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ABSTRACT. Let V() be a non-negative, bounded potential in RN, N > 3 and
p supercritical, p > % We look for positive solutions of the standing-wave
nonlinear Schrédinger equation Au — V(z)u +uP =0 in RN, with u(z) — 0
as |z| — +o0o. We prove that if V(z) = o(|z|~2) as || — +o0, then for N >4
and p > % this problem admits a continuum of solutions. If in addition we
have, for instance, V(z) = O(|z|#) with u > N, then this result still holds

provided that N > 3 and p > % Other conditions for solvability, involving

behavior of V' at oo, are also provided.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

We consider standing waves for a nonlinear Schrédinger equation (NLS) in RY
of the form

.0y _

—iS = A= Q)Y + [Py (11)
where p > 1, namely solutions of the form 9 (t,y) = exp(iAt)u(y). Assuming that
the amplitude u(y) is positive and vanishes at infinity, we see that v satisfies (1.1)
if and only if u solves the nonlinear elliptic problem

Ay—-V(@)u+u? =0, u>0, | |lim u(z) =0, (1.2)
T|—+oo
where V(y) = Q(y) + X\. In the rest of this paper we will assume that V is a
bounded, non-negative function.
Construction of solutions to this problem has been a topic of broad interest in
recent years. Most results in the literature deal with the subcritical case, 1 < p <
N+2

N and the semiclassical limit,

E2Au—-V(@)u+uP =0, u>0, lim w(z)=0. (1.3)
|| =400
A typical result, due to Floer and Weinstein [18] for N = 1 and to Oh [26] in the
general subcritical case reads as follows: if inf V' > 0 and V has a non-degenerate
critical point xg, then a solution u. exists for all small €, concentrating near xy with
a spike shape corresponding to an e-scaling of the positive, exponentially decaying
ground state of

Aw — V(zo)w + wP = 0.

Many results on existence of concentrating solutions have been proven, under vari-

ous assumptions on the potential or the nonlinearity, with the aid of perturbation or

variational methods, lifting non-degeneracy and also allowing the potential to van-

ish in some region or even be negative somewhere, see for instance [1, 10, 12, 15, 16].
1
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Concentration on higher dimensional manifolds has been established in the radial
case in [3] and in the general case when N = 2in [17]. It should be noticed that con-
cerning radial solutions, super-criticality is typically not an issue if concentration
is searched far away from the origin like in the results in [3].

Subcriticality is a rather essential constraint in the use of many methods devised
in the literature. Very little is known in the super-critical case. In the critical case,
a positive solution is established in [7] when ¢ = 1 and ||V||L% is small. When ¢
is small and p = %, it is proved in [11] that there are no single bubble solutions
when N > 5. Results in the nearly critical case from above are contained in [25, 24]:
setting ¢ = 1 and letting p = % + 4§, they find multiple solutions concentrating
as § — 0T, at a critical point of V with negative value for N > 7. ||V||LN is also

2
required to be globally small, so that in particular the maximum principle holds.

The smallness of the potential at infinity is an issue that has been treated in
[2, 4, 8, 9, 28]. In the subcritical case, with a combination of variational and
perturbation techniques it is proven for instance in [2, 4] that concentration at a
non-degenerate critical point of V' still takes place under the requirement that V is
positive and

liminf |z|?V(z) > 0.

|z| =400
In general one does not expect existence of solutions if V' decreases faster than this
rate.

In this paper we simply let € = 1 and shall treat the case under the following
dual assumption on the positive potential V :

lim |z*V(z) = 0. (1.4)
|z| =400

We establish a new phenomenon, very different from the subcritical case: one of
dispersion. There is a continuum of solutions uy of Problem (1.2) which asymptot-
ically vanish. This is always the case if the power p is above the critical exponent in
one dimension less. This constraint is not needed if further decay on V is required,
case in which pure supercriticality suffices.

Theorem 1. Assume that V >0, V € L®(RY) and that (1.4) holds. Let N > 4,

p > XEL. Then problem (1.2) has a continuum of solutions uy(z) such that

lim ) =
)\1 U)\( ) 0
um’im'mly in RV .

In reality the continuum of solutions in this result turns out to be a two-
parameter family, dependent not only on all small X but also on a point ¢ € RV,
see Remark 5.2. The basic obstruction to extend the result to the whole supercriti-
cal range is that the linearized operator around some canonical approximation will
no longer be onto if % <p< %, certain N solvability conditions becoming
needed. This problem can be overcome through a further adjustment of the above
mentioned parameter £&. We do not know if the decay condition (1.4) of V suffices
for this adjustment, but this is the case if further conditions on V are imposed.
For instance, the result of Theorem 1 is also true if (1.4) holds and V' is symmetric

with respect to IV coordinate axes,
V(z1y. oy Ziy.oyxn) =V (1, .o, —Z4y...,xNn), foralli=1,...,N, (1.5)
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see Remark 4.1. On the other hand, additional requirements on the behavior at
infinity for V are also sufficient. We have the validity of the following result.

Theorem 2. Assume that V >0,V € L®(RY) and Y£2 < p < TEL. Then the
result of Theorem 1 also holds true if either
(a) there exist C > 0 and p > N such that

V(e) <Cla|*, [z[ > 15

or
(b) there exist a bounded nonnegative function f : SV=1 — R, not identically 0,
andN—ﬁ<,u§Nsuchthat

- " _ 0 ZN) =
Jfim (le1V () f<|x|>) 0.

The proof of Theorems 1 and 2 will be based on the construction of a sufficiently
good approximation and asymptotic analysis. It is well known that the problem

Aw+wP =0 inRY (1.6)

possesses a positive radially symmetric solution w(|z|) whenever p > {2, We fix
in what follows the solution w of (1.6) such that

w(0) = 1. (1.7
Then all radial solutions to this problem can be expressed as
wa(z) = Ar-Tw(Az). (1.8)
At main order one has
w(r) ~ C’p,Nrfﬁ r — +00, (1.9)

which implies that this behavior is actually common to all solutions wx(r). The
idea is to consider wy(r) as a first approximation for a solution of problem (1.2),
provided that A > 0 is chosen small enough. Needless to mention, a variational
approach applicable to the subcritical case is not suitable to the supercritical. The
analogy here revealed should be an interesting line to explore in searching for a
better understanding of solvability for supercritical problems. In particular, the
approach we use here is also applicable to equations in exterior domains, see [13].

2. THE OPERATOR A + pwP~! IN RV

Our main concern in this section is to prove existence of solution in certain
weighted spaces for

Ap+pw”tp=h inRV, (2.1)

where w is the radial solution to (1.6), (1.7) and A is a known function having a
specific decay at infinity.

