INFINITELY MANY SOLUTIONS FOR THE SCHRODINGER
EQUATIONS IN RY¥ WITH CRITICAL GROWTH

WENYI CHEN, JUNCHENG WEI, AND SHUSEN YAN

ABSTRACT. We consider the following nonlinear problem in RV
—Au+V(ly))u = u™3, u>0, inRY;
(0.1)
u € HY(RN),

where V(r) is a bounded non-negative function, N > 5. We show that if 7V (r) has a
local maximum point, or local minimum point ro > 0 with V(rg) > 0, then (0.1) has
infinitely many non-radial solutions, whose energy can be made arbitrarily large. As
an application, we show that the solution set of the following problem

—Au:)\u+u%, u>0on SV

N(N-2
has unbounded energy, as long as A < —%, N >5.

1. INTRODUCTION

Standing waves for the following nonlinear Schrédinger equation in R :

9 3
(1) %0 = Ay~ )y + 9Py,

are solutions of the form 9 (¢,y) = exp(iAt)u(y). Assuming that the amplitude u(y) is
positive and vanishes at infinity, we see that v satisfies (1.1) if and only if u solves the

following nonlinear elliptic problem

(1.2) —Au+V(y)u=uP, u>0, lim u(y) =0,

[y|—+o0

where V (y) = V(y) + A. Throughout this paper, we will assume that V is bounded, and
V(y) 0.

In this paper, we consider the critical case p = %:
(1.3) —Au+V(y)u=u%,u>O, y € RV,
' u(y) — 0, as |y| — +o0.
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It is easy to see that if V' > 0 and V # 0, the mountain pass value corresponding
to (1.3) is not a critical value. In contrast to the subcritical case, there are very few
results to (1.3). Benci and Cerami [2] first studied (1.3) and proved the existence of at
least one solution if V' > 0 and ||V'||~/2 is sufficiently small. It seems that this is the only
existence result available for general V' in the critical exponent case. It remains a question
if the smallness of the norm |[V|| ~/2 is necessary. On the other hand, the assumption
V € L= (RY) implies that V can not have a positive lower bound in RY. Thus, the
existence result for the case V(y) > V5 > 0 in RY is completely open.

In this paper, we consider the radially symmetric potential case, i.e. V(y) = V(|y|),
although this assumption can be weakened. It follows from the Pohozaev identity that
(1.3) has no solution if (r>V (7))’ has fixed sign and is not identically zero. Therefore, we
see that to obtain a solution for (1.3), it is necessary to assume that r*V(r) has either
a local maximum, or a local minimum at rq > 0. The aim of this paper is to show that
this condition is not only sufficient, but also guarantees the existence of infinitely many
non-radial solutions.

Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that V(|y|) > 0 is bounded and N > 5. If r*V (r) has either an
isolated local mazimum, or an isolated local minimum at ro > 0 with V(rg) > 0, then

problem (1.3) has infinitely many non-radial solutions.

Problem (1.3) is also related to the following Brezis-Nirenberg problem in SV
(1.4) —Agvu = w¥? + Au, u>0 on SV

In fact, by using the stereographic projection, problem (1.4) can be reduced to (1.3) with

_ N(N=2)—4)
VW) = e

SoV(y) >0if A < —W. Moreover, V (y) is radially symmetric.

Equation (1.4) has also been studied recently by many authors. Brezis and Li [4] proved
if A > —W, then the only solutions to (1.4) is the constant u = (—A)"7-. On the
other hand, when \ = —W, this is the Yamabe problem on S”V: all solutions are
classified ([9]). When \ < =% (]Z_Q), Druet [6] (see also Druet and Hebey [7], [8]) proved

that the set of positive solutions to (1.4) is compact provided the energy is bounded.
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On the other hand, it has been shown that there are more and more nonradial solutions
as A = —oo. We refer to Brezis-Peletier [5], Bandle-Wei [3] and the references therein.
Theorem 1.1 implies that as long as A < —N(NT_Q) and N > 5, there are infinitely many
nonradial solutions to (1.4) whose energy can be made arbitrarily large. This shows that
the boundedness of energy in [6] and [7] is necessary. We notice that when N = 3, Druet
[6] proved that the solution set of (1.4) has bounded energy. We believe that Theorem
1.1 also holds for N = 4.

