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Abstract
N+42

We consider the following critical elliptic Neumann problem —Aw + pu = uN-2,
u >0 in Q; ax =0 on 09, Q being a smooth bounded domain in RN, N > 7.4 > 0
is a large number. We show that at a positive nondegenerate local minimum point
Qo of the mean curvature, (we may assume that Qo = 0 and the unit normal at Qg
is —ey), for any fixed integer K > 2, there exists a ux > 0 such that for y > pg,
the above problem has K — bubble solution u, concentrating at the same point Q.
More precisely, we show that “u has K local maximum points Q‘f - Q’;( € 0N) with
the property that uu(Q]) U 2 ,Q - Qo,j=1,....,K, and /I,NNS((QIf)’, s (Q*I‘()')
approach an optimal configuration of the followmg functional

()  Find out the optimal configuration that minimizes the following functional:
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1 Introduction

In this paper we consider the following nonlinear elliptic Neumann problem

(P,

q,p

) —Au+pu =u?, u>0 in ),
du — on 0f)

where ¢ = 42, 1 > 0 and Q is a smooth and bounded domain in RV, N > 7.

Equation (7, ) arises in many branches of the applied sciences. For example, it can be
viewed as a steady-state equation for the shadow system of the Gierer-Meinhardt system

in biological pattern formation ([17], [26]) or of parabolic equations in chemotaxis, e.g.
Keller-Segel model ([24]).
N+2

When ¢ is subcritical, i.e. ¢ < 775, Lin, Ni and Takagi [24] proved that the only
solution, for small y, is the constant one, whereas nonconstant solutions appear for large
i, which concentrate, as p goes to infinity, at one or several points. The least energy
solution blows up at a boundary point which maximizes the mean curvature of the frontier
[28][29]. Higher energy solutions exist which blow up at one or several points, located on
the boundary [4][11][16][22][44][21], in the interior of the domain [5][10][12][14][15][19][41],
or some of them on the boundary and others in the interior [20]. (A review up to 2004 can
be found in [26].)

In particular, we mention the following result of [21]:

Theorem A ([21]). Suppose that 1 < q < % and that Qy € 0N) is a strictly local
minimum point of the mean curvature function H(P). Then given any positive integer K,

there exists a px > 0 such that for p > pk, problem (P, ,) has a solution u, with K spikes
1
%0 =1,..., K such that Q} — Qo and |Q} — Q| > 07 log p.
1

In the critical case, i.e. ¢ = %, there also have been many works on P, ,. For large
i, nonconstant solutions exist [1][36]. As in the subcritical case the least energy solution
blows up, as p goes to infinity, at a unique point which maximizes the mean curvature of
the boundary [3][27]. Higher energy solutions have also been exhibited, blowing up at one
[2][37][31][18] or several (separated) boundary points [25][38][39]. The question of interior
blow-up is still open. However, in contrast with the subcritical situation, at least one blow-
up point has to lie on the boundary [32]. In the case of u small, Zhu [45] proved that, for
convex three dimensional domains, the only solution is the constant one . A different proof
is given in [42]. For p small , Rey and Wei [35] have proved there exists arbitrarily many
bubble solutions if N = 5 and Wang, Wei [43] also proved there exists arbitrarily many
bubble solutions if N =4, 6.

In the slightly supercritical case, i.e., ¢ = % +§ where § > 0,5 — 0, Rey and Wei [33]-
[34], del Pino, Musso and Pistoia [9], proved the existence of boundary bubble solutions for
fixed p > 0. Furthermore, a new type of solutions, i.e., bubble-towers, has been constructed
in [9].



Our aim, in this paper, is to prove a version of Theorem A, in the critical exponent
case. Furthermore, we can identify the optimal configurations inside the clustered bubbles.

Let H(Q) denote the (outward) boundary mean curvature function at @ € 9. Our
basic assumption is the following:

(H1) N>T,

(H2) Qo =0 is a nondegenerate local minimum point of H(Q) and H(Q,) > 0.

From now on, we assume that (H1) and (H2) hold. Without loss of generality, we
may assume that the unit outward normal at @y is —ey = (0,...,0,—1). By (H2), the
eigenvalues of the matrix G = (Vi;H(Qo))(v—1)x(v—1) are all positive. For @ € RN, set

v(@) = (@)"'GQ" (L.1)
For (Qy, ..., Qx) € RWV=VE Q) # Q;, we define
! 7 K ! 1
R[Qy, ..., Q] := ClZQO(Qj) +C2ZW (1.2)
j=1 it |V J

where ¢; and ¢, are two generic constants to be defined later (see (2.6)).
It turns out that the following optimal configuration problem plays an important role
in our studies:

(%) Find out the optimal configuration (Q, ..., Q%) that minimizes the functional

R[Q), .., Q]
For normalization reasons, we consider throughout the paper the following equation

N+42

—Au+ pu = ayuv-2, u>0in €, 2—2:00n 092, (1.3)

instead of the original one, where ay = N(N — 2). The solutions are identical, up to the
NRT . N—2 . .
multiplicative constant (ay) 4 . We recall that, according to [6], the functions

U.o(z) = e 0,Q¢eRY (1.4)
x - >0, € .
£,Q (82 | |2) N2 2
are the only solutions to the problem
—Au = afNuxtg, u>0 in RVM.

The following is the main result of this paper.
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Theorem 1.1 Suppose that (H1) and (H2) hold. Let K > 2 be a fized integer. Then
there exists a px > 0 such that for p > pug, (P%,u) has a nontrivial solution w, with the

following properties
K
(1) u(z) = 29:1 UIA Qotp T "’ O(
H(QO)A>0]—1 K and
(2) (QY),. (Q“ ) ) approach an optimal configuration in the problem (*), as p — +o0,
where (Q") = (Q“,. anN 1), =1,..,K. Here Ay is a generic positive constant (see
(2.1)).