We work in weighted L spaces adjusted to the nonlinear problem (1.2) and
in particular taking into account the behavior of w at infinity. We are looking for
a solution ¢ to (2.1) that is small compared to w at infinity, thus it is natural

to require that it has a decay of the form O(|w|7%) as |x| = +oo. As a result



4 JUAN DAVILA, MANUEL DEL PINO, MONICA MUSSO, AND JUNCHENG WEI

we shall assume that h behaves like this but with two powers subtracted, that is,
2
h = O(|z|”»-1~?) at infinity. These remarks motivate the definitions

2
lgll« = sup |z|7[¢(z)| + sup |z|>~T|p(z)], (2.2)
|z|<1 |z|>1
and
[Alle = sup 2+ |a(@)] + sup |27 2 [(2), (2.3)
|z|<1 |z|>1

where ¢ > 0 will be fixed later as needed.

For the moment these norms allow a singularity at the origin, but later on we
will place this singularity a point & € RV .

The main result in this section is

Proposition 2.1. Assume N > 4 and p > %—W_} For 0 < o < N —2 there exists a
constant C > 0 such that for any h with ||h]|« < +00, equation (2.1) has a solution

¢ =T(h) such that T defines a linear map and
IT(R)[l« < Cllhllex

where C' is independent of .

An obstruction arises if % <p< %—fé, which can be handled by considering

suitable orthogonality conditions with respect to translations of w. Let us define
ow
61’,’

Zi=n (2.4)

and 5 € C°(RN), 0 < n < 1
n(z) =1 for |z| < Ry, n(z)=0 for|z|> Ro+1.
We work with Ry > 0 fixed large enough.

Proposition 2.2. Assume N > 3, % <p< %—fé and let 0 < o < N —2. There

is a linear map (P, c1,...,cn) = T'(h) defined whenever ||| < co such that

N
Ap+pu'¢=h+> ciZ inRY (2.5)
i=1
and
N
11« + > lesl < CllAlse,
i=1
Moreover, ¢; =0 for all 1 <i < N if and only if h satisfies
ow
= 1<i<N. 2.
Rwh(‘?azi 0 Vi<i< (2.6)

The above operators are constructed “by hand” decomposing h and ¢ into sums
of spherical harmonics where the coefficients are radial functions. The nice property
is of course that since w is radial, the problem decouples into an infinite collection
of ODEs. The most difficult case is the mode k¥ = 1 which corresponds to the
translation modes. This analysis is essentially contained in [13] and [14], where
supercitical problems on exterior domains are studied. For the reader’s convenience
we include proofs of Propositions 2.1 and 2.2 in the Appendix.
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3. THE OPERATOR A — Vy + pwP~! IN RV

The nonlinear equation, after a change of variables, involves the linearized prob-
lem

N
Ap+pwP " p—Vag=h+Y c:iZ inRY
i=1 (3.1)
lim ¢(z) =0

|| =400
where Z; is defined in (2.4) and given A > 0 and &£ € RN we define

Vi) =2V (220,

Because of the concentration of V) at & it is desirable to have a linear theory which
allows singularities at £. Thus, for ¢ > 0 and ¢ € RV we define

[ ¢llse = sup |z —£°|d(x)| + prw—ﬂﬁﬂMMI

lz—£|<1 lz—€|>

2
[Bllese = sup |z —€PFo|h(e)| + sup |z —&*T7=T |h(2)].
lz—€|<1 lz—£1>1

We will consider £ with a bound
€l <A

and the estimates we present will depend on A.
For the linear theory it suffices to assume

VeL®®Y), V>0, V(z)=o(z|2) asl|z|] = +oo. (3.2)

Proposition 3.1. Let |{| < A. Suppose V satisfies (3.2) and ||h||.¢ < 00.
a) If p > %—fé for A > 0 sufficiently small equation (3.1) with¢; =0,1<i< N
has a solution ¢ = Tx(h) that depends linearly on h and there is C' such that

ITx(R)leg < C[Plln -

b) If % <p< %—fé for X > 0 sufficiently small equation (3.1) has a solution

(¢,c1,...,¢en) = Ta(h) that depends linearly on h and there is C such that

19l + s leil < Ollhlens

The constant C' is independent of \.

Proof. We shall solve (3.1) by writing ¢ = ¢ + ¢ where @, 1) are new unknown
functions.

Let R > 0, § > 0 with 26 < R be small positive numbers, to be fixed later
independently of A, and consider cut-off functions ¢y, (1 € C*®°(RY) such that

Co(z) =0for |z — & <R, (o(z)=1for |z —¢ > 2R,
and

G(z)=0for |z —¢& <6, CG(z)=1"for |z —¢& > 26
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To find a solution of (3.1) it is sufficient to find a solution ¢, 1) of the following
system

N
Ap 4+ pwP tp = —plow? ' + GV + Gh+ Z ciZ; in RN
i=1 (33)
lim ¢(z) =0

|| =400
and

AY =V +p(1 = G)w” ' = (1= ¢)Vap+ (1 = Ci)h in RY
lim (z) =0

|z|—+o00

(3.4)

Given ¢ with [|¢||« < 400 equation (3.4) has indeed a solution ¥ (yp) if R > 0 is
small, because ||p(1 — {o)w? || ~n/2 = 0 as R — 0. Since [¢| < ‘% for large

z|
|z| the right hand side of (3.3) has finite || ||+« norm. Therefore, according to
Propositions 2.1 or 2.2, (3.3) has a solution when 1 = 9(p) which we write as
F(¢). We shall show that F has a fixed point in the Banach space

X ={peL*RY)/ ol < +oo}

equipped with the norm

2
llellx = sup |p(z)| + sup |z|7=T|p(z)|.
/<1 @[>1

For ¢ € X we will first establish a pointwise estimate for the solution ¥ (p) of
(3.4). With this we will find a bound of the || ||+« norm of the right hand side of
(3.3).

Estimate for the solution of (3.4). Assume that ¢ € X. Then the solution ¢
to (3.4) satisfies

(@) < (CEV2|lellx + Csl|hllwe) £ — N for all |z — €] >4, (3.5)
and
[¥(z)| < Cs(llellx + [|bllaxg) [z — €77 for all |z —&| <6, (3.6)

where C' is independent of §.
We decompose ¢ = 1)1 + 92 where

Ay — Va1 +p(1 = Go)wP "y = (1= (1)Vap in RV

and
Atpy — Vaths +p(1 — Go)wP " = (1 = )b in RN
| \lin-il- ¢1(Z‘) =0 (3-8)

Then the solution 1 to (3.7) satisfies
[1(2)] < OV lpllx |o — 7N for all |z — €] > 6, (3.9)
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where C is independent of 8. For this, first we derive a bound for the solution ¥ to
— Aty = X )Valel in RV
lim ¢y (z) = 0.

|| =400

Let ¥ (y) = ¢1 (€ + 8y), which satisfies the equation

" _2v, 0y :

—Ap = 8"xm, A V() (€ +dy)| in RY
and using that V(z) < C|z|~2 and that |¢| < C||¢||x in B2s(£) we obtain
—AY < Oxa, llellx Iyl in RY.
Hence
[0 < Cliellxlyl>~  for all [y[ > 1
and this yields
|1 (x)] < OOV 2lgllx |z — &N forall [z — ¢ > 6.

