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Abstract

We establish the existence and multiplicity of semiclassical bound
states of the following nonlinear Schrédinger equation

{ —&’Au+V(z)u = g(z,u) for z € RY

u(z) — 0 as |z| - oo

where V' changes sign and g is super linear with critical or supercritical
growth as |u| — oo.
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1 Introduction and main results

We consider the existence and multiplicity of semiclassical bound states to
the following nonlinear Schrédinger equation

—?Au+V(z)u = g(x,u) forx € RY
oo

u(z) = 0 as |z| = oo
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where 0 < € << 1. We are interested in the case where the potential V
changes sign and the nonlinearity ¢ is super linear with critical or supercrit-
ical growth as |u| — oo. Here we say that V' changes sign if V(z1) < 0 <
V (x9) for some z1, x5 € RY; g 1s super linearif |g(x,u)|/|u| — oo as |u| — oo;
and g is critical or supercritical if N > 3 and c;|u|?* 7! < |g(z,u)| < colul? 1
or only ci|u|>~! < |g(x,u)| with 2* = 2N/(N — 2) for all large |u|. The
motivation of such a study is two-fold. On one hand, it is expected that (P,)
has solutions u € H'(RY) provided, roughly speaking, lim infj;|_,oc V() > 0
(whether or not it changes sign). It is known that by variational arguments
the Dirichlet problem on smooth bounded domain Q C R¥:

~Au+V(2)u= |[ufP?u, inQ, pe(2,2*), u=0 on N

always possesses solutions u € H}(2) without any restriction on the sign of
V(). For the Schrédinger equation (P;), the condition lim inf|; s V(z) > 0
guarantees the embedding ||ul|%: < c: [on (€2 VUl + VT (z)u?), VT(z) =
max{0, V(z)}, hence the variational argument for Dirichlet problem should
work. On the other hand, when V' changes sign the energy functional asso-
ciated to the equation is indefinite and consequently has no mountain-pass
structure, which stimulates the development of new methods.

Problem (P.) arises in finding standing wave solutions of the nonlinear
Schrédinger equation

L0p W

i
(1.1) oy = =5 B¢+ W(z)p — f(z, |¢])e.

A standing wave solution of (1.1) is a solution of the form ¢(z, t) (z)e™ """,

Then ¢(z,t) solves (1.1) if and only if u(x) solves (P.) with V(z) = W(z) —
E,e? = % and g(z,u) = f(z, |u|)u.

Equation (P.) has being extensively investigated in the literatures based
on various assumptions on the potential V' (z) and the nonlinearity g(z,u).
See for example [1, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25| and the
references therein. We summarize the findings in the following three cases:

a) infV > 0 and g is super linear and subcritical. Most of the papers deal
with this case. Floer and Weinstein in [15] considered N =1, g(u) = u® and
studied firstly the existence of single and multiple spike solutions based on a
Lyapunov-Schmidt reductions. This result was extended in higher dimension
and for g(u) = |u[P"2u in Oh [21, 22]. A mountain-pass reduction method has
been subsequently applying to finding solutions of (P.). In [1] Ambrosetti,
Badiale and Cingolani studied concentration phenomena of the solutions at
isolated local minima and maxima of V' with polynomial degeneracy. See
also Grossi [16], Li [20] and Pistoia [23] for related results. In Kang and
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Wei [19] the authors establish the existence of positive solutions with any
prescribed number of spikes clustering around a given local maximum point
of V. Without assumption of non-degeneracy on critical points of V', the
existence of (positive) solutions was handled in del Pino and Felmer [12, 13|
and Jeanjean and Tanaka [18|. For concentrations on higher dimensional sets,
we refer to Ambrosetti, Malchiodi and Ni [2], and M. del Pino, M. Kowalczyk
and Wei [14].

b) min V = 0. Only a few papers investigated this case. Among the results,
Byeon and Wang [6] considered the case with g(u) independent of z, and
Ding and Lin [9] handle the case with g(z,u) is of critically growth.

c) infV < 0 and V' changes sign. Recently, Ding and Szulkin [10] studied
this case. They assumed that the potential V' satisfies

(Vo) V € C(RY), and there exists b > 0 such that the set V, := {z € RV :
V(z) < b} has finite measure,

and the nonlinearity g(z, u) is subcritical (together with some technical con-
ditions of course). They showed that there is a sequence €, — 0 such that
each (P.,) has at least one solution; and if additionally the set V' ~'(0) has
nonempty interior then for all £ small sufficiently (P.) has at least one solu-
tion.

In this paper we study the case different from these a)-c) above. As
mentioned at the beginning, we assume V' changes sign, however, without
the condition intV~'(0) # (. Moreover, we allow that the nonlinearity g
grows critically or supercritically as |u| — oo.

Let G(z,u) = [, g(z,s) ds. We first consider the subcritical case, hence
make the following assumptions:

(V1) The set V_ :={z € RY : V(x) < 0} is nonempty and bounded;

(Go) ¢g1) g € C(RY xR) and g(x,u) = o(|u|) uniformly in z as u — 0;

g2) there are ¢y > 0 and ¢ < 2* such that |g(z,u)| < ¢ (14 |ul??)
for all (z,u);

g3) there are ay > 0, > p > 2 such that G(z,u) > aplulf and
puG(z,u) < g(z,u)u for all (z,u).

For a solution u. of (P.) we denote its energy by

E(u,) ::/ (1(52\vu6|2+\/(x)|u6\2) —G(m,u5)> da.
RN 2
Theorem 1.1. Let (Vy), (V1) and (Gy) be satisfied.
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(1) For any o > 0 there is €, > 0 such that (P.) has at least one solution
u. with 0 < E(u.) < oe"¥ whenever ¢ < &,.

(2) Assuming additionally that g(z,u) is odd in u, for any m € N and
o > 0 there is Eny > 0 such that (Pe) has at least m pairs of solutions
u. with 0 < E(u.) < oe” whenever ¢ < &5

We next deal with the critical case which will be re-stated for distinction
as the following (as considered by Ding and Lin [9)])

Q) { —?Au+V(r)u = g(z,u) + K(z)|u|* v forz € RY

u(z) =0 as |z| — oo.

Assume that the function K (x) is continuous and bounded:
(Ky) K € C(RY) with 0 < inf K < sup K < oo.

