ON BREZIS-NIRENBERG PROBLEM ON S3 AND A CONJECTURE OF
BANDLE-BENGURIA

WENYI CHEN AND JUNCHENG WEI

Abstract. We consider the following Brezis-Nirenberg problem on S3
—Agsu=M+u® inD, v>0 in Dandu=0 ondD,

where D is a geodesic ball on S? with geodesic radius 6;, and Ags is the Laplace-Beltrami
operator on S3. We prove that for any \ < —% and for every 61 < 7 with m — 6, sufficiently
small (depending on A), there exists bubbling solution to the above problem. This solves a
conjecture raised by Bandle-Benguria [1] and Brezis-Peletier [4].

Sur I’Equation de Brezis-Nirenberg sur S? et une conjecture de Bandle-Benguria

Résumé. Nous considérons le probléme de Brezis-Nirenberg suivant sur S3
—Agsu=Xu+u’ dans D, u >0 dans Detu=0 surdD,

o D est une boule géodésique sur S de rayon géodésique 0, et —Ags est I'opérateur de
Laplace-Beltrami sur $2. Nous montrons que pour tout A < —% et tout 01 < m avec ™ — 61
suffisamment petit (dependant de )), il existe des solutions pour le probleme précédent. Ce
résultat répond & une conjecture de Bandle-Benguria [1] et de Brezis-Peletier [4].

1. INTRODUCTION

We consider the following problem
~Agsu=Mu+u’, u>0 inD and u=0 on 9D, (1.1)

where Ags is the Laplace-Beltrami operator on S® and D is the geodesic ball centered at the North Pole
with geodesic radius ¢;. Of particular interest is the case of 6; € (5, 7). (Note that when 6; = 7, this
corresponds to the upper half sphere; while when 6; = 7, this is the full sphere.)

The analogous problem in RV
—Au=Xdu+u’, u>0 inQ and =0 on 99, (1.2)

where €2 is a smooth bounded domain in RY , was first studied in a celebrated paper by Brezis and Nirenberg
[3]. In particular, they proved that if Q@ = Bg(0) is a ball of radius R, the solutions to (1.2) exist only if
A€ (0,A;) for N >4and X € (%, A1) when N = 3. Since then, there is a vast literature on many extensions
of the problem considered by Brezis and Nirenberg (see, e.g. [9], Chapter 3 and the references therein).

In recent papers by Bandle-Benguria [1] and Bandle-Peletier [2], it was shown that on the sphere S3 the
situation is quite different. In particular, they showed that in the range of A > —%, there is a solution if and
only if

2 2 2 _ p2
7w — 40 ™ —0
gz <A<
407 07
For \ < —%, it was shown in [1], by means of a Pohozaev type identity, that there exist no solutions if

61 < 5. Then they conjectured (see a more general conjecture in [4]):
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Conjecture: For every )\ < —% and every 61 < m with # — 6 sufficiently small, there exists a solution to
(1.1).

In this paper, we solve the conjecture affirmatively. To state our result, we introduce the corresponding
equation on R3. By using stereo-graphic projection at the North Pole, equation (1.1) can be transformed to
the following ODE:

1
Au—p(ryu+3u® =0,u=u(r) >0, r>¢, ule) =0, u(r)= O(;) as r — 400 (1.3)
_%_)‘ sin 01
where p(r) = O and € = 205

Let Up(r) = (Kz%g)% be the unique radial solution of Awu + 3u’ = 0,u = u(r) > 0. Our main result in
this paper is the following.

Theorem 1.1. Let A < —% be a fized number. Then there exists an g9 = £9(A) > 0 such that for each
0 < e < g, problem (1.3) has a solution u.(r) with the following form

3/4
ue(r) — U za (1) = 0(87), forr >e, where Ap — Ay > 0. (1.4)

We remark that equation (1.1) with A - —oo is also studied in [4] and [11]. There it is shown that more
and more peaked solutions arise when |A| — +o0.

The proof of Theorem 1.1 mainly relies upon a finite dimensional reduction procedure. Such a method
has been used successfully in many papers, see e.g. [5], [6], [7], [8], [10]. In particular, we shall follow the
one used in [10].

By the scaling r — /er, problem (1.3) is reduced to the following ODE

Au—ep(ver)u+3u® =0,u =u(r) > 0,7 > Ve, u(Ve)=0,u(r) = O(%) as r — +00. (1.5)

From now on, we shall work with (1.5).

