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Abstract: We establish some general theorems for the existence and nonexistence of
ground state solutions of steady-state N coupled nonlinear Schrédinger equations. The
sign of coupling constants f;;’s is crucial for the existence of ground state solutions.
When all 8;;’s are positive and the matrix X is positively definite, there exists a ground
state solution which is radially symmetric. However, if all 8;;’s are negative, or one of
Bij’s is negative and the matrix X is positively definite, there is no ground state solu-
tion. Furthermore, we find a bound state solution which is non-radially symmetric when
N =3.

1. Introduction

In this paper, we study solitary wave solutions of time-dependent N coupled nonlinear
Schrodinger equations given by

—i D) = AD; + 1j|D;1PD; + Y By P, for y € R",1 >0,

- i (1.1)
Pj=9;(y,HeC, j=1,...,N,
®;(y,t) > 0 as |y| - +oo,t >0,

where ; > 0’s are positive constants, n < 3, and B;;’s are coupling constants. The
system (1.1) has applications in many physical problems, especially in nonlinear optics.
Physically, the solution ® ; denotes the h component of the beam in Kerr-like photore-
fractive media(cf. [1]). The positive constant j ; is for self-focusing in the j h component
of the beam. The coupling constant §;; is the interaction between the i th and the ;'
component of the beam. As 8;; > 0, the interaction is attractive, but the interaction is
repulsive if B;; < 0. When the spatial dimension is one, i.e. n = 1, the system (1.1) is
integrable, and there are many analytical and numerical results on solitary wave solutions
of the general N coupled nonlinear Schrddinger equations(cf. [8, 17-19]).
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From physical experiment(cf. [23]), two dimensional photorefractive screening sol-
itons and a two dimensional self-trapped beam were observed. It is natural to believe
that there are two dimensional N-component(N > 2) solitons and self-trapped beams.
However, until now, there is no general theorem for the existence of high dimensional
N-component solitons. Moreover, some general principles like the interaction and the
configuration of two and three dimensional N-component solitons are unknown either.
This may lead us to study solitary wave solutions of the system (1.1) for n = 2, 3.
Here we develop some general theorems for N-component solitary wave solutions of
the system (1.1) in two and three spatial dimensions.

To obtain solitary wave solutions of the system (1.1), we set ®;(y,t) =e uj(y)
and we may transform the system (1.1) to steady-state N coupled nonlinear Schrodinger
equations given by

irjt

Auj—)»juj—i-uju?.—i—z,(ﬁijuizuj = 0in R",

i# 1.2
uj>0in R", j=1,... N, (1.2)
uj(y) = 0 as |y| - +oo,

where A, u; > 0 are positive constants, n < 3, and f;;’s are coupling constants.
Here we want to study the existence and the configuration of ground state solutions
of the system (1.2). The existence of ground state solutions may depend on coupling
constants f;;’s. When all ;;’s are positive and the matrix X(defined in (1.9)) is pos-
itively definite, there exists a ground state solution which is radially symmetric, i.e.
uj(y) =uj;(lyl),j = 1,---, N. Such a radially symmetric solution may support the
existence of N circular self-trapped beams. However, if all §;;’s are negative, or one of
Bij’s is negative and the matrix X is positively definite, there is no ground state solu-
tion. Furthermore, we find a bound state solution which is non-radially symmetric when
N = 3. We will prove these results in the rest of this paper.

Now we give the definition of ground state solutions as follows:

In the one component case (N = 1), we may obtain a solution to (1.2) through the
following minimization:

inf fRn|vu|2+)‘-lfRnu2.

Inf 1 (1.3)
ueH_l(}(”) (fRn u )2

An equivalent formulation, called Nehari’s manifold approach (see [6] and [7]), is to
consider the following minimization problem:

inf Elup],

uj1eN

where
Ni = {ueHI(R"):u,:éo,/ |vu|2+A1/ u? = m/ u4}. (1.4)
Rll Ril n

It is easy to see that (1.3) and (1.4) are equivalent. A solution obtained through (1.4) is
called a ground state solution in the following sense: (1) u > 0 and satisfies (1.2), (2)
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E[u] < E[v] for any other solution v of (1.2). Hereafter, we extend the definition of
ground state solutions to N-component case. To this end, we define first

N
N= {u: (ul,...,uN)e<H1(R")> uj>0,u; #0, (1.5)
[orvusten [ = [ e Ye [ g= 1)
Ru Rn * Rn * 17&] Rn

and consider the following minimization problem:

¢ = inf E[u], (1.6)
ueN

where the associated energy functional is given by

N
1 2 A 2 My 4
B = ;(afm'wf" S MO W 1.7
| N
2.2
_Z Z ﬁij/nuluj
i,j=1,
Tz
for
u= (M 1 n N
= (uy,...,uny) e (H (R")". (1.8)

Since n < 3, by Sobolev embedding, E[u] is well-defined. A minimizer uw’ = (u?, e,
”(1)\]) of (1.6), if it exists, is called a ground state solution of (1.2), and it may have the
following properties:

1. u? >0,Vj, and u® satisfies (1.2);
2. E[u(l), e, ”(z)v] < Elvy, ..., vy] for any other solution (vy, ... , vy) of (1.2).

