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Abstract

A two component system driven by both interface tension and interface curvature is studied
with a new phase field model. We show that if the curvature impact in the system is strong
enough, there exist bubble profiles. A bubble profile describes a pattern of an inner core of one
component surround by an outer membrane of the other component. It is a radial solution to a
fourth order nonlinear PDE. We show the existence of such profiles in all dimensions, although
the profile is unstable if the dimension is greater than two.

1 Introduction

The Allen-Cahn equation [1] is often used to study the phase separation phenomenon in condensed
matter physics. It is a second order nonlinear parabolic equation,

ug(w,t) = €€ Au(xz,t) — f(u(z,t)), €D CR", t>0, (1.1)

with the Neumann boundary condition on dD. The parameter € is positive and small. The nonlinear
function f is a balanced cubic function, such as f(u) = u(u — 1/2)(u — 1). It can be viewed as the
negative gradient flow, in L? space, of the free energy functional

62 .
Lpo(u) = /D CIVu? + Fw) dr, (1.2)

where F(u) = [ f(u)du is the anti-derivative of f. If f(u) = u(u — 1/2)(u — 1), then F(u) =
Tu?(1 —u)?. A steady state u = u(z) of (1.1), i.e. a critical point of (1.2), is a solution of

—e2Au(z) + f(u(z)) =0, if z € D; 81(;_5;'17) =0, if x € 0D (1.3)
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where v is the outward normal vector to 0D.

The free energy (1.2) models a two component system whose conformation solely depends on
the tension of the interfaces separating the two components. If u(z) is close to 0, then the first
component occupies z; if u(z) is close to 1, then the second component occupies z. The interfaces
separating the two components are the regions where u(x) is somewhat greater than 0 and less than
1. Given a configuration u(x) with z in an interface region, we may roughly interpret —e?Au + f(u)
as the mean curvature of the interface at z. The equation (1.3) then states that at an equilibrium
state, the mean curvature of the interface must be everywhere equal to 0.

In such an interface tension driven system, it is difficult for the two components to co-exist.
Casten and Holland [3] (and Matano [10] independently) showed that when D is bounded and
convex, any non-constant solution of (1.3) must be unstable. More recently in the study of polymer
blends (see Tang and Freed [17]) an additional molecular weight dependent curvature term is found
to contribute to the free energy. In this case one observes two immiscible homopolymers, one forming
an outer membrane and the other constituting an inner core.

This morphology pattern may be explained phenomenologically by a very simple model. Suppose
that the two homopolymers are separated by a closed curve I in R2. We propose that the free energy
1., of the system is given by

L(T) =/ng2 d,s+7/rds, (1.4)

where s is the length element, & is the curvature and v > 0 is a parameter. If we assume that T is
a circle of radius p, then the curvature is everywhere % and (1.4) becomes

2
i 2myp, (1.5)
p

A stable configuration is obtained by minimizing (1.5) with respect to p. One finds that

p= ﬁ (1.6)

In this paper we study a more sophisticated phase field version of (1.4). As in the Allen-Cahn
approach we let u be the phase field variable of a two component system. Again u(z) ~ 0 means
that z is taken by one component; u(z) &~ 1 means that z is taken by the other component. The
free energy of the system is now

I(w) = %/D|Au—f(u)|2d$+7/D[%|Vu|2+F(u)]dx. (17)

Here Au— f(u) plays the role of curvature and 1|Vu|? + F(u) plays the role of length element. The
constant 1/2 in front of the first integral is put there for simplicity later.

We will study (1.7) in the general case of n dimensions, i.e. D C R™ with n being a positive
integer. Although in (1.4) we have assumed that « is positive, here we allow v to be negative if
n > 3. In this paper we are only interested in the situation where (1.7) is sufficiently different from
(1.2), so we assume that || is small.

Therefore (1.7) is a phase field version of (1.4) in n dimensions. In n dimensions I in (1.4) is an
n — 1 dimensional hyper-surface, k¥ the mean curvature of the surface and ds the surface element.



The Euler-Lagrange equation of (1.7) is a fourth order partial differential equation
A(Au — f(u) = f'(u)(Au — f(u)) — v(Au — f(u)) =0. (1.8)
If D has a boundary, then we have the Neumann boundary conditions

Ou _ O(Au— f(u)) _

If we introduce a new variable v = Au — f(u), then (1.8) may be written as a system
Au—f(u)—v=0, Av— f'(u)v—yv=0 in D. (1.10)

If D has a boundary, then u and v both should satisfy the Neumann boundary condition there.

In this paper we study the outer membrane/inner core pattern mentioned earlier using (1.7).
More specifically we seek radially symmetric solutions of (1.8). The domain D is the entire space
R"™. We require that the solutions u = u(|z|) = u(r) satisfy the conditions

u(0) > 0, Tlggo u(r) = 0. (1.11)

We often call such a solution a bubble profile. Recall that v is either positive or negative, but |vy| is
sufficiently small. This means that the curvature term in the free energy (1.7) is significant and the
problem is very different from the Allen-Cahn problem (1.2). Note that the Allen-Cahn problem
does not have a bubble profile solution.

Our main results are the existence of bubble profiles in 1-dimension and 2-dimensions if v is
positive and sufficiently small, and the existence of bubble profiles in n = 3 and n > 4 dimensions
if v is negative and sufficiently close to 0.

These results are proved by the so-called localized energy method which is a combination of
the Liapunov-Schmidt reduction argument and variational techniques. Let p be the location of the
interface of bubble profile u in the sense that u(p) = 1/2. Near p, u has a rather particular shape.
This shape is mostly described by a function H given in (2.1). When r is much less than p, u(r) is
close to 1; when r is much larger than p, u(r) is close to 0. Much of our paper is devoted to locating
p- We will see that as v — 0, p = 00. The construction is divided into two steps: in the first step,
we fix p large and solve a nonlinear problem with an orthogonal condition. In the next step, we
locate p by finding a critical point for a reduced energy function involving p only. For the localized
energy method used in other problems, see [2, 4, 5, 7, 8, 16, 15].

