trivial ones.

In 1978, De Giorgi [14] made the following celebrated con-
jecture.

De Giorgi’s conjecture: Let u be a bounded solution of
equation

∆u + u− u3 = 0 in RN ,

which is monotone in one direction, say uxN > 0. Then, at
least when N ≤ 8, there exist p, ν such that

u(x) = w( (x− p) · ν).

This conjecture is equivalent to:

At least when N ≤ 8, all level sets of u, [u = λ] must be
hyperplanes.

An intriguing feature of this statement is its presumed
space dependence. Since uxN > 0, the level sets [u = λ] are
graphs of functions of the first N − 1 variables. The rationale
behind De Giorgi’s statement is the that these graphs should
behave like minimal hypersurfaces which are graphs of entire
functions. Indeed, De Giorgi’s conjecture is intimately related
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to Bernstein’s Problem for entire minimal graphs, which
are surfaces in RN of the form

Γ = {(x′, F (x′)) ∈ RN−1 × R / x′ ∈ RN−1}
where F solves the minimal surface equation

∇ ·
(

∇F√
1 + |∇F |2

)
= 0 in RN−1. [6]

Note that any affine function is an obvious solution of this
equation, representing a hyperplane.

Bernstein’s problem: Is it true that all entire minimal
graphs are hyperplanes?

Bernstein [6], 1917 proved the validity of this fact for
N = 2. Fleming [22], 1962 provided a proof for N = 3 and
conjectured its validity in all dimensions. De Giorgi [13], 1965
proved it for N = 4, Almgren [2], 1966 for N = 5, while Si-
mons [38], 1968 did so for N = 6, 7, 8. Strikingly, Bombieri,
De Giorgi and Giusti [7], 1969 found that Fleming’s conjec-
ture was false for N ≥ 9 exhibiting a counterexample (the
BDG surface).

The construction in [7] begins with an example of a min-
imal and locally area minimizing cone in dimension N = 8
found by Simons [38]. The Simons cone in R8 is a surface
of the form |u| = |v|, (u,v) ∈ R4 × R4 and the solution
in [7] depends of two radial variables (|u|, |v|) only and is a
function of the form F (|u|, |v|) for F : R2 → R. Moreover
it is assumed a priori that F (|u|, |v|) > 0 for |v| > |u| and
F (|u|, |v|) = −F (|v|, |u|). In [7] ingenious explicit super and
sub-solutions for Equation [6] written in the radial variables
are found and they lead to the existence result.

The BDG surface plays a crucial role in the construction
of a counterexample to the De Giorgi conjecture and in [16]
we need to improve the result of [7] to find very precise infor-
mation about the asymptotic behavior of the BDG graph at
infinity. Introducing polar coordinates

|u| = r cos θ, |v| = r sin θ, θ ∈ (0,
π

2
),

the barriers in [7] can be refined to yield quite accurate asymp-
totics for F for large r. We established in [16] that there
exists a function g(θ) such that g > 0 in (π

4
, π

2
) and with

g(π
4
) = 0 = g′(π

2
), such that for θ ∈ (π

4
, π

2
) we have, for

0 < σ < 1,

r3g(θ) ≤ F (r, θ) ≤ r3g(θ) + Ar−σ as r → +∞. [7]

The function g is a solution of the second order ODE obtained
when formally substituting F = r3g(θ) in Equation [6] and
letting r → +∞. While proving that r3g(θ) is a subsolution is
relatively straightforward, finding the supersolution with the
right asymptotic behavior is non trivial.

For De Giorgi’s Conjecture, many contributions have been
made since it was formulated. In particular the conjecture was
proven to be true for N = 2 by Ghoussoub and Gui [23], 1998,
and by Ambrosio and Cabré [3] for N = 3 in 1999. Savin [34]
2009 proved that De Giorgi’s conjecture is true for 4 ≤ N ≤ 8
under the additional assumption

lim
xN→±∞

u(x′, xN ) = ±1 for all x′ ∈ RN−1.