Let us point out that in this paper, we don’t assume the condition
V(jyl) > Vo >0, for |y large,

which is essential for Schrédinger equation with sub-critical growth. In [13], we considered

the following problem

- = p N
(1.5) { Au+V(lylu=w,u>0, yeRY,

u € H'(RY),

where 1 < p < % We proved that if
V(r) =%+%+O(%ﬂ), as r — +oo
r r

for some V5 > 0, @ > 0 and m > 1, then, (1.5) has infinitely many non-radial solutions.
In fact, we showed that (1.5) has solutions with large number of bumps near the infinity.
Problem (1.5) is non-compact due to the unboundedness of the domain, while (1.3) is
non-compact due to the unboundedness of the domain and the critical growth of the
nonlinearity. We will prove Theorem 1.1 by constructing solutions with large number of
bubbles near the sphere |y| = ry. So, in view of the construction of bubbling solutions,
we can say that the effect from the critical growth is stronger than the effect from the
unboundedness of the domain.

Before we close this introduction, we outline the main idea in the proof of Theorem 1.1.

Let us fix a positive integer
k Z kO;
where kg is large, which is to be determined later.
Let 2* = % It is well-known that the functions

N-2

N-2 7 T2 N
Ups) = (N(N=2)) 7 (—F ) u>0 zeR
W)= (v -2) T () T a0
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are the only solutions to the problem
N2 :
—Au=u¥2, 4 >0inR".

Let y = (v, y"), v’ € R?, y" € R¥~2. Define

Hy={u:we D"*(RY),uis even in yp,h =2,---, N,

2 2
U(T COS 0, 7 8in Q,y") = U,(T COS(0 + %),Tsin(e + %)’ y//)}_

Let

2(j — )
k

where 0 is the zero vector in RV=2, and let

2(j— D
k

:cjz(rcos , T sin ,0), j=1,---k,

Wr,u(y) = Z Uzj,u(y)

j=1
Choose § > 0 small, such that

V(y)) > Vo >0, Vly|€ro—25,m+ 26].

In this paper, we always assume that

r € [ro — 0,79 + 0],

and

N-2

u e [LOkN_Ll, le%], for some constants L; > Ly > 0.

Theorem 1.1 is a direct consequence of the following result:

Theorem 1.2. Suppose that V (|y|) > 0 is bounded and N > 5. If r*V (r) has either an
isolated local mazimum, or an isolated local minimum at ro > 0 with V(rg) > 0, then
there is an integer ko > 0, such that for any integer k > ko, (1.3) has a solution uy of the

form

Uk = WTk,Nk (y) + W,
where wy € Hy, and as k — +00, ||wg|[p2@yy — 0, 7, € [ro — 6,70 + 6] and py €
[Lok ™1, Lk ¥=1].
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We will use a reduction argument to prove Theorem 1.2. The reduction argument is
a typical technique used in the study of perturbation problems. Problem (1.3) is not a
perturbation problem. We use k, the number of bubbles of the solutions, as the parameter
in order to carry out the reduction procedure. This technique has been used successfully
to study some non-compact elliptic problems. See [11, 12, 13, 14, 15, 16]. Unlike the
papers [14, 15, 16], where the reduction arguments were carried out in some weighted
norm spaces, we take the advantage of the term V(|y|)u in (1.3), so in this paper, we
carry out the reduction argument in the standard Sobolev space as in [1, 10]. This will
make the estimates a bit easier.

This paper is arranged as follows. In Section 2, we carry out the reduction. Theorem 1.2

is proved in Section 3. We put the energy expansion to the appendix.