We denote similarly the energy of a solution u. of (Q.) by

E.(u) = /RN (% (21wl + V(@) ) — Gl ue) - %K(xﬂug

2*> dzx.

Theorem 1.2. Let (Vp), (V1), (Go) and (Ky) be satisfied. Then the conclu-
sions (1) and (2) of Theorem 1.1 both remain true with (P.) replaced by (Q.)
and E(ug) by E.(ue).

Then we have the following corollary

If the numbers p and p in g3) are equal then the restriction assumption
g2) on g at infinity can be removed. More precisely, assume g satisfies

(Hy) hi) g€ C(RY x R) and g(x,u) = o|u|) uniformly in z as u — 0;

hy) There is p € (2,2*) and ag > 0 such that aglul? < pG(z,u) <
g(z,u)u for all (z,u).

Then we have the following result:

Theorem 1.3. Let (Vp), (Vi) and (Hy) be satisfied. All the conclusions of
Theorem 1.1 remain true.

We note that condition hs) simply implies that there exists p € (2,2%)
such that

(1.2)  aplul? < G(z,u) < ar|ulf for |u| <1, G(z,u)> aglul? for |u|] > 1.



Thus g(x,u) can grow supercritically as |u| — +o00. As examples one may
take the following problems:

(1)e —&?Au+V(z)u = au + |ulP~2u
and
(41). —2Au+ V(2)u = au + [ulPu + |u|72u,

where V satisfies (V4), p € (2,2%),p < ¢ and a € R Defining according to
(Vo) the number bp,x := sup{b > 0 : [V}| < oo}, one sees from Theorems
1.1 and 1.3 that, fixed arbitrarily inf V' < a < by, for any m € N, there
is &, > 0 such that, if ¢ < &, then (i)., respectively (ii)., has m pairs of
solutions u, with |Ju.||z < e 72

We point out that the boundedness assumption (V3) can be replaced by
a slightly general geometric condition, see Remark 2.7.

Our argument is variational. To outline it we consider the subcritical
case. Observe that defining v(z) = u(ex) the equation (P,) is equivalent to

(1.3) —Av + V(ex)v = g(ex, v).

If @ =infV > 0 and g(z,u) = g(u) is independent of z, (1.3) possesses the
limiting equation
—Av +av = g(v)

which has well-known nice properties, for example, it possesses, up to a
translation, a radially symmetric solution, and such a solution is exponen-
tially decreasing as |x| — oo. This helps one to study firstly a cut-off equation
with energy functional satisfying the mountain-pass structure and the Palais-
Smale condition to obtain solutions of the cut-off problem, then, by virtue
of the properties of the limiting equation as well as an elliptic estimate, to
show that, for ¢ > 0 small enough, the solution is in fact a solution of the
original equation (1.3). However, this process does not go in our present
situation because V' changes sign and g(z,u) depends on z. Therefore, we
will consider another equivalent problem as in [9, 10]:

(1.4) —Au+ AV (z)u = Ag(z, u)
with A = e 2 — 0o. The relative functional can be normally written as

Bau) = 5 (1§ = 1) = [ Glavu)

defined on the Hilbert space £ = E; & EY @ FY with u = v~ + u® + u™.
We verify that the functional &, possesses the linking geometry and satisfies

5



the (PS), condition for ¢ < agA!™* with ag > 0 fixed independent of A. We
then decompose the space E = F, @ F) @& F)' so as to get certain minimax
level oA'=% with 0 < o < « for all A sufficiently large, say A > A,. Now
the standard linking theorem applies and yields the desired solutions.

2 Variational setting and preliminaries

Setting A = ¢~2, (P.) is equivalent to the following problem

—Au+ ANV (z)u = Ag(z,u) forzeRY
) { (v)u = Ag(a, v)

u(z) =0 as |z| = oo
and (Q,) is equivalent to
—Au+ AV (2)u = Ag(z,u) + A\K (2)|u|* 2u  for z € RY
(Qn)
u(z) =0 as |z| = oo
for A — co. We are going to prove the following result:
Theorem 2.1. Let (V;), (V1) and (Gy) be satisfied.

(1) For any o > 0 there is A, > 0 such that (Py) has at least one solution
uy for each A > A, satisfying 0 < E(uy) < oA"2 where

A

B(uy) == /RN (%(wwu AV(x)w?) . /\G(x,uA)) dz.

(2) Assuming additionally that g(z,u) is odd in u, for any m € N and
o > 0 there is Apy > 0 such that (Py) has at least m pairs of solutions
uy with 0 < E(u,\) <oA% whenever A > Ay

Theorem 2.2. Let (Vy), (V1), (Go) and (Ko) be satisfied. Then the conclu-
sions (1) and (2) both remain true with (Px) replaced by (Qx) and E(uy) by
E(uy) = E(uy) — 2 [on K(z)|up|*.

Theorem 2.3. Let (Vy), (V1) and (Hy) be satisfied. Then the conclusions
(1) and (2) of Theorem 2.1 both remain true for (P).

Denote V*(z) := max{+V (z), 0} and let E denote the Hilbert space
E := {u € H'(RY): / VH(z)u? < oo}
RN
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equipped with the inner product
(u,v)p = / (VuVu + VT (z)uv)
RN

and the associated norm ||u||%4 = (u,u)g. By (V5), E embeds continuously
in H'(RY). On E we define the bilinear form

ay(u,v) := /]RN (VuVov + AV (z)uv)

with the associated quadrature denoted by a)(u) = ay(u, u).
Consider the functionals

By (u) = %/ (IVul? + AV (2)u?) —/\/ Gz, u)
(2.1) RN RY
= %a)\(u) — A G(z,u).

RN

and

(22) W)= ga) - A/ :

RN

(G(:v, u) + i*K(x)|u 2*) :
Then ®, and ¥, € C'(E,R), and critical points of @, (resp. ¥,) are solutions
of (P,) (resp. (Q.))-

For convenience we will use some direct sum decompositions of E de-
scribed below. Throughout by (-,-)z2 we denote the usual L2-inner product,
and | - |5 the usual L*-norm.

21 E=FE,®E\®E} and E = E{ & Ef

Let Ay := —A + AV denote the selfadjoint operator in L?(R"). By o(A,),
oe(Ay) and o4(A)) we denote the spectrum, the essential spectrum and the
eigenvalues of Ay below A, := info.(A),), respectively. Note that each u €
04(A,) is of finite multiplicity. Moreover, it is possible that o(Ay) = 04(A)),
for example, it occurs when V(x) — oo as |x| — oo. If this is the case we
set A\, = 0.