It is natural to ask when the ground state solution exists. As N = 1, the existence of
the ground state solution is trivial (see [6]). However, the existence of the ground state
solution with multi-components is quite complicated.

For general N > 2, we introduce the following auxiliary matrix:

Z = (|Bij), where we set Bj; = L. (1.9
Our first theorem concerns the all repulsive case:

Theorem 1. If 8;; < 0, Vi # j, then the ground state solution doesn’t exist, i.e. ¢ defined
at (1.6) can not be attained.

Our second theorem concerns the all attractive case.

Theorem 2. If B;; > 0,Vi # j, and the matrix ) (defined at (1.9)) is positively definite,
then there exists a ground state solution (u(l), R ”(])v)- All u(j). must be positive, radially
symmetric and strictly decreasing.
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When attraction and repulsion coexist, i.e. some of f;;’s are positive but some of
them are negative, things become very complicated. Our third theorem shows that if one
state is repulsive to all the other states, then the ground state solution doesn’t exist.
Theorem 3. If there exists an iy such that

Bioj <0,Vj #io, and B;ij > 0,Vi #ip, j & {i, io} (1.10)

and assume that the matrix X is positively definite, then the ground state solution to
(1.2) doesn’t exist.

Finally, we discuss the existence of bound states, that is, solutions of (1.2) with finite
energy. We show that if repulsion is stronger than attraction, there may be non-radial
bound states. To simplify our computations, we choose

N=3, M=Xl=2MA=pu=pu=pnu=1 (1.11)
Theorem 4. Assume that N = 3 and

Bra= 8B =Pz = 8B13 >0, Pz = V6pa <O. (1.12)

Thenfor 8 sufficiently small, problem (1.2) admits a non-radial solutionu® = (u‘f, ug, ug)
with the following properties:

W) ~w), w3 ~wly = Rer), ui(y) ~wy+ R,
where
8 1 T
R ~10g§, er = (1,0,...,0)",
and w is the unique solution of the following problem:

Aw—w+w>= 0 in R"
w >0 in R, w(0) = max w(y) (1.13)
yeR" :

wy) — 0 as |y| > +o0.

Graphically, we have

O——0~—®@
&
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Note that under condition (1.12), there is also a radially symmetric solution u” of the
following form:

v =, uh, b)), W = JEw(y), j=1,2,3,
where &; satisfies
E+) Bygi=1. j=123 (1.14)
i#]
Then we have

Corollary 1. Assume that N = 3 and (1.12) holds. Then for § sufficiently small, we
have

E[u’] < E[u], (1.15)
where u® is constructed in Theorem 3. As a consequence, if the ground state solution
exists, it must be non-radially symmetric.

It is known that (1.2) admits many radially symmetric bound states (see [17] and
[18]). Theorem 4 suggests that there are many non-radially symmetric bound states
which have lower energy than radially symmetric bound states. We consider the appli-
cations of Theorems 1-3 to simple cases N = 2 and N = 3.

For the case N = 2, we have

Corollary 2. If N = 2, then

1. for B12» < 0, the ground state solution doesn’t exist,
2. for 0 < B1o < /12, the ground state solution exists.

For the case N = 3, the matrix X becomes

n1 1Bzl 1813l
2= | B2l n2 B2l
|B13] |B23] 13

Assume that 8;; # 0. Then we may divide into four cases given by

Case I: all repulsive: f12 < 0, B13 < 0, 23 < 0,
Case II: all attractive: 812 > 0, B13 > 0, 23 > 0,
Case III: two repulsive and one attractive: B12 < 0, 13 < 0, 823 > 0,
Case IV: one repulsive and two attractive: 81 > 0, 813 > 0, 23 < 0.

For Case I-III, we have a complete picture

Corollary 3. If N = 3, then

1. for Case I, the ground state solution doesn’t exist,

2. for Case Il and assume X is positively definite, the ground state solution exists,

3. for Case Ill and assume X is positively definite, the ground state solution doesn’t
exist.
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It then remains only to consider Case IV. Due to the existence of non-radial bound
states in Theorem 4 and non-radial property of ground states in Corollary 1, Case IV
becomes very complicated. Our results here will be very useful in the study of (1.2) for
bounded domains which relates to multispecies Bose-Einstein condensates, and in the
study of solitary wave solutions of N coupled nonlinear Schrodinger equations with trap
potentials:

Auj—Vj(x)uj+uju;+2ﬂiju,-2uj=0, x € R,

i#] 1.16
uj>0in R",j=1,...,N, ( )
uj(x) —> 0 as |x| — +oo.

The main idea in proving Theorem 1-3 is by Nehari’s manifold approach and Sch-
wartz symmetrization technique. Theorem 4 is proved by the Liapunov-Schmidt reduc-
tion method combined with the variational method. The organization of the paper is as
follows: In Sect. 2, we collect some properties of the function w-solution of (1.13) and
Schwartz symmetrization. In Sect. 3, we state another equivalent approach of Nehari’s
method which is more useful in our proofs. It is here that we need that the matrix X
is positively definite. The proofs of Theorems 1, 2, 3, 4 are given in Sects. 4, 5, 6, 7,
respectively. Section 8§ contains the proof of Corollary 1.