There is a well know relationship between I,. and fr ds, i.e. I. without the curvature part:
Ji ds is the Gamma-limit of I, to as € = 0. See De Giorgi [6], Modica and Mortola [12], Modica
[11], Kohn and Sternberg [9], etc, for this theory. We do not know if a Gamma-convergence theory
between I and I, is available. The curvature part of I., i.e. fr k2 ds, is known as the Willmore
functional. More information on this functional and its relationship to the curvature part of I, i.e.
Jp(Au — f(u))? dz, may be found in Moser [13].

Our paper is organized as follows. In Sections 2 and 3 we show the existence of the two dimen-
sional bubble profile when # is positive and small. Qur proof is a Lyapunov-Schmidt type reduction
procedure. We give all the details in the proof. In section 4 we show the existence of the bubble
profile in the n > 4 case; the n = 1 case is studied in Section 5 and the n = 3 case in Section 5.
Certain steps in these proofs are similar so we omit some details in the latter cases. We include a
section to discuss the stability of the solutions. A technical estimate is proved in the appendix.



The function F in (1.7) is assumed to be smooth. F(0) = F(1) = 0 and F(u) > 0 if u # 0 and
u # 1. We also assume that F"'(0) = F"(1). As |u| = o0, F(u) = oo.

We often encounter quantities that depend on p, the radius of a bubble. For instance we have
a family of approximate solutions w that depend on both r, the radial coordinate, and p. We often
write w(r; p) to emphasize w’s dependence on r and p. However when the dependence on p is less
important in a piece of argument, we will write w(r) instead.

We use L2(R"™) and H?(R") to denote the subspaces of radial functions in L?(R"™) and H*(R")
respectively. The inner product in L?(R"™) is denoted by (,). We write ¢ L 1 if (¢,7) = 0. We use
| - [loo to denote the L>®-norm and || - ||2 the L?-norm of a function.

2 n=2
In two dimensions, the phase field problem (1.7) is consistent with the simple model (1.4).

Theorem 2.1 When 7y is positive and sufficiently small, there exists a bubble profile. The radius of
the bubble is # +o(y1/?).

We let H = H(y) be the solution of the following ODE on (—o0, 00).

H'— f(H)=0, y€(~c0,00), lm H(y) =1, lm H(y)=0, HO)=1/2 (21
Yy——0o0 Yy—00
We define a positive constant 7 by
T= /R(l’i'(y))2 dy. (2.2)

Because H has a first integral $(H')? — F(H) = 0 by (2.1), we also have

= / ' JFG) ds. (2.3)
0

The derivative of H, H'(y), decays to 0 exponentially fast as |y| — co. More precisely we have a > 0
and k£ < 0 such that

H'(y) = kel + O(e2)). (2.4)
Necessarily
@ = £'(0) = £'(1). (2.5)
In the special case f(H) = H(H —1/2)(H — 1)
1 T 1 1
H(y) = ~[tanh(———_) +1], and a = —, k= ——. 2.6
(¥) 2[311(2\/5) ], and a 7 7 (2.6)
For each
PE (g ) (27)
227 2y
we construct an approximate solution w to (1.8) of the form
w(r;p) = H(r — p) + B(r; p) (2.8)



where
B(r;p) = cipe”"" +ca,pre " (2.9)

The constants ¢;,, and ¢s,, are so chosen that w'(0) = w"’(0) = 0, which ensures that S(w) is regular
at » = 0. More explicitly

o (- 1 H!"(—
T e N ) (2.10)
1 H"(—
C2,p = E(H,(_p) - 61(2 p) ) (211)
Note that I
cl,p, = % + O(e 2%), C2,p = O(e 2%). (2.12)

In this paper a weighted L*-norm is of particular importance. Define
<l = Sup () eI 7! (2.13)

where p is a small positive number. This p is independent of v and p. How small g should be will
become clear later.
We denote the left side of (1.8) by S(u), i.e.

S(u) = (A = f'(w) = )[Au — f(u)] (2.14)
where A — f'(u) — v is viewed as an operator. The equation (1.8) becomes S(u) = 0.
Lemma 2.2 ||S(w)|l« = O(y).
Proof. We start with an estimate of Aw — f(w). Calculations show that

aw = f(w) = 0"+ T pw) 4 g,

We consider two cases of r: r € (0,6p) and r € (6p, 00) where 6 € (0,1). In the first case

B" = f(w) + f(H) = O(e™*),
and

H+p _ H=p=-H(=p) f)=F0

T r r
= 0 (-0) + O™

by the mean value theorem, the decay rates of H'(y) on y € (—o0,—(1 — 6)p) and the fact that
[|8]lcc = O(e~ 7). Hence
Aw — f(w) = O(e~(170)0), (2.15)

Consequently
(Aw(r) — f(w(r)))e“lr—p| = O(e(_(l_g)‘”'“)p). (2.16)



In the second case

(B" = fw) + f(H))e!™ Pl = O(e=®(r + 1)e"¥e!"=l)

= O(efap(r_‘_l)efareu(ﬁl-p)) — O(ef(afp)p)

and

H'(r=p)+8'0) il _ oL,
r p
Therefore we deduce that 1

p) =0(y*?).

[Aw — f(w)l« = O(

If we write S(w) as Az — f'(w)z — vz with z = Aw — f(w), then (2.17) implies that

[yzll. = O(y").

The term Az is further broken into z" and 27' for which

2" = 6 (sw) — g + (T
and D ) .
2= Ly L g+ ) - 1)),

We again consider two cases of r. If r € (0,8p), then

HI+6I

2M(p)etlT—pl =
(r) (=

)Heulepl + O(ef(afu)p)_
Since 8" — (f(H + B8) — f(H))' is 0 at r = 0, according to the mean value theorem,

@~ (JH + B)— J(H)Y) = 0(e™).