(8) u. has exactly K local mazimum points g; € 00,5 =1,.., K. Moreover, after a

4

7 ), where Q —l—u%Q? €00, Aj = Ay =

permutation, q; = Qo + /L%Q; + 0(u¥),j =1,.., K.

Remarks.

1. The construction of one bubble with the assumption (H1) and (H2) has been done in
[8]. So we focus on the case of K > 2.

2. The fact that H(Qo) > 0 seems to be necessary. In [18], it is proved that at least
when K =1, the blow-up point QQy must have nonnegative mean curvature. Another notable
geometric effect is that there are no solutions with its peaks staying in a portion of the
boundary which is totally flat. See [23].

3. We need the dimension N > 7. We do not know what happens when 4 < N < 6. At
least when N = 4,5, our computations show that bubble accumulations can not occur. (See
the remark below.) As far as the authors know, it seems to be the first such result for the
critical exponent case. (For slightly supercritical case, multiple bubbles (bubble-towers) can
erist [9].)

Let Qo € 09 satisfy the assumption (H2). Without loss of generality, we may assume

that Qg = 0. Set
1
€= P Qe = {zlez + Qo € Q}. (1.5)

By suitably scaling, equation P,, becomes the following rescaled problem which we
work with

0
Au—esu+ayu? =0,u >0 in €., a—ZZO on 0f), (1.6)
where ¢ = 142,
We need to define another small constant
d=ew. (1.7)

é measures the distance between the bubbles in the rescaled domain €2.. In the original
domain €2, the distance between bubbles is O() = O(e"v).
Let us now explain the differences between N > 7 and N = 4,5. Consider the funda-

mental solution of —A + . We denote it by K.(|y|). It is easy to see that
N-—2
K.(y)=¢7 Ki(Vey) (1.8)
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Thus when N > 7, K. (y) behaves like ‘y'% for |y| << ﬁ For N =4,5, £ >> % and K,
_ Ve

. N—2
behaves like e 2 e~ @ .
The dimension N = 6 seems to be a critical case.

We set
Sclu] := Au — eu + ayul, uy = max(u, 0), (1.9)
We introduce the following functional defined in H'(€2,)
1 15 (03 %4
Tl = [ Vo +o [ 2= = [ gt 11
=g 1o g [t [ (1.10)

whose nontrivial critical points are solutions to (1.6).

The main idea for proving Theorem 1.1 is the so-called “localized energy method”,
which reduces the problem to a finite dimensional problem, for which we can use min-max
theorems. This kind of argument has been used in many papers [10], [7], [9], [19], [20],
[21], [33] and [34] and the references therein. We follow closely to that of [9], [33] and
[34], where slightly supercritical elliptic Neumann problems are studied. More precisely,
by choosing the height for each bubble to be A; = Ag(1 + gf\z-) and the location of bubble
to be Q; = Qo + 3@1-, and by using Liapunov-Schmidt reduction ([33], [34]), we reduce the
problem to finding a critical point for the following reduced problem:

K
1.(A,Q) = OnA3 Y A2 — R[Q,, .. Q] + 0(1). (1.11)

i=1

Problem (1.11) has a saddle point: minimizing in A= (Al, ...,/A\K) and maximizing in
Q =(@),....,Q%) € RO-DK_We have to use a max-min argument to conclude.

The organization of the papers is as follows: In Section 2, we have various preliminaries
including the construction of K —bubble approximate solutions. Section 3 is devoted to
the finite-dimensional reduction process: we first study a linear problem then we study
the nonlinear reduction. In Section 4, we define and expand a reduced energy functional.
Afterwards, we use a max-min argument to conclude the existence of a critical point to the
reduced energy. This finishes the proof of Theorem 1.1. Several estimates are included in
the Appendix.

Throughout the paper, the constant C' represents constants independent of € > 0.

2 Some Preliminaries

This section contains various preliminaries.

2.1 Several Generic Constants

Let us first define several generic constants to be used throughout this paper.
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Let

N-1
_ U Uy | | OU,
a=([ @ [ lzyNZ sps = (V=D | | T ] 2.)
RY ¥ j=1 J Yn A=1
N-1 U
By = T/ yN(a—l’O)Q, (2 2)
RY YN
1
Cn =3 / Uy, (2.3)
Ry
and .
Q btz
Ey = 7N Uiy, (2.4)
Y

The constants Ay, By, Cy can be calculated straightforwardly by the following formula:

/oo rm i F(H—Tm)F(2l—;n—1)
o (1+72) 2I°(1)

Then we obtain the following relation between Ay, By and Cy:

By
= —. 2.5
0= 20y (2.5)
Set B
C1 = TNA(), Co = l?]\r/\évj2 (26)

where AO = A()H(Q())
2.2 A Simple Lemma on Problem (*)
Let R be defined as in (1.2). We state a simple fact on Problem (*).

Lemma 2.1 Assume that the matriz G s positive definite. Then the following minimiza-
tion problem

Ry := Q'eﬂég\f—l)l{ R[Qy, ..., QK] (2.7)
15 attained.
Proof: This follows from simple calculus. U

We remark that even in the case of G being the identity matrix, it is unclear what the
optimal configuration is.



2.3 Boundary Deformations

Fix @ € 0Y). We introduce a boundary deformation which strengthens the boundary near
. Without loss of generality, after rotation and translation of the coordinate system we
may assume that the inward normal to 02 at () is the direction of the positive zy-axis.
Denote 2’ = (21,...,2n_1), B'(0) = {z' e R¥N"! : |2/ — Q| < 6}, and O = QN B(Q, 46),
where B(Q,40) = {z € RY : |z — Q| < 46}.