2. Some Preliminaries

In this section, we analyze some problems in R”. Recall that w is the unique solution of
(1.13). By Gidas-Ni-Nirenberg’s Theorem, [14], w is radially symmetric. By a theorem
of Kwong [20], w is unique. Moreover, we have

w'(ly]) <0 for [y| >0

and

n— 1
w(ly]) = A,,rleefr <l + 0 (—)) , as r = |y| > +oo, 2.1
r

n— 1
w'(ly]) = —Anr_Tle_r <1 +0 (—)) , as r= |y| > +oo. (2.2)
r

We denote the energy of w as

1 1 1
I[w]:E/Rn|vw|2+§/’7w2—1/nw4. (2.3)

Let wy,,, be the unique solution to the following problem:

3 : n
Awy )»w,\,u—i—uwk’u = 0 in R",
wy, > 0, wy ,(0) = max w; . (y),
yeR"

wy, . (y) — 0 as |y| — +oo.
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It is easy to see that

A
Wi () = \/;w (V). 24)

and

1 A 22 don
5\/‘n|vwk’u|2+§/71 w%’M_Z/nwi’ﬂz A2 H 1][11]] (25)

We now collect some of the properties of wy_ .

Lemma 1.(7) w(|y|) is the unique solution to the following minimization problem:

fRn|vu|2+fRn uZ

i1]1f : (2.6)
R (fgn u)?
(2) The following eigenvalue problem:
A¢p — 2 =
@ =i+ 3w} b = Bo o
¢ € H*(R")
admits the following set of eigenvalues:
Br>0=pr=...= Bpt1>Pny2>...,
where the eigenfunctions corresponding to the zero eigenvalue are spanned by
811))L noo.
Ko:= spany——,j=1,...,np = Co. (2.8)
dyj
As a result, the following map:
Liy® = Ap —rp +3uw; ¢
is invertible from Kd- — Cé‘ where
i 2, pn dwi, .
Ky = que H*(R") MT=O,J=1,--~,n , (2.9)
n j

Ci = {u e L*(R")

9
/ usz,jzl,---,n}. (2.10)
n 8_))/

Proof. (1) follows from the uniqueness of w(cf. [20]). (2) follows from Theorem 2.12
of [22] and Lemma 4.2 of [24].

Set also

1 A "
I = = 2,z 2_Z 4, 2.11
aulul 2/Rn|vu|+2/nu 4fRnu (2.11)
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We then have

Lemma 2. inf [, ,[u] is attained only by w;_,,

UEN) ;
/ |vu|2+)\f u? = u/ u4}. (2.12)
er Rn n

Proof. 1t is easy to see that igf I, [u] is equivalent to
UEN) u

where

Ny, = {u e H'(R")

2 2
. ul*+ Aot
inf Jrn | 7 ul 1f R
ue[Lflzl(()}?") (fRn u4)§
The rest follows from (1) of Lemma 1.
The next lemma is not so trivial.

Lemma 3. imf I, [u] is also attained only by w;, 4,

UEN.
/Ivu|2+k/ uzfu/ u4}. (2.13)
Rn n n

A
Proof. Let uy be a minimizing sequence and uj be its Schwartz symmetrization. Then
by the property of symmetrization

[ rvurer] wrs [ rvuPer | dsuf = wpr
R" R" R" R" R" R"

(2.14)

where

N; = {u e H' (R")

and
D luy] < Dy plud. (2.15)

Hence, we may assume that u, is radially symmetric and decreasing. Since u, € H'(R"),
and uy is strictly decreasing, it is well-known that

we(r) < Cr T Jlugll . (2.16)

So u;p — uo(up to a subsequence) in L*(R™), where u is also radially symmetric

and decreasing. Moreover, by Fatou’s Lemma, uq € Ni u Hence inf I ,[u] canbe
’ uen;
M

/ |vuo|2+A/ uj = u[ ug. (2.17)
Rn RYI n

/ |vu0|2+k/ u(2)<,u/ ug.

Rn Rn n

attained by ug.
We then claim that

Suppose not. That is
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Then up € (N )/h M)O - the interior of N )/L .- By standard elliptic theory, ug is a critical
point of I ,[u], i.e.

v L plugl = 0, (2.18)

where “v7" means the derivative.
Multiplying (2.18) by ug, we have [, |Vuo|>+A [ ud = 1 [, u$ acontradiction.

Hence ug € N,,,;,. By Lemma 2, ug = \/%w(\/ﬂyl) = wy, u(¥).

We present another characterization of w;, ,:

Lemma 4.
inf I ,[ul= inf supl; ,[tu].
ueN; 420, 40
ueHL(RM)

Proof. This follows from a simple scaling.

Finally, we recall the following well-known result, whose proof can be found in
Theorem 3.4 of [21].

Lemma5. Letu > 0,v>0,u,v € H! (R™) and u™, v* be their Schwartz Symmetriza-

tion. Then
/ uvff u*v*.
n n

Our last lemma concerns some integrals.