This estimate implies (3.9).
On the other hand, comparison with v(y) = |y| ? shows that

[0y < Cllelixlyl™"  forall [y| <1

which yields

|91(2)] < Csllgllx|z — €77 for all |& — €| < 4.
This inequality implies

[91(y)] < Cosllellx [« =&~ for all [z —¢] < 0.
Finally, a similar computation shows that

[¢2(2)] < Csllhllsselz — €[> for all |z — & > 6
and

[9p2(@)] < Csllhllsx g |z — &7 for all |z — & < 6.
Estimate of ||CowP~19(0)]] k-

We write for simplicity ¢ = (). We have
[16ow? 9l < CFN2[lllx + CllAllxse; (3.10)

with C independent of A and 4.
Indeed,

2 _
6P 4ilee = sp Gou? ™11+ sup, |71 o)
z|<1 z|>1

Since (o(z) vanishes for |z — £| < R we have by (3.5)

Sup GowP ™ | < OV 2lpllx + Csllhllx ¢
z|<1

where the constant C' does not depend on 4. Similarly by (3.5)

_2 _ _
sup ol 757G g1 < 0N 2l + Calllen
z|>1

Estimate for [|¢; Vyo||«x-
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Let us consider first

sup [z[”7GVAlRl < lellx A7 sup - V(=)
jal<1 ol <1, 2] >6

) _ O,
<llellxa(s) sup  |z—¢&7 <|lollxa(s)i?
AT 211 Jo—g]>5 A

where
a(R) = sup |2’V (z), a(R) >0 as R— +oo.

|z|>R

Similarly
2 5,1

sup || 7T (1 Valg| < [lellxd *a(3)

|lz|>1
Thus, we find

5 0
161 Vagllex < Cllglled™%a(5) (3.11)

By Propositions 2.1 and 2.2 we know that, given ¢ € X, the solution F'(p) to (3.3)
where 1) = () satisfies

IF@)ll < CliGow?™ Pllx + CllGVagllix + ClIC1R L.

But since the right hand side of (3.3) is bounded near the origin, from standard
elliptic estimates we derive

IE@)lx < CliGow?™ s + CllGVagllax + ClIC A k.
From (3.10) and (3.11) we have

1P(r) ~ F(pa)llx < OGN +5-%a(3)llps — eallx.

By choosing and fixing § > 0 small we see that for all A > 0 sufficiently small F'
has a unique fixed point ¢ € X. Moreover, letting ¥ = ¥(yp), we see thanks to
Propositions 2.1 and 2.2 and estimates (3.10) and (3.11) that ¢ satisfies

_ 5 0
lellx < C@EN2+4 “a()lellx + Csllhllense,
which yields
llellx < Cllhlleg

for A > 0 small. This and (3.5), (3.6) then show that ¢ = ¢ + ¢ is a solution (3.1)
satisfying

[

le.g < CllAllex e
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4. PROOF OF THEOREM 1
By the change of variables Afr%lu(f) the equation
Au—Vu+u? =0 RY
is equivalent to
Au—-Viu+uP =0 RV,
where
Va(z) = A2V (2).

Thus V), is as in the previous section with £ = 0.

Let us look for a solution of the form u = w + ¢, which yields the following

equation for ¢
Ap—Vag +pwP~'¢ = N(¢) + Vaw
where

N(¢) = —(w + ¢)” + w” + puw? ' ¢.

(4.1)

Using the operator 7, defined in Proposition 3.1 a) we are led to solving the

fixed point problem
¢ =Ta(N(¢) + Vaw).
We claim that
[[Vaw||+x0 =0 as A — 0.
Indeed, let R > 0 and observe that

A ) s
sup |z[**7Va(2)w(@) <A *lwlle sup [2[**7V(F)
2/<1 j2l<1

<A |lw||pe( sup ...+ sup

|z| <RA RA<[z|<1

But
A2 sup [ePTOV(S) < ARV
z|<RA A
and
A2 sup [zPV(E) <a(®) sup ol <a(R),
RA<|a|<1 A RA<[z|<1
where

a(R) = sup |m|2V($)
|z|>R

On the other hand

sup |22t =T w(z) Vi (z) < A2 sup |22V (2)
|z|>1 z|>1 A

From (4.4),(4.5) and (4.6) it follows that

1
[[Vaw||x,0 < C(\R*™ +a(R) + G(X))

(4.2)

(4.3)

(4.6)
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Letting A — 0 we see
lim sup [[Vao]l.r.0 < Ca(R),
A—0
and, since a(R) — 0 as R — 400, we have established (4.3).
We estimate N(¢) depending on whether p > 2 or p < 2.
Case p > 2. In this case, since w is bounded, we have
IN(#)| <C@* +[tP) forallteR
Since
16(2)] < [2 ™ Iglleo  for all || <1
and working with ||¢]l«0 <1,0< 0 < z% we obtain

sup [z[**7 [N (¢(x))| < Cll$

lz|<1

20 sup |2[*~7 + C||g||% o sup [«>~ D7
2l<1 jal<1

< Cllgl2o- (4.7)
On the other hand,
6(z)| < Clz|~ 7T ||¢lls0, for all [z] > 1

and )
w(z) < C(1+|z|)"7 foralzeRY,
so we have
2+ -2 2

sup [z 77T [N(¢(z))| < Cll9ll o- (4.8)

|z|>1
From (4.7) and (4.8) it follows that if p > 2 and 0 < 0 < 1% then

IN(@)llex,0 < ClISII - (4.9)

Case p < 2. In this case [N(¢)| < C|¢|? and hence, if 0 < 0 < %

sup |z**7|N(¢)| < C sup |z**7|g[” < C||4|I% . (4.10)
|z|<1 |z|<1
Similarly
2 _2
sup |z*T 71N (¢)| < C sup |z[** 7T |¢(z)[?
|z|>1 |z|>1
< CllgllE o- (4.11)
From (4.10) and (4.11) it follows that for any 1 <p < 2and 0 < o < 25
IN(@)ll«x0 < ClISII% o, (4.12)
From (4.9) and (4.12) he have
IN(@)lsx0 < CUNIB112 0 + 1612 0)- (4.13)

We have already observed that u = wy + ¢ is a solution of (1.2) if ¢ satisfies the
fixed point problem (4.2). Consider the set

F={¢:R" >R/ [|gll0 <}
where p > 0 is to be chosen (suitably small) and the operator
A(¢) = Ta(N () + Vaw).
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We prove that A has a fixed point in F. We start with the estimate,
14(@)[1x,0 < CUIN(@)[xx,0 + IVAw][ 5,0
< C(lIgl1Z0 + I8l o + [Vaw]lx,0)

by (4.13). We can obtain a right hand side bounded by p by choosing p > 0 small
independent of A and then using (4.3). This yields A(F) C F.