Lemma 2.4. Suppose (Vy) holds. Then e > Ab.

Proof. Set Wy (z) = A(V(z) —b), Wi = max{£W,, 0} and Dy = —A+ b+
Wyt. By (Vp), the multiplicity operator W, is compact relative to Dy, hence
0e(Ay) C 0e(Dy) C [Ab, 00). O



Remark 2.5. If A\, = oo, then a standard argument shows that £ embeds
compactly into L? hence L? for all p € [2,2*) (cf. [26]). In this case the proofs
of Theorems 2.1 and 2.2 are simpler (in fact one can prove the existence and
multiplicity results for any A > 0). If A, < oo and A, has infinitely many
eigenvalues below A., then )\, is the unique cluster of o4(A,). Taking into
account this possibility, we fix in the following a number &' closing b with

0<V <b.

Let k;, k) and k}\L be the numbers of the negative, zero and positive
eigenvalues which < A\b'. We write nf\i and h)ﬁ- (1<i< kf), # e {-,0,+},
for the eigenvalues and eigenfunctions. Setting

Ly :=span{hy,,- - } and LY :=span{h};, -~ hye},

s
we have the orthogonal decomposition
P=LioLliaLl], u=u +u’+u.
On E we introduce another inner product
(u,v)x == (|Ax|"%u, |Ax]Y?0) 2 + (u®,0°) 2
.)1/

and norm || - ||, := (-,-)y/”. It is easy to see that ||-|| and ||-||5 are equivalent
for each A > 0. There holds the decomposition:

(2.3) E=E; ® E)® FEy with Ef = ExnLY,

orthogonal with respect to both the inner product (-,-)z2 and (-,-),. With
the decomposition (2.3) one has

(2.4) ax(v) = [[ut])3 = |lu"|]5 forallu € E.

Set
LY=L, @ L} ®span{hj,, - ,hjk;r}.

We will also use the following orthogonal decomposition
P=L{eoLls u=u"+u
Correspondingly, one has

(2.5) E=FE{®Ef with E{=1%and E{=L{NE



orthogonal with respect to (+,-)z2 and (-, -),. Remark that
(2.6) M |ul3 < ||lul|; for all u € E§

Let S denote the best Sobolev constant if N > 3:

o S/ (Vul.
RN

From now on we always assume that N > 3 (the proofs of the main results
for N = 1,2 are similar).

Slu

Lemma 2.6. For each s € [2,2*], there is c¢s > 0 such that
s A3 uls < ||ulls for all u € EX.

Proof. Observe that ||u||? = ay(u) for all u € E¢. By (2.6) one sees that
A A

sm;g/ \Vu|2—|—/\V|u\2—/\/ Viuf?
RN RN
—infV
<l + =2V

—inf V'
< (1+ 5 ulg

Cox 3 < ||u

For s € (2,2%), by the Holder inequality and (2.6),

|u|§s(/ |u|2) (/ |u2)
RN RN
2% s—2
2*)2*72

< (BN Mul2) 7 (e flul

for all u € EY, one gets the desired conclusion. O

hence
3 for all u € ES.

u

u

2.2 E:F;GBFf@FXL and F; =X, @Y
Let V, := RY \ V_. Observe that the assumption (V;) implies that

(V1) There are 2o € RY and ¢, € RY with V(z) = 0 and {z +z¢: = €
RN, by-xz >0} C{z: z € R, V(z) > 0}.



This means that there is a hyperplane £ = {z € RY : /{y(z) = 0} + ¢
with V(xo) = 0 such that LT := {z + z¢ : fo(z) > 0} C V.. For example,
let zyp € RY be such that |zo| = max{|z| : = € OV_} (recalling that V_
is bounded). Then the tangent plane of 0B, at z, is a choice of such a
hyperplane. From now on we assume without loss of generality that xq = 0,
that 1s,

(2.7) LT ={zeRY: f(z) >0} CV,.

Indeed, otherwise, V(-) = V(- +x), and §(-, u) = g(- +x0, u) satisfy the same
assumptions on V and g with additionally V' (0) = 0. If @(x) is a solution of
—e2Ai+ V()i = §(z, @) then u(z) = i(z — 2¢) is a solution of (P,). Likely,
setting K (-) = K (-+1,), if @ solves —e?Adi+V ()i = §(z, )+ K (z)|a> 2@
then u(z) = 4(z — xg) solves (Q).

Remark 2.7. We mention that throughout the paper the boundedness as-
sumption (V1) on V_ is used only for checking (V7). Thus the main results
(Theorems 1.1 and 1.2) keep true if (V;) is replaced by (V}).

Let Ay, := —A+ AV, a positive selfadjoint operator in L?, with domain
D, := D(Ay;) C L% D, is a Hilbert space equipped with the inner product
(u,v)py = (Artu, Ax1v)r2. Ay has a bounded inverse Ay} : L? — D,. On
FE we introduce the inner product

(u,v)5 = (A}\fua AifU)LQ = / VuVv + AV (x)uv
]RN

with the associated norm ||ul|, = (u, u)l/ ? Tt is clear that || - || is equivalent

to || - ||g. Let EA denote the Hilbert space of F with norm || - [|x. Define the
map Bj := A\A, V EA—>E)\by

E‘)\AL)LQ—)D)\—)E)\

(where ¢ is the embedding map). Obviously B, is non-negative. Since the
measure |V_| < oo, it is easy to see that B, is compact and C{°(V,) C
ker(B,). Therefore, o(B,) consists of 0 and positive eigenvalues denoted by
Unt > Vxg > -+ with vy; = 0 as j — oo. Let (fy;)jen denote the associated
eigenfunctions: B fy; = vx;fyj, and set py; = l/;jl. Then p,; and f); satisfy

—Afyj + AV frj = AV fyy

There exists also a minimax characterization of such eigenvalues, see [10].
We have the decomposition

(2.8) E=FioFReF, w=wu +uw+w'
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orthogonal with respect to the inner product (-,-), and the bilinear form
ax(+,-), where

F{ :=span({fy; : paj < 1}) and FY :=span({fy; : ur; = 1})-

Remark that, for each A > 0, the spaces F; and FY are finite dimensional.
Observe also that one has the (-, -}, orthogonal decomposition

Ff =X,®Y, where Y\ =ker(B,).
Therefore, we have the (-, -), orthogonal decomposition
(29) E:Z,\@Y,\ where Z,\:F)T@F/{)@X/\

Clearly, Z, is the closure of span{fy; : j € N} with respect to the norm || - ||,.