Lemma 6. Let y; # y» € R". Then as |y1 — y2| = +00, we have for .1 < Ay,

2\/7 Y1—=y2
/Rn Wy = YDWE, (v = y2) ~wy, L, (O yz)/ w3, ., (2e (=5i= ‘2‘)dz
(2.19)

If A1 = X, then

W (= ) = /R W = 0w (= ) S wd T (=) (220)

forany 0 <o < 1.
Proof. Lety = y, + z. Then from (2.1), we have

w?z»l,/u - yl)w%z,uz(y )
= wil,u, 2—n+ z)wfwz(y - )
= wil,m (y — yl)eZm(Iyz—hI—Iyz—y1+z|)(1 + 0(1))w%2#2(y ~ )
2VAa ), 2

=w;, ,, (1 =y +o(1)e wy, 4, (@)

Hence by Lebesgue Dominated Convergence Theorem gives (2.19). The proof of (2.20)
is similar.
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3. Nehari’s Manifold Approach
In this section, we consider the relation between two minimization problems
Problem 1.
c= &Iellf\lE[u]’ (3.1)

/|Vuj|2+)\.j/ u%:y,j/ Mj
RV! Rn R7'l

+Z,3ij/ M%M%,]Z 1,... ,N}.

.. R"
i#]

where

N = {u e (H' (RN

Problem 2.
m= inf sup E[J/tiuy,...,JINunl. (3.2)

u>0y  ty>0
We have
Theorem 5. Suppose either B;j < 0,Vi # j, or the matrix X defined by
X = (IBijD with Bii = wi
is positively definite. Then

c= ingE[u] =m= inf sup E[Jtiui,...,Jivunl
ue

uZO[],...,ZN>O
Proof. We consider the following function
B(ti, ... .tn) = E[Vnui, ..., Jiyuy].

First we assume u € N.

Claim 1. B(t1, ... ,ty) attains its global maximum at ¢y = ... = fy = 1. In fact,
N
Blti,....tn)= > tj[/ | v u,l? +/\1M§}—Q[I1, s IN
j=1 WK
where
1 1 &
Olt, ... .ty = 1 Z /«le%/” Mf}—i— 7 Z ﬁijtilj/nu,gM3
j=1 =1 K
i#]
1
= -t' o',
4

where t = (71, ..., ty)T and

. (,Bij/ u%u?). (3.3)
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If Bij < 0,Vi # j, then since u € N, we have

4 2.2 2 2
u‘f u; + ﬂ"/ u-u-=f AvaZ +A~/ u; >0.
J R J Z 1 R i"j I J J I J

i#]j

Moreover, we see that the matrix X’ is diagonally dominant and hence ¥’ is positively
definite.
If Bjj > Oforalli # j,thenfort; >0,j=1,... ,N,

1
Q[tlv"' atN] = Z[Z,Bijtitj '/I;n ulzui]
i’j
1

1Ty 1 Y 2 3
2 4 4 4

(o [t ]5 2 o[ ([ )

4[; PI Jen 7| 4 Z I S o )

ij=1,

i#]

> 0.
Again, Qlt, ... ,ty] is positively-definite. Thus S(¢1, ..., ¢y) is concave and hence
there exists a unique critical point. Since u € N, (1..., 1) is a critical point. So we
complete the proof of Claim 1.

From Claim 1, we deduce that
inf E[u] > inf sup E[Jtiuy,...,/tyunl. (3.4)
ueN u>0

ZVU I, IN

On the other hand, suppose that

sup E[nuy, ... Jiyuyl = B, ... 1%) < 400,
I, IN

whereu = (uy, .-+, uy) > 0. Certainly, (t?, e, t1(\)/) isacritical pointof B(t1, ... , tn)
and hence (u?, ..., u%) = (\/Eul, ,,/tg,uN> e N. So
EW®, ..., u%1= B, ... 1Y) > inf E[u]
ueN

which proves

c:ingE[u]fm:inf sup E[Vtiui, ..., J/tvun]. (3.5)
ue

u=0¢,..ty

Combining (3.4) and (3.5), we obtain Theorem 5.
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4. Proof of Theorem 1

In this section, we prove Theorem 1.

First by Theorem 5,
c= inf sup E[tiuy,...,/tnunl.
u>0y¢ .ty
Now we choose
u;j(y) = w;tj,ﬂj(y—jRel), j=1,...,N, 4.1
where R >> 1 is a large number and e; = (1,0, ...,0)7.