Now we show that A is a contraction mapping in F. Let us take ¢1, ¢2 in F.
Then

| A(¢1) — A(2)[lx,0 < CIN(¢1) — N(¢2)[lsx,0 - (4.14)
Write

N(¢1) = N(¢2) = DzN(9)(¢1 — ¢2)
where ¢ lies in the segment joining ¢; and ¢o. Then, for |z| < 1,
|z**7 [N (¢1) = N(¢2)| < [z | DgN(9) [ll¢1 = ¢2llx.0,
while, for |z| > 1,
[a**71 | N (1) = N(#2) | < [2*IDFN(@)| 1 = dalluo-
Then we have
| N(¢1) = N(¢2) [lsxo < C Sl;p(lﬂlelD&N(&)l) I é1 — @2 lx0- (4.15)
Directly from the definition of N, we compute
DsN($) =p[(w+ )P~ —w"™'].
pr22and0<0§ﬁthen
jaf2 IDsN ()] < Cla2w?2[3(a)|
< C(llgallvo + llg2lls0) < Cp  for all 2. (4.16)
Similarly, if p <2 and 0 < 0 < 1% then

|z[* DN (6)] < Cla|*|p ()P~

<CAP(l4allZo" + llgall2ot) < CpP" forallw.  (4.17)
Estimates (4.16) and (4.17) show that
sup(|2*|DgN ()]) < Clp+ p*71). (4.18)

Gathering relations (4.14), (4.15) and (4.18) we conclude that A is a contraction
mapping in F, and hence a fixed point in this region indeed exists. This finishes
the proof of the theorem. O

Remark 4.1. We observe that the above proof actually applies with no changes

to the case % <p< %—f; provided that V is symmetric with respect to NV
coordinate axis, namely
V(. oy xiy.oyzn) =V(x1,...,—%4...,xn), forali=1,...,N.

In this case the problem is invariant with respect to the above reflections, and
we can formulate the fixed point problem in the space of functions with these
even symmetries with the linear operator defined in Proposition 2.2. Indeed, the
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orthogonality conditions (2.6) are automatically satisfied, so that the associated
numbers ¢; are all zero.

5. THE CASE {2 < p < {41

Because of the obstruction in the solvability of the linearized operator for p in
this range, it will be necessary to do the rescaling about a point £ suitably chosen.
For this reason we make the change of variables A~ T u(%) and look for a solution
of the form u = w + ¢, leading to the following equation for ¢:

A¢—Vag +puw” ¢ = N(¢) + Vaw
where
Va(z) = A2V (554)
and N is the same as in the previous section, namely
N(¢) = —(w + ¢)” + w? + puwP~'¢.

We will change slightly the previous notation to make the dependence of the
norms in o explicit. Hence we set

||¢||£",3— sup |z —€°|g(x)| + sup | — &|7oT|p(x))|

lz—€|<1 |[z—€|>1
_2
IR = sup |z — €2 |h(@)| + sup |z — €Y7 |A(2))
lz—€|<1 |[z—€[>1

In the rest of the section we assume that
N+2 cp< N+1
N_2PSN3
The case p = N can be handled similarly, with a slight modification of the norms
where it is more convenlent to define

1617 = sup |z —€7|g(x)| + sup |z — &[T p(2)],

lz—¢€|<1 le—¢g[>1

+1

2
[ = sup |z —€F*|h(@)| + sup |z — &Pt n(a)]
lo—§|<1 le—€|>1

for some small fixed a > 0, see Remarks 5.3 and 6.1.

Lemma 5.1. Let 222 < p < 2L and V satisfy (3.2) and A > 0. Then there is
€0 > such that for |£| < A and )\ < €o there exist g, c1(N),...,en(A) solution to

N
A —Vap+puP™'d = N(¢) +Vaw + Y _ ciZ;
i=1 (5.19)

lim ¢(z) =0.

|z|——+o0
We have in addition

l|allxe + 1§2§|Ci(/\)l =0 asA—0.

If V satisfies also
Viz) <Clz|™ for allz (5.20)
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for some p > 2, then for0<o <pu—2,0 <N -2

I6all'7 < CoX?,  for all 0 < X < eo. (5.21)

Proof. Similarly as in the proof of Theorem 1 we fix 0 < 0 < min(2, 2%7) and
define for small p > 0

F={¢:R =R/ |67 < p}

and the operator ¢; = Ax(¢) where ¢1,¢1,...,cn is the solution of Proposition 3.1
to

N
Apy — Va1 + pwP 11 = N(¢) + Vaw + ZciZ,' in RV
i=1
lim [¢(z)] =0,
|z|—+o00
where N is given by (4.1).

Inthecasep>2and 0 <o < %1 it is not difficult to check that

4
IN@I7 < CUlellD)?
and for ¢, ¢ € F it holds
IN(¢1) = N(2)I\7 < Cplidn — 62|
Similarly, if p < 2 and 0 < ¢ < ;27 then
INIE), < CIlP  for all ¢ € F

and if ¢1,¢2 € F then

IN(¢1) = N(#2)[I7 < CpP I — ol 7.

76 76

We also have

IVaw||'?), = o(1) as A — 0.

*%,6

Therefore, if p = 2C ||V,\w)||ii)5 then A) possesses a unique fixed point ¢, in F and
it satisfies

I6all2 < ClIVawlg = o1). (5.22)
Under assumption (5.20) and for 0 < 8 < p — 2 we can estimate ||V,\w||5fk)7g as
follows:
sup |z — §|2+6)\*2V(w7_€)w(m) < sup ...+ sup
lz—€|<1 lz—€l<A A<|z—€|<1
But
sup |z — ATV (S w(@) < IV |pe[lwllz=A’. (5.23)

[z—&|<A
In the other case

sup |z — €PNV (IS w(x) < Cllwllp= A2 sup |z —gPHOH
A<|z—€[<1 A<|z—€[<1

<cN (5.24)
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Finally
sup |z — EPFFIATRV(E S w(z) < CA2 sup |2 F=CM2 (5.25)
lz—£>1 |z—¢|>1

and collecting (5.23), (5.24) and (5.25) yields
IVaw]| D, < ON’. (5.26)

wg S

In order to improve the estimate of the fixed point ¢) we need to estimate
better N(¢,). First we observe that ¢, is uniformly bounded. Indeed, the function
uy = w + ¢ solves

N
Auy —Vaur +uf =) ¢(N\)Z; in RN
; (5.27)
lim wuy(z) =0.
|z| =400

For z with |z —¢| = 1 ux(z) remains bounded because |¢y(z)| < C. Then a uniform
upper bound for uy follows from (5.27) and by observing that [|[u}||;«(p,) remains
bounded as A — 0 for ¢ > 5. In fact

/ ul? < C/ wP? 4 |y P71 < C+C/ |z|~Pidx < C
B1 B, B,

if we choose o > 0 small. Hence
lua(z)] < C  forall | — & <1. (5.28)
It follows from then that
|pa(z)] < C  for all . (5.29)

