ON THE CAUCHY PROBLEM FOR A
REACTION-DIFFUSION EQUATION WITH A SINGULAR
NONLINEARITY

ZONGMING GUO AND JUNCHENG WEI

ABSTRACT. We consider the following Cauchy problem with a singular
nonlinearity

uy=Au—u", zeR"t>0,v>0
uli=0 = ¢ € CLp(R")

with n > 3 (and ¢ having a positive lower bound). We find some con-
ditions on the initial value ¢ such that the local solutions of (P) vanish
in finite time. Meanwhile, we obtain optimal conditions on ¢ for global
existence and study the large time behavior of those global solutions. In
particular, we prove that if v > 0 and n > 3,

—1/(v+1)

where us is a singular equilibrium of (P) and v > 1, then (P) has a
(unique) global classical solution u with u > yu, and

w(z,t) > (i + 1) (4 1)) /),

On the other hand, the structure of positive radial solutions of the steady-
state of (P) is studied and some interesting properties of the positive
solutions are obtained. Moreover, the stability and weakly asymptotic
stability of the positive radial solutions of the steady-state of (P) are also
discussed.

(P)

(n—2 ||2/ (D)

1. INTRODUCTION

In this paper we consider the following Cauchy problem

uy=Au—-u", z€eR"t>0,v>0 (1.1)
uli=o = ¢ € Crp(R") '

where n > 3,
CLe(R") ={p € C(R"): ¢>0in R" with ¢, = mingn ¢ > 0 and
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there exist k > 0 and M > 0 such that |z|™"¢(z) < A for |z]| > M }.

Problem (1.1) appears in several applications in mechanics and physics,
and in particular can be used to model the electrostatic Micro-Electromechanic
System (MEMS) devices. See [FMP], [GG1], [GG2], [GG3], [GPW] and the
references therein. In particular, in [GG1], [GG2] and [GG3], Ghoussoub
and Guo give a thorough study on the following problem

ut:Au—)‘J;(f), zeQt>0,v>0 (1.2)
u(z,0) =1for z €Q, u(z,t) =1 for x € 052 '

where A > 0, f(x) is a positive function and 2 is a bounded smooth domain
in R™.
Problem (1.1) can also be considered as a simplified second order version

for the dynamics of thin films of viscous fluids. Equations of the type
w=—V-(f(u)VAu) = V- (g(u)Vu)

have been used to model the dynamics of thin films of viscous fluids, where
z = u(x, t) is the height of the air/liquid interface. The zero set 3, = {u = 0}
is the liquid/solid interface and is sometimes called set of ruptures. Rup-
tures play a very important role in the study of thin films. The coefficient
f(u) reflects surface tension effects- a typical choice is f(u) = u®. The coef-
ficient of the second-order term can reflect additional forces such as gravity
g(u) = u?, van der Waals interactions g(u) = u™, m < 0. For more back-
ground on thin films, we refer to [BBD, BP1, BP2, LP1, LP2, LP3, WB,
YD, YH] and the references therein. By choosing f(u) = w?, g(u) = u™™,

(1.2) is equivalent to a fourth order equation
up=—V - (uPV(Au —u") (1.3)

with v = p+m—1. In general (1.3) is quite difficult to study. Equation (1.1),
though simplified, has the same difficulty (i.e. the problem of ruptures) and
the set of steady-states of (1.1) is contained in the set of steady states of (1.3).

So the study of (1.1) may be useful for that of (1.3).
The corresponding Cauchy problem

uy=Au+uP, xeR" t>0, p>1,

Wi =6 € GRY) = CR) N I*R), 620, 90 Y
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has been studied by many authors. Various existence, blow-up, stability and
instability results have been obtained for (1.4), see [Fu, Ka, Wa, LN, GKMS,
GNW]. In this paper, we consider (1.1). Unlike (1.4), the main concern
for (1.1) is when solution vanishes (i.e., ruptures). We will first obtain the
existence of global positive solutions of (1.1) with some of the initial values ¢.
Then we study finite time vanishing behavior of the nonnegative solutions
of (1.1) with other initial values ¢. Finally, we study the structure and
stability properties of positive radial solutions of the steady-state of (1.1),

i.e., the following elliptic equation
Au=u"" inR", v>0. (1.5)

It is clear that problem (1.1) has a singular nonlinearity, which is not
Lipschitz near u = 0. The usual method used by many authors to deal with
the problem (1.4) can not be directly used to deal with (1.1). On the other
hand, we will see that the finite time blow-up behavior of the nonnegative
solutions of (1.4) under some of the initial values ¢ can not occur for the
nonnegative solutions of (1.1). Instead, for (1.1), the finite time vanishing
behavior of the nonnegative solutions will occur for some of the initial values
0.

We only study (1.1) with an initial value ¢ which has a positive lower
bound. It will be interesting to consider the case that ¢,;,, = 0. Many of the
techniques in this paper are adopted from those in treating (1.4). We refer
to in particular the book [GKMS] and the paper [GNW].

The organization of the paper is as follows: In Section 2, we present the
comparison principle for (1.1). In Section 3, we prove the existence of local
solutions. In Section 4, we study the radially symmetric steady-state of (1.1).
We derive some key exponents which determines the stability. In Section 5,
we give (optimal) necessary conditions for global existence and finite time
vanishing. Finally in Section 6, we discuss the stability and weakly stability

of positive radial steady states of (1.1).
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2. PRELIMINARIES

Suppose D is an unbounded domain in R"™ with 0D satisfying the exterior
sphere condition. Let T > 0, Q = D x (0,T), and T = dD x (0,T) U D x
{0}. For a given nonnegative function ¢ € C(I'), we consider the following

boundary value problem
up=Au—u"" in Q, ulp=1. (2.1)

Definition 2.1. We call a nonnegative function u a continuous weak (c.w.)
super-solution (sub-solution) of (2.1) if u is continuous on Q, ulp > (<)
and vy > (<)Au—u~" in the distributional sense, i.e., for any n € C*1(D x
[0, T]) with n > 0 and suppn(-,t) CC D for allt € [0,T],

/Du(:c, t)n(z, t)dx\iigl
>(9) [ [ [ 9@+ (e ) (o, ) dods,

if Ty € [0, T]. If u is a c.w. super-solution and also a c.w. sub-solution of

(2.1), we say u is a continuous weak (c.w.) solution. We call a function u
a classical solution of (2.1) if u € C*1(Q) N C(Q) and (2.1) is satisfied.

The monotonicity method for the problem
u = Au+ f(z,t,u) in Q, ulr=1v¢ (2.2)

when D is bounded was settled by Sattinger [Sat| provided that f is locally
Lipschitz continuous in u uniformly for (z,¢). When D is unbounded and
f(z,t,u) is continuous on Q x R and locally Lipschitz continuous in » uni-
formly for (x,t) in any bounded subset of €2, the monotonicity method is
derived in Lemma 1.2 of [Wal]. For our problem (2.1) here, it is clear that
the nonlinearity is not Lipschitz for v near 0. The following lemma is a

generalization of Lemma 1.2 of [Wa].
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Lemma 2.2. Assume that U and u are positive continuous weak super- and
sub-solutions of (2.1) with W > u > minqu > 0 on Q. Then (2.1) has a

classical solution u satisfying u < v <7 on .

Proof. The proof is exactly same as that of Lemma 1.2 of [Wa] because
of the property of u. Indeed, if we denote f(u) = —u~", we easily know that
f is Lipschitz and is increasing with respect to u € [ming u, maxq 4| since
mingu > 0. O

Remark. It is unclear if the conclusion of Lemma 2.2 still hold if ming u =

Next, we recall a comparison principle of Phragmen-Lindel6f type (see
Lemma 1.3 of [Wa]).

Lemma 2.3. Suppose @ and u are continuous weak super- and sub-solutions

of the problem
up=Au+ f(u) inQ, ulp=1v¢ (2.3)

and (u—u)(z,t) > —Bexp[B|z|?] on Q with B and 3 > 0. Assume f(u(x,t))—
Flu(z, 1) > Clz, t)(T—u)(z,t) where C € CE**(Q) and C(x,t) < Col|z[>+

loc

1) on Q for some Co > 0. Thenu > u on Q.

3. LOCAL SOLUTIONS

In this section, we shall establish local existence of nonnegative solutions
for the Cauchy problem (1.1) and some properties of local solutions are also
studied. In the follows we denote C' = C(...) positive constants, besides the
arguments inside the parenthesis, which may vary line from line. We need

the following

Definition 3.1. We call a function u a Co-mild solution of (1.1) on R™ X
[0,T) if
(1) u € C(R™x[0,T"]) with tmin := mingayru > 0 for any 0 <T' < T;
(i1) u(x,t) = (¢ — f(f et=9897v(-, 8)ds)(z) for all (x,t) € R™ x [0,T),
where
z —yf?

P = (47rt)_"/2/ m

e:cp( - )cb(y)dy- (3.1)

n
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7

We define a Cy-mild super-solution (sub-solution) by replacing “ =7 in
(,[:?;) by 13 Z ” (“ S 77).

Remark. It is known from Lemma 1.5 of [Wa] that a positive continuous
weak solution of (1.1) satisfying (7) of Definition 3.1 is also a Cy-mild solution.
The converse of this is also true by the proof of of Lemma 1.5 of [Wa]. By
the regularity theory for parabolic equations, a Cy-mild solution u belongs
to C2H(R™ x (0,T)). Also from Lemma 1.5 of [Wa], we have

loc

Lemma 3.2. If u € Crp(R") is a positive continuous weak super-solution
(sub-solution) of the elliptic equation Au = u™" in R" (n > 2 and v > 0),
then u is a Cy-mild super-solution (sub-solution) of (1.1) provided ¢ < (>)u.

Now we obtain local existence of solutions of (1.1) as well as some prop-

erties of the local solutions of (1.1).

Theorem 3.3. Let ¢ € Cpg(R™). Then (1.1) has a unique Cy-mild solution
u on R™ x [0,T,) such that if Ty < oo, then limt_)T; mingn» u(-,t) = 0.
Furthermore, if ¢ is radial, then u is radial in x; if ¢ is radial and radially

nondecreasing, then u is nondecreasing in r = |z|.

Remark. If Ty < oo, then u vanishes at a finite time 7. We also say that
u has the behavior of finite time vanishing.

Proof. Defining p = ¢ > 0, we first establish the local existence of
(1.1). We will find ¢, > 0 and p > 0 depending upon p,v and n such that
(1.1) has a unique Cy-mild solution u(z,t) satisfying

u(z,t) > p for (z,t) € R™ x [0, ]

Define

t
F(u) =e?¢ — / =877 (., 5)ds.
0

For a 0 < p < p which will be determined below, we construct a sequence

{uy} as following

t
ug(z,t) = e®p — / =927 (y, s)ds, (k=0,1,2,...)
0
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with u_;(z,t) = p. Since

etA¢ _ (47rt)"/2/nexp( _ |z ;ty\z)(b(y)dy

2
> p(47f)_"/2/ exp( ‘Z‘ )dn,

if we choose 0 < § < fmin{p, 1, p(47)™"/? [4., exp( — @)dn}, we have that

e®¢ > 2p, for (z,t) € R x (0, 00). (3.2)

Noting that (47)~"/2 [4., exp( 2% ) dn = 1, we also have

4

)
/RneXp( lx_yP) o (y)dy
(-*

—n/2
—n/2 y|2 K
< (4mt) exp C(1+ lyl)*dy
R’I’L

2
= [ exp(—m)0(1+\x|+t1/2|n|)“dn
e 4

< 2°C(1 4+ |z|)* 4 2°CBt~/?