By choosing R large enough and applying Lemma 5, we obtain that
f uju’ = fR wy, . (y — iRel)w)%j,uj (y — jRey)
= f wf,-,m(y)wf,,u,(y + (i — j)Rey)dy - 0
R" :

as R — +o0.
Let (th, e, tﬁ) be the critical point of B(¢1, ... , fxy). Then we have

since the matrix | B;; / u?u?) is positively definite (similar to arguments in Sect. 3),
Rll

by implicit function theorem

i = 1+ o(D).
Thus
N o i
. R Ry _ 2 2 4
chgTooﬁ(tl,...,tN)_ ;[E(/Rnwwﬂ +/\,wj) ; /nw]}. 4.2)

Next we claim that

N
c> Z[%(/Rn|ij|2+)»jw?>—%/ﬂwﬂ. 4.3)

j=1
In fact, let (uy, ... ,uy) € N, then since B;; < 0,Vi # j,
~[1 2 2\ M 4
Elui, ..., uy] > Zb(fmwuﬂ +xjuj>—T/Rnuj} (4.4)

j=1

n
= > Lu;lujl,

j=1
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and

/|vuj|2+)»ju§§uj/ u‘}. 4.5)
Rn R

By Lemma 2,

n
Efur, ... un]l = Z Djoulugl (4.6)
j=1
n
> inf I)ijlij [w]

“— weN;
J=10T R

N
= Z Dy Wiy
j=1

which proves (4.3). Hence

N
= 2 byuslwn ) @7
j=1
If ¢ is attained by some (u(l), e, ”(/)v)’ then= (u(l), e, ”(1)v) € N and u(]). is a solution

of (1.2). By the Maximum Principle, u(]). >0,j=1,..., N. Then we have

N N
c= E[u(l)’ e u(])\/] > Z I)».,',/Lj [u(j)] = Z I)\j,/,bj [w)tj,[lj] (4.8)
j=1 j=1

which contradicts (4.7), and we may complete the proof of Theorem 1.

5. Proof of Theorem 2

Now we prove Theorem 2 in this section. Our main idea is by Schwartz symmetrization.
For u; > 0,u; € H'(R"), we denote uj as its Schwartz symmetrization. By

Lemma 6, fori # j

/ ujui < / wf)* uh)?. (5.1)
Rn Rll
Hence
Eluf,... ,uy]l < Elui, ..., unl. (5.2)
The new functionu* = (u7, ..., u}y) will satisfy the following inequalities:
/ Ivu}f|2+k1/ uh)? —Zﬁi,-/ W) w)? (5.3)
Rn Rn i#j R)l

< Mj/ wh*
Rn

(by (5.1) and the fact that 8;; > 0).
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Therefore, we have

c= 1nf E[u] > inf E[u] := ¢/,
uelN’

where

N = {u e (H'(R")Y

2 2
/I;n|vuj| +)»juj

SM;/RM +Zﬂ11/ uu,,J—l ,N}. (5.4)

i#]

We first study ¢’ and then we show that ¢’ = c.

By the previous argument, we may assume any minimizing sequence (41, ... , UN)
of ¢ must be radially symmetric and decreasing. We follow the proof of Lemma 2 to
conclude that a minimizer for ¢’ exists and must be radially symmetric and decreasing.
Moreover, we have

/|vu,-|2+,\,u§5u,»f u’ +Zﬁ,,/ wiui, j=1.....N. (55
R i#j

If all the inequalities of (5.5) are strict, then as for the proof of Lemma 2, we may have
a contradiction. So we may assume at least one of (5.5) is an equality. Without loss of
generality, we may assume that

Gj[u]:zf |vuj|2+)»j/ u?—ujf u‘}
n Rll n

—Zﬁ,,/ Wit =0, j=1,...k<N. (5.6)

i#]

Then we have

k
VE[u, ... .unl+ Y AjvGjlur,... .uyl= 0, (5.7)
j=1
where G is defined at (5.6). We assume that Ay = ... = Ay = 0 and we write
(5.7) as
N
VE[, ... .unl+ Y AjvGilui,....uxl= 0. (5.8)
j=1

From (5.6), we obtain

N

> A {vGjuj)=0

which is equivalent to
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since the matrix ¥’ is positively define, the matrix

(,31]/ u; u%) is non-singular

andhence A; = 0,j = 1,..., N.As for the proof of Lemma 1, u € N. Hence ¢ = c
and ¢ can be achieved by radially symmetric pairs (u?, R u?\,). Hence (u(l), e, u?v)
must satisfy (1.2).

By the maximum principle, u? > 0, since u? satisfies

Auf = ajuf + i + Zﬁi/ @)u} =0, Bj>0
i#]
by the moving plane method for cooperative systems (cf. [27]), u(]). must be radially
symmetric and strictly decreasing. Therefore we may complete the proof of Theorem 2.

6. Proof of Theorem 3

In this section, we prove Theorem 3. The proof combines those of Theorem 1 and The-
orem 2.

Assume u = (u1,...,uy) € N. Without loss of generality, we may assume that
io= 1.
Then

Bij<0,¥j>0, and B;j>0,Vi>1,j¢&{l,i}.