Note that for u € ker(B,) one has A7}V u = 0, and since A}, is injective,

V" u is the zero of L? which implies u(z) = 0 a.e. in V_. Thus, as a linear
space,

(210) Y=Y ={u€e E: u(z)=0ae. inV_} isindependent of \.

It is clear that {fx;}jen is a base of Z,. Moreover, since p,; — o0
as j — oo, it is easy to check that Z), embeds compactly into L*® for any
s € [2,2%).

For any s > 1 let M), be the closure of Z, in L°. Then {f);} is a base
of M), and each element u € M,, has the representation v = Zj cifxj in
Ls. Let N; be the closure of Y in L°. Then M), N Ny = {0}. Indeed, let

u € Mys N Ny with u = Zj ¢;jfrj- Then, since u € Nj,

u(z) = Zij)\j(:L') =0 forzeV._.
J

One has, for every k£ € N,
0= AV~ (2) faru(z) = Z Cifri AV ™ () Fars
J
hence
0= Z/N i i MV () fa
~ Jr
j
= ce(Axfre, for)2
= C/c/\,uAlc/ V(@) farl?
RN
= CrAUrk
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This implies ¢; = 0, hence u(z) = 0. In addition, since C§° C E C L* with
dense embeddings and F = Z, @ Y, one has L* = M), & N,. Let P denote
the projection onto Ny along M. Since Nj is independent of A (see (2.10)),
there is ¢; > 0 such that |Puls < ¢s|uls for all u € LS. In particular, for any
U = U + Usg EZA@Y,

(2.11) lusls < csluls -

Letting py := max{py; : pa; < 1}, py == min{puy; @ py; > 1} and

LI [ S
a, = — — 1, ay, = - —I,
AT A ut
one has
< —ay||uf); for all u € Fy,
=0 for all u € F?,
(2.12) ax(u) - A
> ayully  for all u € Xy,
= |lul3 forallu e Y.
and
(2.13) ax(u) = ax(w™) + ar(w)

forallu =w™ +w’+wt € F, & FY & F}.

3 The subcritical case: (PS)-conditions
In this and the next sections we deal with the subcritical case.
Invoking the decomposition (2.3), ®, has the representation
1
D, (u) = 3 (JJlut )3 = lu~]13) — )\/ G(z,u) foru=u" +u’+u'.
RN

Set .
g(.’L‘, u) = ig(x: ’LL)U o G(.’E, U)
The assumptions (Gy) implies that
-2 -2
Gl u) > £ gl uu > =Gl w)

and moreover, for any § > 0, there exist ps > 0 and ¢; > 0 such that

g(w,u)

(3.1) :

g(w,u)

<6 if lu| < ps and ( )T < csg(z,u)u if [u| > ps

12



where 7 = ¢/(q — 2).

Recall that a sequence (u,,) C FE is a Palais-Smale sequence at level
¢ € R ((PS). sequence for short) for &, if it satisfies ®,(u,,) — ¢ and
@ (uy,) — 0. @, is said to satisfy the (PS). condition if any (PS). sequence
has a convergent subsequence.

Lemma 3.1. Assume that (Vy) and (Gy) are satisfied. Then any (PS).-
sequence for ®, is bounded.

Proof. Let (u,,) C E be a (PS).-sequence:
@) () > ¢ and P (uy,) — 0.

By assumptions g2) and g3) (a type of Ambrosetti-Rabinowitz conditions)
and the embedding property of E into L® for s € [2,2*], a stand argument
shows that (u,,) is bounded. The details are hence omitted. O

By the above lemma we may assume without loss of generality u,, — u
in E, u,, —» uin Lj_ for 1 < s < 2%, and u,(z) — u(z) a.e. for z € RV,

loc
Clearly u is a critical point of ®,.

Lemma 3.2. Let s € [2,2%). There is a subsequence (um;) such that for each
e > 0, there exists r. > 0 with

limsup/ U, |* < €
j—oo  JBj\B,

for all v > r., where B; := {z € R" : |z| < j}.

Proof. See [|9]. For each j € N, fBj [um|® — fBj |u|* as m — oo. There exists
m; € N such that

1
/ (lum|® — |ul®) < 7 forallm=m;+1, 1 =1,2,3,....

B;j

Without loss of generality we can assume 724, > 7. In particular, for

mj = m; + j we have ,
/ (\umj|S — |u|s) < i

B;j

Observe that there is r. satisfying

(3.2) / uf* <&
RN\B,
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for all » > r.. Since

/ \umj|sz/ (\um].|s—\u|s)+/ |u|s+/ (af* = [, )
Bj\B, Bj Bj\Br By

J

the lemma follows. 0

Recall that, by g1) and go), [g(x, w)| < e1(ful + [u|?™") for all (z,u). Let
firstly (um,)jen be a subsequence of (U )men such that Lemma 3.2 holds for
s = 2. Repeating the argument we can then find a subsequence (Umji)iEN
of (Um,)jen such that Lemma 3.2 holds for s = ¢g. Therefore, for notational
convenience, we assume in the following that Lemma 3.2 holds for both s = 2
and s = ¢ with the same subsequence.

Let n : [0,00) — [0,1] be a smooth function satisfying n(t) = 1 if t <
1, n(t) = 0if t > 2. Define ,(z) = n(2|z|/j)u(z). Clearly,

(3.3) lu— 1]l =0 asj— oc.

Lemma 3.3. We have

sup
lloll<1

/RN (9(@, tm;) = 9(@, i, — ;) = g(z, ) go‘ — 0.

Proof. Note that (3.3) and the local compactness of Sobolev embedding imply
that, for any r > 0,

lim
j—oo

/B () = 92ty = ) = 9(a,) g,‘ — 0

uniformly in ||¢|| < 1. For any € > 0 it follows from (3.2) and (3.3) that

limsup/ [a;|° < / lul* <e
j—oo” JB;\B, RN\B,

14



for all » > r.. Using Lemma 3.2 for s = 2, q we get

lim sup
j—o0

[ ) = o, — ) = g(o.))