C(1+ |z|)"F

if 0 <t <1, where B= (47) "2 [, |77|"exp( - %)dn.
On the other hand, we have that

ety = (4rt)

IN

up(z,t) = "¢ — / t IR ds > 25 — VAL >
0
if we choose 0 < t < p**1. It is clear that
uo(z,t) < C(1+ |z|)~.

Thus,

p < up(z,t) < C(+ |z|)* for (z,t) € R" x [0,t1), (3.3)
where t; = min{1, 5**'}. We can easily see that

ug(z,t) > p for (z,t) € R™ x [0,%1) and all & > 0. (3.4)

Now we use the induction method to show that

2 \ktk
g — 1| < (ﬁ—u) - (3.5)
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Indeed, we know that
t
it — | < / =8y _ 5=\ ds < 2571, (3.6)
0

If we assume (3.5) holds for £k = m — 1 (Vm > 2) and we can show that
(3.5) holds for &k = m, we obtain that (3.5) holds for all £ by the induction
method. In fact,

IN

‘um - um—l'

t
/ e(t’s)A|um_1 — Up—o|ds
0

m— t m—1
< (3) 1/ =908 g
P’ 0 (m—1)!
2 \m-1 t m—1
(~—) A/ T ds
P’ o (m—1)!

2 \mt™
(7)

Therefore, (3.5) holds for all £ =1,2,.... Choosing

IN

lo = min{L tlvﬁu}a
we have that for 0 < ¢ <,

1 .
lug — ug_1| < o i R™ x [0, to]. (3.7)

Define ¢, = ¥¥_, (u; — uj_1). We easily know that |(;| < E?:l% and hence
(¢ — (¢ uniformly in R™ x [0, %], as & — oo and ¢ € C(R" x [0,%]). On
the other hand, we have uy = uy + (x and hence uy — U(z,t) := ug +
uniformly in R™ x [0, to], as k — oo and ug+ ¢ € C°(R" x [0, %p]). Moreover,

p<U(z,t) <C(+ |z[)® in R™ x [0, ). (3.8)

This also implies that U(z,t) is a Cp-mild solution of (1.1). The uniqueness
of U(z,t) can be obtained by the comparison principle of Phragmen-Lindel6f
type (see Lemma 2.3). In fact, it follows from (3.8) that

Ulz,t) > p> K1+ |z))"7"* for (z,t) € R™ x [0, 1] (3.9)
Suppose that there are two solutions Uy, Us of (1.1), we have that

— (U7 = U] = v~ (U, = Us) = C(z, t) (U — Us)
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where £ = sU; + (1 — s)U, with s € (0,1). By (3.9), we easily know that
C(xz,t) < Co(1 + |z/|*). Thus, it follows from Lemma 2.3 that U; > U, on
R™ x [0, to]. Similarly, we can also obtain that Us > U; on R™ x [0, to]. This
implies U; = Uy on R™ x [0,%p]. The proof of the first part of this theorem
can be completed now by a ladder argument.

The second part of this theorem can be obtained by arguments similar to
those in the proof of Theorem 2.3 of [Wa). O

Remark. It is known from the proof of Theorem 3.3 that if u is a Cy-mild
solution of (1.1) in R™ x (0,7, then

u(z,t) < C)(1 + |z|)* for (z,t) € R" x [0,T]. (3.10)

Lemma 3.4. Suppose that u is a positive classical solution of (1.1) on R™ X
[0, T) with u(x,t) > C(T'")(1+|z|)~2/¥*1) on R"x [0, T"] for any 0 < T' < T.
Then the following statements hold:

(1) If the initial value ¢ is radial, then u is radial in z-variable.

(1) If ¢ is a continuous weak sub-solution (super-solution) but not a

solution of Au =u"", then uy(z,t) > (<)0, t > 0.

Proof. (i) can be easily obtained by arguments similar to those in the
proof of Lemma 2.6 of [Wal]. To prove (i7), we first notice from (3.10) that
u(z,t) < C(T")(1+]|z|)* on R"x[0,7"] for any 0 < 7" < T'. Using Phragmen-
Lindel6f comparison principle (see Lemma 2.3), we have u > ¢. For a small
h >0, let up(x,t) = u(z,t + h), w = up, — u. Then wl—g = u(-,h) — ¢ >0,
wy — Aw = C(z, t)w, where

Cloty= - =" _ et < (I + |2
Up — U
on R" x [0, T"], where £ = su + (1 — s)uy, with s € (0,1). By Lemma 2.3
again, w > 0, i.e., u is nondecreasing in ¢. Hence u; > 0 if ¢ > 0. Now
(17) follows from the strong maximum principle. Another part of (i7) can be
treated similarly. O
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4. THE STEADY-STATE OF (1.1)

In this section we study the structure of nonnegative solutions of the
steady-state of (1.1):

Au=u"" inR" u>0. (4.1)
In the follows, we set

Br ={z € R"; |z| < R},
2
v+ 1
Vc:{ _n=2n-!? for3<n<9

§ = L=[0(n—2+8)] Y+

2(n—1)1/2—(n—4)

+00 for n > 10
Definition 4.1. We say that u is a regular solution of (4.1) if u € C*(R™)
and u satisfies (4.1). We call u a singular solution of (4.1) ifu € C*(R™\{0})N
C(R™) satisfies (4.1) in R™\{0} with nonremovable zero at x = 0.

Proposition 4.2. When v > 0, all nontrivial nonnegative radial reqular
solutions of (4.1) are included in a family {uqy}aso with u, being the unique

positive solution of the problem

-1
u + n_u/ =u" in (0,00), u(0)=a, u'(0)=0. (4.2)
T

Uy 1S INCTeasing in T,
Py (r) = L as r — 400,
o (r) = ony (=¥ t/20). The only radial singular solution of (4.1) is

ug(r) = Lr2/(+Y),

Proof. This proposition can be obtained by phase plane analysis, see
[GW], [GGL]. a

Proposition 4.3. (i) When v > v, if U Z u are two singular (reqular)
solutions of Au = u™” on By (BS) with r°U(r) — L, r%u(r) — L as
r— 0% (r = +00), then U oscillates around u.

(17) When v > v, assume u (u) is a radial reqular super-solution (sub-
solution) of (4.1). If ugs is a positive radial reqular solution of (4.1) such

that T > ug (u < uy), then ug = (u).
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(t3i) When 0 < v < v, for any 0 > (<)1, @ (u) and u, as in (ii), then
u (u) cannot stay above (below) Ou,,.

Proof. (i) Let v(t) = U(r)/u(r), t = Inr. Then v satisfies

o0 (2

and limy_,_., v(¢) = 1. Since r~%u(r) — L as r — 07,

+n— 2) V(1) + 2D () (0 — v ) (8) = 0, £ < 0
(4.3)

riu () — L) = §(n+6—2) asr — 0T or t — —oo.

To find lim, o+ (2ru'(r))/u(r), we define wy(t) = u(r)/us(r), t = Inr. Then
wi(t) — 1 as t - —oo and
W (t) + cow', (t) + L~ (wy —w;?) =0 for t € (—o0, 0]
(4.4)
where ¢y = 20 +n — 2 > 0. Multiplying (4.4) by w] and integrating it over

[t,0], we have

50+ [ (ui(s)ds = 0().

Thus, w} is bounded and ffoo(w'l(s))zds < +o0. From this and (4.4), w} is
bounded and hence w/(t) — 0 as t - —oo. Since

1 2
wi(t) = I [rlfv-zH u'(r) — =" lrfv%lu(r) —0 asr— 0",
we obtain
2ru'(r ol vt/ (1 4
(): 2 ()—> asr — 0. (4.5)
u(r) r v u(r) v+1

Let wy = v — 1. Then by (4.3) and the discussion above,

wy () + g1 (t)wh(t) + g2 (t)wy =0 on (—o0, 0]

with g1 (t) = co and g(t) = r2u= ¢+ (r) (”(;S;) — (v+1)L=*V ast — —o0.
If there exist t,, — —oo such that v(¢,;,) = 1, then we are done. So we assume
v(t) # 1 for large —t and hence g5(t) is well defined. By a direct calculation,

when v > v,

(lim g;(2))? —4( lim go(t)) = (204+n—2)>—-8(0+n—2) <O0.

t——00 t——00
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From this and Sturm-type arguments, we conclude that ws oscillates around
0 near t = —oo and the first case of (7) of this proposition follows. Another
case of (i) can be discussed similarly.
(#7) Suppose that & > u, and T # u,. Let v(t) = u(r)/uq(r), t = Inr.
Then v > 1 and
2 !
"+ ( i (r) +n— 2) o' (t) + r*ul () (v — v7V)(t) <0 on (—oo, +00).
Ua(7) (4.6)
Denote the coefficient of v by g¢;(t). Exactly as in the proof of (i), we

have g;(t) — ¢ as t — +oo (recall from Proposition 4.2, r9u,(r) — L as
r — +00, so the argument there can go through.)

We claim lim;, o, v(f) = 1. In fact, by (4.6) and the fact v > 1, v" +
g1(t)v" < 0. Hence,

T

exp(/o g1(8)ds)v'(t) < exp(/0 g1(s)ds)v'(t) ift>7>0. wn

Since rul,(r) — 0 as 7 — 0%, we have ¢;(t) = n — 2 as t — —oo. It follows
from the fact v(t) — w(0)/u(0) as t — —oo that there exists a sequence
tm — —oo such that v'(t,) — 0. Now in (4.7), letting 7 = t,, — —o0, we
have either v' < 0 on (—o0,4+00) or v' = 0. (A priori, v < 0 and if there
exists to such that v'(¢y) < 0, then by (4.7) again v'(t) < 0 if ¢ > ¢5. So,
v > 1 and hence the strict inequality in (4.7) must be true which in turn
implies that v' < 0 on (—oc, +00).) But ¢ = 0 is impossible since U Z u,.
Suppose lim;_, o v(t) > 1, then by (4.6) and the fact v' < 0, we have for a

large T' and some constant ¢ > 0
V' + g () < —c ift >T.

This forces v = 0 at some ¢. This contradicts the facts that v > 1, v/ < 0.
Therefore, lim;_, o, v(t) = 1.
Now let w = v —1 > 0. By (4.6) and the discussion above, we have

w" + g1 ()w' + g2(H)w <0, w' <0 on (—o0,+00) (4.8)

with ¢; (t) — Cp,
(v—=v")

(0= 1)

ga(t) = r*u 0 (r)

a

— (v +1)L7" ast — +oo.
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As before, when v > v,,

(,lim g1(£))* —4( lim_gs(1)) < 0.

t——+o00
Then there exist 7' > 0, b; and ¢; such that b2 — 4¢; < 0, g1(¢) < by and
go(t) > ¢y if t > T. Observe that any solution of
W” + b1WI + 01W =0 (49)
is oscillatory; in particular, there exist b > a > T such that W(a) = W(b) =
0, W > 0 on (a,b) (and hence W'(a) > 0 > W’(b)). Multiplying (4.8) by W
and (4.9) by w, we have

w'W + g1 ()w'W + go(£)wW < 0 on [a, b], (4.10)

W' + byW'w + c;wW =0 on [a,b]. (4.11)

Subtracting (4.11) from (4.10) yields
(Ww' — W'w) + (g1 () w'W — by W'w) + (g2(t) — e1)wW < 0 on [a, b].
Thus by the fact that g;(t) < b1, g2(t) > ¢; and w' < 0, we have
(Ww' — W'w)' + by (w'W — W'w) <0 on (a,b)
P (Wuw' — Ww)(b) < e*(Wuw' — W'w)(a).