We may divide the energy E[ui, ... ,uy] into two parts
1 Al 2 M1 4
E[u1,-.-,u1v]=—f Ivu1|2+—/ uy—— | u
2 Jpn 2 Jpn V4 Jpn !
1 y 2.2 ’
—52/31,- wiul + E'lua, ... uyl, (6.1)
. R"
j=2
where
N 1 A Wi
E'luy, ... uyl = (—/ |vu<|2+—’/ uz-——]/ u“.> (6.2)
j:ZZ 2 Rn ] 2 Rn ] 4 RYl j
N
1
3 Xt [
i =, R"
i

Since B1; < 0, for j > 1,
Elui, ... ,unl > Ly w1l + E'uz, ... ,unl. (6.3)

On the other hand, u; satisfies

/R|VM1|2+M/RM%— /”1—2/311/ ulu <0 (6.4)



644 T.-C. Lin, J. Wei

anduj, j = 2,..., N satisfies

/Rn|vuj|2+xlfmu35u,~f u +Z/31,f uul. 6.5)
l#}

Here we have used the system (1.2) and the fact that B1; < O, for j > 1. By the proof
of Theorem 2,

E'lus, ..., unl> inf E'lua, ..., unyl = ci, (6.6)
(uz,...,un)eN]

/|vuj|2
+)»j/ u?:ﬂj/ u; +Z,3,j/ ulu}
Rn Rn

where

le{u’z(uz,...,uN)

I#J
On the other hand, by Lemma 3,
I)\.],[/Ll [l/tl] > [)»1,[1.1 [w)q,u]]' (67)
Hence
inf E[u] > I,y [wiy, ]+ cr. (6.8)
ueN
Now we claim that
inf E[u] = I, [wi,, ]+ cr. (6.9)
ueN

In fact, by Theorem 5,
c= inlfVE[u]z inf  sup E[Vfiui, ..., tvunl.
ue

u=0y . y>0

Now we choose
up = wuy u (y — Rey)

andu; = u? for j > 2, where (ug, e, ug,) is a minimizer of ¢ at (6.6). Then

/ u%(u?)2—>0 as R — +oo,Vj>1.

Thus if we set

BaR, ... 8y = sup E[Vhui, ..., ivunl,

t,...,ty>0

then tf = 14 o0(1) and

c< lim B@R, ..., t8) = Ly wi ]+l (6.10)
R—+00
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This, combined with (6.8), proves that
c= Dy lwiy ]+ cr.

Finally, we show that c is not attained. In fact, if ¢ is attained by some (u(l), e, u(,)\,),

u? > 0, then

c= E[, ..., ul] > Ly w1+ E'Td, ... ul]

> Dy (Wi, 1+ 1.
A contradiction!
Remark I. Theorem 3 also holds if §;; satisfies
Bij <0, for i =iy, ... 0, jFiL, ..., 0k

and

Bij >0, for i &{iy,..., ik}, j#I.

7. Proof of Theorem 4

In this section, we construct non-radial bound state of (1.2) in the following case:

N=3, M=l=M=u= u=pu3=1, (7.1)
B = Vépr <0, (7.2)
B2 = 8B12 = P13 = 8f13 > 0. (7.3)

As we shall see, assumption (7.1) is not essential and it is just for simplification of our
computations. The assumption (7.3) imposes some sort of symmetry which means that
the role of u, and u3 can be exchanged.

We shall make use of the so-called Liapunov-Schmidt reduction process and varia-
tional approach. The Liapunov-Schmidt reduction method was first used in nonlinear
Schrddinger equations by Floer and Weinstein [13] in one-dimension, later was extended
to higher dimension by Oh [25, 26]. Later it was refined and used in a lot of papers. See
[2-5, 15, 16, 25, 26, 28, 29] and the references therein. A combination of the Liapunov-
Schmidt reduction method and the variational principle was used in [3, 10, 11, 15] and
[16]. Here we follow the approach used in [15].

Let us first introduce some notations: let

Silul = Auj—uj+ul+ Y Bjuiuj, (7.4)
i#]
Silul
S[u] = : ,
Sn[u]
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K= (H*R")N{u|ux,x') = ulxy, |x'hH?
N{(u1, uz, uz) | uz(x1, x") = us(—x1, x")},
Y = (L*(R") N {u | uCxr,x') = ulxy, |x'PH?
N{(ur, uz, uz) | ua(xy, x') = uz(—xp, x)},
whiGy)y=w (y — Rjer),
= (H*(R") N {u | uCx1, x) = ulxy, XD,
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(7.5)

Xo = XN {(u1,uz, u3) | ua(x1, x’) = uz(—x1, x"),ur(x1, x’) = ui(—x1,x")},

= (L*(R") N {u | u(xi, x) = ulxy, |X'DH°,

Yo = YN {(ur,uz,u3) | ua(xi, x") = uz(—x1,x"), ui(x1,x") = ui(—x1, x)}.

Note that S[u] is invariant under the map

T: (ui(x1, x), uz(x1, x), uz(x1, x°))
- (ul(_.XI, x/)s u3(_-x11 X/), MZ(_xls x/))'

Thus S is map from Xy to Yp.
Fix R € As, where

As = {R|w(R) <8i7°).