We shall estimate ||¢,\||i2 for a @ > o. Since ¢, is a fixed point of Ay, if 0 < 6§ <
N —2 and 6 < p — 2 we have, by (5.26)

oAl = 4@ < CUN @I + ITaw] () (5.30)
< ClIN()II1) + 7. (5.31)
When p > 2
IN(@)] < C(w?P2|9]? + |g]?). (5.32)
Then

sup |z — &P |N(fa(z))| < sup ...+ sup .
a—g/<1 o—¢[<A ASle—gl<1

Thanks to (5.29)

sup |z — £ N(pa(z))| < ONZFE (5.33)
lz—€|<A

and by (5.22)

sup |z — E2|N(d(2))] < C(||¢||i‘2)2 sup |z — E2H0-20
A<|e—g|<1 A<|z—g|<1

< C}\min(2+9,20) (534)
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Using (5.22) again yields

s 22725 [N (¢())] < C(loall'7)? < OA% (5.35)
and from (5.33), (5.34) and (5.35) we deduce

IN@II®, < Camin+6.20),

**75 -

This relation and (5.30) imply
9all) < Cxmin(®:29)

provided 0 < 8 < N — 2 and 6 < p — 2. Repeating this argument a finite number
of times we deduce the validity of (5.21) in the case p > 2.
If p < 2 instead of (5.32), using

IN(¢)| < ClglP
we infer
0 min
IN(D < Cxminto0)
and the same argument as before yields the conclusion. |

Proof of Theorem 2 We have found a solution ¢y, c1(A),...,en(A) to (5.19).
By Lemma 6.4 the solution constructed satisfies for all 1 < j < N:

N
0
/RN (V)\¢>\ + Vaw + N(oa) + Z ciZi> a—;:;(y) =0.

=1
Thus, for all A small, we need to find £ = &, so that ¢; =0, 1 <i < N, that is
0 .
/ (Vada + Vaw + N(¢y)) v _ 0 ViI<j<N. (5.36)
RN 6.%'1

Condition (5.36) is actually sufficient under the assumption, which will turn out to
be satisfied in our cases, that £, is bounded as A — 0 because, in this situation,
the matrix with coefficients

[ 2w-95wdy
RN T

is invertible, provided the number Ry in the definition of Z; is chosen large enough.
The dominant term in (5.36) is

Ow ow

A2 VS w— =22 V(R)w(@+¢§)

+ 5.37
a 5 » o ZtO 63D

whose asymptotic behavior depends on the decay of V() as |z| = +oo.
Part a: Case V(z) < Clz|™#, p > N. In this case we have
0 0
VG +O 5 @+ = N Ovw(@) 5= (€ +oA") as A0,
RN 6mj 6.Z'j

where Cy = fR ~ V and the convergence is uniform with respect to |£] < g9. We
obtain the existence of a solution £ to (5.36) thanks to the non-degeneracy of 0 as
a critical point of w?(£). Furthermore, the point £ will be close to 0. Before we
need to show that the other terms in (5.36) are small compared to (5.37).
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Indeed,
ow

/ owi_ / Lt /
RN Oz Bi(€) RN\B; (€)

In the case p > 2, by (5.21), we have

Oow o —20 o
[ Nouge <ol [ je-g <ox
Bi(€) Zj Bi(§

N(¢x)

and

ow o __4 _ .
Lo [NOOZ2 <clalD? [ lo-gr <on
RN\ By (£) Lj RN\ B1(¢)

Choosing (N —2)/2 < o0 < min(N — 2, N/2) we obtain

ow
N el
|, ¥@ o
Similarly, if p < 2 we have
ow
N el
(9x) .

/RN J

and taking (N — 2)/p < 0 < min(N — 2, N/p) we still obtain (5.38).
In order to estimate the last term fRN V,\qﬁ,\g—;"j in (5.36) we consider it together

=oA¥"2) asA—0. (5.38)

=0(\7) asA—0,

with (5.37). Let uy = w + ¢. We claim that there exist two positive constants
¢ < C, independent of A such that

c<ux(z) < C z€ B(§). (5.39)

A uniform upper bound for u) was already established in the proof of Lemma 5.1
in (5.28). We now show the lower bound in (5.39).
Observe first that u) solves
N
Au—WVyu +u? = Z ci(N)Z; in RN, (5.40)
i=1
Consider the auxiliary function v defined by
o(r) = a(r +A)? if0<r <Al
S )14da—r0) ifAN<Tr<I,
where the choice of the parameters A, s, ¢, a, d, ¢ will be made shortly and r = |z—¢].
Recall that V satisfies V > 0, V € L®(R") and V(z) < C|z|~* where u > N.

Actually it will be enough for the next argument that p > 2.
We take first s so that

0<s<min(1l,p—2).
Then choose a number A > 0 sufficiently large so that

1 N—-2-—
sup eV (z) < min(}, * =27

YARTZ, (5.41)
Next we take ¢ > 1 such that

a(q+ N — 2) = max (4||V||Lm<w), (4+ 1)2sup|m|“wx)) (5.42)
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and then
2 ¢
T AT )TA+ 1+ AL - Aon))
B A A
— s(A+1 s\s
S ] — Asp
We have
A A
>
423

since s <1, ¢ > 1. Then v is C! in By, v = 1 on 8B; and a calculation shows that
v satisfies for A > 0 sufficiently small

—Av+A7?V(2)v <0 in By. (5.43)
To see this when 0 < r < A, using A2V (%) < A 2||V||z~, we estimate
—Av+ ATV (£)o = —ag(r + X)) (q+ N = 2) + A2V (%)a(r + A)*
<a(r+0)*? (—glg+ N =2) + A [[Vip=(r + 1))
<a(r+N)"?(=qlg+N —2) +4||V|[z=) <0,

by (5.42). In the case A < 7 < AX we use A2V (%) < Cy M~ 2|z|~# where C) =
sup, |z|*V (x). We obtain

—Av+ AV (o = —ag(r + \)* 3 (N =2 —¢q) + A °V(£)a(r + \)?
<a(r+ )\)q 2 (—q(g+ N =2) + CrA*2r7H(r + X)?)
<a(r+XN)7"?%(—q(g+N-2)+C1(A+1)?) <0

thanks to (5.42).
Next, when A\ < r < 1 we have

—Av+ A V(2o =—ds(N =2 —s)r > "+ A 2V(E)(1+d(1—r?))

< - )\AS(N 2—8)r 27+ C T
= \r —2—s ( N 24 A + Cl/\u—2—sr2+s—u)
)\s —2—s ( S N 24 A 01A2+s—u) S 0

by the choice of A (5.41).
Let x(r) = 5% (1 —r?), so that

—Ax=1, x=0 ondBy,

and consider z = uy + (Ef;l lei(M)D) | Zil| e )x- Then from (5.40) (5.43) we deduce
that

—Az+ X ?V(%)z>0 inB.