This is impossible (note that W(a) > 0 > W’(b)) and the first case of (i7)
is proved. Another case of (i7) can be proved similarly.

(731) We use the same v as in the proof of (i), then v > 6 > 1 if © > Qu,.

Hence the proof of (i) implies v = 0 at some ¢. O

Proposition 4.4. (i) When v > v, the graph of u,(r) oscillates around
that of us(r) for every a > 0.

(1) When 0 < v < v, the graph of u, does not intersect that of us
(i.e., uq(r) > us(r) for all ¥ > 0) for every a > 0. Furthermore, uy(r) is

increasing with respect to o > 0.
Proof. (i) follows from Proposition 4.2 and (i) of Proposition 4.3.
Now we prove (i7). Let v(t) = r%uq(r), t = Inr. Then

V" (t) + cov'(t) + v(L=H) — = FD) =0 on (—oo, +00)
(4.12)
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with v > 0 and limy;_, o, v(t) = 400, limy_, o, v(t) = L. If the first conclusion
of (i7) is not true, letting ¢; = min{t : v(¢t) = L}, we have as in the proof of
Propostion 4.3 that v' < 0 on (—o0,t;] and v'(t) - —o0 as t — —oo. Let
q(v) ='(t). Then

dq U(L—(V—H) _ U—(u+1))

gy Tt . =0 on [L,00) (4.13)

g < 0on[L,o0) and ¢(v) = —o0 as v — +o0. Therefore in the (g, v)—plane,
the graph of ¢ = ¢(v) intersects all lines ¢ = p(L — v) with p > 0. For each
p > 0, denote the intersection with the smallest v coordinate by (v, ¢(v,)).

Then %(v,) > —p and

dq v, — Ly,
%(UM) = —C+ /J'(L — vu)
C s L (L = vy,) 4+ 00, (L — )
p(L — Uu)
1)L~ 0+
< —co+ v+1) for some 7, € (L, v,).
7
Thus,
(v + 1)L~ 0+
—u < —cp+ “

p? —cop+ (v+ 1)L~ >0 for all > 0.
This implies that
2 —4(v+1)L~"D <o,

But when 0 < v < v,, we have that ¢2 — 4(v + 1)L~@*+) > 0. We reach a
contradiction. The first part of (i7) is proved.

To prove the second part of (i), we notice from the first part, v(¢t) > L on
(—00, +00) and hence v'(t) < 0 on (—o0,4+00) (this can be seen from (4.12)
and a similar argument in the proof of (i7) of Proposition 4.3.) Since v'(t) =

v+1

T(r~0uqs (1)), (r°uy(r)) < 0if r # 0, this and the fact u,(r) = aui(a™ 2 7)
imply auaLoET) > 0 if 7 > 0 (we can use the transformation: o = p~ her

e).
This completes the proof of this proposition. O
For 0 <v <vy,,i.e.,

{w for3<mn<9

6> 6° =
0 for n > 10

(note that §¢ = 2/(v, + 1)),
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we have that
(260 +n—2)2-8(0+n—2)>0.
Therefore, solutions of the equation
o+ 20+n—2)o +2(0+n—2)0=0 (4.14)
can be written as linear combinations of e ** and e~*2!, where
_25+n—2—[(204+n—-2)>—8(6 +n—2)]"/?

)\1(V, n) : 5 >0
(4.15)
2 —24+[(2 —2)2 — — 2)]1/?
No(v,) = d+n +[(5+n2 ) —8(0+n—2)] S0
(4.16)
are the roots of
N—(2+n—-2)A+2(0+n—-2)=0. (4.17)

To study the behavior of the solutions of (4.14), we consider three cases:
(a) 25+n—2—2)\1 < )\1, (b) 25+7’L—2—2/\1 = /\1, (C) 26+n—2—2)\1 > A\
If (a) occurs, we have
1 1
[(264+n—2)2—8(5+n—2)]? < 5(2(5+n—2)—5[(25+n—2)2—8(5+n—2)]1/2,
ie.,
(26+n—-2)2<9(6+n—2)
and
46° + (4n — 17)6 + (n — 2)(n — 11) < 0. (4.18)
The equation
46° + (4n —17)6+ (n —2)(n — 11) =0

has two roots:

_17—4n—3(8n —T)/?

(51 )
8
17 — 4n + 3(8n — 7)1/2
52 = 8 .
We easily know that
(51 <6< 52.

So, if ¢ < § < by, then 26+n—2—2\; < \y; if § = do, then 204+n—2—-2); =
A1 ((b) occurs); if § > 0o, then 26 +n — 2 — 2X\; > A ((¢) occurs). Thus, by
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arguments similar to those in (4.28) of [Li] that any solution o(t) of (4.14)
satisfies

ale*)‘lt —+ O(@iAQt), ifoc<d< (52
o(t) = ae™Mt 4+ O(te™2t),  if § =5y (4.19)
are M+ Oe 2, if § > 5.

For 0 < v <., ie., § > 6% it is straightforward to show that for n > 3
there exists a finite sequence (v, =)v1(n) > vo(n) > ... > vx(n) such that
Ao(v,n) = kXi(v,n) if and only if v = vg(n) where N = [%} and [a] =the
largest integer which is smaller than a. It is not hard to see that

2 —
yk(n)_n—i- ZL

C2—n+2z
where zj is the only zero of h(z) — k = 0 and the function

_ [z + (22 — 4z — 4(n — 2))/?]?
4(z+n—2)

k=1,2,...,N

h(z) , Z€[MN—2420°n+2)

is strictly increasing in [n — 2, +00). It is also possible to give a more explicit
expression for vg(n). To this end we set ¢ = 2§ + n — 2. Then Ay = kA, if

and only if
11 Q)
7 (Q(g))'?

which is equivalent to
k=1 _ (Q@)"? [ 4 4(n—2)712
E+1 q

where () is defined by

(4.20)

Q(g) = ¢ —4g—4(n —2).

Squaring both sides of (4.20) and multiplying by ¢ we obtain
k—1\2
1= (1) |- 1a-1n-2)=0.
- ()1 s0- -2
Now, vk(n) may be obtained by solving ¢ explicitly. Incidentally, the fact
that £ < N also follows easily from (4.20) since ¢ < n + 2 and then

k-1 - (Q(n+2)? n-2

kE+1 n+2 T n+2

Thus, £ < 3.
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It follows from Proposition 4.2 that if u is a nonnegative radial solution
of (4.1), then lim,_, . 7 %u(r) must always exist. Now we derive a more

detailed asymptotic expansion of u near +oc.

Theorem 4.5. Let u be a nonnegative radial solution of (4.1) with 0 < v <
v. and lim,_, o 77%u(r) > 0. Then the following statements hold:
(1) Forv=1g(n), k=1,2,..., N, we have Ay = kX, and, near +o0,

u(r) = Lrd + a7 . 4 ap_yrd= kDN

Fapr M e 4 b2 4 O(rm (27, (4.21)

(17) For vgi1(n) < v < w(n), k =1,2,...,N (with the convention that
Uni1(n) = 0), we have kA; < Ay < (kK + 1)A1 and, near +oo,

u(r) = Lr® + a4 ..+ apr® N

b0 oM L O(pm(nH279),
(4.22)
The constant L = (6(n + 6 — 2))~Y @+ and is independent of the particular
solution u. The coefficients as, ag, ... ,ay are uniquely determined once a; 1S

determined. Moreover, once a; and by are determined then all the coefficients
in (4.21) and (4.22) are uniquely determined.

Before giving the proof of Theorem 4.5, a few remarks are in order. First of
all, Theorem 4.5 is stated in a special way with the forms of expansions (4.21)
and (4.22). The expansions of v near +00 may have more general forms. In
particular, it will be clear from the proof below what the missing terms in
(4.21) and (4.22) are. Moreover, it will also be clear from the proof below
that the expansions (4.21) and (4.22) do not have to stop at O(r—("+2-9);
they can go on to an arbitrarily high order.

Proof of Theorem 4.5: We start with the proof of (i7). The proof is
closely related to the proof of Theorem 2.5 of [GNW]. First, we know from
Proposition 4.2 that

. 4 _
Al =L
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Setting W (t) = r~%u(r) — L where t = Inr, we see that W satisfies the

equation

Wa+20+n—-2)W;+2(04+n—-2)W(t)—g(W)=0
(4.23)
int >ty =1InRand g(7) = (r+ L) — L™ + vL=*7 such that

9(1) = Lj; 2

By standard arguments it follows that

L=W97:2 £ O(73) for T near 0. (4.24)

W (t) = aje™™" + be™ !

1 t , ,
X — M [ (6)\2(t —t) _ e)\l(t ft)>g(W(tl))dt/ (425)
0

where a;, b are two constants. Notice that —\;, —\, are the roots of the

+

characteristic polynomial of the linear part of (4.23), where A\, A2 are in
(4.15) and (4.16). For each positive integer M > 2, g(7) admits the following

expansion
g(7) = do + ds7® + ...+ dpm™ + O(FM T (4.26)

near 7 = 0, where the constants ds, ds, ... ,dy depend only upon v and n.
When k£ = 1 we have from (4.19) that (since A} < Ao < 21, A\; > Ay — A\ =
26 +n—2—2)\)

W(t) = are™™" + O(e )
near ¢ = oo (since the case £ = 1 corresponds to the case §° < § < d, there).
Substituting this and (4.26) (with M = 2) into (4.25) we obtain (using the

fact that ftz = fo = 1)

W(t) = ae ™ +be ' — o /oo (ekz(t’—t) _ eAl(t’—t))
Ao — A1 Jy

X [anfe‘Q’\lt' + 0(6—(>\1+)\2)t’)} dt'
= 0,167)\14‘,+b167)\2t+a2672)\1t+0(€f()\1+)\2)t)

where the constants ag, b’ and b, are defined by the equalities. Note that
ay = dya?c(\i, \2) where the constant c(Aj, \2) depends only upon A;, Ao,
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thus ay depends only upon a;, ¥ and n. Now, substituting this expansion
for W and (4.26) (with M = 3) into (4.25), by similar computation, we have
W(s) = aie ™+ be ™ + aye 2!
ey e Qatt g =20t 4 g pm3NE

+O(e—(2>\1+>\2)t)

for t > ty, where ay = as(ai,v,n), as = asz(ay,v,n), by = bo(by,v,n) and
c11 = c11(ag, by, v,n). Iterating this process, after finitely many steps (with
the integer M in (4.26) getting larger each time) we arrive at, for each

positive integer /,

W(t) = Eeifaie_i)‘lt + Zjejbje_j’\zt

+E(i,j)EIcije_(i/\l+j)\2)t + O(e—(ﬁx\ﬁ-/\z)t) (427)
where £ = 1 and
J:{_]EZ ]Z]_ and ]A2<£)\1+/\2}
]:{(l,])EZXZ 1>1,57>1 and i)\1+j/\2<€)\1+)\2}

and a; depend only upon ai, v, n, b; depend only upon by,v,n, and c;;
depend only upon a,b;,v,n. (Here Z =the set of all integers.) Taking ¢
large enough, (e.g. £> (n+2)/A;) we obtain (4.22).