Therefore we have, on (0,6p),

[Az — (HI i BI)" - E(H, i ﬂl)']e““_”‘ = O(e~(*=mP),
T T T
Note that ' ' / / " " ! ! n "
(H +ﬁ),,+l(H +ﬂ),:H +p" H' + B —rH" -8

r r r r r3
Together with (2.16) we find

_ H" 4 g™ _ H' + 3 —rH" —Tﬂ"
T r3

[Az — f'(w)z
Since H" + 3" is 0 at r = 0, the mean value theorem implies

HY + 8" ur—sl — o(e~(1-0atmp).
" e O(e )

wlr—pl — (—(1=0)a+u)py.
le O(e )

(2.17)

(2.18)

(2.19)



Using Taylor expansions shows that
H' +ﬁl —rH" — T’ﬁ"
| -

| < C’supre(o,gp)ﬂH(‘l) (r—p) + 189 (),

which implies
H + 6/ —rH" — Tﬁ"
r3

eklr—rl — 0(6(—(1—9)a+u)p)'
Therefore, for r € (0,80p),
(Az — fl(w)z)eu\r—pl — 0(6(—(1—9)a+u)p)_
When r > 0p, similar argument shows that

B HIII + /3/// 3 HI + IBI _ ,,,,HII _ ,’,,IBII B f,(w) HI + IBI
r r3 r

[Az — f'(w)z ]eu\r—pl = O(e~(e=1r),

In this case

H' ! _ e H!" — " 1
+p TZ rj3 eklr—nl — 0(p_2)7
and
(B gy D gt 2 ) = POV 457 = J @ iy O(e““p‘“”’ )

Therefore for r > 6p, )
(Az — f'(w)z)etl™ 7l = 0(?)-

Combining the two cases of r we find
1

1Az — f'(w)z]l« = 0(p2

) =00),

which implies, by (2.18), that ||S(w)|l« = O(v).

Lemma 2.3 I[(w) = 2777'(% +9p) + O(4®) where T is given in (2.2).
Proof. 1t is easy to see that

[ su-gwpa = o [0+ 2L g+ sanprar
R2

/RJ%'V“"Z +Fw)]dz = 2r / TR W) + F)lrdr + 0(e)

—0o0

2w7p 4+ O(e™2%).

The lemma follows. 5
In the next section we will show that there is a particular p, called p,, and a small function

#(+; py) such that S(w(-; p,) + ¢(:; p,)) = 0.



3 Reduction to one dimension

Around w the linearized operator of S is L, given by

Ly = (A~ f'(w))*¢ — (Aw — f(w)) f"(w)d — ¥(A = f'(w))¢. (3.1)

Here (A — f'(w))? and A — f’(w) are linear operators.
We define an approximate kernel

h(r;p) = H'(r — p) + by, pe™ % + by pre™ " (3.2)

where by , = O(e*) and by , = O(e”?”) are constants so chosen that h'(0) = h"'(0) = 0.
Let 7, be the projection operator to the subspace perpendicular to h:

h
mpg=g— 2 h. (3.3)
AT

We view

M = {w(;p): (3.4)

1 2
——<p< —}
2y/2y 2y
as a one-dimensional submanifold in H2(R?). At each w(-;p) we define an approximate normal
subspace

F,= {6 € H:(E) : 6 L h(;p)}. (3.5)
In each F, we look for a ¢(-; p) so that
mpS(w(-5p) + ¢(5p)) = 0. (3.6)

We write the last equation as
7, (S(w) + Ly¢ + N,pp) =0

where the higher order, nonlinear operator IV, is given by

Npp = —(A—fl(w) =N (w+¢) - f(w) - f(w)$)
—(f'(w+¢) = f'(w))(A¢ - (f(w + ¢) — f(w)))

—(Aw = f(W)(f'(w + ¢) = f'(w) = f"(w)¢). (3.7)
We would like to turn the last equation to the following fixed point form
o= _(Wpr)il(ﬂ'pS(w) + 77pr(¢))- (3.8)

To this end we need to specify the function space in which the fixed point argument is made and
also establish the fact that m,L, is invertible.
First we note that L, can be defined as an operator from H2(R?) to L2(R?).

Lemma 3.1 The operator n,L, from {¢ € HX(R*) : ¢ L h(;;p)} to {n € L2(R?) : n L h(;;p)}
satisfies the Fredholm Alternative. In particular the operator is onto if it is one-to-one.



Proof. Let ¢ = f'(0) — f'(w) and z = Aw — f(w), we note that

Lip = (A=f'(w)¢—zf"(w)¢—v(A~f(w)¢
= (A= f1(0)%¢—v(A~f(0)¢
+(A = £1(0))gd + a(A = f'(w)p — vq¢ — 2" (w)¢

= Qo+ Pp¢
and I oh
mpLpp = Qe+ P — ( p¢’2 ) (3.9)
lIAll3
with
Qp = (A—[(0)¢0—v(A-f(0)e (3.10)
Pp = (A—f(0)g¢+q(A — f'(w)p — g9 — 2f" (w)¢. (3.11)

Note that @ is a well-behaved operator, an isometry indeed, from H?(R?) to L2(R?). Let us denote
{¢ € L2(R?) : ¢ L h} by {h}*. If we are given an equation 7,L,¢ = n with n € LZ(R?) N {h}+ and
with ¢ expected in H(R?) N {h}*, we apply the operator 7,Q~! to both sides to find

(Lo, h)
1113

o+ WP[Q_IPP¢ - Q_lh] = 7TPQ_177. (3.12)

However we must show that the operator m,Q~" used to make this transformation is one-to-one
and onto from L2(R2) N {h}t to HA(R?) N {h}*. To show that the operator is one-to-one, we let
7,Q71g = 0 for some g € L2(R?) N {h}*. There exists ¢ € R such that Q~1g = ch, i.e. cQh = g.
Multiply by h and integrate to find

:c/R2 th:c/Rz,[l(A_fl(O))hF+'V(|Vh|2+f'(0)h2)].

Hence ¢ = 0, and consequently g = 0. To show that m,Q~" is onto, we must be able to solve
7,Q 1g = £ for any £ € HE(R?) N {h}*, i.e. welook for ¢ € R and g € L2(R?) N {h}* such that

Q lg+ch=¢, ie g+cQh=QE.
Multiply the last equation by h and integrate to find

o Jm hQEdz
" [ hQhda’

We then find g by setting g = Q& — cQh. This g is necessarily perpendicular to h.