Then, since OS2 is smooth, we can find a constant § > 0 such that 0 N B(Q, 49) can
be represented by the graph of a smooth function pg : B'(46) — R, where pg(Q) = 0,

Vpo(Q) =0, and
QN B(Q,46) ={(z',zy) € B(Q,49) : zn > po(z’)}. (2.8)

Moreover, we may write

2

-1

ki(zi — Qi)* + O(lz — Q) (2.9)

1

1
PQ (') = B

%

where k;,2 = 1,..., N — 1, are the principal curvatures at (). Furthermore, the average of
N-1
the principal curvatures of 9Q at @ is the mean curvature H(Q) = = > k;.
i=1
On 092N B(Q, d), the normal derivative n(z) writes as

1
n(z) = ——m——
V1+|Vipgl?

and the tangential derivatives are given by

(V' pgs —1) (2.10)

8 1 apQ
= —FF (0,...,1, ...
( 3l 7 ) ) axz

or; /1 + ‘3»0@ 2
As in [29], for z € RY and |z| sufficiently small, we define a mapping 7 — Q = P¢(Z)
with ®o(Z) = (,1(Z), .-, P (T)) by

T, — In22(7), forj=1,.,N—1
Do (7) = { Tj—Ing (T), forj=1,.., : (2.12)

) i=1,.,N—1. (2.11)

Ty + pQ(i') for j = N.

Since Vpgo(Q) = 0, the differential map D®g of ®¢ satisfies D®(0) = I, the identity
map. This ®¢ has the inverse mapping z = @él(x — Q) for |z — Q| < §. We write as

\I/Q(.T — Q) = (‘IIQ,I(x — Q), ceey ‘IIQ,N(x - Q)) instead of (I)C_el(.f — Q)



2.4 An Auxiliary Linear Problem

Let A be a fixed positive constant. Recall U, ¢ is defined in (1.4). For the convenience of
notations, we also denote Uy g as Uy. Set

50, Q) = 2B (2.13)
Recall that AO = A()H(Qo) Thus
BA, Q) —1=0(|A - Ao|) + O(IQ — Qol)- (2.14)

In this subsection, we study an auxiliary linear problem

Lemma 2.2 The following linear problem

Au+ panUP ™ u — B(A, Q)Ux + 2yn Z;V:_ll kj(Q)a;%A — (N - 1)H(Q)gy% =0,y e RY
u =0 on ORY

oyn
X (2.15)
has a unique solution Uy with the following properties:
(1) QA(y :yN) is even in Y1, - YN-1,
(2) Up has the following decay
. B 1
Uny) = _W(l + O(m)) for |y| > 1 (2.16)
for some constant B > 0 (depending on A and N ).
Proof: Let
Lo[¢] = A¢ + panUR ' ¢. (2.17)

We need two weighted Sobolev spaces

WieRY)={u: |[<y>Pu e W™RY)}, LE ,RY)={u: [<y>P*uleLPR")}

(2.18)
where we choose [, ty such that
to> N,By =N —4. (2.19)
By Proposition 2.3 of [44], the operator L is an invertible operator from
2,t0 (pN . ) oU
Xo =Wy (RY) N {u(y) is even in y1, ..., yn, ——u =0} (2.20)
0 RN aA
to oU
i i A
Yy = L?OH(RN) N{u(y) is even in y1, ..., yn, DAY= 0}. (2.21)
RN



Let
N-—1

2
£(0) 1= =50, QU + 20y Y k(@) 5 0U
j=1

Ea - (N-1H(Q) Tun

We extend f(y) evenly to RY. Observe that by our choice of 5(Q), (2-13),

i, 62UA U, | aU,

This implies f(y) € Yy. Thus there exists a unique solution Uy satisfying:
LoUx + f(y) = 0,U € X,.

By restricting Uy to RY, we obtain a solution to (2.15). The decay follows from the
fact that the decay of (— A) L(U,y) is y[*V.
d
We denote the unique solution in Lemma 2.2 as Un. (Note that Uy also depends on Q).)
This function will be used to improve our approximate functions.

2.5 Construction of One-Bubble Approximate Solution

We first construct one bubble approximate solution.
Let @ € 092 and A be such that |Q — Qo] < C’%, A — Ag| < 02' We write

Q=Qo+ 2@, A= Ao(1+ 22\). (2.23)

Define ] 1 1

where ®g and U are the two functions defined at () at Section 2.1.
Then it is easy to see that in the y-coordinate, the equation for v becomes

N

D o

i,j=1

N+2
bi(y)=— — v—2 = 2.25
8 ay] +e€ Z 8% EV + anv (2.25)
By expanding further and using (2.9), we obtain

N+42

S:lul = Av(y) + ¢ {QyN Z_ kj(Q)giyg — (N - 1)H(Q)aay—qjv} —ev+ayvi-2  (2.26)

N N
2
+e { Z aylayj + Z c] ayJ }

ij=1 j=1

9



where |c;;(y)| = O(|y|?) and |¢;(y)| = O(Jy|) for 0 < |y[ < 2. Moreover, the boundary
condition becomes
ov 46

— =0 fi =0 < —. 2.27
o or =0, [y < (2.27)

Let x(y) be a cut-off function such that x(y) =1 for |y| < 7 and x(y) = 0 for |y| > 2%,
where 7 is a small but fixed number.

Let n(z) be another cut-off function such that n(z) = 0 for |z — Qy| > 36 and n(z) =1
for |z — Qo] < 26.