For £ > 1, the proof of (4.22) is similar. Our starting point still is (4.19)
which says that in case £ > 1,

W(t) = are ™' + O(e M) (4.28)
near t = 400 (we can check that in this case Ay > 2X;. This implies that
25 +n —2— 2\ > A Indeed, Ay = 22HD=20 5 9 implies 2(26 +n —
2—)\1) > 4)\1 and 25+7’L—2—)\1 > 2)\1 Thus, 25+7’L—2—2)\1 > )\1) As
before, substituting this and (4.26) into (4.25), by similar computation, we
have

W(t) = are™* + age™M' 4 O(e” mi“{3)‘1’)‘2}t) (4.29)

near t = 400, where a; depends only upon a;,v and n (but is independent
of b). (Here we ought to point out that although the derivation of (4.29) is
similar to that of (4.27), an additional trick that ftz = fot — f(fo is needed in
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handling the first part of the integral in (4.25) while the second part of that
integral can be handled by ftz = [ = [ as before.) Substituting (4.29)
and (4.26) into (4.25) and iterating this process, after (k — 1) steps we arrive
at

W(t) = are™ + age™t + ..+ age™t 4 O(e2t)
(4.30)

near t = +00. Repeating this process once more, we obtain
W(t) = ae ™ + age M+ 4 ape PN L he M 4 O(e*(k“))‘lt)
(4.31)
near t = +00. Now iterating the above process with (4.31), (4.26) and (4.25)
after finitely many steps we reach (4.27) and (4.22) is thus established.

Part (i) may be proved similarly by the arguments above together with
the proof of Lemmas 4.3 and 4.4 in [Li]. We omit the details here. O

5. GLOBAL EXISTENCE AND FINITE TIME VANISHING

In this section we will study the global existence and large time behavior
of positive solutions of the Cauchy problem

u=Au—u", z€R" t>0,
u|t:0 = ¢ c CLB(Rn)

where v > 0 and n > 3. We begin with a necessary condition for existence

(5.1)

of global c.w. solutions of (5.1).

For a bounded domain €2 in R", let A\(2) be the first eigenvalue of —A on €2
with zero boundary condition, and let 1 be the corresponding eigenfunction
with [, = 1. Let Bg be defined in Section 4 and Qp = {R < |z| < 2R}.

Proposition 5.1. If (5.1) has a (positive) global c.w. solution u with uy < 0
for allt > 0, then there exists C' > 0 depending upon the initial value ¢ such
that for R > 0 sufficiently large

| uetvm (o) = O (14 By R (5.2
Br

and

[ ute00u(a) > O35 0+ 2m) R 53)
Qg
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Moreover,

lim sup |z|~®"/ u(z,t) > (4AXNg,)"Y" for allt >0 (5.4)

|z| =400

provided 0 < k < 2;

lim sup |z|~ " u(z,t) > (2°Ara,)"Y" for allt >0 (5.5)

|z|—>+o00

provided k > 2, where A > 0 is defined in the definition of Cpg(R™).

Proof. We first prove (5.2). Multiplying g, to the differential equation
in (5.1) and integrating over Bg, we have by Jensen’s inequality (since the
function S(s) := s~ is convex for s > Oand [ uw “Yg,dx < [, (up,) "dz)

Fp(t) < =g, Fr(t) — FR"(t) —/ u(z,t) 9 r do, t >0,
dBR on

(5.6)

where 7 is the outward normal vector of 0Bg (we know that a@% < 0 on
0BR)
Fa(t) = / u(e, ) sy (z)dz.
Bpg
If there exists to > 0 such that
0
Ay Falts) — Fi¥ (t) — / (@, 1) gBR (2)do < 0
dBR n
then by (5.6), Fg(t) ultimately decreasingly — 0. On the contrary, we see
that (—/\BR-FZ/F};(V—H )= o, a“a’zt WBR (x)do < 0 for R sufficiently
large since Ag, — 0 as R — oo and u; < 0. Thus the function —Ag, Fr(t) —
faB (z,1) wBR do is deceasing in ¢. (5.6) then implies that Fj(t) <
—c < 0 for t > t,. Therefore, Fr(t) — Fg(ty) < —c(t — t3) and this is
impossible. Since Fr(t) — 0 as t — oo, there exists 0 < ¢ < 1 and ¢3 > 0
such that

FRp(t) < —cFg"(t) if t > t3,
hence

Fr(t)

/ FYdF < —c(t — t3) if t > ts.
Fr(t3)

This is impossible. Therefore, for all ¢ > 0,

— g, Fr(t) — F5"(t) — /6 ) u(z, t) 61553 (z)do > 0.
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This implies (note that u; < 0 for all ¢ > 0)

[ /a ) u(x,t)‘ag:;ff (x)‘da]_l/ ’

[ o2 was]

—1/v

> C(1+RB) ™ [[g, (BB ]

Fr(t)

v

Vv

where w,, = [S™!|. Since

—(r" Yl ) = Aper™ g, in [0,R], ¥p,(R) =0,

we have that (note that [, ¥p, =1)

Wn

R
A
R (B) = Any [ 7" () = 2
0

Thus, since A\, = A\, R72,

A Rf(n+1)
Wy (R)| = =2 ——.
Therefore,
Fr(t) > CAG (1 4+ R)™"R¥" for all ¢ > 0. (5.7)

To prove the second part, we choose R > M > 0, where M is the number
in the definition of Cz(R™). Multiplying g, to the differential equation

in (5.1) and integrating over €2, we have by Jensen’s inequality that

Fr(t) < =XqpFr(t) — FR"(t) — / u(x,t)anR do, t >0,
R an

(5.8)
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where Fg(t) = fQR u(z,t)Yq,(x)dr. By arguments similar to those in the
proof of the first part, we obtain that for all ¢ > 0,

I 8¢Q —1/v
Fr(t) > —/ u(z, t)—2do
w0 2 [ [ a5l

i , , —1/v
= -/azaw u(x,t)|1/)QR(2R)|da+/ u(x,t)@/)QR(R)da}

dBRr
—-1/v

> [ [ 6@ Wh,CRIdo+ | )i, (R)do]

-JOBsgr 9BRr

> [ACRY@R)" [vh, 2R) | + AR B iy, (R)]

> [A@Ryw (@R h, @R + B, @)

On the other hand, we know from the equation of 1, and the fact fQR Yap, =

1 that

A
(2R)" Moo, (2R)| + B gy, (R) = =2

Wn

Thus,
FR(t) > (A/\Ql)—l/uz—n/uR(Z—n)/u.

Note that \q, = R2\q,. Moreover, we also know that if 0 < x < 2

sup (o @ ulnt) > [ e Bl (o)
R<|z|<2R Qr

> R [ u(atin(@)ds

Qg

> (4A)‘91)_1/V

and hence

lim sup |z|~C7 u(z, 1) > (4ANg,) /",

|z|—>+o0

If kK > 2, we have

sup |2 Cu(e, 1) > / 2|~z D)o (2)da
R<|x[<2R Qg

v

R_(Q_”)/”/ u(z, t) o, (x)de
Qpr
> (28A)Ng,) "M
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and hence
lim sup |z|~ PV (z, t) > (2°Arg,) MY,
|z|—>+o0
Now, combining the proof of the second part and the first part, we obtain
(5.3). This completes the proof of Proposition 5.1. O

Remark. 1t is interesting to see that we obtain the optimal necessary

conditions for the existence of global c.w. solutions of (5.1).

Corollary 5.2. Let u be the global solution of (5.1) as mentioned in Propo-
sition 5.1. Denote limy_, o u(z,t) by us(x), then the conclusion of Propo-

sition 5.1 is true for ue. In particular, u € L;, (R").

Proof. This corollary follows from the proof of Proposition 5.1 and Fa-
tou’s Lemma. Indeed, let 7 > 0 and ¢; € C°(RY), then

/ u(z, s+ T)¢1dx|§i(1)

:/01 ds/n [u(z, s + 1) A1 (1) — (2,5 + 7)o (x) ] de.

Taking nonnegative ¢;, from the fact that u, € Lj  (R") (since ux €

C(R")) and Fatou’s Lemma, one sees that uz) € L;_ (R"). O

Now we prove the following theorem.

Theorem 5.3. Suppose that v > 0, 1 € Crg(R") is a positive radial con-
tinuous weak sub-solution of (4.1) and the initial value ¢ > ) in (5.1). Then

(5.1) has a unique global classical solution u, satisfying
u(z,t) > h(z) > C(1+ =)D on R x [0, 00). (5.9)

Furthermore, if v > v, and 1 is not an equilibrium of (4.1), then limy_,  u(-,t) =
+00. This is also true if ¢ > v for some constant v > 1 when 0 < v < v,

(in this case, ¥ can be an equilibrium, and u > y1).)
Before we prove Theorem 5.3, we give the following lemma.

Lemma 5.4. Suppose 1 is as stated in Theorem 5.3, then ¢ is nondecreasing

mr and
P2/ w+1).

v+1 ) 1/(v+1)
2n

v(r) > (
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Proof. Let j be the standard mollifier in R", and for each ¢ > 0, let
. 1. . . —
]e(x)ze_n](x/e)a Tﬁe:Je*ﬂ), and erJe*¢

Then Ay, > f. holds classically in R™. Since j is radial, by Lemma 1.4 of
[Wal, ¥ and f, are also radial. Therefore,

(r"~He(r)) = " ().
Integrating from 0 to r gives
" hpl(r) > /T s" 1 fo(s)ds
So, ¥L(r) >0 (r > 0) and 0

w d>/dt/ nlff)s.

Hence
n 1 f
v+1 1/—|—1 dt € d
v+1 (w (r) = ve / / “(t) ’
Note 1. — 1 pointwise and f(r) — )as e — 0F 1f r # 0. So by the
Fatou Lemma,

o) [ (i

and since v is nondecreasmg, we have (since ( ) 1/)( ), vV (s) > ¥7V(t))

l/—|—1
1/—|—1 /dt/

v+ 1\ /w+1)
> /(1)
Qﬁ(r) - ( 2n ) r

This completes the proof of this lemma. 0
Proof of Theorem 5.3

The uniqueness of the global solution is a simple consequence of Theorem

3.3 and Lemma 2.3 if it exists. To prove the remaining part, consider
vy=Av—v"", wv|i= = 1. (5.10)
Claim 1. (5.10) has a global positive classical solution v, satisfying that
v is radial in z and v is nondecreasing in ¢ > 0.

The proof of this claim is as follows. We know that i is a subsolution of

(5.10) and €2y = (4mt) ™"/ [o., exp( - %)1&@)(@ is a super-solution of
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(5.10). Using Phragmen-Lindel6f comparison principle (see Lemma 2.3), we
have e2¢) > 1) for all t > 0. Thus, applying Lemma 2.2, we have that (5.10)
has a positive global solution ¢ < v < et21p. This together with Lemma 5.4
imply that global existence part of Theorem 5.3. By Lemma 3.4, v is radial
in z, v(-,t) > 0 for 0 < t < +00. The proof of Claim 1 is completed.

Now we turn to the large time behavior of u. By Claim 1, v (z) =
lim; , o v(2, ) exists (maybe +00), vy is radial and vy, > 9.

Claim 2. If vy, # 400, then v is a (radial) regular solution of (4.1).

First we notice that for any ¢t > 0, v(-, %) is a regular sub-solution of (4.1)
which is radial in z. Thus, we can easily see that v(r,?) is nondecreasing
about 7 > 0 for any ¢ > 0. This also implies that v (r) is nondecreasing in
r > 0 if vy Z +00. Therefore, vy, € L‘l’SC(O, +00) if vy Z 400. Since v is a

continuous weak solution of (5.10), we have for any 7 > 0 and ¢; € C§°(R"),

/ v(e, 5+ 7 (2)dal =L

:/Olds/n [v(a, 5+ 7)A1 (@) — v (2,5 + )6 (@) da.

Let 7 — +o00, by the Lebesgue Dominated Convergence Theorem,

0= /n [vooAqﬁl — vo_o”qbl] dx.