The latter assumption is indeed a posteriori satisfied by the
solution. If the limits above are assumed to exists uniformly in
x′, then the claim that u = w(xN ) is known as Gibbons’ con-
jecture, and it has been proven in all dimensions and without

the monotonicity hypothesis. In fact different approaches have
been given by Barlow, Bass and Gui [4], Berestycki, Hamel,
and Monneau [5], Caffarelli and Córdoba [9], and Farina [20].
In references [4, 9], it is proven that the conjecture is true for
any solution that has one level set which is globally a Lipschitz
graph. Without monotonicity or uniformity in limits, the one-
dimensional symmetry of the solution is not true. This is, for
instance, clearly reflected in the entire planar solutions built
in [19] with any given finite number of nearly parallel nodal
lines.

It is illustrative to review the proof of De Giorgi’s con-
jecture for N = 2 in [23]. Let us set φ =

ux1
ux2

which is well

defined since ux2 > 0. Then φ satisfies the equation

∇ · (u2
x2∇φ) = 0.

Let η(s) be a smooth cut-off function with η(s) = 1 for s < 1
and = 0 for s > 2, and set ηR(x) = η(|x|/R) for R > 0. Test-
ing this equation against φη2

R and integrating we find that∫

R2
|∇φ|2η2

Ru2
xN

= −2

∫

R2
ηR∇ηR∇φφu2

xN

≤ C

(∫

{R<|x|<2R}
|∇φ|2η2

Ru2
xN

) 1
2

where C is a constant dependent on uniform bounds for u and
∇u (which exist by the boundedness assumption and standard
elliptic estimates). Letting R →∞, the above formula clearly
implies that

∫
R2 |∇φ|2u2

xN
< +∞. Applying the formula a

second time with R → ∞ we find that this integral actually
equals zero. Hence φ = α = constant and ∇u · (1,−α) = 0.
This implies that all level sets must be parallel lines as desired.
The higher dimensional cases are more difficult to handle and
the full result for dimensions 4 ≤ N ≤ 8 remains open.

A counterexample to De Giorgi’s conjecture in dimension
N ≥ 9 was believed to exist for a long time, possibly by De
Giorgi himself. Partial progress in this direction was made by
Jerison and Monneau [25] and by Cabré and Terra [8]. See
also the survey article by Farina and Valdinoci [21]. The fol-
lowing result “disproves” De Giorgi’s conjecture in dimension
9 (hence in any dimension higher than 9).

Theorem 1. ( [16], 2011) Let Γ be a BDG minimal graph in
R9 and let ν be its unit normal. Set Γε := ε−1Γ. There
exists an ε0 > 0 such that for all ε ∈ (0, ε0), there exists a
bounded solution uε of (AC), monotone in the x9-direction,
with

uε(x) = w(ζ) + O(ε), x = y + ζν(εy), y ∈ Γε, |ζ| < δ

ε
,

and lim
x9→±∞

u(x′, x9) = ±1 for all x′ ∈ R8.

Note that our result provides not just one example of a
solution that violates De Giorgi’s conjecture in dimensions
N ≥ 9, but a one parameter family parametrized by ε. This
is possible because the dilated minimal graphs Γε are them-
selves minimal graphs. In fact, the key idea of our work is
that a connection between the minimal surface theory in RN

and the entire solutions of the Allen-Cahn equation can be
made in the limit ε → 0. One can speculate that the family
of solutions {uε}, can be continued for values of ε > ε0, but
then the nodal sets of such solutions will no longer be close to
minimal surfaces.

The main ingredients in the proof of this above result will
be described next. Details can be found in [16].
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The Proof of Theorem 1
Let Γ be a hypersurface embedded in RN and let ν be the
unit normal chosen so that ν9 > 0. Points of space which are
near Γ can be described by the local system of coordinates

x = y + zν(y), y ∈ Γ, |z| < δ.