Throughout this paper, unless otherwise stated, the letter C' will always denote various generic constants
which are independent of €, for ¢ sufficiently small. The notation A = O(B;) means that |g—z| < C, while

A; = o(B;) means that lim,_, % =0.
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2. APPROXIMATE SOLUTIONS AND SOME ESTIMATES

In this section, we introduce a family of approximate solutions to (1.5) and derive some useful estimates.

Let A > 0 be a fixed positive constant such that é < A < C for some large constant C' > (0. We define
Ve,a to be the unique solution satisfying

Av — ep(ver)v + 3U; = 0,7 > Ve, v(ve) =0, v(r) = 0 as 7 — 4o0. (2.1)
To analyze V; p, we introduce two functions: let 4. o be the unique solution of

Av —p(r)v +p(r)U sz = 0, v (0) =0, v(r) — 0 as r — +oo, (2.2)



and G(r) be the Green’s function satisfying
Av —p(r)v +4ndy = 0,v(r) — 0 as 7 — +oc. (2.3)

Note that G(r) = 1 +O(1) for r << 1 and 1, 5 = eV AN 2ho (1) +o(e /4 (14 1)), where 1 is the unique
solution of

!

Av —p(r)v +p(r)% =0,v (0) =0, v(r) - 0 as r — +oo. (2.4)

Indeed, the solution of (2.4) exists and 1)y(0) > 0 whenever p(r) > 0 and p(r) < C(1 +r?)72. It is then
easy to see that

Veu(r) = Ua(r) = e/* | ea(Ver) + B:aG(Ver) | (2.5)
where
Be = U‘EA(Z(;)%A(E) — /AA12(1 4 0(1)). (2.6)
Substituting (2.6) into (2.5) gives us
Vea(r) =Ua(r) + 0(¥)- (2.7)

Let
I, = [Ve,+<), and S.[u] = Au— ep(v/er)u + 3u’., where u; = max(u,0).

To estimate S.[V; ], we define two norms

]l = sg)(l + )21, 1l = sg})(?"(l + )4 £ (r))). (2.8)

The reason for defining these two norms lies behind the following lemma:
Lemma 2.1. It holds
6]l < CllAG — ep(Ver)dllss where $(ve) = d(+o0) = 0. (2.9)

Proof: Let ¢g be the unique solution of

Ao + |A¢ —ep(Ver)p| = 0, 1 > Ve, ¢o(Ve) = do(+00) = 0. (2.10)

¢o(r) can be computed explicitly:

+oo
do(r) = [ 2180(s) ~ ep(vEs)(s)|(minr ) - VE)ds. (211)
VE T
Then it is easy to see that
(147°)2¢0(r) < C||A¢ — ep(v/er) |- (2.12)
By the Maximum Principle, we deduce

(1+ 7)1 2p(r)| < (147%)o(r) < C||Ap — ep(Ver)d e (2.13)
which proves (2.9). O

Since S [VoA] = 31/;57,\ — 3U3, by (2.7), it is not difficult to see that
I1SE[Vealllen < C'/2. (2.14)



Finally, we define two functions which are important in linearized analysis: Let Z) = Uﬁ(aaLAA) and z. A be

the unique solution of

Av — ep(ver)v + 15U§(66%) =0, v(ve) =v(+00) =0, r > /e (2.15)
It is easy to see from (2.7) that
Zep = o + O(e r)' (2.16)

3. REDUCTION PROCESS

In this section, we perform a finite-dimensional reduction procedure which is similar to that of [10].

We first consider the following linear problem: Given h = h(r), find a pair (¢, c) satisfying

LeA[g] == Ap —ep(Ver)p + 15V ¢ = h+cZa, 7 > Ve,
{ $(VE) = p(+00) =0, [, $pZar’dr = 0. (3.1)
We have the following a priori estimates.
Lemma 3.1. Let (¢, c) satisfy (3.1). Then for e sufficiently small, there holds
18]« < CllR]xx- (3.2)

Proof. The proof of this Lemma is similar to that of Proposition 3.1 of [10]. For the sake of completeness,
we include a proof here.