= lim sup
j—o0

[,y (o m) = um, ) ol 7)

< ¢, limsup / (Jttm, | + [753]) | 0]
Bj\B;

j—o0

+ ¢y lim sup/ (Jetm; 1971+ 135]771) [
B<

j—o0 J\BT
< ¢ limsup ([tim; | 2B\B,) + |il12(8;\8,)) |©l2
j—00

+ eotimsup (i, 5205,y + [l (1) 11
< czel/? -]i- el D/,

which implies the conclusion. O
Lemma 3.4. We have:

1) @x(tpm,; — ;) — ¢ — Pr(u);

2) @ (U, — 1) — 0.
Proof. One has

DO (Un; — Ty) = Py (Um;) — PA(Ty)
+ A (G(z, Um;) — G(Z, U, — U5) — G(x,Ty)) -

RN

It follows from (3.3) that ®,(@;) — ®x(u). Using (3.3) again and following
an argument (likely for the Brézis-Lieb lemma, see e.g. [27]), it is not difficult
to check that

/RN (G(z, um;) — G(@, um,; — ;) — G(z,%;)) — 0.

We thus get 1).
To verify 2), observe that, for any ¢ € E,

D (U, — Uj)p = O (Um;) — )\ (1))
+ /\/ (g(a:, umj) —g(z, Upn; — ;) — g(x,ﬁj))go.
RN

15



By Lemma 3.3 we get

lim (g(a:, Um;) — 9(T, Uy — Ty5) — g(z, ﬂj))cp =0

m—»0oQ RN
uniformly in ||¢|| < 1, proving 2). O
In the following we will utilize the decomposition (2.5): F = E{ & E§.
Recall that dim(FE{) < co. Write

1 . o~ ,d e
Upy; 2= Uy — Uj = Vj + U;

Then v? = (ufnj —u?) + (u? — @) — 0 and, by Lemma 3.4, @A(u}nj) —

¢ — ®x(u), ®)\(uy,,) — 0. It follows from

1

2 J RN
that
A G(z,ul ) — c— ®y(u).
RN !
Using (g3),
Byl ) — 20 i > (= LY ez 4 0(1)
A m; ,U, A m; m; = 2 ,U, VRPN J
hence
2 )
(3.4) limsup [log 3 < 20¢~ 2a(w)
j—00 M — 2

Moreover, by (3.1) and the Hélder inequality,

9(z, up,,)
5518+ o) = [ gl yup, =2 [ EEIm
RN RN

z, U,,}n TN 1/7
(3.5) < A|u) |2+ Aes / M lul 15,
’ jubiy 1205\ im ’

c—®y(u)+o(1)\ "
gAéluinj@Hca( A(A) ()) [t (271

1

where 7' = 7/(7 — 1) = ¢/2. Remark that um,, —u = u,,. + (i; — u), hence

it follows from (3.3) that

U, —u — 0 if and only if u}nj — 0.

16



Lemma 3.5. Under the assumptions of Lemma 3.1, there is oy > 0 inde-
pendent of X such that, for any (PS).-sequence (up) for ®x with u, — u,
either u,, — u along a subsequence or

010)\17% S Cc— CI>,\(u)

Proof. Assume (u,,) has no convergent subsequences. Then using the above
notations lim inf;_, ||u}nj | > 0. Since v{ — 0, we may assume |u;|3 < 2|v§|3
and |uj[3, < 2[v$]3,. Choosing § = ¥ /4 (see (2.6)), it follows from (3.5) and
Lemma 2.6 that

|v;|g‘r’

c— ®y(u) +o(1)\ /"
A
1 _1_ 22l
< gl + X ET (e - @)+ (1) gl

b
o+ o(0) < %5 gl + A2 (

hence,
1 2*—2/

[0S]3 + 0(1) < 2, A" 77T (¢ — By ()M |vE13
or equivalently

2* 27/

1+ 0(1) < 26 A 77T (¢ — &, (u)) V7.

We thus get
N
aA' 2 <c— @y (u)

with g > 0 independent of A\, proving the lemma. O

As a consequence, we obtain the following

Lemma 3.6. Under the assumptions of Lemma 3.1, ®y satisfies the (PS).
condition for all c < ao)\k%.

4 The subcritical case: proof of Theorem 2.1

We use the decomposition of (2.8), thus the functional has the form

1 1

Dy (u) = §a,\(U+) + ia,\(u_) — )\/RN G(z,u)

foru =u +u'+ut € Fy @FY®F), see (2.12) and (2.13). The following two
lemmas are standard, which imply that ®, possesses the linking structure.

17



Lemma 4.1. Assume (Vy), (V1) and (Gy) are satisfied. There exist ay, py >
0 such that ®x(u) > 0 if u € B \ {0} and ®x(u) > ax if u € OB, , where
B ={u€ Fy : lully < pa

Lemma 4.2. Under the assumptions of Lemma 4.1, for any X\ > 0 and any
finite-dimensional subspace F' C E, there is R = R(\, F) > 0 such that
@,y (u) <0 for all u € F with ||uf|x» > R.

By virtue of the above lemmas, if ®, satisfies the (PS). for all ¢ > 0,
then Theorem 2.1 follows from standard critical point theory. Unfortunately,
in general, ®, does not satisfy (PS), for all ¢ > 0. However, by Lemma 3.6,
for A\ large enough and c, small sufficiently, ®, satisfies (PS),. Thus, in
the following we will find special finite-dimensional subspaces by which we
construct sufficiently small minimax levels.

In order to construct such levels we let —Ap denote the unique selfadjoint
operator on V, associated to the form (u,v)y := [px VuVv, with the form
domain

Hp(Vy):={ue H'R"): u(z) =0forae z RV \V, }.

Note that when 9V, is smooth H(V,) coincides with H;(V,), and —Ap =
—A with Dirichlet 0-boundary condition on 9V, .
Let {P) : v > 0} denote the spectrum family of —Ap and ) = PY'L?.

Proposition 4.3. dim F) = oo for any v > 0.

Proof. 1t suffices to show that 0 € o.(—Ap). Indeed, since o(—A) =
oc(—A) = [0,00), there is a sequence ¢; € C&°(RY) with ¢l = 1 and
|Ap;la — 0. Since V_ is bounded, for each j, we can choose z; € RY so that
Sbj = QDJ( +$J) € CgO(V+) Then |§5j|2 =1 and |V¢J|2 = |VQ0J|2 — 0. Thus
0e O-e(_AD)- O

Proposition 4.4. For any s € [2,2*), there is a sequence @; € C3°(V4) with
lpjls =1 and |Vjls = 0.