For the Fredholm Alternative to hold in (3.12), the operator from H2(R?) to itself on the left of
(3.12) side should be of the form Identity + Compact. To see the compactness we note that both ¢
and z in P, decay to 0 at co. Hence by the Sobolev imbedding theory Q! P, is a compact operator.

Also a rank one operator like ¢ — <L”’;Ld|’|’2h) h is compact.
2

More importantly we prove the following estimate for 7,L, under the weighted L*°-norm.




Lemma 3.2 There exists C > 0 independent of v and p such that if m,L,¢p = g, ¢ L h and
g € C(R), then
ll¢lle + lAgll < Cllgll-

Before we prove this lemma, we need a technical estimate. This estimate was used by Ni and
Wei [14]. They stated a version on a bounded ball. We include a proof for our entire space situation
in the appendix.

Lemma 3.3 Let ¢ € C?[0,00) satisfy ¢'(0) = 0, lim,_,o ¢(r) = 0, and

8+ %~ 101 < cor .

Then
2ecy

f1(0)

]e—u\r—pl_

[¢(r)] < ello(p)] +

Proof of Lemma 3.2. Let n,L,¢ = g with ¢ L h. Then there exists di,, € R such that
Lp¢ =g + dl,ph-

If the lemma does not hold, then we may assume that ||g|l« = o(1) and ||@||« + [|Ad||« = 1. Let
= A¢ — f'(w)g. Clearly ||¢]|« = O(1) and 1) satisfies

Ap — fl(w)p — 2f"(w)p — v = di b +g

where z = Aw — f(w).
If we multiply the last equation by h and integrate over R2, then integration by parts shows that

olp) = diplp [ Wdr +0(1).
R
This implies that di,, = o(1). It follows that

1A¢ = F(w)plle < llzf" (W)llool1llx + YlIDllx + d,pllRll« + [lglle = o(1)-

Now we prove that [[¢]|. = o(1). Assume this is not true. Then we consider ¢) = ”Jf”*, which
satisfies ||¢||« = 1 and

1A% = f'(w)dllx = o(1) (3.13)

following the last estimate. Simple elliptic regularity argument shows that zZ( — p) converges in

C?.(R) to a function ¥ as v — 0. It follows that ||®||. < 1 and ¥ satisfies ¥" — f'(H)¥ = 0.
Therefore U = dyH' for some dy € R. This implies that
(), b = da(2mp7) + 0(p). (3.14)
On the other hand we multiply
1

(A — f'(w)g) =9

N1

10



by h and integrate over R? to find that

O(1) = (9, h).

Combined with (3.14) we deduce that dy = 0 and ¢)(- — p) = 0 in C? _(R). We now return to (3.13)
and find

1A% — £'(0)ll« < 1A — /)Pl + [|(f' (w) = F'(0))P]l« = o(1). (3.15)
Since ¥(p) = o(1), Lemma 3.3 implies that ||¢)||. = o(1). A contradiction to ||¢||, = 1.
Finally we consider ¢ in the equation

Aj— fl(w)p =1

with |||« = o(1). Again elliptic regularity argument shows that ¢(- — p) — dsH' in C?(R) for
some d3 € R. Our assumption ¢ | h implies that d3 = 0. Hence ¢(- — p) — 0 in C2 (R). As before

loc
1A¢ — £'(0)gll« < 1Pl + I(f'(w) = £'(0))gll+ = o(1).

Lemma 3.3 again implies that ||¢||« = o(1). Moreover

1A]l < [1A¢ = f'(w)oll« + If (w)gllx < [l9lls + 1 (w)llocl|Bllx = o(1).

We have now reached a contradiction to [|¢||« + [|A¢||« = 1. o
A consequence of Lemma 3.2 is the following.

Lemma 3.4 7,L,: H}(R*) n{h}* — L%(R*) N {h}' is a one-to-one and onto map. Moreover
(mpL,)~" is also an operator from {g € C[0,00) : ||g|l« < 00, g L h} to {¢p € C?[0,00) : ¢'(0) =
0, |||« + [|A@|l« < 00, ¢ L h}, whose norm is bounded by a constant independent of v and p.

Proof. Lemma 3.2 shows that m,L, is one-to-one. Hence it is onto by the Fredholm Alternative,
Lemma 3.1. Since every continuous function with finite || - ||«-norm is in L2(R?), one can apply
(mpL,)~" to such a function. Lemma 3.2 yields a bound of (m,L,)~" in this setting.

Now we define the proper space on which the fixed point argument is done. Let

Z,={p € C?[0,00) : ¢'(0) =0, [|ll« < o0, [Af|lx < oo, ¢ L h(;p)}. (3.16)

In Z, we define a norm
lpllz = 18ll« + |Ad]|. (3.17)

We write the right side of (3.8) as T,¢. Based on Lemmas 3.2 and 3.4 we know that T, is
well-defined on Z,. We show that T}, is a contraction map with a fixed point.

Lemma 3.5 There exists ¢(-; p) so that ||¢(-; p)|lz = O(y) and 7,S(w + ¢) = 0.
Proof. Define a closed ball B, in Z,:
B, ={p € Z,:|¢llz < din}. (3.18)

Here d; is a positive constant independent of v and p to be fixed soon. For each ¢ € B,, we have,
by Lemmas 2.2 and 3.2,

IT,¢llz < C(ISW)ll« + IN,¢ll.) < Cly + Cillgll) < Cly + Crdiy?).

11



The last quantity is less than dijy when v is small, if we choose d; to be sufficiently large. This
shows that T, maps B, into itself. Next we take ¢; and ¢» from B, and consider

1Tpp1 — Tod2llz < C||Npp1 — Npgallx < Cllgr — dallz([|¢1lz + [|62]]2) < Cdivlldr — ¢2|z-
Hence T, is a contraction map when < is small. This yields a unique solution ¢ of 7,S(w + ¢) =0
in Bp. 0O

To find a particular p = p, so that S(w(-; py) + ¢(-;py)) = 0, we consider the free energy of
w5 p) + (5 p): I(w(s5p) + ¢(+5p))-

Lemma 3.6 1. I(w(;p) + ¢(5p) = 27r7'(2—1p +79p) + O(v*®).