Thus v is a distributional solution of (4.1). Now Claim 2 follows from the
regularity theory for elliptic equations.

Claim 3. The function v, = +¢ if v > v,.

If ¢ is a regular sub-solution of (4.1), by Claim 2, the fact v, > ¢ and
(71) of Proposition 4.3, either vy, = limgy 400 Ua(r) = 400 Or V4 = . By
assumption vy Z % (¢ is not an equilibrium). So v, = +oo. Now if ¥ is
not regular, observe that since v is nondecreasing in ¢, we can prove easily
that for each t > 0, v(-,t) is a continuous weak sub-solution of (4.1). By
regularity theory, v(-,t) is regular if ¢ > 0. Note also that v(-,¢) is radial and
Voo > ¥(+,t). Now by (i7) of Proposition 4.3, either v, = 400 or vy = v(+, 1)
for all t > 0 (here we should also use the fact that v(-,¢) is nondecreasing
in t). Since the latter implies vy, = 9 which contradicts our assumption,

Voo = +00.
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Claim 4. To prove the large time behavior of v when 0 < v < v, and
¢ > v for some v > 1, we follow the same line of reasoning. First replace ¢
in (5.10) by 7% and denote the corresponding solution of (5.10) by v7. Since
v is also a c.w. sub-solution of (5.10), Claim 1 is true for v”. Claim 2 holds
for v, = lim;, ;. v” by the same argument there. To prove v}, = +o0,
noticing vy < v7 < v, we have % > 1. Now consider the global solution
v of (5.10) (keep v|;—g = ®). Since % is a c.w. super-solution of (5.10)
(% < 1 and v, is an equilibrium), we have by Phragmen-Lindel6f comparison
principle (see Lemma 2.3) that % > v and hence % > Voo = limy 400 v(+, 1).
If v2, # 400, then v], and v, as nontrivial regular solutions of (4.1), satisfy
lim,, 10 v /U = 1 by Proposition 4.2, a contradiction! Therefore, v), =
+00. This completes the proof of Theorem 5.3. Il

When v > v, let ri(a) = min{r > 0: u,(r) = us(r)}, r2(e) = min{r >
r1(a@) : ua(r) = us(r)}. They are well defined by (i) of Proposition 4.4. From

Proposition 4.2, we have

rile) =a = (1), i=1,2. (5.11)

Proposition 5.5. (i) When v > v,, define in R™

_ooy Jus(|z)), x| > ()
Uo(z) = { (@)

ua(lz]), |z < i
- us(|z]),  |z| > r2()
Uo(x) =
@=L e
Then g (lq) is a c.w. sub-solution (super-solution) of (4.1).
(15) When v > 0, for every a > 0, 0 < v < 1, yu, are reqular super-
solutions of (4.1) and for v > 1, they are reqular sub-solutions of (4.1).

Proof. The proof of (4i) is trivial. We only prove (7). For all ¢; € C§°(R")
with ¢; > 0, we need to show

/ ﬂ,aA¢1d.’L' 2 / ﬂ;”qﬁldm.

Let j be the standard mollifier in R”, and for € > 0, let j.(z) = j(z/€)/€",
f(z) = a,”(z). Then
A(]e * aa) =Jex f
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classically in Bg_, for any R > 0. Denote {|z| < ri(a)} by B; then for small
€ >0,

[ Geraao = [ Gos nyo

S 0y, .
= A * Uy, -+ —— (¢ * g
/B (J )1 o (J )

_ 0(je * Uia) _ .
[ o2t [ ey,

— [ [ iw ) - 0, )

(n is the outer normal vector of 9B). Let ¢ — 0T, then

/B [uaA¢1 - f¢1] = /aB [%ua - ¢1%—%ﬂ. (5.12)

It is easy to see

/C [usAngl — u;”¢1] = /03 [— usaa;f; + 881:;@]. (5.13)
(5.12) and (5.13) yield

/n [aaA¢1 - ﬂ;'/(ﬁl] = /6B (861;; - %—1:7&)%

Since ul(r1(a)) > ul(r1(c)), the proof is finished. The proof of another

claim is similar. O
We are ready to give a global existence and large time behavior result

more specific than that of Theorem 5.3.

Theorem 5.6. (i) When v > v,, if the initial value ¢ > us on R"™, then

(5.1) has a (unique) global classical solution u, satisfying
u>us and u(-,t) = 400 ast — +oo.

(15) When 0 < v < v, if ¢ > ~yus for some constant v > 1, then the
conclusion of (i) still holds.

(733) In (i) and (i), if ¢ > yus for some constant v > 1, then u > yu,.

(iv) When 0 < v < v, if ¢ > yu, for some v > 1 and some equilibrium
Uq of (4.1) mentioned in Proposition 4.2, then the conclusion of (i) is true
with “u > ug” replaced by “u > yu,”. Furthermore, if v =1, then (5.1) has

a (unique) global solution u > u,.
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Proof. We first prove (i). We shall use Proposition 5.5 to find a positive
radial c.w. sub-solution of (4.1) which is below ¢, then (i) follows from The-
orem 5.3. To this end, observe that since ¢ € Cr(R™) and ¢ > u,, notice
(5.11), there exists « sufficiently small such that ¢ > u, in [0,71(a)]. We
use Proposition 5.5 to find a i, desired. The proof of () is now completed.

To prove (ii), we look for a constant 7; > 1 and a radial equilibrium u,,
mentioned in Proposition 4.2 such that ¢ > yju,, on R", then (i) follows
from (iv) which is immediate from Theorem 5.3 (note if v > 1, yu, is a c.w.
sub-solution of (4.1).) Since ¢ > yu,, liminf|; 100 [z %@V ¢(z) > L. By
Proposition 4.2, L = lim,_, o 7~ 2/®“*Yu,(r). Therefore, there exist vy > 1
and I > 1 such that

() > your(x) for |z| > R. (5.14)

Obviously, there exists 0 < 6 < 1 such that ¢(z) > yous(d) for 0 < |z| < 4.

From Proposition 4.2 again,

— ("-2i-1) 7‘)

ua(r) = au(a

= (a_%ﬁr)_2/(u+l)u1 (a_ (”;—1) 7“)/]"2/(V+1)

— Lr¥ D) =y (r) as o — 0F.

So there exist 1 < 72 < 79 and 0 < ap < 1 such that yyus(d) > Yata,(9).
Thus,

B(2) > Yatlay () > Yoty (|z]) if 2] < 0. (5.15)

Since u, — u, uniformly on [5, R] as a — 0% and ¢ > ug, there exists
1< <7 and 0 < oy < ap such that

d(x) > Yta, (Jz]) if 6 < |z| < R. (5.16)

Combining (5.14)-(5.16) and the fact that u, is increasing in « (see (i) of
Proposition 4.4), we have ¢ > 7yiu,, > y1us on R™. We finish the proof of
(i4).

To prove (iii), first we notice that when v > v, if we replace ¢ in the
proof of (i) by ¢/v (> us by the assumption), then we can find a radial c.w.
sub-solution v of (4.1) such that ¢/v > ¥ > u,, i.e., & > vy > ~vyu,. Since
vt is also a c.w. sub-solution of (4.1), by Theorem 5.3, u > 3 (here we
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should notice that the global solution of (5.1) satisfying the properties in ()
is unique by Lemma 2.3) and hence u > ~vyu,. Next, when 0 < v < v, by
examining the proof of (i) closely, 7o can be chosen arbitrarily close to 7,
72, 71 can be chosen arbitrarily close to vy and 7, respectively. Hence ~y; can
be arbitrarily close to . Since ¢ > v1u,, and yu,, is a c.w. sub-solution
of (4.1), we have u > yuqy, (> Y1us). Letting v1 — 7, we have u > yu,. (4i1)
is now proved. 0

Next, we turn to the finite time vanishing results. The following theorem

is in a direction opposite to that of Theorem 5.3.

Theorem 5.7. Suppose that ¢ € Crg(R") is a radial positive c.w. super-
solution of (4.1) which is not a solution of (4.1).

(1) When v > v,, if the initial value ¢ in (5.1) < 1, then the local solution
of (5.1), whose existence and uniqueness are assured by Theorem 3.3 satisfies
that Ty < oo and hence

lim minu(-,t) = 0.
t=Ty R”

(¢1) When 0 < v < v, if the conditions on ¢ in (i) hold with “¢ < ¢”
replaced by “¢ < yY” for some constant 0 < v < 1, then the conclusion of

(1) s still true.

Proof. To prove (i), suppose contrary to the conclusion, that T, = +ooc.

Then u is a classical sub-solution of
vy =Av —v7” in R" x [0, 400), |=o = 2. (5.17)

We also know that e’ is a super-solution of (5.17), with u(z,t) < e'®4.
The last inequality can be obtained from Lemma 2.3 (here we use the re-
mark after the proof of Theorem 3.3). Thus, using Lemma 2.2 (note that
mings o, u(x,t) > 0 for any 0 < T < oo), we can find a global solution
v(z,t) of (5.17) such that

v(z,t) > u(z,t) in R™ x [0, +00).

This implies that T}, = +0c. On the other hand, Lemma 3.4 implies that v
is radial in z and v is nonincreasing in t. Lemma 3.4 also implies that e**1)

is also nonincreasing in ¢. Thus, e'*¢ < ¢ in R" x [0, +00).
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Now, let v (z) = limy 1 v(2, ), then vy, is radial and vy, < v < 9.
Claim. The function vy, is a (radial) solution (either regular or singular
at x = 0) of (4.1). To prove this, let 7 > 0 and ¢; € C§°(R"\{0}), then

/ o(@, s + 7)o (2)dal=L

:/01 ds/n [o(a, s+ 7)A61 (2) — v (2, 5+ 7)o (2) ] da.

Taking nonnegative ¢, from the fact that v, in C(R"), Corollary 5.2, one
sees that v € LiOC(R”). Letting 7 — +o00, by the Lebesgue Dominated

Convergence Theorem,

0= / [vooAqSl _ u;o"¢1] dz.
Taking radial ¢, it is easy to see that
(r" Wl (r) =" v =0 on (0, +0c0) (5.18)

o o

in the distributional sense. For sequences {r,, };'%, {r,}/> with r,, — 0 as
m — 400 and 7, — 0 as £ — +oo (without loss of generality, we assume

r¢ < rm), we have from (5.18) that

Tm
[Pl () — 1Ml ()| = |/ r" vy Ydr| — 0 as m,{ — o0
Te
since vy’ € Llloc(R”). This implies that lim,_,o+ 7"~ !0/ (r) exists. We can

show that lim,_,o+ 7"~ !0’_(r) > 0. Otherwise, suppose that
o0

lim 7"~ ! (r) =a <0,

r—0+ o
then there exists # > 0 such that v/_(r) < (a/2)r'™ for 0 < r < 7. This
implies that v,(0) = +o00, a contradiction. (Indeed, we easily see that
lim, g+ 7" vl (r) = 0.) Therefore, from (5.18), we have that v (r) is non-

decreasing in r > 0 and by a bootstrap argument, vy (r) € C?(0,+00). Thus
Voo 1S either a regular or a singular (at |z| = 0) solution of (4.1). The proof
of the claim is completed.

For v > v,, we first show vy, # us. Otherwise, ¥ > v, = uy and hence
by Theorem 5.6, v, = +00. A contradiction. Next, if vy, is a (radial)
regular solution of (4.1), we still have a contradiction as follows. Since v

is nonincreasing in ¢, it is easy to see for each ¢t > 0, v(-,t) is a (radial)
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regular super-solution of (4.1) with v(-,t) > vs. By (4i) of Proposition 4.3,
v(-,t) = vy for each ¢t > 0 and hence ) = v(-,t) = ve. This contradicts
the assumption that v is not a solution of (4.1). Now the proof of (i) is
completed.