Acknowledgment. The second author is supported by an Earmarked Grant from RGC
of Hong Kong and Joint Overseas Grant from NSFC. The third author is partially sup-
ported by ARC. We thank Professor E. Hebey for his comments and interests in this

work.

2. FINITE-DIMENSIONAL REDUCTION

In this section, we perform a finite-dimensional reduction.

Let
Z _ aUzl s _ aUzl M
Zvual - a,,,, ) Z7N72 - 8# .

The inner product in H, is defined as follows:

(u,v) = [RN (DuDv + V (|y|)uv).

Let

k
Brop={0: 6 €Hy, O Ziyj0) =0, j =1,2}.
i=1

Let L, , be the bounded linear operator from Ej, , to Ej, ,, defined by the following

relation

(2.1) <Lk,wu, v> = " (DuDv + V(ly|)uv — (2 — 1)W,,2,L_2uv), u,v € Egy e
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Lemma 2.1. There are p > 0 and ko > 0, such that for k > ko,

Lk udll = pligll, V¢ € Egrp

Proof. We argue by contradiction. Suppose that there are k — +o00, 7 € [ro — 6,79 + 6],
juk € [Lok ™1, Lik~1], and ¢y, € By, ., satisfying

(2.2) okl = VE, || Léwl| = o(VE).
Let

L . o [ AN Y] N-2 y_,& z
Q]_{yy_(yay)_R xR :<|y,|a|xj|>zcosk}-

Then, by (2.2),

(2.3) | (Do + v () =1,
and
(2.4) /Q (D¢pDw + V (|y|)ppw — (2 — 1)Wfk*’;§¢kw) =0(l), Yw € By s

N-2

Let @x(y) = py ° Op(pp'y + 1), £1 = (r,0,0,---,0). It follows from (2.3) that Déy
is bounded in L? _(RY). So, we may assume that there is a ¢ € D"?(R"), such that

loc

D¢p — D¢, weakly in L2 (RY),

loc

and

¢y — ¢, strongly in L2 (RM).

loc

It is easy to see that ¢ satisfies

—A¢p— (2" = 1)U3;?¢=0, inRY.

Moreover, from ¢, € Ey,, .., we find that ¢ is even in y;, j =2,--- , N, and

* aUO 1 * _ an
U2 2 s — 0, / U2 2 M = 0.
/I;N 0.1 0xy ¢ RN 0.1 ol ¢
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So, we obtain ¢ = 0. Thus, for any R > 0,

/ B4l = o(1).
Bgr(0)

As a result,

(2.5) / W2 gy < C / |Bk[” = o(1).
B _1,(%1) ’ Bgr(0)

P'kR

On the other hand, it is easy to see that W,, ,, = o(1) in & \BMI;IR(.’El) for R > 0

large. Thus, in view of

V(y) 2 % > O, () S Br0+25(0) \ B7‘072(5(0)5

we find
/ 2% -2 i
00 (Brgr2sO\Brg—2s OB, 1 p(a1))
(2.6) ¢
=o(1) de=o0(1) [ V(|yl)s
20 (Brg 4250\ Brg-25 O\B, 1 5 (a1)) o
Moreover, from
I :
TksME
2 \(Brg 25 (0)\Brg—25(0))

. ) Ck*
<k? / o < =
2\ (Brg+25(0)\Bry—25(0)) M

we obtain
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/ 2* —2¢
Tk,uk k
W\ (Byg+25(0)\Brg—25(0))

< ( / Wv?x:,uk / n[* _*
Q1\(Brg+25(0)\Bry—25(0))

1 _+
_Ckm / |Dgy|? = %72/ | D |?
N/c k2* Jry My, 0

© [ b =or) [ s

twsa v v Jo, o
Combining (2.5), (2.6) and (2.7), we are led to

o(1) = / (1D + V(I — (2 — W2 ,22)

(2.7)

~(1+0(1) / (IDS[> + V(iy)2) + ol1).