1
2. There exists p, = oz + o(y"Y/?) such that S(w (- p,) + 6(-;p,)) = 0.

Proof. Expanding I shows that

Iw+¢)

1w)+ [ Swids+ [ oL,gda+0([ (16 +(a¢f]do
R2 R2 R2

1 0
I(w) + o S(w)qﬁduc—l—i/R2 ¢Lp¢d$_|_0(||¢”32/0 e 3HIr=rly g

= Iw)+ [ Sw)pdz + %/ ¢Lypdz + O(l|¢l1%p)
R2 R?

I(w) + S(w)pdx + %/ L, dx + O(y*?) (3.19)
R2 R2

by Lemma 3.5. From the equation 7,S(w + ¢) = 0 we find, since ¢ L h,

0

[ Swrods = [ Swiods+ [ srpdes [ onoda

Sweds + [ oLysdo+ 06l 1IN0l [ e 0 )

R2

S(w)¢pdx + / L, dx + O(y*?).
R2

R2
We can rewrite (3.19) as

I(w+ ¢) = I(w) + % - S(w)¢pdx + O(y*®). (3.20)

Using Lemmas 2.2 and 3.5 we deduce

/R2 S(w)pde = O(||S(w)]l-||4]]« / e 2Pl rdr) = O(|S(w) [l I¢llp) = O(*?).

R2

We have now turned (3.20) to
I(w+ ¢) = I(w) + O(v*?). (3.21)
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The first part of the lemma then follows from Lemma 2.3.
If we minimize I(w(-; p) + ¢(-; p)) with respect to p, then based on the first part of this lemma
we know that I(w(;p) + ¢(-;p)) is minimized at some p, and

_ 1 —1/2
pw—mﬂ)(v )-

We now show that if p = p,, S(w(:; py) + ¢(-; p)) = 0. Since 7,S(w + ¢) = 0, there exists ¢, such
that S(w + ¢) = ¢,h. We differentiate I(w + ¢) with respect to p to find

dI(w(-;p) + ¢(;p)) ow  0¢ ow ,0¢

i = S(w ¢)(—+8—)dw—cp[ ha_pd z + apd x].
Here
h— dz = 27r/ ) +5) rdr = 2n(tp + o(p));
¢ L h implies that 8(;5
89 - R2 6_P¢d
Then o6 © a1
h——dx| < *27r/ — e Hr=rl pdp = «0(p) = o(p).
[ hoedsi <ligllen [ 15 191.0(p) = ofp)
Therefore a1( 9
w +
T cp(2n7p + 0(p)).

If p is equal to p,, then
0 = ¢y, (2m7py + 0(py)),

ie. c,, =0and S(w(;py) +¢(50) =0. O
The last lemma completes the proof of Theorem 2.1.
4 n>4
If we consider (1.4) for n > 4, then with I being a n — 1 dimensional sphere
L(T) = wn1p" " +wp1yp™ ! (4.1)

where w,_1 is the area of n — 1 dimensional unit sphere. It is clear that if v > 0, the right side is
increasing in p. Only if v < 0, there exists a critical point, but this critical point is a maximum. In
the phase field model, we have the similar phenomenon.

Theorem 4.1 When v is negative and sufficiently close to 0, there exists a bubble profile. The

radius of the bubble is ,/% +o(y1/?).

13



Proof. The proof of this theorem is almost identical to the proof of Theorem 2.1. The main
difference occurs in the last step:

(n _ 1)2pn73
( 2

where w,_1 is the area of the n — 1 dimensional unit sphere. If v < 0, the above quantity has a
mazimum at

I(w+¢) = w7 +9p" ) 4 o(rBM/2) (4.2)

(n—1(n-23)
The detail of the proof is left to the reader.

y = +0(’Y_1/2)-

5 n=1

When n = 1, the phase field problem is far more complex than (1.4). A zero dimensional sphere is
just the union of two points in R, and p is half the distance between the two points. This sphere
has no curvature. Hence

I.(T) = 2, (5.1)

a constant independent of p. No conclusion can be drawn (5.1). But for the phase field problem, we
have the following result.

Theorem 5.1 When «y is positive and sufficiently small, there exists a bubble profile. The radius of
the bubble is 5 log = + o(log 7).

Let 11 1
=, = log-). 5.2
~glog2) (52)

For each p satisfying (5.2) we define an approximate solution w. Compared to the n =2 and n > 4
cases, the construction of w is more complex. We let

H'(=p)

1
pG(Elog

ar

a(z;p) = co pe **, where cg,, = , so that H'(—p) +a'(0) = 0. (5.3)

Now we define a function g(y; p) on (—o0, 00) which is the solution of

9" = f'(H)g + aly + p)(f'(0) — f'(H)) = d, H', 9(0) = —a(p). (5.4)

In (5.4) the constant d, is chosen so that
dp /R(JLI')2 dy = /Ra(y +p)(£'(0) = f'(H(y)) H'(y) dy. (5.5)
This ensures that (5.4) is solvable. The condition g(0) = —a(p) gives a unique solution. We calculate

the right side of (5.5):

[ o+ - FEGOIE W = alp) [ OB - H") dy
R R

= a(p)[-e"H"(y) —ae™VH'Y)][,="% = alp) lim [e"*H"(y) + ae™ " H'(y)]
Yy——00
= 2aka(p) = 2k%e™2% 4 o(e™2%),

14



Therefore -
2k2e 200
d, = % + o(e~2%). (5.6)

We include g in the construction of w. One last term is 8 which is given as

F"0)e5p 20z

B(x;p) = c1,067 " + c2, 7™ + 62 ¢ (5.7)
It is a solution of ()2
(0* — £)28 = (0~ /o) (5.9