The following expression for the Laplacian in these coordi-
nates holds.

∆x = ∂zz + ∆Γz − HΓz (y) ∂z. [8]

Here
Γz := {y + zν(y) / y ∈ Γ},

∆Γz is the Laplace-Beltrami operator on Γz and HΓz (y) its
mean curvature. Let k1, . . . , kN−1 be the principal curvatures
of Γ. Then, it is also known that

HΓz =

N−1∑
i=1

ki

1− zki
[9]

Now, similar relations hold if we consider the dilated surfaces
Γε instead of Γ, for instance:

x = y + ζν(εy), y ∈ Γε, |ζ| < δ/ε,

kε,i(y) = εkε(εy), etc. The change of variables described
above is a diffeomorphism, Φε, of a neighborhood of Γε onto
a set Γε × (−δ/ε, δ/ε). In what follows we will abuse the no-
tation and denote functions of the variable x ∈ R9 and of
the local variables (y, ζ) = Φε(x) by the same symbol, for in-
stance given u : R9 → R we write u(y, ζ) when x is close to
Γε, instead of u ◦ Φ−1

ε (y, ζ). Thus letting f(u) = u− u3 and
S(u) = ∆u + f(u) the Allen-Cahn equation near Γε becomes,

S(u) = ∆
Γ

ζ
ε
u− εH

Γ
ζ
ε
(εy) ∂ζu + ∂2

ζu + f(u) = 0.

The solution we seek, at least near Γε, should be of the form:

uε(x) = w(ζ − εh(εy)) + φ, x = y + ζν(εy)

where the function, h, defined on Γ, is left as a parameter to
be adjusted and the function, φ, which should be small for ε.
Set r(y′, y9) = |y′| and ωr =

√
1 + r2. We assume a priori

that

‖ω3
rD2

Γh‖Cσ(Γ) + ‖ω2
rDΓh‖L∞(Γ) + ‖ωrh‖L∞(Γ) ≤ M

for some large, fixed number M . Let us change variables to
t = ζ − εh(εy), and write, again abusing notation,

u(y, t) := u(x) x = y + (t + εh(εy)) ν(εy).

The equation becomes

S(u) = ∂ttu + ∆
Γ

ζ
ε
u− εHΓεζ (εy) ∂tu

+ ε4|∇Γεζ h(εy)|2∂ttu− 2ε3 〈∇Γεζ h(εy), ∂t∇Γεζ u〉
− ε3∆Γεζ h(εy) ∂tu + f(u) = 0.

Consequently, we look for solution, uε, of the form

uε(t, y) = w(t) + φ(t, y)

for a small function φ. The equation in terms of φ becomes

∂ttφ + ∆Γεφ + Bφ + f ′(w(t))φ + N(φ) + E = 0. [10]

where B is a small linear second order operator, and

E = S(w(t)), N(φ) = f(w+φ)−f(w)−f ′(w)φ ≈ f ′′(w)φ2.

The error of approximation is then given by the quantity

E = ε4|∇Γεζ h(εy)|2w′′(t)− [ε3∆Γεζ h(εy) + εHΓεζ (εy)] w′(t),

where

εHΓεζ (εy) = ε2(t + εh(εy))|AΓ(εy)|2

+ ε3(t + εh(εy))2
8∑

i=1

k3
i (εy) + · · ·

A crucial fact for estimating the size of this error is the
following result of L. Simon [37]: ki = O(r−1) as r → +∞. In
particular

|E(y, t)| ≤ Cε2r(εy)−2.

So far we have reduced our original problem to the equa-
tion (10) only near Γε, namely for |t| < δε−1. To address
this, we introduce a gluing procedure which reduces the
full problem to

∂ttφ + ∆Γεφ + Bφ + f ′(w)φ + N(φ) + E = 0 in R× Γε,
[11]

where E and B are the same as before, but cutoff for
|t| > δ/ε, and N is accordingly modified by the addition
of a small nonlocal operator of φ.