Proof. It is known that
inf {/ |V¢7|2 . ’L/J € CgO(RN), |¢7|3 = 1} =0.
RN

Since V_ is bounded, for each j, we can choose z; € RY so that ¢; :=
T,/)j(' +.’L'j) € CSO(V+) Then ‘Soj‘s = |@/Jj|s =1 and ‘VQOJ"S = |V¢]|5 — 0. O

18



Define .
F\:=F, @ F)aY.
By g3) and (2.11), foru = u™ +u® +u™ € 2%
(4.1) / G(z,u) > colulb > colu™|?.
RN

Hence, for u = u~ 4+ u® +ut € F),

1
D)\ (u) = ia,\(u) - )\/ G(z,u)
]RN
1 1 _
= —ax(u") — zax(u”") — )\/ G(z,u)
2 2 RN
< Loah) = Lozl = Acolut P
-9 A 9 A A+ 0 p
= )~ el IR,

where Jy € C'(E,R) defined by
1

Ja(v) = _/ (V0P + AV (2)0?) — ACO/ P
2 RN RN
For any 6 > 0 one can choose @5 € C§°(V4) with |¢s|, = 1 and supp s C
B, (0) N LT (see (2.7)) so that |[Vys|3 < §. Set
(4.2) ex(z) = ps(\2x).
Then
supp ex C By-1/2,,(0) N LT,

hence e, € Y. Remark that for ¢ > 0,
¢ 2 2
Ja(tey) = = IVerl” + AV (z)|er|” — Acot? lexl?
2 RN RN
_x [t? _
— \-3 (5/ ‘V(,D5|2 T 7 ()\ 1/23:) ‘(‘05‘2 _ Cotp/ |(‘06|P>
RN RN

= N2 (tes)

where I, € C}(FE,R) defined by

1
I(u) :== 5 [RN \Vu|2 +V (/\_1/23:) \U\Z - co/

Jul?.
RN
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Plainly,

I.(t N p—2 Vosl? + V(A 12 2 P2
Htléaox A(tps) = W - Vs| (A )| ps] .

Since V(0) = 0 and note that supp @5 C B, (0), there is A5 > 0 such that

V(/\fl/Qx) < for all |z| <rs and A > Ag.

|S05|%

This implies that

p—2 P/(p=2)
(4.3) max[,\(tg05) S p(pee) /D (20) .

Therefore, for all A > Ag,

p—2 p/(p=2) y1-%
(4.4) max D, (tps) < 2p(peo) /D (20) A

Therefore, we have

Lemma 4.5. Under the assumptions of Lemma 4.1, for any o > 0 there
erists Ay > 0, such that, for each A > A,, there is €5 € E with ||éx]x > pa
and

Oy(u) < o N7
max ®(u) S oA,

where py s from Lemma 4.1 and Fy = F_ @ FY @ Re,,.
Proof. Choose 6 > 0 so small that

p—2 p/(p—2)
2p(pcg)?/ P—2) (20) <o

and let e, € F be the function defined by (4.2). Take A, = As. Let £y, > 0
be such that ty[lex]x > pr and ®y(tey) < 0 for all ¢ > ¢5. Then by (4.4),
€ := ey satisfies the requirements. I

In general, for any m € N, one can choose m functions cp5 € C§° (V4 ) such
that supp 5 N supp% =0 if i # k, |g06\p =1and V@2 < 6. Let v > 0
be such that supp ¢ C B,y (0) for j = 1,...,m. Set

e(z) = pl(\2z) for j=1,...m

and
m __ 1 m
Hs = span{e,, ..., e} }.
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Observe that for each u = > | ciel € H,

Vul? = 0-2/ Vej2,

[, 1vu > lof [, 17

JRCIE Zw IRCLES
RN

/G(x,u)zZ/ G(z,cjel).
RN j:]- RN

Py(u) = Z @5 (c;€})

and
Hence

and as before
(I)/\(Cye,\) )‘1__I/\(|CJ|6)\)
Set _
Bs == max{|p}5: i =1,...,m},

and choose Am(; so that
~1/2 g m A
V(A 7r) < G for all |z| < 7 and A > A,s.
s
As before, one obtains easily the following

m(p — 2) /(p=2) \1_N
4.5 sup @ — = 7 (95PN \I
(45) uEHl?\'g alu) < 2p(pco)?/ 2=2) (20)

for all A > A,
Using this estimate we can prove easily the following

Lemma 4.6. Under the assumptions of Lemma 4.1, for any m € N and
o > 0 there exist A, > 0, such that, for each X > A, there exists an
m-dimenstonal subspace Hy,, satisfying

sup @y (u) < oA
UGF/\m

where Fyy, = Fy @ FY @ Hyy,
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Proof. Choose 6 > 0 small so that
_mp=2) osw/-2)
2p(pco)2/(p*2) 26) S g,

and take Hy,, = HY;. Then (4.5) yields the conclusion as required. O

Proof of Theorem 2.1. First we prove the existence. Invoking Lemma 4.5 set
Q) = {u =y+ter: yeF, ®FY,t >0, |ulx < R}

with R = R(A, F)) > 0 where F) is the finite dimensional subspace from
Lemma 4.5 and R is the associated number from Lemma 4.2. Then

max ®,(Q,) < oA,
and, by Lemma 4.2 and the fact that (I)A|F;@F§ <0,

Qy(u) <0 for u € Q.

The standard linking argument yields a (PS).,-sequence with a) < ¢, <
oA=% . Since by Lemma 3.6 ®, satisfies the (PS).,-condition, there is uy €
E such that ®\(uy) = 0 and @) (u,) = ¢y, hence the existence is proved.