The constants ¢;,, and ¢z, are chosen so that

B'(0) = —H'(=p) —a'(0) — g'(—p) = =g'(—p), B"(0)=—-H"(—p)—a"(0)—g"(-p). (5.9)
Here
c1,p = 0(e72%), ¢z, = O(e™2%). (5.10)
Now we set
w(z; p) = H(z — p) + a(z; p) + 9(z — p; p) + B(; p).- (5.11)

Our choice of 3 ensures that w'(0) = w"’'(0) = 0. Note that this § is different from the one (2.9)
used in the n = 2 case.
We again need the weighted L° norm:

i€l = Sggl((w)le”'z’pl- (5.12)

Lemma 5.2 There exists 6 > 0 independent of v and p such that |S(w)||« = O(y'*?).
Proof. We start with w" — f(w). Note that

w'" — f(w) = H'+ao"+¢"+p"—f(H+a+g+p)

o' +g"+ 8"+ f(H) - f(H+a+g+p)

= d"+4¢"+8" - f(H)(a+g+p)
~(f(H+a+g+p)— f(H) - f(H)(a+g+B)

= dH +p" - f(H)B—-(f(H+a+g+p) - f(H) - f'(H)(a+g+0)).

At this point we consider two cases of z: z € (0,0p) and z € (8p,00) where 8 € (0,1). In the
first case we write

w’ — f(w) = a1 + 8~ £0)8 - L0074 N(as ) (513)

with

(0) a?). (5.14)

Ni(z;p) = (f'(0) = f/(H)B = (f(H +a+ g+ ) - f(H) = f(H)(a+ g+ p) - —

Note that

sup{| N1 (z; p)| + |Ni(z,p)| + |N{'(z,p)| : @ € (0,6p)} = O(e*"*).

15



Hence
sup{(|N1(z; p)| + | N{ (z, p)| + [N} (z, p))e**~*1 : z € (0,0p)} = O(e~ 02~ 1)r), (5.15)

From the equation that (3 satisfies we see that 8" — f'(0)8 — @oﬂ = ¢z, **. Hence (5.13)
becomes
w" — f(w) = d,H' + ¢35 + N1 (r; p)-

To estimate the size of c3,, note that the derivative of w' — f(w) at = 0 is 0, by our construction
of w. Therefore
0 =d,H"(-p) — acz,, + O(e3%9¢).

This shows, with (5.6), that c3 , = O(e~3%9%) and
n
6” _ fI(O),B _ f 2(0) o? = 0(6—30ap)‘

Now we can write (5.13) as
w" - f(w) = d,H' + M(z; p) (5.16)

with M satisfying
sup{(|M(z; p)| + |M' (2, p)| + | M" (z, p))e"*~* - & € (0,6p)} = O(e™BP21). (5.17)
For the second case, z > @p, since a(z) = O(e~%)e~% and [(z) = O(e~2%)ze=2,

w' = flw) = dH +p"—f(H)B- (fH+a+g+p) - fH) - f(H)(a+g+h)
d,H' + M(r; p)

with
sup{(|M (z; p)| + |M'(z, p)| + |M" (z, p)|)e"!* #| : @ € (Bp,00)} = O(e” *F01)7) (5.18)

for some §; > 0.
Combining (5.17) and (5.18) we have

w" — f(w)=d,H + M

with
|M]]. + (||, = O(e~ 2*Fo0r) (5.19)

by choosing 6 to be sufficiently close to 1 and p sufficiently small.
Now we estimate S(w) by (5.19). In

S(w) = (D* = f'(w) =) (dH' + M) = dp(f'(H) = f'(w)H' = vd, H' + (D* — f'(w) = 7)M,

clearly ||yd,H'||« = O(+?) and ||(D? — f'(w) —v) M ||« = O(y'*+?) for some & > 0. As for d,(f'(H) —
f'(w))H', note that

1, (f'(H) = f' () H' ||« < dp|lf'(H) = f'(w)loo | H'[|« = d,O(e™) = O(e™*).
Hence [|S(w)[l. = O(v'**). o
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4k‘4 —4ap 2k2 —2ap
Lemma 5.3 I(w) = e + (21 — eT) +0(y%).
T

Proof. . Using (5.18) and (5.6) we find

3 ] " = ) ds

o [T 2 _dap 2 _dap Akte— 4w 2
- dp/o (H'(z — p)) dz + o(e™%) = dr +o(e™*) = 2" 4 o2,

[ 510 + P ds
R
= /oo[|w'|2 +2F (w)]dz = /oo[|H'(x —p)+ () + 2F(H + )] dz + o(e2)
0 0
= 22 /:p H'(4)? dy + /OOQ[QH’o/ +2f(H)a+ (o) + f/(H)o?|dz + o(e~2%)
= 272 /o: H'(y)?dy + 2H'(z — p)a(z)|°=F + /000(0/)2 dr + /0OQ f'(H)a? dx + o(e 2")

—p [eS)
= 27— 2/ k*e** dy — 2H'(—p)a(0) + 2a? / o? dz + o(e™2)
—0o0 0
2,—2ap 2k2 —2ap k2 —2ap 2k2 —2ap
= 27— ke _ e y e +o(e 2%) = 27’—67+0('y).
a a a a

This proves the lemma.

The rest of the proof is analogous to that of Theorem 2.1. Define h as in (3.2). For each p we find
é(-;p) L h(-;p) so that 7,S(w + ¢) = 0. The Contraction Mapping Principle used in the argument
also shows, with the help of Lemma, 5.2, that

leC; )l = O(*), 118" (5Pl = O(F' ). (5.20)

We then expand I(w + ¢) as follows.

I{w+ ¢) I(w)+/RS(w)¢dw+%/R¢Lp¢dm+0('y3+35)

Iw)+3 [ Sweds+0()

Iw) + OIS g.) [~ e e da + 0(r#+)
= I(w) + O(y*T2).

Finally we minimize I (w(-; p)+¢(+; p)) with respect to p. Lemma 5.3 shows that I(w+¢) is minimized
at some

1 YT 1
=——log— log —). 21
p’Y 2a og 4ak2 + 0( 0og ,y) (5 )

This completes the proof of Theorem 5.1.
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6 n=3
When n = 3, for a sphere k = % and [ k*ds = p%47rp2 = 47. Hence
I(T) = 47 + 47yp?, (6.1)

which has no critical point for positive p. The phase field problem is again very different.
Let I(s) be the inverse function of

2k2 —2ap
poy - (6.2)
T
Here [ : (—00,0) — (0,00). As s tends to 0, I(s) grows to oo, but more slowly than —3-log(—s)
does.