Now we choose one bubble approximate solution: for z € €.,
‘IIQ(EZ_Q) ; \I/Q(EZ—Q)) (‘IIQ(Z‘:Z_Q)

U
€ )+ U € €

) } +(1—n(ez))eN 2.
(2.28)
Note that by our choice of Ug, Ug = eV=2 for |z — 1Q| > 2 and Uy ~ (1+|2—1Q[)*V
for all z € ..
The following lemma gives error and energy estimates. The proof of it is delayed to
Appendix.

Ua(2) = n(e2) {UA(

Lemma 2.3 Let z € €).. We have

S.{Ual(2)] < CEM R (14 |z — Q) #, (229)
%(z) < Ce(l+ |2 - é@n—ﬁN, (2.30)

where By = N —3+ L if N =17,8,9,10 and Sy = X + L if N > 11, and

83

J.[Ug) = Ay — ByeAH(Q) + CneA® + Dye® + O( y ), (2.31)
aJ(;[/[\]Q] = —BneH(Q) + 2CneA + O(e?) (2.32)

where An, By,Cy, Dy are generic constants with Ay > 0, By > 0,Cy > 0.

2.6 Construction of K-Bubble Approximate Solution

We now construct multiple bubble solutions.

Let Q = (Qb 7QK) = 2(Q1a 7QK) Set

_ 1. . ~ 3 2
QJ:EQ]L?:].,,K, Q:(Q1:7QK)
Note that Q; = (Q;, Q;,n) where Q;n = %p(ﬁ@;) =0(3)-

10



We also choose A = (A4, ..., Ax) with

A= Ao(1 + gﬂj),j =1,..,K, A= (A, .., Ag). (2.33)
We assume that A, Q satisfy the following assumption
(Ai, s Ag) €TE,  (Q1y ., Qi) € T2, (2.34)
where
Ie, = {(A1, ..., Ak) e RXJA| < C1}, Tg, = {R[Q,, ... Q] < Ca}, (2.35)

and C; > Cy > Ry are two positive numbers to be chosen later and R[QAII, - Q'K] is defined

at (1.2).
Let Ug, be defined in Section 2.5. To simplify our notations, from now on, we denote
Ug, as U;. We now define the K-bubble approximate solution

Wagq=Ui+..+ Uk. (2.36)

Note that W) g depends smoothly on A, Q. To avoid clumsy notations, we omit the
dependence of W on A, Q. Furthermore, we have

K
1 1
Cc! <W(z)<C _— 2.37
Z‘Z_QZ|N 2 () ;|Z—Qi‘N_2 ( )
Let us define « .
<z=Q>=min(l+[z— ZQif")>. (2.38)
]:

By our choice of U;, we have the following error and energy estimates. The proof of it
is delayed to Appendix.

Lemma 2.4 We have

|S[W](2)| < Ce™* ¥ (14 |2 — Q) (2.39)
0S.[W = .
W ) < cet+ - @)™, =1, K, (2.40)
OA,;
where By s defined as before and
K K K AfVT‘zAfVT‘z 23
J.[W] = KAy—By Y eAjH(Q;)+Cne Y  A3+KDye’~End" ™) A,Z—A,JNZJFO(E)
j=1 j=1 itj |Q; — Q51
(2.41)

where An, By,Cy, Dy are given in Lemma (2.3) and Ex > 0 is another generic constant,
given at (2.4), and
0J.[W]
OA;

= —BneH(Q;) + 20NeA; + O(c?) (2.42)
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3 The finite dimensional reduction

We perform a finite dimensional reduction which is similar to those of [7] and [33]-[35].

3.1 Inversion of the linearized problem

We first consider the linearized problem at the function W.
Equipping H'(Q.) with the scalar product

(u,v). = / (Vu - Vv +euv)

€

orthogonality to the functions

ow ow
Y',OZ —,j: ]_,...,K, Y',i: —
I OA; ! 0Q;i

1<i<N-1,j=1..K (3.1

in that space is equivalent, setting

oW oW ow oW
Zio= AW OV 7= -A ’
30 FIVETY Jy 290, 00,

1<i<N-1,j=1,.. K

(3.2)
to the orthogonality in L?(£2,), equipped with the usual scalar product (-, -), to the functions
Z;i,1<j < K,0<i<N —1. Then, we consider the following problem : h being given,
find a function ¢ which satisfies

—A¢ + egb - O!Nqu_1¢ =h+ Zj,i Cj,iZj,i in Qg
% =9 on 0f), (3.3)
(Zji ) =0 0<i<N-11<j<K

for some numbers c; ;.
Existence and uniqueness of ¢ will follow from an inversion procedure in suitable func-
tional spaces. To this end, we define two norms:

6]l = max(< 2= Q> [g(2)]), [|fllss = max(< z = Q> [g(2)]). (3-4)
We are in need of the following lemma, whose proof is given in the Appendix :

Lemma 3.1 Let u and [ satisfy

—Au+eu=f in €., 8_u =0 on 01),.
on
Then we have W)
) <0 [ E (35)
and as a consequence,
[[ull« < ClIf [l (3.6)

12



The main result of this subsection is :

Proposition 3.1 There exists g > 0 and a constant C > 0, independent of €, A and Q
satisfying (2.34), such that for all 0 < & < gy and all h € L*>(2.), problem (3.3) has a
unique solution ¢ = L.(h). Besides,

[Le (Ml < CllA]] [ox

< Cl[h]ss- (3.7)
Moreover, the map L.(h) is C* with respect to A, Q and the *x-norm, and
1D Le(B)[« < C|B|s- (3.8)

PROOF. The argument follows closely the ideas in [7], [33] and [34]. We repeat it since we
use different norms. The proof relies on the following result:

Lemma 3.2 Assume that ¢. solves (3.3) for h = h.. If ||he||«x goes to zero as € goes to
zero, so does ||dc||«-

PROOF Arguing by contradiction, we may assume that ||¢.||. = 1. Multiplying the
first equation in (3.3) by Y%, and integrating in €. we find

Z ¢;il Zjis Yea) = <—AY1c,l + eV — qan W Yy, ¢a> — (he, Yig).