To prove (i3), replace the initial value 9 in (5.17) by 2. If the conclusion
of (4¢) is untrue, then as in the proof of (7), (5.17) has a global solution v such
that v is radial in z and nonincreasing in ¢ (note v with 0 <y < 1) is a
c.w. super-solution of (4.1)), and vy (x) = limy, » v(z, t) is a radial solution
(regular or singular at = 0) of (4.1). If v, is singular, then Proposition
4.3 implies vy, = us and hence Y > u,, ¥ > ug/y. By (i7) of Theorem
5.6, the solution v, of (5.17) (keep v|;—¢ = %) tends to +o00 as t — 400 if
Y > us/vy. But v, < 1, so we reach a contradiction and hence vy, can only
be a regular solution of (4.1). Yet this is impossible by (iv) of Theorem 5.6
and the reasoning as above. g

As a consequence of Theorem 5.7 and Proposition 5.5, we have the follow-

ing result which is in a direction opposite to that of Theorem 5.6.

Theorem 5.8. The conclusion of (i) in Theorem 5.7 holds true provided
that

(1) when v > v., ¢ <, for some a >0,

(77) when 0 < v <, ¢ < yu, for some 0 <y <1 and some a > 0,

(#17) when 0 < v < v, limyg)— 100 sup |2~V e(z) < L.

Proof. (i)-(ii) are immediate consequences of Theorem 5.7 and Proposi-
tion 5.5. To prove (iii), by (i), it suffices to find 0 < v < 1 and « > 0 such
that ¢ < yu,. Sincelim g 4o 2|2/ (2) < L = lim,_y o0 7~ 2Ty (1),
there exist R > 0 and 0 < 7y < 1 such that ¢(z) < yuy(z) if |x| > R. By the
fact that ¢ > 0 and u,(r) = au (@~ ¥t1/2r) > q, there exists a > 1 such
that ¢(z) < yuu(z) if |z| < R. Since u, is increasing in «, we then have
é(z) < yuq on R™. This completes the proof of Theorem 5.8. O

Combining Proposition 5.5, Theorems 5.6-5.8, we obtain the following
theorem.

Theorem 5.9. Suppose that v > v.. Then the following conclusions hold.



CAUCHY PROBLEM 33

(7)) If ¢ > uqy and ¢ # u, for some a > 0, then (5.1) has a unique global
solution u(z,t) satisfying u(-,t) — 400 as t — +oo.
(13) If & < uq and ¢ # uy for some o > 0, then the solution u(x,t) of

(5.1) must vanish in finite time.

An important step in proving Theorem 5.9 lies in the study of the first
intersection points of nearby radial solutions of the elliptic equation (4.1).
We set Z(«, 3) to be the first zero of u, — ug where « > § > 0. Then
Z(a, ) < oo for all @« > f > 0 where v > v, by (i) of Proposition 4.3.

Moreover, Z(«, 3) has the following monotonicity property.

Lemma 5.10. Assume that v > v.. Then for every fized o > 0, we have

min{Z(«, 8), Z(ca,7)} > Z(8,7)

fora>p>~v>0.

Proof. Setting z; = u, — ug we have z > 0 in [0, Z(c, 3)) and Az +

ki(x)z; = 0 where
ki(z) = ——F< Vug(wrl) in |z| < Z(a, B).

Next, setting zo = ug — u., we have similarly that z, > 0 in [0, Z(f5,~)) and
Azy + ko(z)2z2 = 0 where
ko(z) = —% > ng(uﬂ) in |z| < Z(8,7).

Suppose for contradiction that Z(3,v) > Z(a,3). Using Lemma 2.20 of
[GNW] (with k(z) = Vug(uﬂ)(x) and R = Z(«, 3) there, it is clear that
z; is a sub-solution of Az + k(z)z = 0, 0 < |z| < Z(«,3) and 23 is a
super-solution of this equation), we see from (2.22) of [GNW] that z; > 0
at 7 = R = Z(a, ). This contradicts the definition of Z(«, 3). Therefore,
Z(B,v) < Z(a, B), which automatically guarantees that Z(«,y) > Z(8,7)
since a > (3 > . This completes the proof of this lemma.

We now begin to prove part (z) of Theorem 5.9. Without loss of generality
we may assume that ¢ > u, in R™. For, the assumption that ¢ > u, and

Z u, together with the strong maximum principle for parabolic equations
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immediately imply that u(z,t;¢) > u, for all z € R™ and ¢ > 0. Thus we
may replace ¢ by u(-, €; ¢) for some € > 0 if necessary.

Next, observe that by Theorem 5.3 it suffices to construct a radial contin-
uous weak sub-solution 1 of (4.1) which is not a solution of (4.1) such that
Uq <P < ¢ in R™. To this end we first observe that ug — u, uniformly in
[0, Z(3%, )] as 8 — «, since Z(32, ) < co. Thus there exists 32 > ' > «
such that ¢ > ug in [0, Z(32, a)]. Setting

(r) = { U (T) %fr > Z(ﬂ:, a),
ug(r) ifr <Z(F, ),
we see that uq(z) < ¥(|z]) < ¢(z) for all z € R™ since Z(32,0) > Z(F, )
by Lemma 5.10. On the other hand, it is standard to verify that v is a
continuous weak sub-solution of (4.1). (See the proof of (i) of Proposition
5.5.) This completes the proof of part (7).

Part (ii) of this theorem may be handled in a similar fashion. As before, we
may assume without loss of generality that ¢ < u,. Since ug — u, uniformly
in [0, Z(32, @)], there exists B < « such that ¢ < ug in [0, Z (%, o)]. From
Lemma 5.10 it follows that Z(c, ) < Z (32, @). Thus, setting

)
)

we have ¢(z) < ¢(|z|) < uq(z) for all z € R™. Since 1) is a continuous weak

o oua(r)  ifr> Z(e, B
v(r) = { uB(r) ifr <Z(o,p
super-solution of (4.1) (see the proof of Proposition 5.5), our conclusion

follows from (i) of Theorem 5.7. This completes the proof of Theorem 5.9.
0

6. STABILITY AND WEAKLY ASYMPTOTIC STABILITY RESULTS

In this section we will use the asymptotic expansions obtained in Theorem
4.5 to discuss the stability and weak asymptotic stability of the positive radial
solutions of (4.1). To this end we introduce a scale of weighted norms as in
[GNW]. For A > 0, we define

9]l = sup |(1+ |z]) ()], (6.1)

TERM
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and

(1+ [z))*
= S _—
2] [| S i@t 2]

where 1) is a nonnegative continuous function in R”. We say that a steady-

P()|, (6.2)

state uq of (1.1) is stable with respect to the norm ||-||, if for every € > 0 there
exists @ > 0 such that for ||¢ —uu||x < 6 we always have ||u(-,t; ) —ua||x < €
for all t > 0; u, is said to be weakly asymptotically stable with respect to
|| - ||x if u, is stable with respect to || - ||x and there exists § > 0 such that
for ||¢ — ua||x < 0 we have ||u(-,t; ¢) — ug|[y — 0 as t — 400 for all X' < A.
Similarly we define the stability and weakly asymptotic stability with respect
to the norm ||| - ||[x-

Let 6 = 25, M\i(v, n), Ao(v,n) be as in (4.15)-(4.16). By a simple calcula-
tion, we easily see that

d < M(v,n) < A(v,n) (6.3)

for all v > 0 and n > 3.
Our main result of this section is stated as follows. (In the rest of this

paper u, is as in Proposition 4.2.)

Theorem 6.1. (i) If v = v, then any positive steady-state u, of (1.1) is
stable with respect to the norm ||| - |||x,—s and is weakly asymptotically stable
with respect to the norm || - ||x,—s-

(17) For 0 < v < v, any positive steady-state u, of (1.1) is stable with

respect to the norm || - ||x,—s and is weakly asymptotically stable with respect
to the norm || - ||x,—s-
Proof. First we show that u, is stable with respect to the norm || - ||5,—s

in case 0 < v < 1. From Theorem 4.5, it follows that for any € > 0 there

exists an R, such that in [R, ., +00) we have
Ua(T) = L + a1,o7" M + E,(7)

where |E,(r)| < er®  in [R,,, +o0). For 3 near «, say, |3 —a| < /2, since

up(r) = gua <<%)(u+1)/2T> |
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we conclude that there exist constants R, and C, both independent of £,
such that

ug(r) = Lr® + ay 57~ + Eg(r)
in R, +00) where |Eg(r)| < Cer® in [R,, +oc) and

15 = (afB) DM,

Thus, in [R,, +00) we have

)\1—(5(

r ug — Uqg)| < la1g — 14| + 2Ce.

Since |(1+7)* °(ug —uq)| — 0 uniformly in [0, R] as 8 — «, it follows that
lim sup ||ug — tal|r—s < 4CE.
B—a
Since € is arbitrary, we conclude that
li — _s=0.
tim {5 — a5 =0

This in particular implies that for any given € > 0, there exists € (0, a/2)
such that ||uasy — Ual|a,—s < €. For this 7, we claim that there exists 6 > 0
such that if ||¢p —uq||x,—s < 6 then uy_, < ¢ < uq4,. From this assertion and
Lemma 2.2 our conclusion that u, is stable under the norm || - ||, s follows
immediately. We now proceed to prove this assertion. Since 0 < v < v,
Proposition 4.4 (i7) guarantees that uq., > u, and therefore a o4y > a1,4.
Thus it follows from our arguments above that for any ¢ > 0

)\1—5( A1—0

T (Uggn — Ua) = (@149 — @1,0) + [Bagn(r) — Eo(r)]r

> ((1,1,(14_7’ - al’a) — 2C€I

in [Re, +00). If we choose 6 < %(al,aﬂ —a1,4) and € < (a1,a4y —a1,4)/(40),
then in [Re, +00) we have, for any ||¢ — uql[x,—s < 6,

PN (tasy — ) 2 N (tagy — ta) = [T (ua — 9)]

> (a17a+n — aLa) - 2061 —0>0.

On the other hand, we can always choose 6 even smaller if necessary so that
¢ < Ugty in [0, Re]. Hence ¢ < 44y in [0,400). The other inequality that
¢ > Uq—_y in [0, +00) may be derived by similar arguments, and our assertion
is established.
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The case v = v, can be handled in a similar fashion, we therefore omit the
details. ]
To prove the weakly asymptotic stability of u,, we need the following

results.

Lemma 6.2. Suppose that v > 0 and h is a radial smooth function which

satisfies
1+h>0 inR" (6.4)
Then for each 3 > 0 the problem
o + ”T_lv' — (1 4k, v(0) =8, v(0)=0 (6.5)

always has a positive solution vg in [0, +00).

Proof. By standard arguments one sees that (6.5) always has a unique
solution vz near r = 0 and the solution is increasing wherever it exists.
Suppose that vg(R) = 400 for some R > 0, then

lim vg(r) = +o0. (6.6)

r—R-

On the other hand, for any r € (0, R),

Pl () = /0 "1+ h(©))E v (€)dE < 5 /0 "1+ h(e))erde.