This is a contradiction to (2.3).
(I

From Lemma 2.1, using the Fredholm alternative, we can prove the following result :

Proposition 2.2. There exists ko > 0, such that for k > ko, Ly, is an isomorphism in
Ekﬂ“,li'

Define the projection @y, , from H, to Ej, , as follows:

2 k

(28) Qk,r,uu =Uu-— Z Cj Z Zi:liaj’
j=1 =1

where ¢, and ¢, are chosen such that Qg ,u € Ej, -

Now, we consider

(29) Qe ~AWep+0) +V(Iy) (Wep+6) = (Wo+9)" ") =0, 6 € Bypy
We have

Proposition 2.3. There is an integer ko > 0, such that for each k > ko, (2.9) has a
unique solution ¢ = ¢(r, ) € Ey ., satisfying
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In 1k xs
loll < ob(~— i + 12 () )

Rewrite (2.9) as

(210) Lk,r,p¢ = N(QS) + lka in RN,

where N(¢) € Ey,, and I, € Ej,, are defined in the following relations respectively:

Tl Tl

(N(¢),w) = - ((Wr,“ + ¢)2*_1 — WA (2 — )W 2 )w, w € Egyp

and

<lk,w> / VVT_1 U2 - (|y|)W,«,u>w, w € Eiyp

In order to use the contraction mapping theorem to prove that (2.10) is uniquely solv-
able, we need to estimate N(¢) and [.

Lemma 2.4. If N > 6, then

2 Hwll-

[(N(¢),w)| < Cll¢
IfN =5,
[(N(¢),w)| < Ck|]||w]].

Proof. We have

2%_1 » . C|¢ 2*_15 N > 6;
N* — Wr + _ Wr2 -1 * W2 —2 1
() = (Wow+9) e "= CWg.¢?, N =5.
Thus, if N > 6,
‘<N(¢),w>‘ < C’[RN 9] Hw| < C||8|1* H|w]|-
IfN =5,

sk

<c([ wE) el < cublor.

([ ovhe)®)



10 WENYI CHEN, JUNCHENG WEI, AND SHUSEN YAN

Next, we estimate .

Lemma 2.5. If N > 5, then

In 1 bk~
l <Cl€(7 —) 2 )

Proof. Write

= (W3- ZU2*—1 V(y)Wp = Ji — Jo.

Firstly, by symmetry

(2.11) (Jo,0) = k(V () Uy ) = KO / V() Unpl])-

RN
We have

C 1 C
V) Unl] <~ / vl < -l
/RN\Bl(ml) o 172 Jrv\By () [Y — 22|V 72 uNQ :
On the other hand,

N+2

2N _
/ V(§)Uay o] < (/ i) " ol
Bi(z1) Bi(z1)
But

So, we obtain

(2.12) (o, w) = kO(M_IL’)HwH.

Define
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By the symmetry,

(213) <J1,w> = k'/ le.
1951
We have
a k _—
(2.14) B < CUSE I Ui+ C(Y Vi) 5 e
j=2 j=2

Note that

ly—z;| >y —x], VyeQ.

We claim that

1
ly — x5 > §|$j — 1], Vye.

In fact, if |y — z1| < 3|z; — 21/, then

1
|y—-’13j\2|$j—371|—|y—331|2§|$j—$1-

If |y — 1] > §|z; — 21, then

1
[y =25l 2 |y — 21| > Slzj — 2.

So, we obtain

N2

N3 por 1
(2.15) UnpUp, y < C :
’ 1+ ply — 1) (ply — 1)) ™5
Thus
216) Ty ey
2.16 U\ Up,p <C —(=) ? .
j=2 ’ (L+ply—z|)2 K

As a result,

j>1.