On one hand we check, in view of the definition of Z;;, Y},

(Zjo,Yjo) = IYjoll2 = 0t0(1)  (Zjs,Yjs) = IVl =m+o(l) 1<i<N-1,1<j<K

where vy, 1 are strictly positive constants, and

(Zis Vo) =0(1)  G#ki#L (3.10)

On the other hand, in view of the definition of Yj; and W, straightforward computations
yield
(=AYig + Vi — qan W Yig, 62 ) = ol e[l

(since N > 7) and
(he; Yiea) = O([lhells)-

Consequently, inverting the quasi diagonal linear system solved by the c;;’s, we find

¢ii = O([|Pellex) + o(llell+)- (3.11)

In particular, ¢;; = o(1) as € goes to zero.

13



Since ||¢. ||« = 1, elliptic theory shows that along some subsequence, ¢. ;(y) = ¢.(y—Q;)
converges uniformly in any compact subset of RY to a nontrivial solution of

N+2 A
_A¢j :O!Nm /{\3,02 '
since A; — Ag. Moreover, |¢;(y)] € C(1 + |y)|~#¥*2. A bootstrap argument (see e.g.
Proposition 2.2 of [40]) implies |¢;(y)| < C(1 + |y|)™"¥~2. As a consequence, ¢; writes as
N-1
AU, 0 AU, 0

(see [30]). On the other hand, equalities (Z;;, ¢.) = 0 provide us with the equalities

8UA 0 / %aUA 0
—A 0, J— UN 2 0, e 0
Do T Juy o0 T, @

OUy, 0 +5 0Up 0 .
—A—2"¢, = UXr=: O h: =0 1<i<N-1.
/Rg oy ! /M Ao "y, ==

As we have also

oU oU,
/ v @802 _ s / vE A0z S 1<i<N-1
ry Mg RY Oy
and
VaUAO’O_VaUAO’O _ VaUAO,O . V8[]A0,() -0 Z;é 7:/
RY 0\ 6yi RY &UZ” ayi

the «;’s solve a homogeneous quasi diagonal linear system, yielding a; = 0,0 <7 < N —1,
and ¢; = 0. So ¢.(z — Q;) = 0 in C (). Now since

loc

(2 = QW24 | < Clleel(z — Q)72
So we obtain )
W52 ¢c || = 0(1).
On the other hand,
(z—=Q)[Z;l < Clz— Q)"
applying Lemma 3.2 we obtain

[8ell- < CUW =26 [les + Cllhelles + C Y ey

ot

1Z;,

| = 0(1)
that is, a contradiction.
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PROOF OF PROPOSITION 3.1 COMPLETED. We set

H={¢eH ) (£:6)=0 0<i<N-1L1<j<K|

equipped with the scalar product (-, -).. Problem (3.3) is equivalent to finding ¢ € H such
that
(6,0). = {qonW" 9 +h,0)  WeH

that is 5
6=T.(6)+h (3.12)

h depending linearly on A, and 7, being a compact operator in H. Fredholm’s alternative
ensures the existence of a unique solution, provided that the kernel of Id — T is reduced
to 0. We notice that any ¢. € Ker(Id — T;) solves (3.3) with A = 0. Thus, we deduce
from Lemma 3.2 that ||@.||« = o(1) as € goes to zero. As Ker(Id —T,) is a vector space,
Ker(Id — T,) = {0}. The inequalities (3.7) follow from Lemma 3.2 and (3.11). This
completes the proof of the first part of Proposition 3.1.

The smoothness of L, with respect to A and Q is a consequence of the smoothness of
T. and h, which occur in the implicit definition (3.12) of ¢ = L.(h), with respect to these
variables. Inequalities (3.8) are obtained differentiating (3.3), writing the derivatives of ¢
with respect to A as a linear combination of the Z;;’ and an orthogonal part, and estimating
each term using the first part of the proposition - see [7] for detailed computations. ]

3.2 The reduction
Let S.[u] be defined at (1.9). Then (1.6) is equivalent to

g_:: = 0 on 0, (3.13)

for if u satisfies (3.13), the Maximum Principle ensures that v > 0 in . and (1.6) is
satisfied. Observe that

Selu] = 0in 09, uy # 0,

S[W + 0] = =AW + ¢) + (W + ¢) — an(W + ¢)4

may be written as

SAW + @] = —Ad +eé — qayWi™lp — R — axN.(9) (3.14)

with
Nl = (W + ¢)% =W —gWi™l¢ (3.15)
R =S [W]=AW —eW + ayW? (3.16)

From Lemma 2.4, we derive the following estimates:

IR < C™5N, || DAR®||s < Ce. (3.17)
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(Note that we do not need the estimate for DgR°.)

We consider now the following nonlinear problem : finding ¢ such that, for some numbers
Cji

—AW +¢) +e(W+¢) —an(W+¢)t =32,,¢:Z; in Q

% =0 on OS2,
(Zji0) =0. 1<7<K, 0<i<N-1
(3.18)
The first equation in (3.18) writes as
—A¢ + €¢ - anqul(ﬁ = aNN5(¢) + R + Z Cj,iZj,i (319)

Jst
for some numbers c;;. We now obtain some estimates on N;.