Although it is not apparent in the way [11] is written,
we have two unknown functions φ and h to determine and we
find them in two steps which constitute an infinite dimen-
sional Lyapunov-Schmidt reduction. This procedure resem-
bles in principle the approach in [15], and also has common
features with [32]. However the difference and the major dif-
ficulty comes from the fact that neither the manifold R× Γε,
nor its minimal submanifold {0} × Γε are compact. More
specifically, the steps of the Lyapunov-Schmidt reduction are
the following:

Step 1: Given the parameter function h, find a function
φ in R× Γε which is a solution to the problem

∂ttφ + ∆Γεφ + Bφ + f ′(w(t))φ + N(φ) + E = c(y)w′(t)∫

R
φ(t, y)w′(t) dt = 0 for all y ∈ Γε.

[12]
Note that the map h 7→ φ defines a nonlinear and nonlocal
operator φ = Φ(h).

Step 2: Find a function h such that for all y ∈ Γε,

c(y) :=
1∫

R w′2 dt

∫

R
(E + BΦ(h) + N(Φ(h))) w′dt = 0.

To carry out Step 1 we solve first the linear problem

∂ttφ + ∆Γεφ + f ′(w(t))φ = g(t, y)− c(y)w′(t) in R× Γε

∫

R
φ(y, t)w′(t) dt = 0 in Γε, c(y) :=

∫
R g(y, t)w′(t) dt∫

R w′2 dt
.

[13]
Our claim is that there is a unique bounded solution φ :=
A(g) if g is bounded. Moreover, for any ν ≥ 0 we have

‖(1 + r(εy))νφ‖∞ ≤ C ‖(1 + r(εy))νg‖∞.

The proof of this claim is quite simple when Γε is replaced
by R. Since Γε ≈ R8, locally uniformly as ε → 0, the claim
will follow from the analogous statement for the linear model
problem: The equation

∂ttφ + ∆yφ + f ′(w(t))φ = g(t, y)− c(y)w′(t) in R9

∫

R
φ(y, t)w′(t) dt = 0 in R8, c(y) :=

∫
R g(y, t)w′(t) dt∫

R w′2 dt
[14]
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has a unique bounded solution φ if g is bounded, and

‖φ‖∞ ≤ C ‖g‖∞. [15]

Let us first prove [15]. If the estimate is not true, there
exist sequences {φn}, {gn} such that

∂ttφn+∆yφn+f ′(w(t))φn = gn(t, y),

∫

R
φn(y, t)w′(t) dt = 0,

while at the same time ‖φn‖∞ = 1, ‖gn‖∞ → 0.
Using maximum principle and local elliptic estimates, we

may assume that φn → φ∗ uniformly over compact sets where

∂ttφ∗ + ∆yφ∗ + f ′(w(t))φ∗ = 0,

∫

R
φ∗(y, t)w′(t) dt = 0.

Now, we claim that the above φ∗ = 0, which is a contradiction
with the normalization ‖φn‖∞ = 1.

To establish this claim we need the following spectral gap
estimate: Let

L0(p) := p′′ + f ′(w(t))p.

Then there is a γ > 0 such that if p ∈ H1(R) and
∫
R p w′ dt = 0

then

−
∫

R
L0(p) p dt =

∫

R
(|p′|2 − f ′(w)p2) dt ≥ γ

∫

R
p2 dt .

Using the maximum principle, we find |φ∗(y, t)| ≤ Ce−|t|.
Set ϕ(y) =

∫
R φ2

∗(y, t) dt. Then

∆yϕ(y) = 2

∫

R
φ∗∆φ∗(y, t) dt + 2

∫

R
|∇yφ∗(y, t)|2 dt

≥ −2

∫

R
φ∗∂ttφ∗ + f ′(w)φ2

∗ dt

= 2

∫

R
(|∂tφ∗|2 − f ′(w)φ2

∗) dt ≥ γϕ(y),

whence
−∆yϕ(y) + γϕ(y) ≤ 0

and as ϕ ≥ 0 and is bounded, this implies ϕ ≡ 0. Hence
φ∗ = 0, a contradiction. This proves [15].