11
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s

HZ

k
—2
ok 1‘] 7N
=2

N+2 1
(217) <0(5)N2“/ Ll <) ([ )
K o (I+ply—z)) = K o3
1k
<C— (=) 7 |l
k2= "
Let 7 > 0 be small. We have
C ,LLN272
T (g = )RR (L ply — )R
Thus
i kyn-2_n-2, en
ZU”“ s C(_) ’ i —3  N-2_
iR N2, N2,
= K (14 ply —z]) 7 "7
which, gives
k 2*—1 k. N+2 2
(Z Ul‘j,ﬂ) S _) ! /11 i +2+’T
j=2 K (1+N|y_$1‘) 2

As a result,

Now, we are ready to prove Proposition 2.3.

Proof of Proposition 2.3. Let

S = {w w € Epypp, ||lw|| <

N2}'
N—4

Then, (2.10) is equivalent to

¢ =A(p) =: Ly, ,(N(¢) + ).

We will prove that A is a contraction map from S to S.
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In fact, if N > 6,

6]l < CIIN (@) + CllLl

<C|¢|*~* + Ck

(218) k%—'—o’
k \2r1 1 k
<O(xz) +C0k=n <=
k=1 knv=aT? k~N—1
If N = 5, then
6]l < CIN ()] + CllLll
(2.19) N ) 1 11 C 1
<crblf+ ke < cib ko< L

Thus, A maps S to S.
On the other hand,

|A(¢1) — Ada)|| < CIIN(¢1) — N(g2)]-
If N > 6, then

(N ()| < Cle .

As a result,

/ IN(61) — N(ga)llw| < C / (1622 + |65
RN RN

<C(llgull* > + g2l 2 lé1 — gallllwll

So we have

7)1 — ¢al|w|

IN(¢1) = N(d2)ll < C(llenl” > + |2

If N =5,

. 1

) g1 — do| < §||¢1 — ¢9]|.
[(N*(1))'] < CWAL[EP.

So,

IN(81) ~ N(&2)]| < Ckblloy — 6ol < 5ll61 — .

Thus, A is a contraction map.
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It follows from the contraction mapping theorem that there is a unique ¢ € S, such
that

¢ = A(e).
Moreover,
In i 1 kb ns1
<Ol < Ck(i LN )
Ioll < Clltll < Ch(—omgy + 1 ()
O
3. PROOF OF THE MAIN RESULT
Let

F(Ta /,L) = I(Wr,u + ¢)a

where 7 = |24/, ¢ is the function obtained in Proposition 2.3, and

1) =5 [ PP+ V(D) =5 [ o

Proposition 3.1. We have

o*

F(r, 1) = [(Wy,) + O

1)

k(44 P05 s+ 0())

,LLN_2|.T1 —3?]'|N_2 u2—|—a

=

where o > 0 1s a fized constant, B; > 0, 1 = 1,2, is some constant.

Proof. Since

<II(WT,[L + ¢)a ¢> = 0,
there is ¢ € (0, 1) such that
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F(r, 1) = I(Wey) + 3 DT (Wi + 16)(6,9)

=W 5 [ (DOF+V(y)d? = (2 = 1) (W +19)” 26
=10, + (Il + ol + ([ W)™ lol?)
=1(Wi) + O (k|6]1°)

2 In” 1k
=I(W,) + k2+ﬁo(umn§Nl—Lz,4) + L2 (;)NH)'

Since
]f N—-2 1
(=)~
7
we find
ar2 1 kinp 4 11y 1
k N}f% (M) —kO(kN,u%/ﬂ)—kO(qu)

It is also easy to check that

2
op2 In"p 1
kTN /jlmin(NfZA) =k (

So, the result follows.

Proposition 3.2. We have

aF(r,u):k(_2B1V(7“)+i NBZ(N_Q) +O( = ))

o 113 pN =z, — N2 p3to

where o > 0 s a fized constant.