Lemma 3.3 There exist €1 > 0, independent of A, Q, and C, independent of e, A, Q, such
that for |e| < ey, and ||¢]|. <1

| Ne (@) [ < CE™ ||| (3.20)
and, for |||l <1
IN(61) = Ne(¢2)llex < C™ (max(||als, 62l1:))" llds — 2l (3.21)
where Yy = —% if N=Tand ynv=01if N > 8.

PROOF. The proof is similar to Lemma 3.1 and Proposition 3.5 of [40]. For the convenience
of the reader, we include a proof here. We deduce from (3.15) that

IN:(¢)| < C|p|? since g < 2. (3.22)
By definition, we have

1161 = max(z - Q) o1

—2N+16— £

< Cllllmax(z - Q= )
N 2€Qe

< Ce™|lo|12

Concerning (3.21), we write

Ne(¢1) = Ne(2) = 0y Ne(n)(d1 — ¢2)
for some n = tp; + (1 — t)¢po, t € [0,1]. From

OpN:(n) = ¢(W + )T —we )

16



we deduce
10, N-(n)| < CJn|*" since N > 7. (3.23)

The proof of (3.21) is similar. O
We state now the following result :

Proposition 3.2 There exists C, independent of € and Q,_A satisfying (2.84), such that
for small € problem (3.18) has a unique solution ¢ = (A, Q, ) with

]l < Ce'ow, (3.24)
Moreover, (A, Q) — ¢(A, Q,¢) is C' with respect to the x-norm and **-norm, and
|DAd]. < Ce. (3.25)

PROOF. Following [7], we consider the map A, from F = {¢ € H'(,) : ||¢]|. < Coc™* v}
to H(€).) defined as

Ac(¢) = Le(anNe(9) + R7).
Here (' is a large number, to be determined later, and L, is give by Proposition 3.1. We

remark that finding a solution ¢ to problem (3.18) is equivalent to finding a fixed point of
A.. On one hand we have, for ¢ € F

2|~

1B« < NZ(Ne(@)ls + 1L(B) I+ < [INo(@)llae + C&5 < 205

for € small enough, implying that A, sends F into itself, if we choose Cy = 2C. On the
other hand A, is a contraction. Indeed, for ¢; and ¢ in F, we write

[A4=(61) = Ae(@2) ||« < C[[Ne(¢1) = Ne(@2)llx
< Ol W@ DI g — gy,

1
<= - *
< Slié1 - il

by Lemma 3.3. Contraction Mapping Theorem implies that A, has a unique1 fixed point in
F, that is problem (3.18) has a unique solution ¢ such that [[@]|. < Coe'*~n.
In order to prove that (A, Q) — ¢(A, Q) is C*?, we remark that setting for n € F

B(Aa Q, 77) =1n- Ls(aNNs(n) + Rs)

¢ is defined as
B(A,Q,6) = 0. (3.26)

We have



Using Proposition 3.1, (3.23) and (2.34) we obtain for N > 7

122 (0 (0yN2) () Il < C16 (05 Ne) ()]
< Cliz = Q™ **(@,No) ().
< Cl(z = Q|| [161.
< Ce™ [nllZ 10l
< Ces=ma=Dtm||g||,.

Therefore we can write, for any N > 7
1L (8 (8,N:) ()], < Cel-5-m)a=tv g

Consequently, 9, B (ALQ, ¢) is invertible in with uniformly bounded inverse. Then, the fact
that (A, Q) — ¢(A, Q) is C! follows from the fact that (A, Q,n) — L.(N.(n)) is C' and
the implicit functions theorem.

Finally, let us show how estimates (3.25) may be obtained. Derivating (3.26) with
respect to A;, we have

O = (0,B(A.Q.9) " (amaAiLs)(Ns(qs)) T anL((On, V) (9)) + On, (LE(RE))>

whence, according to Proposition 3.1
1080l < C(II(aAiLs)(Ne(@)II* + [|(Le(0n,N) (D)« + ||(3Ai(Ls(R5))|I*)

< c(nNs(as)n** T 1@AN) (@) + ||(aA,.<LE(RE>>||*).

From (3.20) and (3.24) we know that
INo(8)]er < C2mmIatY,
Concerning the next term, we notice that according to the definition (3.15) of N,
(O N:)(9)]
= (W +9)1 " =W = (g = YW F=26| |00, W/

< CWelgl
< C{z = Q)79
< 061.5—%@ _ Q)—Z—ﬁN

where we used successively the fact that W > 0 (see (2.37)) and [0, W| < CW.
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We obtain 1
[[(0a; Ne) (@) ||+ < Ce™® W,

From Proposition 3.1 we deduce the estimate for the last term

[10n: (Le(B)) |« < ClOa, B os < Ce

and finally

10,0]]+ < Ce.
This concludes the proof of Proposition 3.2. (The first derivatives of ¢ with respect to Q
may be estimated in the same way, but this is not needed here.) O

3.3 Coming back to the original problem

We define a reduced energy functional in a finite dimension:

L(AQ)=J.[Wag+d:nq) (3.27)
We then have :
Proposition 3.3 The function u =W + ¢ is a solution to problem (P%,M) if and only if
(A, Q) is a critical point of I..
PrROOF. We notice that u = W + ¢ being a solution to (P,
critical point of J.. It is also equivalent to the cancellation o?jczh’e ¢j;’s in (3.18) or, in view
of (3.9) (3.10)

) is equivalent to being a

JIW 4+ ¢][Y;:] =0 1<j<K, 0<i<N-1. (3.28)

On the other hand, we deduce from (3.27) that I/(A, Q) = 0 is equivalent to the cancellation
of J/(W + ¢) applied to the derivatives of W + ¢ with respect to A and Q. According to
the definition (3.1) of the Yj,’s, (3.17) and Proposition 3.2 we have

oW + ¢) oW + ¢)

aA] .]10 y]’O 8Q‘],Z 75t y]al -7
with ||yl =0(1),1 <j < K,0<i<N —1. Writing
Yji = Y+ Zaji,klyk,l, (Yjis Zea) = (Y3 Yia)e = 0, 0<i<N-11<j<K
k,l
and

T + ][Vl = o
it turns out that I’(A, Q) = 0 is equivalent, since J/[W +¢][0] = 0 for (0, Z;;) = (0,Y},). =
0,1<j<K, 0<i<N-T1,to

(Id + [aim])]0yi] = 0.
.) = o(1), we see that I'(A, Q) = 0 means exactly that (3.28) is satisfied.