Given [15], the existence of a solution φ of the lin-
ear model problem [14] is now established by a variational
scheme. To this end let us initially take g compactly sup-
ported and set H be the space of all φ ∈ H1(R9) with

∫

R
φ(y, t)w′(t) dt = 0 for all y ∈ R8.

Clearly H is a closed subspace of H1(RN ). The problem:
φ ∈ H and

∂ttφ + ∆yφ + f ′(w(t))φ = g(t, y)− w′(t)

∫
R g(y, τ)w′(τ) dτ∫

R w′2 dτ
,

can be written variationally as that of minimizing the energy

I(φ) =
1

2

∫

R9
|∇yφ|2 + |∂tφ|2 − f ′(w)φ2 +

∫

R9
gφ, φ ∈ H.

Thanks to the spectral gap estimate the functional I is coer-
cive in H. Existence in the general case follows by the L∞-a
priori estimate and approximations.

Accepting that we have the above result not only for the
linear model problem [14] but also for the linear problem
[13], we can write the problem [12] as a fixed point prob-
lem:

φ = A(Bφ + N(φ) + E).

The contraction mapping principle implies the existence of a
unique solution φ := Φ(h) with ‖ω3

rφ‖∞ = O(ε2).
Finally, we carry out Step 2. We need to find h such that∫

R
[E + BΦ(h) + N(Φ(h))] (ε−1y, t) w′(t) dt = 0 ∀ y ∈ Γ.

Since

−E(ε−1y, t) = ε2tw′(t) |AΓ(y)|2 + ε3t2w′(t)
8∑

j=1

kj(y)3

+ ε3[∆Γh(y) + |AΓ(y)|2h(y) ] w′(t) + . . . ,

where . . . represent smaller terms, the problem we need to
solve is of the form

∆Γh + |AΓ|2h = c

8∑
i=1

k3
i + g(y) +N (h) in Γ, [16]

where N (h) is a small operator and g is a small function. We
recognize the operator on the right hand side as the Jacobi
operator of Γ, denoted later by JΓ(h).

An important ingredient of the analysis is the following
claim: Let 0 < σ < 1. Then if ‖(1 + r4+σ) g̃‖L∞(Γ) < +∞
there is a unique solution h = T (g̃) to the problem

JΓ[h] := ∆Γh + |AΓ(y)|2h = g̃(y) in Γ.

with

‖(1 + r)2+σ h‖L∞(Γ) ≤ C ‖(1 + r)4+σ
g̃‖L∞(Γ) .

We want to solve Problem [16] using a fixed point formu-
lation for the operator T above. Making suitable assumptions
on h and calculating the function g in [16] we conclude that
g̃ = g + N (h) satisfies the hypothesis of the claim above,
namely it is of order O(r−4−σ) and consequently the function
T (g +N (h)) is well defined. However we only have

8∑
i=1

k3
i = O(r−3),

and we need some extra arguments to deal with the equation
of the form

JΓ[h] =

8∑
i=1

k3
i .

At this point we take full advantage of the improved asymp-
totic estimate [7] for the BDG surface. Using this we can per-
form fairly direct computations for the principal curvatures ki

and conclude the following two key facts:

1. There is a smooth function p, such that p(π
2
− θ) =

−p(θ) for all θ ∈ (0, π
4
), and

8∑
i=1

ki(y)3 =
p(θ)

r3
+ O(r−4−σ).

2. There exists a smooth function h0(r, θ) such that h0 =
O(r−1) and for some σ > 0,

JΓ[h0] =
p(θ)

r3
+ O(r−4−σ) as r → +∞.