Theorem 6.1 When v is negative and sufficiently close to 0, there exists a bubble profile. The
radius of the bubble is I(y) + o(I(7)).

We let

pe (0 ). 63

We define a family of approximate solutions

w(r) = H(r —p) + B(r; p) (6.4)
where § is the same as the one (2.9) used in the n = 2 case.
Lemma 6.2 There exists § > 0 independent of v and p so that ||S(w)||, = O(y(119)/2),

Proof. We start with

s jw) = "+ 2 )+ o),
As in (2.17),
a0 = f(@)ll = 0() = O(5s). (6.5)
Let 2 = Aw — f(w). In S(w) = (A — f'(w))z — vz we first note from the above estimate that
el = 0G)-

It suffices to estimate Az — f'(w)z. In the n = 3 case, A = LD?r for radial functions. Hence we
deduce that

Az = fl(w)z = —(D*= f'(w))(rz)
(D? = f'())(rB)" —r(f(w) — f(H)) + 2H']

{(D? = f1(w)(rp)" — r(f(w) = F(H))] = 2(f'(w) — f'(H)H'}.

IR |—3 |~
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When r € (0p,00) where 8 € (0,1) is independent of p and -y, we find
! c —a —ar —a —ar ,—a|r—p|
|Az — fl(w)z] < ;[e Pre " +e "Pre e P11

hence for small y
[(Az = f'(w)z)[et!"#l = O(e”@+00P), 7€ (9, p), (6.6)

for some §; > 0 where d; is independent of p and +.
When r € (0,60p) we write

Az — fl(w)z
= %{(D2 = f@)(rB)" = f/O)rB + f(0)rB — r(f(w) — f(H))] - 2(f'(w) — f'(H))H'}
= %{(D2 = f1(0)*(rB) + (f'(0) = f'(w))(D? = f'(0))(rp)
+(D? = f'(w))(f'(0)rB — r(f(w) — f(H)) = 2(f'(w) = f'(H))H'}.

The largest term appears to be (D? — f'(0))?(r43). However

(D* = f'(0))*(rf) = r(D? — f'(0))*B +4(D* — f'(0)' = 4(D? —a®)B' = 8a’cz pe™ ",
which is small. By choosing 6 close to 1 and p small we find 6 > 0 such that

|Az — f(w)z|e"I™=#l = O(e~(@+9)P) € (0,6p). (6.7)
From (6.6) and (6.7) we deduce that
1Az — f'(w)2]l. = Oe™ (*F00)°) = O(1+9)/2)

for some § > 0 independent of p and v, and consequently by (6.5) [|S(w)||« = O(v3+9/2).

2k2 —2ap
Lemma 6.3 I(w) = 4n[27 — eT + 472 + O(y**?) for some § > 0 independent of p and .

Proof. Tt is easy to see that
1 2 S 2 2 2 —a
[§|Vw| + F(w)]dz = 47 [§(H (r—p)+8)+ F(H+ B)]r’dr = 4n7p* + O(pe~*). (6.8)
R3 0
The estimate of the first part of I(w) is a bit more involved. Note that

3 ) A0 = s
H'+ ()
.

= o [+ 2 S + 8P
0

= 271'/ |rB" +28' + 2H' — rf'(H)B dr + O(e*(20+51)p)
0

= 27r/ |2H' — 2ac1,,6” % +rer e (f'(0) — f/(H))|? dr + O(e~(2a+0)r)
0
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for some d; > 0, where d; is independent of p and ~. Here ¢1,, comes from the definition (2.9) of 3.
We now write the last quantity as 27 (Ty + 1o + T3 + Ty + T5 + 1) where

oo 5 o0 - 2k2e—2ap
T, = / 4(H")? dr = / 4(H")  dy = 47 — / 4(H")  dy = 41 — —0 7 O(e )
0 —p —o0
[es} . 2H'(— 2 2k2 —2ap
T, = / 4a’ci ,e " dr = 2] ,a = (H'(=p)) == + O(e 3)
0 k) ) a a
B = /0 rPel e 2 (f1(0) = f(H)*dr = O(e” P+0%)

o0 (o]
T, = / —SaH’che—”dr:—8(101,,,6_‘”’/ H'(y)e~* dy
0 —-p

oo

i / derpH're™*" (f/(0) = f'(H) dr = dey o™ / (v + p)H'e= ¥ (f'(0) = f'(H)) dy
0 -pP
T, = o, [ e 0) ~ 1) dr = 0 ),
0
We focus on T5. Note that
Ty = ey, pe | / H'()y(f'(0) = f'(H))e " dy + / H'(y)p(f'(0) = f'(H))e™ ¥ dy]
—p —p

where

/ T H @)y (F(0) — f(H))e dy

= [ wro-mmyeray

—p

/ H' ' (0)ye™ — H'(ye=)")dy — H" (y)ye™ |, + H'(y)(ye~¥)'|,
—p

= 2 /_Oo H'(y)e™ dy — H"(—p)pe® — H'(—p)e*” — aH'(—p)pe”;
/ T H W) (0) - f(H))e dy]

o0
= o[ @ -m"e vdy
—p
= p[=H"(y)e ™%, — aH'(y)e *¥|Z,]
= D) + aH(—p)e].
Hence
o0
Ts = 4c1,pe*‘“’[2a/ H'(y)e ¥ dy — H'(—p)e™],
-p

and consequently

4k%e200

Ty + ...+ Ts = 47 — 4y ,H'(—p) + O(e2o+00r) = 47 — ”

+ O(e~Petonr),
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Therefore

1 2 2,—2ap
: /R JAw = f(w)] dr = dn(2r - e Ty | O(eatonn), (6.9)
The lemma now follows from (6.8) and (6.9).
Note that in I(w),
2k2e—2ar 5
2T — Y +7p

is maximized at p = I(y). For each p satisfying (6.3) we find ¢ L h so that 7,S(w + ¢) = 0.
Here h is again given by (3.2). As we use the fixed point argument, Lemma 6.2 implies that
l6]l« = O(y(1+9)/2), Then we find

IHlw+¢) = Iw)+= " S(w)gdx + O(y1+?)