Here we may choose

1
o= —.
1000
We define
u® = (w(y), w(y — Rep), w(y + Rep))”
= (w, wf w BT,
We begin with

Lemma 7. The map

A1 — ¢1 + 3w’y
Lo® = | Adr — 2 +3wF) % | : X0 — Yo
Ag3 — ¢35+ 3(wR)2¢;

dwr dw— R T
Ko = span{|0, —, —
ay1 a1

has its kernel

and cokernel

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)
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Proof. In fact, Lg® = 0. Then we have by Lemma 1 (2),

‘ ow - dwk -
¢ = ZCU_’ ¢2=ZCz,j—, ¢3=ZC3,j
dyj dy;

j=1 j=1 j=1

wfR

9
dy;j

(7.12)

Since (¢1. ¢2. ¢3)" € Xo. we have ¢y (x1, |x']) = ¢1(—x1.|x') = ¢1(x1, x"). This
forces ¢ = 0. Similarly, we have cop = -+ =¢2, =0,c32 =--- =¢c3, =0.0n

the other hand, ¢ (x1, x/) = ¢3(—x1, x/). So we have ¢2.1 = —c3,1. This proves (7.10).
Since Ly is a self-adjoint operator, (7.11) follows from (7.10).

From Lemma 7, we deduce that

Lemma 8. The map

L := S'[uf] (7.13)
is uniformly invertible from
L:= K; — Cj. (7.14)
Proof. We may write
L = Lo+ /3B, (7.15)

where B is a bounded and compact operator. Since L, ! exists, by standard perturbation
theory, L is also invertible for § sufficiently small.

Using Lemma 8, we derive the following proposition:

Proposition 1. For § sufficiently small, and R € As, there exists a unique solution

vR = (vfe, vf, vée) such that

Siu® + vk = o, (7.16)

P R

So[uR +vR] = g2, 7.17)
ay1
8 —R

Syuf +vF = —cp o, (7.18)
ay1

for some constant cg. Moreover, v is of C' in R and we have

||VR||H2(Rn) <8 (7.19)
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Proof. Let Ry = 0,R, = R, R, = —R and
whi = w(y — Rjey).
We choose v € B, where
B= {veX||Vlg < 81729y (7.20)

and then expand

SiluR +v] = Avp — vy 4 3w + [ 4+ v1)? — W — 3wy
+8[B12(wR + v2)? + B3 (W™ + v3)? WP + vy)
= Livi + Hi[v1] + Eq,

where

Liv = Avy — vy + 3%,

Ei = S[Bnn™ 4+ v2)% + Bisw™ + v3)2 1w + v)),
and
Hi[vi] = [ +v1)* — F)3 = 3R] = 01 ?).

Here we have

Ei = 0@)(wRwf 4 wRyh (7.21)
= O®)(w(R1 — R2]) + w(|Ry — R3))
— 0517,
Similarly,
Saluf +v] = Lyvs + Ho[v2] + Ea,
S3[uf +v] = Lavs + Hs[vs] + E3,
where

Lovas = Avy — vp + 3(w) vy, (7.22)
Livy = Avy —v3 + 3(wR3)2U3,
Ey = O(D)[8Br2(w®)? + V5po3(w) w2,
— 061 457 = 06",
E3z = 0Dz w™)? + V8w w® = 0(5'7),
Hv] = [ +v2)? — @) = 3w™)?v] = 0(Jva ),
Hz[vs] = [(w™ +v3)* — )3 = 3(wr)?v3] = O (lv3)?).

Since LL : KOL — Cé is invertible, solving (7.16)—(7.18) is equivalent to solving

Mo[Lv+H[v]+E]l= 0, vekKy, (7.23)
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where IT is the orthogonal projection on C(J)- andv=(vy, vo, v3)T, H[v]=(H;, Ho, H3)T,
= (Ey, Ea, E3)T. Equation (7.23) can be written in the following form:

v=G[v]:= (MoLo ) '[—=H[v] — E], (7.24)

where IT is the orthogonal projection on K&.
Since H[v] = O(|v|?) and E = O(8'77), it is easy to see that the map G defined at
(7.24) is a contraction map from B to B By the contraction mapping theorem, (7.23)

has a unique solution v¥ (v] , v2 , ) € KJ- with the property that
VR a2 ey < CIEN 20 (725)
< C(S(l o)1 0))
< C(S]fza.

The C! property of v¥ follows from the uniqueness of vX. See a similar proof in Lemma
3.5 of [15].

Now we let
M[R] = E[uf +vR]: A5 — R,
where v® is given by Proposition 1. We have
Lemma 9. For R € As and § sufficiently small, we have
M[R] = 31[w] (7.26)

—%[\/3323 W2 w Ry + 2881 / w2<wR)2]

+0<3 )

Proof. We may calculate that

M[R] = E[uf +vF)
3

1 _ : 1
£ et e L]

=1

1 ) .
2 Zﬂu‘ fRn(wR’ + R wRi + )2
IJ

n

R"

N

=E[ll]+Z [/ (v vfP+@H? - 3(w’)(v)}

j=1
1 . . . . _
ij
i#j

— E[uR] + 0(82—40) _ |:,323(/ 02 wR2(wR3)2 +/ U3R(wR3)(wR2)2>j|
R"

= Euf]+ 0(6719).
Here we have used the assumption (1.12), Eq. (1.13), and Proposition 1.
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Since

E[u®] = 31[w] - %[JEBB / (w2 (w)?
Rn

+8B12 / w2 (wr)? 4 5413 / (w“)%w’“)z},
R" R"

and 812 = B13, R» = —R3, we obtain (7.26).