This implies that |vj(r)| is uniformly bounded for 7 € (0, R). This contra-
dicts (6.6). O

Theorem 6.3. Suppose that 0 < v < v.. Then for each fixed positive radial
solution uy of (4.1) there exist a sequence of radial strict super-solutions
o) > a® > ... > u, and a sequence of radial strict sub-solutions g&l) <
u? < .. < Uq Ssuch that u, is the only solution of (4.1) in the ordered
interval g&k) < U < ﬂg“) for every k. Moreover,
kEToo T = o = kgrfoo g (6.7)
Proof. For each 0 < v < v, there exists a nonnegative nontrivial smooth
function h such that both h and —h satisfy (6.4) with supph C B¢ and

0 < ¢ < 1. Denoting the solution of the problem

-1
o+ n—vl — (1 :th)’l)_u in (0’ +OO), 1)(0) = /6 >0, U’(O) =0
T
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by vﬂi, respectively, we see by Lemma 6.2 that both v? exist and are positive
in [0,4+00). Note that U;: also depend on (. We need to remember this in
the following proofs. Obviously, v is a strict super-solution of (4.1) and vy
is a strict sub-solution of (4.1). We shall use v;t to construct the required
) and ul). The proof is divided into the following steps:

Step 1. For every sufficiently small 3; > 0, there exists 0 < a1 < 31 (a1

depends on () such that

Vg, > Uq, in R™ (6.8)

First, put a; = iminB1 vg,- We choose (; > 0 sufficiently small such that

for 0 < ¢ < (1, maxp, Ua, < 20y and
Vg, — Uay > 4o — 200 = 2011 > Uy, 1n B,

(v + h)ux "™ < vu Y in B

2
for 0 < ap < a7 and sufficiently small.
Suppose that there exists an R > 0 such that w; = Vg, — Uy, > 0in Bg
and wq(R) = 0. Then w; satisfies

VA -V __ u—u VA —v
Awy — (ﬂl,)—al’uh + h(,Lwl =0
U,Hl - Ual Uﬂl - ual
ie.,
Aw1 + k1w1 =0 in BR (69)
where L ~ L
k‘l = _ (Uﬂl) - ual + h (U/Bl) .
Vg, — Uy Vg, — Uay

Thus, for 0 < r < R (note that supph C B),

ko < vug”th h(vg,) Yue  If0<r<(
' vugty ifC<r<R
< (v+h)uy ™

< Vu;Q(”H) with 0 < o < 0.

On the other hand, choosing 0 < a3 < ay < ag, if we set Wy = Uy, — Uq,

then
B ul —u
Aws + uua2(”+1)w2 < Awy — 22— 4y = 0.
Ugy — g
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Since wy > 0 in R™ by Proposition 4.4 (4¢), which is a super-solution of
Aw + kow =0 (6.10)

with &y = vuat" and wy(0) > 0, Lemma 2.20 of [GNW] applies and we
conclude that wy(R) > wy(0)wy(R) > 0, a contradiction, and Step 1 is
established.

Step 2. vg > ug for all 5 > 0.

It suffices to show that v,‘f > ug for every p > (3. Suppose that this is not
true, i.e., there exist p > §# and R > 0 such that w3 = v —ug > 0in [0, R)
and w3(R) = 0. Then wj; satisfies

A’w?, + kg’w?, 2 0 in BR

—(v+1

where k3 < vug ). Choosing n <  and setting ws, = ug — u,, we have

wg > 0 in R™ (by Proposition 4.4 (4i)) and
A’LU4 + k4’(U4 =0 in Rn,

where

uz’ —u Y 3
ky = _s l/uﬁ(uﬂ).
Uug — Up

But then Lemma 2.20 of [GNW] (with & = l/u;('ﬂrl) in (2.19) there) implies
that ws(R) > 0, a contradiction.
Step 3. For each oy in Step 1, there exists ; > 0 such that

Ug, > v in R”, forall 0 <y <.
Set v, = iminB1 Uq,- As in Step 1, we choose 0 < (» < (; such that for
0 < ¢ < (g, maxp, v < 27 and
Ug, — vy > vl in B,
(v + h)u;“+D) < Vu;(uﬂ) in B,

for 0 < 4 < y(< 1) sufficiently small.
Suppose that there exists R > 0 such that ws = uq, — U;’ > 0 in Bi where
0 < v <, and ws(R) = 0. Then ws satisfies Aws + ksws = 0 in By where

R e e R 1
° Ug, — VF Ugy — VI
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Thus, for 0 <r < R,

b < v(vl) U 4 h(uf) 0 <r <
b v(vi) if¢(<r<R
< (v+h)(u,) "™ (by Step 2)
< yu;("ﬂ) with 0 <4 <7y < 7.

We can obtain a contradiction by the arguments similar to those in the proof
of Step 1.

Step 4. For each a > 0 there exist a radial strict super-solution ﬂ((xl) of
(4.1) and a radial strict sub-solution u$’ of (4.1) such that

a1 > uy > u) in R™. (6.11)

Moreover, u, is the only solution of (4.1) which satisfies (6.11).
From Steps 1 and 3 it follows that there exist small 3; > a3 > v; > 0 such
that vg > uq, > UDYLI in R". Now, fix #; and ~; and define

oy =sup{a € (1, 61) : v > uq > v, in R"}
and
of =inf{a € (1, 6) : Vg, > Ug > vf;l in R"}.
Obviously we have
Vg > Uy > Ug, > Uqr > vf in R (6.12)

Then, for each given a > 0 we set

I\ (v+1)/2 1) +br2
ESKT)=-34¢1((91) T)’ ”SNT):'gﬂ@;(<91) T)'
o o of « (6.13)

By standard scaling arguments, we have

I\ (v+1)/2
a0 > Sy ((2)7) = watr)
(6]

1 «

by (6.12), and similarly u, > g((ll). Since h > 0 and # 0, @{") and @&1) are
strict super- and sub-solutions of (4.1) respectively. Hence a{) > u, > g&l)
in R™ by the strong maximum principle.

It remains to show that u, is the only solution of (4.1) which satisfies

(6.11). Suppose for contradiction that there exists 3 # a such that 7)) >
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ug > g&l) in R". Without loss of generality we may assume that § > a.
From u{!) > uj it follows that
Vg, (r) > %Iluﬁ ((%)Ojﬂ)ﬂr) = Uga) (r) > ug (r) > vf{l (r)
1 =
since (faf)/a > «}. This, however, contradicts the definition of «/|. Hence
Uq is the only solution of (4.1) satisfying (6.11).
Step 5. Setting

_ I\ (v+1)/2 I\ (v+1)/2
ho(r) = —h ((%) 7") and hy(r)=nh ((%) r)

we have immediately that

AT = (1 - Ra) (@)™

a

and
Aul) = (1 + k) (@)™ in R™.

Q

Now, considering the equation

Au = (1 - %)u” in R" (6.14)
we see that for k = 2, @) is a strict super-solution of (6.14), and u, is a
strict sub-solution of (6.14),. Thus (6.14), has a radial solution (2 with
Uy < ﬂ((f) < U&l) by the usual barrier method (see, e.g., the arguments used
in Theorem 2.10 in [Ni].)

Iterating this argument, we obtain a sequence of radial strict super-solutions
of (4.1) @M > a® > ... > u, in R™. Similarly, a sequence of radial strict
sub-solutions g&l) < gg) < ... < u, may be constructed by using h, and the
corresponding equations

Au= (14 %) in R". (6.14)}

Since u,, is the only solution of (4.1) satisfying (6.11), it must be the only so-
lution of (4.1) with the property that @) > u, > ggk), and our construction
is complete.

Finally, we will conclude our proof by establishing (6.7). Since the se-
quence {*) : k =1,2,...} is bounded below and monotonically decreas-

ing, from standard elliptic estimates it follows that its limit % must be a
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(classical) solution of (4.1). (Note that h,/k — 0 as k — +oc in C%-norm.)
Since @ > wuq, @ must also satisfy (6.11) and, & = u, by the uniqueness.
Thus, u{¥) — u, as k — +oo. Similarly, u¥) —5 u, as k — +oo and (6.7) is
established. This completes the proof of Theorem 6.3.

The rest of the proof of Theorem 6.1 is still technical. In the follows, we
only consider the case (v, =)v1(n) > v > vy(n), other cases are similar but
more difficult. Where v4(n) and vy(n) are defined in Theorem 4.5.

Our next goal is to use Theorem 4.5 to obtain the asymptotic expansions
of the super- and sub-solutions U((f), g&k), k=1,2,..., obtained in Theorem
6.3 as well as the solution u, of (4.1).

Since ) is a solution of (6.14); with 1 — %"“ = 1 outside a finite ball
(which is independent of k) and U((f) > U,, Theorem 4.5 applies and we have

7™ (r) = Lr’ + 6§,(l7°5_)‘1 + 5&’27“5_)‘2 + ...+ O(r~ (29 (6.15)
near +oo by (4.22). Similarly,

Ua(r) = Lr’ + ayar” ™ + by o 4+ O(rm 1279 (6.16)

near +o00. For sub-solutions g&k), Theorem 4.5 still applies and

Qgc) (r) = Lrd + Qg,gﬂad—/\l + bglzraﬂh 4.+ O(rf(n+2fe)) (6.17)

near +oo. For, if

lim r%u®(r) =0,
r—-+00

considering the solution wu,s(r) of (4.1), since lim,_, 4o 7™ %Uq/2(r) = L, we
see that u,/; > g&k) near +00, say, in [R, +00). Since ug — u, uniformly in
[0, R] and uy > u in [0, R], there exists «/2 < < « such that ug > u in
[0, R]. Since ug > uq/2 in R™, we conclude that uq > ug > g&k) in R™ which
contradicts the uniqueness of u,, in Theorem 6.3. Thus, lim,_, ;o r“sg&k) (r) >
0 and our Theorem 4.5 applies and gives (6.17).

It is necessary for our purposes to understand the relations between the
coefficients 6%’2, 1,0, Q&’Z, 55’2, b4, ng; Lemmas 6.4-6.6 below are essential

to our weak asymptotic stability considerations.

Lemma 6.4. For every k we have

(@) — a1,0)> + (B = b12)> > 0
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and
(a1,0 — af2)? + (brq — b))% > 0.

Y’

Furthermore, for every £ # k, we have

@ —a2)? + @2 -59)2 > 0

and
@ — a0 + ) —b{%)? > 0.

1,a A«

Proof. We will only prove the first inequality since the others can be
handled similarly.
(k) _

la = 01,4 and 55’2 = by . Then for this partic-

Suppose for some k that @
ular £ all the coefficients in the expressions (6.15) and (6.16) are the same
by Theorem 4.5. Thus,

T — ug(r) = O(r~m+279)

(6%

near +oo. Since A(@® — uy) < 0 in R™ by (6.14); and that 7® > u,, it

follows from standard arguments that

k) — uy)(r) > Cr* ™ (6.18)

(g

near +oo for some positive constant C' (see the proof of Theorem 3.8 in [Ni]).
This contradicts (6.18) and finishes the proof. O

Lemma 6.5. 6%’2 =014 = lef; > 0 for all k and «.