Proof. We have

OF (r, p)

09
=(I'(W, Wr LS

_<II ,“+¢ ’N>+chl ,,u,la

=1 =1

(3.20)
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Now
(I (Wry + ),
, ow,, ow,, ,
=W,y “> + / (D757 D6+ V() 7 0)
(3.21) n e Op
. _/ (Wit ¢)2*_18WW +/ WZ*‘16WT’“
RN o 3/1 RN ot 6#
aW oW, . OW,
— I/ T 2 —1 RS / 2*—1 T,
(W) > / Wea+9) o RNW”‘ o

since ¢ € Ey .
On the other hand,

* aw * aw
2 —19Wrp 221 9Wrp
J I

2*—1/ w2, 28W”‘¢+O(/RN\¢2*).

Moreover, from ¢ € Ej . ,, we obtain

(3.22)

oU,.
x 2% —2 w]:“ .r],u
[ (e = vz v T
U, o,
— D m]:UD +V Zj,H :0
| (DTG Do+ V(i) T522e)

As a result,
* 8W
W2 —2 (2]
/IRN " op ¢
(3.23) k k
«_o W, oo OUy,. 1 oU,.
_ 2*—2 T -2 TjH Zj M
_/RN(WT,M O ;Ufﬂjvﬂ ou % _ 1 ;V(WD A )¢
But
C C
z],p,
(3:20) [ v Zgzze < S [ viuhtniel <

and
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Wy =, ge 90U,
W2 -2 5T U2, -2 TjHH
/RN( T op ; ik Gy )¢
o W, £ oo 0U,
3.25 =k / e I
(3.25) MU e SE e el
Ck . _ Ck
T (U;;ZZU‘%“_{'ZUi u1>|¢| pdto’
Combining (3.21)—(3.25), we obtain
8W k
/ w T
(3.26) (I'( ,u+¢ > (I'(W,., o >+O(u3+")'

To estimate ¢; and ¢y, we use

k

2
Lk,r,uqs - lk - N(¢) = Z
=1

ClZZaM’l
i=1

So,

k
(327) Cl<z Z@p,l, Zl;li, <Lk T u¢ Ik — ((/b)’ Zl,u,l>-
=1

On the other hand, similar to the estimate of (3.22), we can deduce

<Lk,r,u¢> Zl,u,l> = <Lk,r,uZ1,u,la ¢>

k —
——@-1) [ W2 2Ziu0= Oé“mg’ 2
- Y a“al - k

RN u1+o'

which, together with (3.27), gives

1 k
o = ;0(”5,6” +IN()1+) +O(M3+">’ cs = pO (||l + IN ()l + O(

But

o6 07,1
<Zz',u,l,@>— —( 8; ,®)

k

/j/1+<7

).

17
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Thus,
u k Ck
328 L alZu 50| < L0+ INODI6l+0(.5) < e
i=1
Combining (3.20), (3.26) and (3.28), we have proved
OF(r,p) _ 0I(Wp,) 0( k )
ou B ou pdte ’
and the result follows from Proposition A.2.
Since
—1
x; — x1| = 2|zy| sin %, j=2,...,k,
we have
|£U] - x1|N 2 (2] )N2 = (sin @)Nﬂ
2‘1'1| (2[z1)V-2 Z] =2 (sin G- 1)7r) + (2|1'1|1)N72’ if k is even,
WZ] 2m7 if k is old.
But
(=)=
SN o g ...k
0<d< =T <c, =205

So, there is a constant B, > 0, such that

Z _ B4k'N_2 —|—O( k )
| —331|N 2 fm|V2 [V 2/

Thus, we obtain

31V(7') B4kN72 1
(3.29) F(r,m) = k(A + v O(M2+U)>,

and
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(3.30)

OF (r,p) _ k(_231V(r) N By(N — 2)kN -2 O( 1 ))

a,u /1,3 ,UIN717-N72 /J,3+a

For each fixed r € [7’0 — 0,19+ (5], let Ag(r) be the solution of

2B, BN —2)

A3 AN-1,N-2 — 0.