Arguing by contradiction, assume that there exists a subsequence €, — 0 and (¢, , ¢, , he, ) Which satisfy
(3.1) such that

e llx = 1; [y [l = o(1) as e — 0. (3.3)
We suppress the dependence on the index k for the sake of simplicity.
Multiplying (3.1) by 72z, A and integrating over I., we obtain

ce(A) / zS,AZATer =— hszg,Ar2dr + / Ad. —ep(Ver)p: + 15V5A¢5 ZE,A’I"Qd’I". (3.4)
. I. I.
It is easy to see that
/ hezear?dr = O(|helvs) = o(1). (3.5)
Ie

Moreover, integrating by parts, we deduce

/ [A¢a — ep(Ver)ge + 15V.r o
I

Ze AT2dr = / 15[V:A — Uplze adper?dr + o(1) = o(1). (3.6)
Ie

On the other hand

o
/ ze AZAT2dr :/ Uﬁ(aa%)QTer-i-o(l). (3.7)
I. 0

Substituting (3.5), (3.6) and (3.7) into (3.4), we obtain that c. = o(1). Also, since we are assuming that
||+« = 0(1) and since || Za ]|+« = O(1), there holds

lhe + ce ZA s = 0(1). (3.8)
Thus (3.1) yields

|A¢: — ep(Ver)be + 15V el = o(1). (3.9)



We show that (3.9) is incompatible with our assumption ||¢.||« = 1. First, we claim that, for a fixed R,
¢-(r) = 0 for r < R. In fact, suppose not, then ¢, — ¢ in H. (R®), where ¢y satisfies

Ado + 15U ¢ = 0, || o[« < 1. (3.10)
Hence ¢¢ = a2l aA A for some constant a. On the other hand, f[ ¢ Zpr?dr = 0 implies fo UA BUA)Q 2dr =0
and hence o = 0. Thus ¢.(r) — 0 in L ((0,400)). By Lemma 2.1, this yields

loc

1¢ellx < CllAG: — ep(Ver)ellu < ClIVaadells + Cllhe + ceZa s = 0(1) (3.11)

which is a contradiction to the assumption ||¢|. = 1.

O

Once we have Lemma, 3.1, the following lemma can be proved along the same ideas of Proposition 3.2 of
[10], using the estimate (2.14). We omit the details.

Lemma 3.2. For ¢ sufficiently small, there ezists a unique pair (¢e a,c:(A)) satisfying

SE[VE,A + ¢E,A] = Cs(A)ZA, / ¢5,AZAT‘2dT‘ =0. (3.12)
Ie
Moreover, we also have that
e alle < Ce'? (3.13)

and that the map A — c.(A) is continuous.

4. PROOF OF THEOREM 1.1

From (3.12), we see that, to prove Theorem 1.1, it is enough to find a zero of function c.(A). To this end,
let us expand c.(A).

Multiplying equation (3.12) by r?z: A(r), we obtain, using Lemma 3.2,

cg/ zE,AZAr2dr = SE[VE,A]zE,AerT —I—/ LE,A[¢E,A]z5,Ar2dr —|—0(€1/2). (4.1)
I

€

Ie

By (2.15) and integrating by parts, the second term on the right hand side of (4.1) can be estimated as
follows:

/ LE,A[¢E,A]Z€,AT2dT = / LE,A[ZE,A]¢E,AT2dT = / 15[‘/5%A - Uﬁ]zE,Aﬁbe,A'err + 0(51/2) = 0(51/2)'
I I. I.
It remains to compute the first term in the right hand side of (4.1):

/ SE[V'E,A]ZE’T‘QGZT‘ :/ 3[‘/55:A - UIE{]ZE,AT2dT
I. I

— —15¢h / U e (Ver) + BaG(Wer) | (S yrdr + ofvE)
= —15eY/2A124p0(0) /0 (Uﬁaavr) 2dr — 1567148, / (Uﬁaavr)rdwro(\@). (4.2)

By direct computations, we have

o,
/0 Ut 8AA r2d 5dA/ USr?dr) = 10/ UPr2dr)A~ /2, (4.3)



too L, OUL 1d, [t 1, [*® _
/0 (Uj{a—A)rdr = gd_A(/O URrdr) = _E(/o Udrdr)A=3/2. (4.4)

Substituting (2.6), (4.3) and (4.4) into (4.2), we arrive at

/ Se[Vealzear?dr = €72 (—yo + viA72) + o(e'/?) (4.5)
I

where vy, 7y1 are two generic positive constants.
We obtain from (3.7), (4.1) and (4.5) that
ce(A) = coe'?(yo — 11 A™2) 4 o(e'/?)  for some ¢y # 0. (4.6)

Theorem 1.1 now follows from (4.6): in fact, (4.6) implies ¢.(Ag — 6)c:(Ag + 0) < 0 where Ay = , /% and

d small. By the continuity of ¢.(A), a zero of ¢.(A), denoted by A, € (Ag — 8, Ag + d), is guaranteed. Then
ue = Ve A, + ¢e,a, is a solution to (1.5). This proves Theorem 1.1.

O
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