Next we establish the multiplicity. By virtue of Lemma 4.6, for any m €
N, we can choose a m-dimensional subspace H),, such that max ®,(F),,) <
oA % if A > Apo. By Lemma 4.2, there is R > 0 (depending on A and m)
such that ®y(u) < 0 for all u € Fy,, \ Bkg-

Denote the set of all symmetric (in the sense that —A = A) and closed
subsets of E by X, for each A € X let gen(A) be the Krasnoselski genus and

i(A) := I{Iel%?n gen(h(A) NOB; ),

where T, is the set of all odd homeomorphisms h € C(E, E), and B;FA was
defined in Lemma 4.1. Then i is a version of Benci’s pseudoindex [4]. Let

c;:= inf sup®Py(u), 1<j<m.
T A2 uea A J

Since ®5(u) > ay for all u € OB], (see Lemma 4.1) and since i(Fy,) =

dim Fy,, = m,

N
ay < <...<ep < osup By (u) <o
UEH/\m

It follows from Lemma 3.6 that ®, satisfies the (PS).-condition at all levels
c;. By the usual critical point theory, all ¢; are critical levels and ®, has at
least m pairs of nontrivial critical points. O
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5 The critical case: proof of Theorem 2.2

We now turn to the critical case, that is, to prove Theorem 2.2 hence Theorem
1.2. We will consider the functional ¥, along the way as before. Let

and
Flz,u) = %f(x,u)u — F(z,u) = G(z,u) + %K(m)

Then for any § > 0 there exist ps > 0 and c; > 0 such that

flz,u)

u

flau) _ . N .
(5.1) < ¢ if |ul < ps and < ¢ F(xyu) if |u| > ps

u
First of all we prove the following lemma.

Lemma 5.1. Assume that (Vp), (V1), (Go) and (K,) are satisfied. There is
ag > 0 independent of X\ such that any (PS). sequence with ¢ < ao)\l_%
contains a convergent subsequence.

Proof. Let (u,,) be a (PS). sequence:
U, (up) = ¢ and W) (u,) — 0.

A standard argument shows that (u,,) is bounded.

We may assume without loss of generality that u,, — u in E. Similarly to
Lemma 3.2 one checks that, for s € [2,2*) and any £ > 0, along a subsequence
(tm,), there exists 7. > 0 such that

limsup/ [Um, |* < €
j—o0 B;\B;

for all r > r,, where B; := {z € RV : |z| < j}. Define 4;(z) = n(2|x\/j) (x)
where 7 : [0,00) — [O 1] be a smooth function satisfying n(t) = 1 if ¢ <
1, n(t) =0if t > 2. We claim

(5.2) Ua(Um; = U5) = ¢ — Uy(u)
and
(5.3) W\ (2, — ;) = 0.
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In fact, observe that
U (tm,; — U5) = Wx(um;) — Wa(a;)
+A4Nmmuwg—auww—ag—0uﬁ»)
A 2% ~ 2%
+§ RNK(:C) (\um]| — [Um; — 1y ).
Along the lines in proving the Brézis-Lieb lemma, it is not difficult to check
that the second and the third terms on the right-hand side above tends to 0

as j — oo, respectively. Thus W (uy,; — ;) — ¢ — ¥, (u) and one gets (5.2).
Similarly, observe that for any ¢ € F,

7 —|ay

\Il,)\(um] - ﬂ’j)(P
= W) (um; ) — WA ()¢

+/\/1;N (g(xaumj) = 9(, U, — U5) — g(x,ﬂj))tp

+A/ K (@) (| [
RN

As the proof of Lemma 3.3 the second term on the right-hand side above
goes to 0 uniformly in ||¢||x < 1, and so does the third term by a standard
argument. This proves (5.3), that is, W (u,,; — ;) — 0.

Now using the decomposition (2.5) we write y; := ty,, — @; = yg +yi €
E{®F%. Then by (5.2) and (5.3) one has Uy (y;) = ¢—¥,(u) and ¥} (y;) — 0.
It follows then that

Uy — [ty — 5> 72 (g, — i) — \%\2*_2%‘) ©.

A F(z,y;) = c— ¥y(u).

RN

Noting that y¢ — 0 and using (5.1), for any ¢ > 0,

e f x,Y;
508 +o) =2 [ steuy =2 [ LWy
RN RN Yj

N N2\ 2N
< Aly;l3 + Acs (/ <M> ) ly;
(5.4) Wil>ps Yj

_ 2/N
<o(1)+ Aé\yﬂg + A (cfﬂu))

2
2%

2
2*

Y5

5 € —2 e
< o) + FllwslE + Gt (e = Taw)*™ 115
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Remark that u,,; —u = y;+ (4; —u), hence uy,; —u — 0 if and only if y — 0.
Assume Uy,; /> u. Then liminf; , [|y$]|x > 0 and ¢ — ¥y (u) > 0. Choosing
d =V'/4, it follows from (5.4) that

3 e 2 e
IR < o(1) + e A w (e — Uy ()™ (|5 13-
This implies that
1 S 02)\%_1 (C - \I/)\(U)) .
The proof is hereby completed. O
In the following we will use the decomposition (2.8). Plainly we have
Lemma 5.2. Assume that (Vy), (V1), (Go) and (Ky) are satisfied.
(1°) For each A > 1, there exists px > 0 such that ky := inf U5(0B] ) > 0
where Bf ={u e F{ : |Jullx < pa}.
(2°) For any 0 # e € FY there is R > py such that (¥))|ag < 0 where
Q={u=u"+ul+se:u"+ul e Fy @ F,s >0, |ullx < R}.
(3°) For any finite dimensional subspace F C Fy, there is Rp > py such
that Wy(u) < inf W\(B} ) for allu € Fy, ® F\ @ F with ||u]x > Rp.
Lemma 5.3. Under the assumptions of Lemma 5.1, for any o > 0 there

exists Ay > 0, such that, for each X > A,, there is ey € Fy \ {0} such that

max U, (u) < o A7,
UEFO-)\

where F,) := F;” @ Fy @ Re,.
Proof. This follows from Lemma 4.5 and that
1 .

(5.5) Uy(z) = o) — > |y K(z)u

O

Lemma 5.4. Under the assumptions of Lemma 5.1, for any m € N and
o > 0 there exist Ay > 0, such that, for each A > A, there exists an
m-dimensional subspace Hy, C F\ satisfying

sup Wy (u) < oA

UEF\m
where Fyy, = Fy @ FY @ Hyyp,.
Proof. 1t follows from (5.5) and Lemma 4.6. O

Proof of Theorem 2.2. With Lemma 5.1 to Lemma 5.4, repeating the corre-
sponding arguments of the proof of Theorem 2.1 one gets easily the desired
results. [
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6 The case y = p: proof of Theorem 2.3

Proof of Theorem 2.3. By hy) we define

g(z,u) for —-1<u<1
G(x,u) == ¢ g(z,1)|ulfu foru>1
—g(z, =) |[ulP?u for u < —1

and u
G(x,u) :/0 g(z, s)ds.
Then §(z,u) satisfies (Gy), and moreover
e |ulP™t < gz, u)| < eolulP™t and efulP < Gz, u) < colul?
for all (z,u).