The convergence ¢y — 0 as A — 0 is uniform on compact sets of RY \ {0} and hence
u) — w uniformly on the sphere 0B;. Thus, by the maximum principle applied to
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the operator —A + )\_2V(§) in B; we deduce

w(l .
u>\—}—Z|cz W Zillpee > ;)’U in By,

for A small enough. Since v is bounded from below and ¢;(A) — 0 we see that
uy > c¢ in By (5.44)

where ¢ > 0 is independent of .
Thus we get (5.39). Going back to (5.36) we set

FO=3* [ Vugeero+ [ Nengea+o

and F) = (F)El), .- ,F/{N)). Fix now 0 > 0 small and work with |§| = 4. Then from
(5.38),(5.44) and (5.28) we have for small X

(Fx(),&) <0 for all |£] = 4.
By degree theory we deduce that F has a zero in By.
Part b.1: Case lim|$|_,+oo(|x|”V(x)—f(|:f—‘)) =0, where N — 1% <p<N,f#0.
Remark 5.1. We note that 2 < N — zﬁ < 3 when JE2 < p < XL Thus if
> 3 this condition is satisfied.

This situation is very different from the previous one. Here the main term of
(5.36) behaves, as A — 0,

32 [ V@ Ogtar e~ [ el e+ 5@ + o).

RN J Zj
Indeed, we have

a6 = fRN(A2v<§)¢x<m+o+N(¢A)+A2v<§> <x+o) w (s 4 €)

= N e 2 H(E 0@ + O B + ) + o) (5.45)

uniformly for £ on compact sets of RV . This is proved observing first that

J.

uniformly for £ on compact sets of RY, as follows from (5.38), for instance taking
o=pu—2.
Using now (5.39), we have that

(d’A) (a: + E)‘ =oM% asA—=0

32 [ V@) g o+ € da| < O, (5.46)
RN 6:1:1'
Indeed we see that
[ VEnerog o @t dn <OVl [ el da
71 B1(0
(5.47)

< C/\M—Q-i-o;
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and
-2 z ow p—2 I e |
A V($)oa(z )3—($+£)d$ < O 2|6y 117 ||~ # ||
RN\B;(0) RN\B1(0)
< C\H-2He,

Define now F' to be given by

- 1

F@) = [l f(ua +9? da

By the dominated convergence theorem

$ 1755 4 (€N )

c B0 Y
Fe) = Lo+

| €]
Similarly
e P M ATI e
VEE) € = Fg— (V= u= =l [l + 51
+ O(IEINf’“ﬁ)-
Therefore

VFE(@E€)-£<0 forall ¢ =
for large R. Using this and degree theory we obtain the existence of £ such that
¢;=0,1<i<N.

Part b.2: Case limj;| 4 o0(|2[YV(z) = f(537)) = 0, where f # 0.
In this case, we will have

IRN< V(R)galz +8) + N(x) + A2V (Hw (w+£)> e (2 +€)

= Jan AV (Rua(z + € G (z + &) + O(AV?) (5.48)

uniformly for £ on compact sets of RV .
Similar to Part (a), we derive that for small fixed p

(G(£),&) <0 for all [¢] = p. (5.49)
Indeed, for p > 0 small it holds

(Vw(€),&) <0 for all [¢] = p.
Thus, for 6 > 0 small and fixed

v = sup (Vw(z +§),£) <0 for all [{| = p. (5.50)
zE€B;s

We decompose

A—Qv(g)u,\(m)(Vw(m+£),§):/B ...+/RN\B

RN
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where

A2 / V(@ )ur(z + €)(Vu(s + £),€) dz
RN\ B;

< CAN-2 / PRl
|z|>d

< CANZ (5.51)
On the other hand, for R > 0 we may write

A2V (Fhur(a + E(Vals +),€) = /BJ\BAR ot /Bm L

Bs
We have
[ v+ evuls + .6 = 00", (5.52)

Since, by (5.39), ¢1 < ux(z) < ¢ for all z € B;(£) where 0 < ¢; < ¢, using (5.50)
we obtain

[ vEumeromuargo<ar [ v 6
B;\Bar Bs\Bxr
But
z _ -Ng T
/BJ\BARV(’\)d:E /BJ\BAR|$| f(|w|)d37
-N N _ o %
o Y (V@ = 1) de

and

/ o[ £ d = log — f+0(1) (5.54)

Bs\Bir || A Jgn—1

while given any € > 0 there is R > 0 such that

T

/B o N (@l = () de

From (5.51)—(5.55) we deduce the validity of (5.49). Applying again degree theory
we conclude that for some |£| < p we have G(§) = 0. This finishes the proof of the
theorem. 0

1
< elog X (5.55)

Remark 5.2. We remark that the above functional analytic setting could have also
been applied in the proof of Theorem 1, so that the continuum of solutions there
found turns out to be a two-parameter family, dependent not only on all small A
but also on a point £ arbitrary taken to be the origin.

Remark 5.3. The proof of Theorem 2 in the case p = % follows exactly the

same lines with the modified norms as explained at the beginning of this section.
The argument works because we assume here that V has more decay, which implies
that even with the modified norm, the error ||ka||(a)

w,¢ converges to 0. Indeed, we
have

sup o — €PNV (55 yu(z) < ON? sup [a? Tk = ON?
lz—¢[>1 |z—¢[>1

provided o < p — 2.



STANDING WAVES FOR SUPERCRITICAL NLS 21

6. APPENDIX: PROOFS OF PROPOSITIONS 2.1 AND 2.2

Next we proceed to the proofs of Propositions 2.1 and 2.2.
Let (¢, h) satisfy (2.1). We write h as

h(z) = ihk(r)Gk(G), r>0,0e8N1 (6.1)
k=0

where Oy, k > 0 are the eigenfunctions of the Laplace-Beltrami operator —Agn-1
on the sphere SV~ normalized so that they constitute an othonormal system in
L2(SN~1). We take O to be a positive constant, associated to the eigenvalue 0 and
0;,1 <i < N is an appropriate multiple of I%I which has eigenvalue A; = N—-1,1 <
i < N. In general, A\;, denotes the eigenvalue associated to O, we repeat eigenvalues
according to their multiplicity and we arrange them in an non-decreasing sequence.