—V(r)
Then
By(N —2) \w
= (Y2
o(r) 2B,V (r)rN—2
Note that Ag(r) is the unique maximum point of the function

By By

V(r) A2 AN-2,N-—2"

Proof of Theorem 1.2 if ro is a mazimum of 2V (r). Consider

3.31 max F(r,u),
(3:31) max F(r,p)

where

- 1 1
D={(r,A):r€lro—06ry+6], p= AEN=E A € [Ag(r) — —,No(r) + =1},
/j,2 /j,Z
where 0 < f << ¢ is a small constant, and ¢ > 01is the constant in (3.30). Let (7, fix) € D
be a solution of (3.31).
If 6 > 0 is small enough, then it follows from (3.30) that

OF (r, p)
T >0 (OI' < O)

if ji, = kN1 (Ao(r) — u@)a (or fip = k¥4 (Ao(r) + ﬁ)) So fix # k-1 (Ag(r) = —12).
On the other hand, for any (r, u) € D, we have

=
NiCo|
£
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31V(T) B4]€N72 . 31V(T) B, 1
112 - uN-2pN-2 - ( A2 AN*QTN*2> 2(V-2)
B1V( ) B, 1
=( - (|A 8o()P)) sy
A2 N-2 N—2 2(1{[\/_42)
(3.32) ( ) A (r )7“ k
N 2 A2 ,U 2(N 2)

_N-2_ 1 1
=(B'<TQV(T>>2<N74> + 0(—0)) e
w3 kN=1
where B’ > 0 is a constant. Since r?V(r) has a maximum at 7y, from (3.29), we see that
Tx, # ro £ 0 for the maximum point (rg, fix) € D. So, (7k, fix) is an interior point of D,

and thus a critical point of F'(r, u).
U

It remains to study the case that ry is a local minimum point of 72V (). Define

F(T’N):_F(rau)’ (T’N’) €D.
Let

1.2 =2 1
ay=k(-A+n), ,u= /ﬁ(—A — B'(r5V (rg))2™=0 (1 — n)kz(TQ))J

N—-4
where 7 > 0 is a small constant, and B’ > 0 is the constant in (3.32).
Let

F*={(r,u) € D,F(r,n) < a}.

Consider
(r ,u) € Fou,
Then

Proposition 3.3. The flow (r(t), u(t)) does not leave D before it reaches F'.
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Proof. If p = (AO + %) —=z, we obtain from (3.30) that
“2

Lk N—14

/

OF (r, i) :k( ¢ +O<%))% > 0.

ou ,u%" 7 kN4
So, the flow does not leave D.
Similarly, if u = <A0 — é) ——7, then we obtain from (3.30) that
u2"/) g N-1

%;’“) :k(— (’;9 +O(%))]€35Tj) < 0.

lj,Z
So, the flow does not leave D.

Suppose now |r — ro| = d. Using (3.29) and (3.32), we obtain

F(r, p)

(3.33 k(=4 (B'((ro £ 6V (ro £ )79 + o(%)) k(}%)

N—2 1
<h(=A= B3V () 1 - n)kﬂﬂ)) = ay,

if n > 0 is small.
O

Proof of Theorem 1.2 if ry is a minimum of r?V (r). We will prove that F, and thus F,
has a critical point in D.
Define

T = {h:h(r, p) = (ki (r, p), ho(r, 1)) € D, (r, 1) € D
h(r,p) = (r, p), if |1 — ro| = 6}.
Let

= inf F .
¢ = inf max (h(r, )

We claim that c is a critical value of F. To prove this, we need to prove

(i) o < ¢ < ao;
(11) Sup|r77‘0\:5 F(h(Ta ,l,l,)) < aq, Vhel.
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To prove (ii), let h € I'. Then for any 7 with |F — ry| = J, we have h(7, u) = (7, p).
Thus, by (3.33),

F(h(r,1)) = Flr, 1) < as.

Now we prove (i). It is easy to see that

c < Q.