Consider the equation

—Au+ ANV (2)u = \j(z,u) for z € RY
®y) { (z)u = Aj(, u)

u(zr) =0 as |z| — oo,

where V' satisfies (V5) — (V7). Let uy be the solutions of (R,) given by
Theorem 2.1. Then u, satisfies

Br(uy) < oA"Y, P (uy) =0,

where .
Ba(w) =5 [ (VP W@ - [ GG,
2 RN RN
and
—Auy + AV (2)uy = AV~ (2)uy + Az, uy),
-2 — 2\ ~
oA > u/ g(z,upn)uy > (p—2) / G(x,uz) > ciA|unlb,
2p RN RN
hence

lualh < CooA

Using the Holder inequality and the fact that |V | < oo,
- 2 -
A V7 (z)|ur|” < cgor™ 7.
RN
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Therefore,
N
lurll} < esoA’ 7,

luall?s < csoX!™
and, for py =2*/(p — 1),

N(N—p)

\ﬂwﬂﬁﬁ%/\wﬁg%ﬂ%xwmy
RN

As in the proof of [3, Theorem 1.3] one has

WWMSQ/ fur(y)] dy

B1 (m)

with C; > 0 independent of X and Bi(z) := {y € RY : |y — z| < 1}. Hence
lun(z)| < Coow A%,

Therefore, for A large sufficiently, |uy|oc < 1 and u, is the solution of (P,).
The proof is complete. O

References

[1] Ambrosetti, A.; Badiale, M.; Cingolani, S., Semiclassical states of non-
linear Schédinger equations. Arch. Rat. Mech. Anal. 140 (1997), 285
300.

[2] Ambrosetti, A., Malchiodi A., Ni, W.-M., Singularly perturbed ellip-
tic equations with symmetry: existence of solutions concentrating on
spheres, Part I, Comm. Math. Phys. 235 (2003), 427-466.

[3] Bartsch, T.; Pankov, A., Wang, Z.Q., Nonlinear Schrédinger equations
with steep potential well. Commun. Contemp. Math. 3 (2001), 549-569.

[4] Benci, V., On critical point theory of indefinite functionals in the pres-
ence of symmetries. Trans. Amer. Math. Soc. 274 (1982), 533-572.

[5] Brézis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equa-
tions involving critical Sobolev exponents. Comm. Pure Appl. Math. 36
(1983), 437-477.

[6] Byeon, J.; Wang, Z.Q., Standing waves with a critical frequency for
nonlinear Schrédinger equations, II, Calc. Var. PDE 18 (2003), 207-219.

27



[7] Coti-Zelati, V.; Rabinowitz, P., Homoclinic type solutions for a semilin-
ear elliptic PDE on R™. Comm. Pure Appl. Math. 46 (1992), 1217-1269.

[8] Ding, W.Y.; Ni, W. M., On the existence of positive entire solutions of a
semilinear elliptic equation. Arch. Rat. Mech. Anal. 91 (1986), 283-308.

[9] Ding, Y. H.; Lin, F. H., Solutions of perturbed Schrédinger equations
with critical nonlinearity. Calc. Var. Partial Differential Equations 30
(2007), 231-249.

[10] Ding, Y. H.; Szulkin, A., Bound states for semilinear Schrodinger equa-
tions with sign-changing potential. Calc. Var. Partial Differential Equa-
tions 29 (2007), 397-419.

[11] Ding, Y. H.; Szulkin, A., Existence and number of solutions for a class
of semilinear Schrodinger equations. Progr. Nonlinear Differential Equa-
tions Appl., 66 (2006), 221-231.

[12] del Pino, M.; Felmer, P., Multipeak bound states of nonlinear
Schrodinger equations. Ann. IHP, Analyse Nonlineaire 15 (1998), 127-
149.

[13] del Pino, M.; Felmer, P., Semi-classical states of nonlinear Schrédinger
equations: a variational reduction method. Math. Ann. 324 (2002), 1-
32.

[14] del Pino, M., Kowalczyk, K., Wei, J., Nonlinear Schrédinger equations:
concentration on weighted geodesics in the semi-classical limit, Comm.
Pure Appl. Math. 60(2007), no. 1, 113-146.

[15] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic
Schrodinger equation with a bounded potential. J. Funct. Anal. 69
(1986), 397-408.

[16] Grossi, M., Some results on a class of nonlinear Schrédinger equations.
Math. Z. 235 (2000), 687-705.

[17] Gui, C., Existence of milti-bump solutions for nonlinear Schrédinger
equations via variational method. Comm. Part. Diff. Egs. 21 (1996),
787-820.

[18] Jeanjean, L.; Tanaka, K., Singularly perturbed elliptic problems with
superlinear or asymptotically linear nonlinearities. Calc. Var. PDE 21
(2004), 287-318.

28



[19] Kang, X.; Wei, J., On interacting bumps of semi-classical states of non-
linear Schrédinger equations. Adv. Diff. Eqs. 5 (2000), 899-928.

[20] Li, Y. Y., On singularly perturbed elliptic equation. Adv. Diff. Egs. 2
(1997), 955-980.

[21] Oh, Y. G., Existence of semiclassical bound states of nonlinear
Schrodinger equations with potentials of the class (V),. Comm. Part.
Diff. Egs. 13 (1988), 1499-1519.

[22] Oh,Y. G., On positive multi-lump bound states of nonlinear Schrédinger
equations under multiple well potential. Comm. Math. Phys. 131 (1990),
223-253.

[23] Pistoia, A., Multi-peak solutions for a class of nonlinear Schodinger
equations. NoDEA Nonlinear Diff. Eq. Appl. 9 (2002), 69-91.

[24] Sirakov, B., Standing wave solutions of the nonlinear Schrédinger equa-
tions in RY. Annali di Matematica 183 (2002), 73-83.

|25] Wang, X., On concentration of positive bound states of nonlinear
Schrodinger equations. Comm. Math. Phys. 153 (1993), 229-244.

[26] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, IV
Analysis of Operators, Academic Press, 1978.

[27] Willem, M., Minimaz Theorems, Birkhauser, Boston, 1996.

29