As aji i = O(||yw,l
(]
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4 Proofs of Theorems 1.1

In view of Proposition 3.3 we have, for proving the theorem, to find critical points of I..
We establish first a C'-expansion of I..

4.1 Expansion of I,

Proposition 4.1 There exist Ay, By, Cn, En, strictly positive constants such that
L(A,Q) = KAy +KDne?+ Oy A2 N (A2 4.+ A2) ="~ R[Q), ..., Q)] +e* ¥ 6.(A, Q)

where R[Q), ..., Q'] is defined at (1.2) with ¢, = BTNfXO,_CQ = ExA) 72, and 6, and 03,0¢ go
to zero as € goes to zero, uniformly with respect to A, Q satisfying (2.34).

PROOF. By Lemma (2.4), we proved

K K b-z N-2
EnA; 2 A2 6
JW] = KAy—By > eNiH(Qi)+Cy Y e+ K Dye?—d" 23" —Zt 4o ¥),
=1 i=1 i2j ‘Qz - Q3|
(4.1)
By expanding
€ 2 1 e, - A €9
Ai=Ao(1+ EAi)aH(Qi) = H(Qo) + 5(&) Z‘P(Qj) + 0((&) )s
j=1
and using the fact that
B
Ao = AoH (Qo) = 5+ H(Qo), (4.2)
2Cy
we obtain
£ ~ ~ [ N Al 19
JAW] = KAy + KDye® + CxNie (5P (A2 + .+ 1) — 5 RIQ, ., Qi + 2504, )
(4.3)
where 5 B AN=2
R[Qy, - Q] = - Aop(Q)) + ) o 2. (4.4)
i2j ‘Qz - Q]‘
Using d = EN we get the desired result.
Next we show that _ ]
L(A, Q) = L[W] = o> %), (4.5)
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Actually, in view of (3.27), a Taylor expansion and the fact that J![W + ¢][#] = 0 yield
I(Aa Q) - JE[W] = JE[W + ¢] - JE[W]
1
= [ T+ te)ls,oleat
0

1
= / (/ (Vo] +e¢? — qan (W + t8) ' ¢* + Rggb))tdt
0 Qe

= / 1 (aN / (Ne(@)+a[We — (W + taﬁ)il]f))tdt

1
~ | Reo.
+2/5 ¢

The first term can be estimated as follows. Using (3.22) and Proposition 3.2, we have,
for N > 7

4

[ N@s] <clol™ [ e-@y o <ot o)

For the second term, the same arguments as previously yield

/Q ‘WH — (W + )t "

# < C [ (wriigp+lepee)
Qe
< C 2 s _2(,6N_2)_4
< o(iol: [ -
241 _ 0O\ (Bn—2)(2+¢-1)
elor [ - )

whence using Proposition 3.2 again

4

/ (W — (W +tg)4 [ ¢* < Ce*w. (4.7)
Qe
Concerning the last term, we remark that according to (3.17)

R < Cew (e — Q)

uniformly in €2.. Therefore

[ imeo <cesdpl. [ - @y
Qe Qe

yielding, through Proposition 3.2

/ Reg| < e (48)

€
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for N > 8. For N =7, we have to use the refined estimate (5.4)
B < Ce(z - Q"N

then we can get

/ IR°¢| < Cet i = o(e%77).

€

The desired result follows from (4.6), (4.7) and (4.8).
To estimate the derivative with respect to A;, we note that

%JS[WW] = /ESS[W+¢]6(L:’@
= 2/95 SE[W]Z—Z + 2/525(A¢_8¢+anwq_l¢)g—Z + o(dV"2)
= 2&]571[\‘?/] g/ﬂe(Ag—Z _gg—AWj+anWQIg—Z)¢+O(dN_2)
= E%Jg[W] +o(dV?)

The rest follows from Lemma 2.4 and Proposition 3.2.

4.2 Proofs of Theorem 1.1 completed

We prove Theorem 1.1 in this section. We have to use a min-max argument.

Set _
A, Q) — Ay — Dyé?

6
e~

A A A 1.
IE(AaQ): (

By Proposition 4.1, we have the following asymptotic expansion for IAE(A, Q) :

K
(A, Q) = CnAT Y A = RIQ, ., Q] +6.(A, Q)

=1

with

5:(8,Q) = 0o(1) 9;6.(R, Q) = 50r,0.(A,Q) = 0(1) as € > 0.

We set o .
E0 = {(A7 Q)‘A € F;Cli Q € F%Cz}

where C; > Cy > R, are two numbers such that

CnASCE > 20, = 4R,,.
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We define also
B:{(AWQ”AEFCUQEF%z}? BO:(aFCI) XF%Q

where C1,C5 are chosen as in (4.13).