We recall that the set of eigenvalues is given by {j(N — 2+ j)|j > 0}.
We look for a solution ¢ to (2.1) in the form

$(@) =D ¢r(r)Ok(0).
k=0

Then ¢ satisfies (2.1) if and only if
N-1

o+ ——h + [ pwP ' — Ak ¢r = hg, forallr >0, forallk>0. (6.2)
r r2

To construct solutions of this ODE we need to consider two linearly independent
solutions z1 j, 22,1 of the homogeneous equation

N

1

T+

r_ 1¢§C + (pw”1 — %) ¢r =0, 7€ (0,00). (6.3)

Once these generators are identified, the general solution of the equation can be
written through the variation of parameters formula as

¢(r) = Zl,k(r)/ZZ,khkTNfldr — zQ,k(r)/szhkerldr

where the symbol [ designates arbitrary antiderivatives, which we will specify in
the choice of the operators. It is helpful to recall that if one solution z1 4 to (6.3) is
known, a second, linearly independent solution can be found in any interval where
21, does not vanish as

224 (r) = 2 (r) / 21 u(r) 2N dr (6.4)

One can get the asymptotic behaviors of any solution z as r — 0 and as r — +00
by examining the indicial roots of the associated Euler equations. It is known that
as r — +oo r2w(r)?~! — 3 where

2 2
= (V)
Thus we get the limiting equation, for r — oo,
r2¢" + (N = 1)r¢' + (p8 — M)¢ = 0, (6.5)
while as r — 0,
r2¢" + (N = 1)r¢) — Apop = 0. (6.6)
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In this way the respective behaviors will be ruled by z(r) ~ r~# as r — +o0o where
1 solves

p = (N =2)p+ @B~ ) =0
while as r — 0 p satisfies

p? — (N = 2)u— A = 0.
The following lemma takes care of mode zero.

Lemma 6.1. Letk =0 and p > JE2. Then equation (6.2) has a solution ¢o which

depends linearly on ho and satisfies

||¢0||* S C||h0||**- (6.7)

Proof. For k = 0 the possible behaviors at 0 for a solution z(r) to (6.3) are simply

2(ry~1, z(r) ~r>N
while at +o00 this behavior is more complicated. The indicial roots of (6.6) are
given by

N-2 1

=_—— 4+ /(N —2)2 —4pp.
Mo+ D) D) ( ) p3

The situation depends of course on the sign of D = (N — 2)? — 4pf. It is observed
in [20] that D > 0 if and only if N > 10 and p > p. where we set

{(N2)24N+8m if N> 10
Dec =

(N_2)(N_10)
o0 if N <10

Thus when p < p., o+ are complex with negative real part, and the behavior of a
solution z(r) as r — 400 is oscillatory and given by

_N-2

Z(r)=0( "72).

When p > p, we have poy > po— > 527

Independently of the value of p, one can get immediately a solution of the ho-
mogeneous problem. Since equation (1.6) is invariant under the transformation
A )\%w()\r) we see by differentiation in A that the function

, 2
210 =TW + ——Ww
L) p —_ 1

satisfies equation (6.3) for £k = 0. At this point it is useful to recall asymptotic

formulae derived in [20] which yield the asymptotic behavior for w. It is shown
that if p = pe,

= 1 1
:62 +a1 ogr+o<ogr

o r“o—) , T — +o00, (6.8)

w(r) = —=
re=1

where a; < 0, and if p > p,

_ ﬁp%l ax 1
w(r) = e + o +o0 s ) r = 400. (6.9)
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Using these estimates, and easily derived ones for w’, we get that as r = +o0

ifp<pe:  |ao(r) < OriF (6.10)
ifp=p.: z10(r) = er= "7 logr (1 4 o(1)) (6.11)
ifp>pe: z1,0(r) = er #= (14 0(1)), (6.12)
where ¢ # 0.
Case p < p.. We define 2z o(r) for small » > 0 by
z2,0(r) = z1,0(r) /T z1,0(8) 28" N ds (6.13)

To
where r¢ is small so that 219 > 0 in (0,79) (which is possible because z1, ~ 1
near 0). Then 254 is extended to (0,400) so that it is a solution to the ho-
mogeneous equation (6.3) (with k& = 0) in this interval. As mentioned earlier
22,0(r) = O(r*¥) as r — +oo.
We define

doltr) = zw(r)/ 22,0hos™ 1 ds - zQ,O(T)/ 21,0hos™ ! ds,
1 0

and omit a calculation that shows that this expression satisfies (6.7).

Case p > p.. The strategy is the same as in the previous case, but this time it is
more convenient to rewrite the variation of parameters formula in the form

bo(r) = —21.0(r) /1 io(s) 25N /0 " r0(F)ho (A1 dr ds,

which is justified because when p > p. we have z; o(r) > 0 for all » > 0, which

follows from the fact that A — )\P2T1w()\r) is increasing for A > 0, see [20]. Again,
a calculation using now (6.11) and (6.12) shows that ¢o satisfies the estimate (6.7).
O

Next we consider mode k£ = 1.

Lemma 6.2. (a) Let k=1 and p > %4'; Then equation (6.2) has a solution ¢,

which is linear with respect to hy and satisfies
llg1lls < CllAallsx- (6.14)

(b) Let N > 3 and 312 <p < 8+ (p> FE2 if N =3). If [|h/|sx < +00 and

/ ha(r rN=ldr =0 (6.15)

then (6.2) has a solution ¢1 satisfying (6.14) and depending linearly on hy (condi-
tion (6.15) makes sense when p < %—fé and ||h1 ]|« < +00).

Proof.

a) In this case the indicial roots that govern the behavior of the solutions z(r)
as r — 400 of the homogeneous equation (6.3) are given by p; = L +1 and
e = N — 3 — —=-. Since we are looklng for solutions that decay at a rate r »- T

asr — +oo we w111 need N -3 — = > F’ which is equivalent to the hypothesis
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p > AL On the other hand the behavior near 0 of z(r) can be z(r) ~ r or
2(r) ~ =N,
Similarly as in the case k = 0 we have a solution to (6.3), namely z;(r) = —w'(r)

and luckily enough it is positive in all (0, 4+00). With it we can build

b1(r) = —2 (r) /1 " (s)" 281N /0 LA ()N drds. (6.16)

From this formula and using p > {2+ we obtain (6.14).

b) Since z(r) < Cr~ 71 Land p < N+ it is not difficult to check that z by 7V 1

is integrable in (0, +00) if ||A1||«x < 4+00. Thus, by (6.15) we can rewrite (6.16) as

b1(r) = 21(r) /T 21(s) 2N /Oo 21 (T)hy (1) " dr ds (6.17)
1 s

and from this formula (6.14) readily follows. O

Finally we consider mode k > 2.