Our problem [16] finally becomes a problem for h =
h0 + h1, where

h1 = T (O(r−4−σ) +N (h0 + h1))

which we can solve for h1 = O(r−2−σ), using the contraction
mapping principle, keeping track of Lipschitz dependence in
h of the objects involved in N (h).
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Beyond De Giorgi’s conjecture
Loosely speaking, the method of construction of solutions
described so far applies to finding an entire solution uε to
∆u + u− u3 = 0 with a transition set near Γε = ε−1Γ, when-
ever Γ is a minimal hypersurface embedded in RN , that splits
the space into two components, and for which enough control
at infinity is present to invert its Jacobi operator globally. In-
deed the main difficulty in [16] is the invertibility of the Jacobi
operator of the BDG surface. However, in some situations the
Jacobi operator is fairly easy to handle and then more can be
said about the solutions of the Allen-Cahn equation in the
context of their relation with the underlying minimal surface.

Finite Morse index solutions. The assumption of monotonic-
ity in one direction for the solution u in De Giorgi’s con-
jecture implies a form of stability, namely locally minimiz-
ing character for u when compactly supported perturbations
are considered in the energy. Indeed, the linearized operator
L = ∆+(1−3u2), satisfies maximum principle since L(Z) = 0
for Z = ∂xN u > 0. This implies the stability of u, in the sense
that its associated quadratic form, namely the second varia-
tion of the corresponding energy,

Q(ψ, ψ) :=

∫

R3
|∇ψ|2 + (3u2 − 1) ψ2 [17]

satisfies Q(ψ, ψ) > 0 for all ψ 6= 0 smooth and compactly sup-
ported. Stability of u is not only necessary but indeed suffi-
cient for De Giorgi’s statement to hold in dimension N = 2, as
observed by Dancer [11]. This question is open for 3 ≤ N ≤ 7,
and so is the corresponding “stable Bernstein problem” in that
range.

Recently, stable solutions with non planar level sets in di-
mensions N ≥ 8 have been found in [31]. This result uses
the existence of a foliation by minimal surfaces asymptotic to
minimal cones in dimensions N ≥ 8.

Motivated by this we would like to consider the problem
of existence of entire solutions to the Allen-Cahn equation to-
gether with the question of their stability/instability. To be
more precise we need the concept of the Morse index m(u),
defined as the maximal dimension of a vector space, E, of
compactly supported functions such that

Q(ψ, ψ) < 0 for all ψ ∈ E \ {0}.

Considering the simplest case of RN , with N = 3, it is
seems natural to associate complete, embedded minimal sur-
faces Γ with finite Morse index, and solutions of [1]. The
Morse index of the minimal surface Γ, i(Γ), has a similar def-
inition relative to the quadratic form for its Jacobi operator
JΓ := ∆Γ + |AΓ|2, namely i(Γ) is the largest dimension for a
vector spaced E of compactly supported smooth functions in
Γ with∫

Γ

|∇k|2 dV −
∫

Γ

|AΓ|2k2 dV < 0 for all k ∈ E \ {0}.

We point out that for complete, embedded surfaces, in R3,
finite index is equivalent to finiteness of the total curvature :

∫

Γ

|K| dV < +∞

where K denotes Gauss curvature of the manifold.
Given this, we have the validity of the following result [17]:

Theorem 2. Let Γ be a complete, embedded minimal surface
in R3 with finite total curvature. Assume additionally that
Γ is non-degenerate, namely its bounded Jacobi fields origi-
nate only from rigid motions, and further let Γε = ε−1Γ be
a dilation of this surface. Then for all small ε > 0, there is

a solution, uε, to [1] whose asymptotic behavior near Γε is
given by

uε(x) ≈ w(t), x = y + tνε(y),

where νε is the unit normal to Γε and t is the signed distance
from Γε.

Moreover the Morse indices of uε and Γε are equal:
m(uε) = i(Γε).