For any h = (hy, he) € I'. Then hy(r, u) = r, if |1 — 19| = 6. Define

ill(T) = hy(r, Ao(r)k%)-
Then hy(r) =, if |r — 79| = 6. So, there is a 7 € (o — 8,70 + 6), such that

iLl(f) =Ty-

Let i = hy(7, Ao(7)k™>=4). Then from (3.29) and(3.32),

(M

max F(h(r, p)) > F(h(F, A)k™=1) = F(ro, fi)

(r.u)€D
N-2 1 1
:k(—A _ (B'(T%V(TO))XN%) + O( D) )) s sy > Q-
k~~N— kN1

APPENDIX A. ENERGY EXPANSION

In the appendix, we always assume that

20— . 2j—1)n
k k
where 0 is the zero vector in R¥ "2, and r € [rg — §, 79 + d].

Let recall that

z; = (rcos ,7sin

and
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k
= Usjpe

7=1
In this section, we will calculate I(W, ).

Proposition A.1. If N > 5,

B BV(r) < B 1
I(Whp) = k(A+ 1,u2 o Z_ZQ pN=2|z, ixi\N—Q +O(ﬂ2+a))’

where B;, i = 1,2, is some positive constant, A > 0 is a constant, and r = |x1|.

Proof. By using the symmetry, we have
2—1p7
DY I

[ 10w
j=1 i=1
:k(/RNUOpLZ/ U_,fl;lle,u
[+ Y e O )
T Pt 2 (s = 2 V257

=

Let

Qj:{y: y=(y,y") =R x RN 2, <|y| > Cos—}

/ w,
RN

Then,

2*:]{) ‘W’ 2
91

([ v [ vt of [ v m)))

=2

Note that for y € Q, |y — z;| > |y — z1]. So, for any a > 0 small,

N—2

k k
U, , < .
Z Tiskh — (1+u\y—x1 az |CU¢—£E1 N 2—a

1=2 1=2

Thus,

23
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k
/ UZZ,/AQ(Z Usci,A)Q*/2 = O((E)N%)
= i=2
On the other hand, it is easy to show

k

: B k\N—2t
2% —1 _ 0 MyN—=2+0
/Qli_zzle,u Umi’ﬂ_zﬂN—zul_mﬂN—z+O(( ) )

=2 K

Thus, we have proved

[
RN

k

* * B 1
. [Uoa|® + E :MN_2|1“1 R + 12+

i=2
Finally,
[ v@m.,
RN
k
_ 2
_k(/RN V(|y|)Uw1,u+O(/RN ;UII,MUEMJ))
But
1
Ug, AUy, = O ,
o Vet = O ()
Moreover,
[ vz, =ve [ v+o(5)
RN T1,M /-112 ]RN ’Ll}2+o— ‘
So,

1 1 1
= k(V() [ U+ 0(m + )

[ v,

We also need to calculate %ﬂ""‘).

Proposition A.2. We have

k

HWey) _ (L2200 5 BN =D o(-L),

8,u u3 P ,LLN71|$1 _ xi|N72 /,L3+U
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where B;, i = 1,2, is same positive constant in Proposition A.1
Proof. The proof of this proposition is similar to the proof of Proposition A.1. So we just

sketch it.
We have

Wy (0. ey OUs
T_k(@ —1)2/ Ui = Ui

aWr,u 2*—1 aWT,N
+ [ v, S - [ we )

It is easy to check that for y € 0y,

N L .
‘a_/,l, (W'I'2 U31 S —2 U221 ,ul Z Umu#) — 31,/;(2 UIi,M)2 2
=2
Thus,
) 8 8 i d 2/
5V = a2 g U V) + O (UE (U ).
1=2 1=2
As a result,
* 2*—1 aW sH
2 / Wi
0 k 1
2% * 2*—1
/Ql U+ 2 /Q A Z:;U 0 +O(u3+”)
. 0 e 1
~ ou /Q v Z_ZQUW +O(u3+")
Similarly,

OWrp 1 [ 0UZ 1
v = vy [ S o 5.

The proof is thus completed.
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