Lemma 6.3. Let k > 2 and p > Y22, If || hi||sx < 00 equation (6.2) has a unique

solution ¢y, with ||¢x||« < 0o and there exists Cy > 0 such that
lonlle < Crllhl]«x- (6.18)

Proof. Let us write Ly for the operator in (6.2), that is,

r

Lep= ¢+ 20 (o - 2 o,

This operator satisfies the maximum principle in any interval of the form (4, %),

6 > 0. Indeed let z = —w', so that z > 0 in (0,+00) and it is a supersolution,
because
N-—-1-2X
Lyz = Tkz <0 in (0,+00), (6.19)

since A, > 2N for k > 2. To prove solvability of (6.2) in the appropriate space we

construct a supersolution v of the form
1
p=Ciz+v, v(r)=——7",
r? +re-1

where C} is going to be fixed later on. A computation shows that
4
Lyv=(2N—-4- 1 )\k)r_%ﬂ(l +0(1)), r— 4oo,
p—

and hence

4
Lyyp < — plr_ﬁ_Q +o(r_P%1), T — 400.
p—
Similarly
Liyv = (6> = (N =2)o = \)r " 2(1+0(1)), r—0.
Therefore we may find 0 < R; < R» (independent of C4) such that
Lyp < —r777% r<R
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and

2
Lklpf— pl’l'i}%ia TZRQ.

Using (6.19) we find C; large so that
Lyyp < —cmin(r_”_2,r_z%_2) in(0, 4+00).
for some ¢ > 0.
For hy with ||hg||«« < oo by the method of sub and supersolutions there exists,
for any § > 0 a solution ¢s5 of
Ly¢s = hy, in (4, 3)
$5(8) = ¢5(3) =0
satisfying the bound
lgs] < Co [|hglles  in (8, 5).
Using standard estimates up to a subsequence we have ¢s — ¢ as & — 0 uniformly
on compact subsets of (0, 4+00), and ¢y, is a solution of (6.2) which satisfies
|¢k] < CY [|hglsx  in (0, 00).

The maximum principle yields that the solution to (6.2) bounded in this way is
actually unique. a
We are ready to complete the proofs of Propositions 2.1 and 2.2.

Proof of Propositions 2.1 and 2.2. Let m > 0 be an integer. By Lemmas 6.1,
6.2 and 6.3 we see that if ||h||,« < 0o and its Fourier series (6.1) has hy, = 0 Vk > m
there exists a solution ¢ to (2.1) that depends linearly with respecto to h and
moreover

ll¢lle < Crallh]]

where C), may depend only on m. We shall show that C,, may be taken indepen-
dent of m. Assume on the contrary that there is sequence of functions h; such that
||j]|«x < 00, each h; has only finitely many non-trivial Fourier modes and that the
solution ¢; # 0 satisfies

65llx = Cjl1Rj]lex

where C; — +00 as j — +00. Replacing ¢; by ”fﬁ we may assume that ||| =1
and [|;||«x = 0 as j = +o0o. We may also assume that the Fourier modes associated

todg=0and \y =...=Any = N — 1 are zero.
Along a subsequence (which we write the same) we must have
2 1
sup |z|>=T|¢;(z)| > B (6.20)
|z|>1
or
- 1
sup |z|7|¢; ()] > 5 (6.21)
|z|<1

Assume first that (6.20) occurs and let z; € RN with |z;| > 1 be such that

2 1
jzj17=1 13 (25)l > 7-
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Then again we have to distinguish two possibilities. Along a new subsequence
(denoted the same) z; — 9 € RV or |z;| = +o0.

If x; — o then |zo| > 1 and by standard elliptic estimates ¢; — ¢ uniformly on
compact sets of RV . Thus ¢ is a solution to (2.1) with right hand side equal to zero
that also satisfies ||¢]|« < +o0 and is such that the Fourier modes ¢9 = --- = ¢ are
zero. But the unique solution to this problem is ¢ = 0, contradicting |¢(zo)| > 1.

If || = oo consider ¢;(y) = |.'L'j|1%¢j(|.’lfj|y). Then ¢; satisfies

- PR
Agj +pwi g; =h; inRY

2 z 2 .
where w;(y) = |z;|7—Tw(|z;|y) and h;(y) = |z;|** 7T h(|z;|y). But since ||¢;|l. = 1
we have

;) < Iy "7=7, |y > (6.22)

Ja51
) q~§j is uniformly bounded on compact sets of RV \ {0}. Similarly, for |y| > ﬁ

z g2
i ()] <yl =~ 7= (1R s
and hence ilj — 0 uniformly on compact sets of RN \ {0} as j — +oo. Also

w;(y) = Cp, N|y|7z=%1 uniformly on compact sets of RV \ {0}. By elliptic estimates
¢; — ¢ uniformly on compact sets of RV \ {0} and ¢ solves

Ap+Conlyl 7216 =0 in RV \ {0}.

Moreover, since ¢;(12) > 1 we see that ¢ is non-trivial, and from (6.22) we have

EX
the bound
2

lo(w)| < lyl~>=7, [y[>0. (6.23)
Expanding ¢ as

oo
$(x) = > 6k(r)Ox(6)
k=N+1
(we assumed at the beginning that the first N + 1 Fourier modes were zero) we see
that ¢ has to be a solution to

N

-1 Bp — Ak
.

r2

¢ =0, Vr>0,Vk>N+1.

The solutions to this equation are linear combinations of ri where af >0 and
a, < 0. Thus ¢ can not have a bound of the form (6.23) unless it is identically
zero, a contradiction.

The analysis of the case (6.21) is similar and this proves our claim. By density,
for any h with ||hl|«« < 0o a solution ¢ to (2.1) can be constructed and it satisfies
81l < ClIAll+x-

The necessity of condition (2.6) is handled in the following lemma. O

Lemma 6.4. Suppose ||h||«x < +00 and that ¢ is a solution to (2.1) such that
[|@|]« < +00. Then necessarily h satisfies (2.6).

Proof. Let
4= [ sw0ei0)ds, >0,
SN-1
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and

Then

N-1 N-1
!+ T¢’1 + (pwl’l i ) ¢1 =hy, forallr>0 (6.24)

and we know |¢(r)| < Cr= =1 for r > 1, |¢1(r)] < Cr=@ for 0 < r < 1. From

elliptic estimates we also know |} (r)] < Cr i for r > 1land |¢y(r)| < Cr—o~!
for 0 < r < 1. Multiplying (6.24) by w' and integrating by parts in the interval
[6, %] where § > 0 we find

S
(_T,N—1¢1wu —}—TN_lqﬁ'lw') ; +/ ((TN—lw/l)/ _+_TN—1(pwp—1 _ Nr—l)w/) b1
5
1

3
= / rN=Thiw'.
5

(6.25)

But w' is a solution of (6.24) with right hand side equal to 0 and hence, letting

6 — 0 and using p < % we obtain

0=/ hw'rN~tdr
0

which is the desired conclusion. O

Remark 6.1. If p = %—fé Proposition 2.2 and Lemma 6.4 are still valid if one
redefines the norms as

2
61l = sup |2|7|¢(x)] + sup |z[7=1F*|g(z)],
lz|<1 |z|>1

[lls = sup |2+ |h(@)] + sup |27+ |h(a)],
lz]<1 lz[>1
where o > 0 is fixed small. Indeed, in relation (6.25) the boundary terms still
go away as & — 0 if h; decays faster than P~ 721727 hecause in such a case the
solution ¢1, a decaying solution of equation (6.24), can be re-expressed for large r
as

$1(r) = cw'(r) + O(r~7=1=%), i (r) = cw"(r) + O(r~ 7117

for a certain constant c¢. Let us also observe that formula (6.17) has the right

mapping property for the above norms provided that the orthogonality condition
holds.
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