Proof. Since u,(r) = aui(a~*/2r), we deduce from (6.16) that
Lr? 4 ay o ™ by o2 4 O(rm (04279
= Lrd 4+ aay, (o W T/2)F N0
+b1,1a(a7(”+1)/2)67’\27“57’\2 + ...+ O(r (29,
It then follows that

A1/2

(Zl,a == O!(U_H) (1,1’1 and bl,a = O!(V+1)/\2/2b1’1. (619)

By Proposition 4.4 (i) we conclude that u, is increasing as « increases. This
implies that a; , is nondecreasing in «, which in turn implies that a;; > 0,
and a1, > 0 by (6.19).
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From (6.15)-(6.17) it follows easily that a) > a1o > a% since u{¥) >

1,a

Uy > ut(f) If a(k) > a1 then agi > a3 for all 3 sufficiently close to a. We
then infer from (6.15) and the asymptotic expansion for ug (with a replaced
by (3 in (6.16)) that for every § > « and sufficiently close to a there exists
R(B) such that 7® > ug in [R(B),+00). Since ug is increasing in 3, R(f)
may be chosen independent of 3 if § is sufficiently close to «. That is,
a®) > ug in [R,+o0) for all 8 sufficiently close to a. On the other hand,
ug — U, uniformly on [0, R] (since ug — u, monotonically as 3 decreases to
a and u, is continuous), thus ) > ug on [0, R] and therefore in R for all 3
sufficiently close to «. This contradicts the uniqueness assertion in Theorem
(k)

—(k ..
6.3. Hence ag,i = a1,o- Similarly we have a1, = a;,.

It remains to show that a;, > 0. Suppose for contradiction that a;, =0
for some o > 0. Then a;, = 0 for all & by (6.19), and therefore aﬁ’fa =0=
( ) for all £ by what we have just proved.
We can now repeat the arguments in the previous paragrap)h (which lead
= by = b( )

which clearly gives rise to a contradiction to Lemma 6.4. Therefore, a1, > 0

to the conclusion that ag ()1 =014 = ag (1) to conclude that b(

for all o > 0 and our proof is complete. Il

Lemma 6.6. b 1o 18 strictly decreasing to by and b

to by as k — +oo0.

10 18 strictly increasing

(k)

1,

for all k£ by Lemma 6.5, b
6.4. Similarly bt
two sequences have the same limit b, ,. This follows directly from the fact

that ﬂgk) — Uq and g&k) — U, as k — +0o once we show that the error terms

(k)

Proof. Since u; , is a decreasing sequence with limit u, and 0y, = Q1a

La ) must be strictly decreasing in view of Lemma

by, is strictly increasing in k. It remains to show that these

in the expressions (6.15)-(6.17) have a uniform bound in k. To obtain such
a uniform bound we proceed as follows.

As in Section 4, it is convenient to do the estimates in the variable t=Inr
and for the function W (¢) = r=9a®)(r) — L. Since W& is uniformly
bounded above and below respectively by W& and Wy (t) = r—duq(r) — L
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for all £ and 6%’2 = Q1 4, We have, from (6.15) and (6.16) that
a1 0 M — Cre2t < W, (t) < W (1) < Wi(t)

< alyaef’\lt + Ce

in ¢t > Ty where C7 > 0 and T > 0 are independent of k. That is, for w > 0

sufficiently small
0 < ay e — Cre™ 2!
W) < e+ G <

in t > T, if Tp is large enough. (Recall that a;, > 0 by Lemma 6.5.) By the
definition of g in (4.24), we know that g(7) is increasing in (0,w) for w > 0
sufficiently small. Thus, for ¢ > Ty, by (4.24),

gWE (1)) < glarae™* + Cre™) < Che™™! (6.20)
where Cy > 0 is also independent of k.
g(WF () > 0> —Cze X! (6.21)

for t > Ty and the constant C3 > 0 is independent of k. Substituting (6.20)
and (6.21) into (4.23) we obtain, after some computations as in Section 4,
that

W) = alhe ™ — b,

" n€ 2| < Cuem M (6.22)
for t > T, where the constant C4 > 0 is independent of k.

Now suppose that limy_, 55’2 # b1,o. Then there exists € > 0 such that

Egk) > by o + € for k large. From (6.22) it follows that for ¢t > Tj,

s

1, 1, a

|(5(k) B b1,a)€_)‘2t| < ‘(a(k)e—)\lt +5§2€_)‘2t) _ W(k)(t)‘

WP O) = Walt)| + | Walt) = (ar0e™ + byoe™)

< Cse Mt (W (1) — W, (1)) (6.23)
where the constant Cs > 0 is independent of k. Since Ay < 2A; (by our
assumption 1»(n) < v < vi(n)), there exists a number 77 > Tj such that
e@M=2)T1 5 Oyl Letting k — +oo in (6.23) (note that (6.7) holds) we
obtain

66—/\2T1 S 056—2)\1T1



46 ZONGMING GUO AND JUNCHENG WEI

which contradicts the choice of 77. Therefore, Bﬁ'ﬂl — biq as kK — +o0.

Similarly, b( — b1 o as k — 400, and our proof is complete. O

Now the stablhty of 14 in the norm || - ||5,_s is easily established by using
Lemma 6.6. For given ¢ > 0, Lemma 6.6 and estimate (6.22) guarantee that
there exists k' such that if u& ) <9p< u( ") then

|v — ta|lr,—s < €

On the other hand, for this &, since ﬂ((f') > Uy > u(ak’) in R" and E(k,) > b1
bgka), there exists # > 0 such that if ||¢ — uq|[r,—s < 0 then u ) > ¢ > u(k’)
in R*. Then Lemma 2.2 implies that @) > u(-,¢; ¢) > uf) in R™ for all
t > 0 and therefore ||u(-,t; ) — uq|[r,—s < €. Thus u, is stable with respect
to the norm || - ||x, s

To establish the weak asymptotic stability of u, with respect to the norm
I| - ||a;—s, it remains to show that the existence # > 0 such that for |[¢ —
Ua||rp—s < 0 we always have ||u(-, t; @) —uq||x — 0 as t — +oo for every X' <
Ao — 0. This follows from Theorem 6.3 and Lemma 6.5 almost immediately
For we may choose § > 0 so small that if ||¢—uq||x, s < € then ul < ¢ <all

in R". Then Lemma 2.2 implies that
ul) < tul)) < u(-,t0) <ul-tal) <a)  in R™ (6.24)

Since u, is the only steady-state satisfying (6.11) and both u(-,¢; @) and

a

u(-, t;u) are monotone in ¢, we must have

)y — o (D)
Binoou(x 31, ) = Ua(x) tkinoou(x,t,ga )-

Therefore, u(-,t; ¢) — u, as t — +oo. Then, for every X' < Ay — ¢ and every
R > 0 it follows from (6.24) and the expansions (6.15)-(6.17) that

L+ o) (u(a, 5 6) = wa(e))

< { O+ [z])¥[z]P~ if 2| > R
1+ R |lu-t; ¢) — valliosg if |2 <R
CR)\’ (A2—9) if ‘.’L'| > R

{ (1 + R))‘I”U(-,t; QS) - ua||L°°(BR) if ‘.’L" < R.

Letting t — 400 we obtain

lim sup [|u(-,; ¢) — uqlly < CR¥ =270,
t—+400
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Since R is arbitrary, we conclude that ||u(-,t;¢) — ua||x — 0 as ¢t — +o0.
Therefore, u, is weakly asymptotically stable with respect to the norm || -
lr,—s and the proof of Theorem 6.1 in the case (v, =)v1(n) > v > vy(n) is
complete.

The rest of part (i7) of Theorem 6.1 can be handled in an analogous way.
One simply notices that in Theorem 4.5 the coefficients aq, as,...,ay are
uniquely determined by a; and thus create no extra difficulties in extending
Lemmas 6.4-6.6 to the more general case v < v1(n) = v..

In proving part (7) of Theorem 6.1 by the above arguments, we first no-
tice that now the two independent terms are a;r° *Inr and b;r°~*2 (which
accounts for the slightly different norms used in (4)). As a result of this

difference, (6.19) now takes a new form
v+1

(10 = Oz(y+1))‘1/2a1,1 and bl,a — CV(V—H))‘I/Q(bl 1 —

, 0,1,111104).

Since the explicit form of b , in (6.19) was never used in our proof of part
(1), this also causes no additional problem, and part (i) of Theorem 6.1
can now be established by the same arguments we used to handle the case
ve(n) < v < vy(n) earlier in this case. This completes the proof of Theorem

6.1. 0

7. EXPANSION RATE

In this section, we obtain the expansion rate of global solutions of (5.1) in

some special cases.

Theorem 7.1. Suppose v > 0 and ¢ € Cpp(RY) is a c.w. sub-solution of
(4.1). If the initial value ¢ > b for some v > 1, then (5.1) has a unique
global classical solution u satisfying v < u < e®¢ and for t > 0

: . > 1/(v+1) (A v+1 _ 1\1/(v+1) 1/(u—|—1).
minu(,) > (v +1) (v 1) t

Proof. The global existence follows from Lemma 2.2 if we can show
b < et®¢ in R™ x [0, +00). But this can be obtained from Lemma 2.3. (It
is clear that e'®¢ is a super-solution of (5.1).) The uniqueness can also be
obtained from Lemma 2.3. To prove the large time behavior of u, it suffices

to take ¢ = . First, we assume 9 is C'*° smooth, then u is C'*° smooth to



48 ZONGMING GUO AND JUNCHENG WEI

the boundary ¢ = 0. Consider v = u; — fu™ where constant 6 > 0 is to be

determined later. By a straightforward computation we have
v, — Av > vu~ Dy on R™ x [0, +00).
Observe that
V=0 = (s —0u")|i=0 = (Au— (0 4+ 1)u")|i=0
YAY — (0 + 1)y ™

Y L= (0 + 1)y Y]
= 0ifh=r" 1.

Y

From Lemma 3.4, u; > 0. So, v > —fu™ > —6¢~". In particular,
vu~®*1 (- t) has a positive lower bounded for any ¢ > 0. Then by the
Phragmen-Lindeléf comparison principle (see Lemma 2.3), v > 0, i.e. uy >
Ou v with § = v**! — 1. This in turn implies that

u(z,t) > (v + DY) (it _ YD/ ) for ¢ >

and this completes the argument for regular .

For the general case, consider the global classical solution u, of (5.1)
with ¢ = 9 (uy is assured by Lemma 2.2 again). By uniqueness, this u,
is the same one as in Theorem 3.3. Hence by the proof of Theorem 3.3,
uy (-, t) — () pointwise as ¢ — 07. Also, by Lemma 3.4, du,,/0t > 0 for
t > 0 and hence 1(-) = uy(-,€) is a smooth (by regularity theory) sub-

solution of (4.1). Therefore, the conclusion for smooth ¢ implies that
ue(z, 1) > (v + YD (- Y erD/ D)

where u, is the global classical solution of (5.1) and ¢ = .. We claim
that ue — u pointwise on R" x [0,400) (hence we are done). In fact, this
follows from the continuity of solutions with respect to the initial value. This
continuity can be proved by the integral equation and Gronwall inequality.
This completes the proof of Theorem 7.1. O

Corollary 7.2. Suppose that v > 0. If the initial value ¢ > yug for some

constant v > 1. Then (5.1) has a unique global classical solution u satisfying
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u > yus and

: . > 1 1/(v+1) (A v+1 _ 1 1/(v+1) 1/(u+1)-
minu(,t) > (v +1) (v ) t

Proof. Again, the uniqueness immediately follows from the Phragmen-
Lindel6f comparison principle (see Lemma 2.3). On the other hand, exactly
as in the proof of (i74) of Theorem 5.6, we can find a c.w. sub-solution ¥
of (4.1) such that ¢ > v > yus when v > v, and ¢ > 79 > 7'us when
0 < v < v, where 7' and 9 can be chosen so that 7' can be arbitrarily close
toy and v >+’ > 1. By Theorem 7.1, in any case, (5.1) has a unique global
classical solution u so that u > v'¢ (> 7'u,) and

: . > 1/(v+1) Nnv+1 _ 1\1/(v+1) 1/(1/—}—1).
minu(-,t) > (v +1) () = 1)

Letting v — v, we are done. This completes the proof of this corollary. [
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