For example: nondegeneracy and Morse index are known
for the catenoid and the Costa-Hoffmann-Meeks surfaces
(found in [10, 24]), see (Nayatani [30] (1990), Morabito [29],
(2008)). In the case of the catenoid, the solution found is ra-
dially symmetric in two of its variables and m(uε) = 1. For
the Costa-Hoffman-Meeks surface with genus ` ≥ 1, we have
m(uε) = 2` + 3. We note finally that i(Γ) = i(Γε), for all
ε > 0.

An example with infinite total curvature. The condition of
finiteness of the total curvature of a minimal surface is by no
means necessary for the existence of solutions of [1] whose
zero level sets are close to this surface. The helicoid, is a
classical embedded minimal surface whose total curvature is
infinite: this surface, dependent on a parameter λ can be de-
scribed as follows.

Hλ = {(r cos θ, r sin θ, z) ∈ R3 / z =
λ

π
θ}

The following result holds [18]:
Theorem 3. 1. If λ > π, then there exists a solution to the

Allen-Cahn equation in R3 whose zero level set is exactly
Hλ.

2. If λ ≤ π then any solution which vanishes on Hλ must be
identically zero.
This theorem, unlike those previously discussed, is not an

asymptotic result: λ corresponds precisely to a dilation pa-
rameter of a fixed helicoid.

Towards a classification of entire solutions.Complementing
the preceding discussion we observe that the relation between
the minimal surface theory and the theory of entire solutions
of [1] in R3 is more complicated then it seems at first sight.
In fact, while one can expect that given an embedded minimal
surface, it is possible to find solutions to the Allen-Cahn equa-
tion whose zero level set is close to a dilation of this surface,
there are known examples of solutions to [1] whose level set
neither is embedded, nor minimal.

Indeed it is shown in [12] that in R2 there exists the so-
called saddle solution to [1], whose zero level set coincides
with the straight lines |x| = |y|. Asymptotically, along these
lines, the saddle solution resembles the heteroclinic profile of
the one dimensional solution of the Allen-Cahn equation. In
[19], for each sufficiently small α > 0 another type of two di-
mensional solution is found: these are even functions of the
variables (x, y), and their zero level set in the first quadrant
is asymptotically a straight line whose angle with the x-axis
is precisely α. We denote these solutions by uα and note that
the saddle solution mentioned above consequently should be
denoted by uπ/4. Moreover in [26] it is established that uα for
α small, and uπ/4 belong to the same connected component

M of the moduli space of solutions of [1] in R2. Clearly every
solution in M can be trivially extended to a solution in R3

thus giving a family of solutions whose zero level set is neither
embedded, nor minimal, as we have anticipated.

All solutions in M have finite Morse index (it is expected
that their Morse index is 1, see [35]) when considered as so-
lutions in R2, but the Morse index of their extensions to R3
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is infinite. It looks like the finiteness of the Morse index is
then an important criterion from the point of view of classi-
fication of the entire solutions of [1] and plays a similar role
as the condition of the finiteness of the total curvature in the
theory of the minimal surfaces. Thus, in analogy with De
Giorgi’s conjecture, it seems plausible that qualitative prop-
erties of embedded minimal surfaces with finite Morse index
should hold for the level sets of finite Morse index solutions
of Equation [1], provided that these sets are embedded man-
ifolds outside a compact set. The following result would a
step in the direction of classification of the simplest class of
unstable solutions:

A bounded solution, u, of [1] in R3, with i(u) = 1, and
∇u 6= 0 outside a bounded set, must be axially symmetric,
namely radially symmetric in two variables.

An example of a solution satisfying the above is given in
[17] (in Theorem 2, take Γ to be a catenoid). If proven, the
above conjecture would correspond to the famous result by
Schoen [36] which says: if i(Γ) = 1 and Γ has embedded ends,
then it must be a catenoid.
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