Next we have

Lemma 10. If RY € (Ag)° — the interior of As is a critical point of M[R], then the

8

; . s 5 . . .
corresponding solution w® = u®" 4+ vk is a critical point of E[u].

Proof. Since R € (A5)0 — the interior of A is a critical point of M[R], we then have

d
— M][R] =0
dR R—R?
which is equivalent to
R Ry 4 R R
< VEUu" +v"'], —@" +v") > =0.
Using Proposition 1, we obtain
owk d R R ow R d R R
- _ — (™~ =0
o oy dRY TV CR/n oy, dRY TV

for R = R®. Note that since v € Ké‘, we have

f [awR g Ow R R}_
Rr L 9y ay1

Differentiating (7.28) with respect to R, we obtain that
/ wh d g dwtd g
ril dy1 dR > 9y1 dR°

— _/ asz UR _ 82w—R UR — 0(81—20')
ri ORIy > Ry ° '

On the other hand, we see that

R —R 2
f [ali(wR) _ dw i(w—R)i|: _zf <8_w> )
rr| 0y1 dR dy; dR R \ 0Y1

From (7.27), (7.29) and (7.30), we deduce that
cp=0, for R = R‘S,

. . . . . 8
which then implies that the corresponding solution u’® = u®

of E[ul].

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

S . .. .
u®” 4 v& is a critical point
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Finally, we prove Theorem 4.
Proof of Theorem 4. We consider the following minimization problem:

My = min M[R], (7.32)
ReAs

since M[R] is continuous and As is closed, M[R] attains its minimum at a RS € Ag.
We claim that R® ¢ dAs. Suppose not. That is R® € dAs. Then we have w(R®) =

5177,
Let

p(R) = /R w2 ()w(y — Rer). (7.33)
Then from Lemma 9, we have
1 ~ N 3,0
M[R] = 3I[w] - Ex/gﬂzap(ZR) —8B12p(R) + 0827 2). (7.34)
By Lemma 6, p(2R) > (,o(R))2+% and p(R) > wz(R), we have for R = R?,
— V813 p2R%) — 28B12p(R?) = —/8Po3(p(R)*T5 — 28B1ap(R?)  (7.35)

ﬂ(R5)|:~/3(—;§23)pl+Z(R8) - 25512]

v

> p(R%[m(%—z"““i)(—ﬁzn - 25B12]
> 2p(R%)8'7,
and thus by (7.34)
M[R?] > 3I[w] + p(R%)8'°. (7.36)
On the other hand, by choosing R € A such that
V8Ba30(2R) + 8B13p(R) = 0, (7.37)
then we have
MIR®] < M[R] < 31[w] — 8f12p(R) + 0(63+%) < 31[w], (7.38)

a contradiction to (7.36).
It remains to show that (7.37) is possible since from (7.37) we have

w2 (R) < p(R) < €830+ < 53720

and hence it is possible to have R € As, where C is a positive constant depending only
on B13 and By3. Here we have used the fact that

PQR) = (p(R)*5 and  p(R) = w’(R).

This proves that R® € (A5)?. So R? is a critical point of M[R]. By Lemma 10, u® =
uR‘3 + VRS is a critical point of E[u] and hence a bound state of (1.2).
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8. Proof of Corollary 1

In this section, we prove Corollary 1.
First, substituting u; = ,/é;w into Eq. (1.2), we obtain the following algebraic
equation

Ei+> BiEi=1. j=123. 8.1)
i#]
Since by our assumption |8;;| << 1, we see that solution to (8.1) exists and moreover,
we have

E=1-> Bj+0@©), j=1223 (8.2)
i#]
Now we compute
3 2
&5 1
Eu'] = [Z(% - Zj) ~7 Zﬂijfiéj]/m w
j=1 ij
i#]
> 5/ w4—lZﬂ--f w* + 0(5)
- 4 Rn 4 i gl RN
i)
3 4 1 A 4
= -/ w +—«/§|ﬂ23|/ w* 4+ 0(3). (8.3)
4 n 2 Rn

On the other hand, by (7.38), we have
3
E[’] < Z/ w?. (8.4)
From (8.3) and (8.4), we arrive at the following:

E[u’] < E[u"]. (8.5)

Now if we have a ground state solution us which is radially symmetric, we have to
show that for § small, us = u”. In fact, since u; is a ground state solution, we have that
u; is uniformly bounded. Letting § — 0, we see that us — uy = (w, w, w)T. Thus
us —u =o(l)ass — 0.

To show that us = u”, we let us = u” 4 vs. Then it is easy to see that vs satisfies

Avs,j —vs,j +3w?vs j + O(VSwlvs| + [vs) =0, j=1,2,3. (8.6)

Since the operator L1 ; is uniformly invertible in radially symmetric function class (by
Lemma 1) and v§ = o(1), we see that

vs,j = Ly} 0 OWowlvs| + [vs|*) = O(Vswlvs| + 1), j=1,2,3,

and hence vs = O for § small.
This proves Corollary 1. 0O
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