= I(w) + O(IS@)Il I4) / " e ulrsl 2y

= I(w) + O(IS(w)]llI¢llxp*)
= I(w) + O ()).

Finally we maximize I(w + ¢) with respect to p. Theorem 6.1 follows from Lemma 6.3.

7 Discussion

The stability of the bubble profiles constructed in this paper should depend on the dimension of
the space. But first it is obvious that by differentiating the equation of a bubble solution u =
u(z1, 2, ..., Tn) with respect to z;, j = 1,2,...,n, one obtains an eigenfunction with eigenvalue 0.
This 0 eigenvalue is a consequence of the translation invariance of our problem. We can only discuss
stability modulo translation.

In the cases n = 3 and n > 4, we have obtained the solutions by maximizing I(w + ¢) with
respect to p. This means that a solution is a maximum of I when restricted in the submanifold
{w(+; p) + ¢(-; p)}. Hence the solution must be unstable; actually it must be a saddle point.

In the cases n = 1 and n = 2, our conjecture is that the solutions are stable modulo translation.
We will present a complete spectral analysis of all the bubble solutions elsewhere.

A  Proof of Lemma 3.3

The proof mainly consists of comparison argument. We separate the two cases r € (p,o0) and

r € (0,p).
In the case r € (p, 00), we consider an auxiliary function

Aly) =e ", y=r—pe (0,00). (1.1)

In this appendix we work with the y-coordinate instead of the r-coordinate. Then

AA-FOA = A+ 2 poya = e BT pg)em
y+p y+p
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= - ey < LW

provided that p is sufficiently small. Now we have ¢, as a function of y as well, such that

¢I

6" + —2— — ['(0)¢] < coe ™, lim () =0.

y+p y—oo

Let 9
N 0

R(y) = [4(0) + F514W) - 6),

and we have 5
R(0) = 19(0) + 51 = 9(0) > 0, lim R(y) =0,
and B 5 "0
R+ T P OR <[00+ T AG) + o <o (12)

We claim R(y) > 0 on (0,00). Otherwise there exists y. € (0,00) such that R(y) > R(y.) for all
y € (0,00) and R(y«) < 0. But at this minimum point ys.,

R"(y.) 2 0, R'(y«) =0, —f'(0)R(y«) > 0.

Therefore R(y)
11 y* !
R"(y.) + tp F(0)R(y«) > 0,
a contradiction to (1.2). Hence R(y) >0, i.e.
2c9 ,
8(0) < [19(0)] + Fresle "
One can carry out a similar argument with
) = 20
R(y) = [[¢(0)] + f,(o)]A(y) +¢(y)
to conclude that 9%
_ 20 g -
8(6) < [9(0)] + g1~
Hence we obtain
16| < [16(0)] + —e-feh. (1.3)
- f'(0)

In the case r € (0, p), we construct A(y), with y =r — p € (—p,0) exactly as in [14]. Let x be a
smooth cut-off function such that

x(t)=1for |t| <1, x(¢) =0for [t| >2, 0 < x <1 (1.4)
Define the following auxiliary function

Ay) = e + (e"° — e")x(u(y + p)) (1.5)
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where 1
Yo=—p+ —. (1.6)
I
If y € (—p,y0), then A(y) = e*¥° and
AI
A+ YA = — F1(0)e!Yo < —F1(0)eMY.
75~ [O4= =@ < =1(0)

Ify € (Z/ano + %)7 then

I 1
HYo < oMY < P«yo’ A > uyo’ T« < u;
et < e < ee (y) >e 2_y+p_'u
hence
" A ! 2 ! 2 —1 g fl(o)
A"+ vtp F0)A<Ow)e! — f(0)e" < O(u”)e! —e™ f(0)e"? < —2—e€”y
since p is sufficiently small. If y € (yo + 3,0), then A(y) = e*¥ and ;3 < 4; hence
Al s f'(0)
AII o A< 2 Ll 1) by < ny
o rOA<l + - e < Lo,

provided p is small. Therefore for all y € (—p,0),

A !
wr - roas e aip =0 (17)

If we have ¢, as a function of y, such that

8"+ o~ 001 < coet™ on (=p,0), #(=p) =0,
then let 9ec
0
= Aly) — .
R(y) = [|#(0)| + f,(o)] (y) — 9(y)
Calculations show that
o % — f'(O)R < —[|#(0)] + %]%f)e”y + coet¥ <0, (1.8)

and
R(0) >0, R'(—p) =0.

We then claim that R(y) > 0 for all y € (—p,0). Otherwise there exists y. € [—p,0) such that
R(y.) < 0 and R(y) > R(y.) for all y € (—p,0). However at this y., R"(y.) > 0, R'(y«) = 0, and
—f"(0)R(y«) > 0. A contradiction to (1.8). Therefore R(y) > 0, i.e.

2ecy

f1(0)

2ecy

o) < [190)] + 7

JA(y) < ef|4(0)] +

le*?.
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In the last inequality we have used the fact that
A(y) < ee?¥ for all y € (—p,0).

To see this note that A(y) = e*¥ if y > yo + % If y € (yo,y0 + %), Ay) = e"¥ + (e!¥o — eV x(u(y +
p)) < eM¥ since yo < y and etV — e¥ < O there. If y € (—p,yo), then yo — % = —p < y,ie

Yo <y + %, and A(y) = elf¥o < ehH) = eemy. Similarly if we consider

2ecy

R(y) = [19(0)] + f'(o)]A(y) + ¢(y),
we find that 5
€C0 1 ny
—¢(y) < e[l¢(0)] + m]e .
In summary we have, on (—p, 0),
2ecy wy
lp(y)| < e[|#(0)] + f,(o)]e :

The lemma is proved.
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