It is trivial to see that By C B C Yy, By, B are compact and B is connected. Let I'
be the class of continuous functions ¢ : B — Y, with the property that ¢(y) = y for all
y € By. Define the max-min value ¢ as

= in /, : 4.14

¢ = maxmin I, ((y)) (4.14)

We now show that ¢ defines a critical value. To this end, we just have to verify the
following two conditions

(T1) minyep, IAE(‘P(CU)) >cVpel,
(T2) For all y € 9% such that I (y) = ¢, there exists a vector 7, tangent to % at y such
that

0r, Ic(y) #0.

Suppose (T1) and (T2) hold. Then standard deformation argument ensures that the
max-min value ¢ is a (topologically nontrivial) critical value for I.(A, Q) in Zo. (Similar
notion has been introduced in [8] for degenerate critical points of mean curvature.)

To check (T1) and (T2), we define y = (y1,42) € B,y1 € F};l,yg € Fa,go(y) =

(1(y), p2(y)) where ¢1(y) € I'¢, and pa(y) € I'Z,.
By taking ¢ to be identity map, we obtain

¢> max min L(A,Q) = —Ry+ o(1). (4.15)
QeTZ, AeTy,

On the other hand, for any ¢ € I" and yy € 1%2, the map y1 — ¢1(y1, ¥2) is a continuous
function from T'¢, to T'y., such that ¢y (y1,y2) = 4 for y; € 9T¢,. By Brouwer’s fixed point
theorem, there exists y’l € F};l such that <p1(y'1, y2) = 0, whence

min (¢(y)) < L0, 92(y1, 12)) = 0 = Rlipa(ys, 1)) + o(1) < =Ro +0(1).  (4.16)

As a consequence
¢c< —Ryp+o0(l), ¢=—Ry+o(1). (4.17)

For y € By, we have | (y)| = C1. So we have L (y) = CyA2C? — R[py(y)] + o(1) >
CnAZC? — Cy + 0(1) > 0, by our choice of C; (4.13). So (T1) is verified.

To verify (T2), we observe that 9(X) = (0T2¢,) x I'3¢, Uy, x 015, .
Let y = (y1,y2) € 0% be such that IAE(y) =c.
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On 0y, x I'j.,, previous arguments show that I(y) > 0>c. On [y, X (0%,), we
claim that there exists j such that 7, = aiAj to obtain that

O, I(y) = 2A; + o(1) £ 0
since otherwise 6Tyf€(y) =0 yields A; = o(1) for all j, and

I.(y) = o(1) = Rlp2(y)] < —Cz +o(1) = =2Ry +o(1) <,

again by the choice of Cy (4.13). A contradiction to the assumption. So (T2) is also verified.

In conclusion, we proved that for ¢ small enough, c is a critical value, i.e. a critical
point (AE,QE) € Y, of I. exists. Let u, = WreQe pe T Pac Qe e Ue 1S @ montrivial
solution to the problem (1.6). Then, the strong maximum principle shows that u. > 0
in Q.. Let u, = 5*¥u5(%‘20). The same argument in [27] shows that u. has exactly
K local maximum points ¢; € 9€,j = 1,..., K. Moreover, after a permutation, ¢; =

Qo+ dQE+0( ),7 =1, ..., K. By our construction, u, satisfies all the properties of Theorem
1.1.
This concludes the proof of Theorem 1.1.

5 Appendix

5.1 Proof of Lemma 2.3

We first prove (2.29). We divide the domain into three regions: |z — 5@\ > ¢ &3 <
| dQ|< ’ |Z_§Q|<TTOE'
In the first region, |z — Q| > ¢, we have
|UQ| S C€N72, ‘AUQ| S CSN, |UQ‘p S C€2+N
which gives
S:[Ugl(=)| < Ce™* ¥ (1+]z = ZQ)* ¥ #. (5.1)
In the second region, % <|z-— 5Q| < g, we then have
C C
Vgl < VUl < S
(L+]z = QDY (1+z=3Q))
and hence
[S.[Uq)(2)] < CelUn(2)| < C&™* N (142 — —QI)3 N (5-2)
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In the last region, |z — §Q| < 7%, we introduce the y-coordinate as in (2.24)

2~ 2Q = ~Bqley)
and then have (see (2.26))
— &V U, .
S.[Uqg] = AUg—eUq+e {QyN ; ki (Q) o7 — (N - 1)H(Q)ay—N}+aNUg2+0(a2(1+|y|)2 )
Using the equations for U, and Uy, we obtain
S:[Uql = —"Un +£(B(A, Q) — DUA + OE*(1 +[y])* ™" (5:3)

and hence A
|S:[Uq| < *|Ua| +¢l(B(A, Q) = 1)|Ux + Oe 2(1 +[y))*™™)

< Ce" N (14 |y Vv < Cel N (14 |2 — QI)3 N-w (5.4)

since by (2.14) . o
elBA,Q)—1| < Ceg =Celt N (5.5)

because of N > 7. Combining (5.1), (5.2) and (5 4) (2.29) is proved.
To show (2.30), we note that for |z — dQ| <

dS.[U aUx  OB(A,
Since : ) .
00 BAQ _ , HQ
| | < C1‘UA| oA —Ap A2 +0o(1), (5.7)

we obtain (2.30) from (5.6).
Next we compute the energy. Observe that

1 € o
LU =5 [ 1VUaP+5 [ el = 2 [ v (5.5)

To prove (2.31), we note that for |z — é@\ > %, we have

2 (&
gf\z—ééwz%w"?' < Cel. Q% =P

<Csf;°° - Ndr<5 = = 0(c). (5.9)
Similarly we have
/ (IVUQ” + UE™) < Cé®. (5.10)
lo-3QI> %
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So we just need to compute J.[Up] in the region I := [z — 1Q)| <

o] = /|W|2 /I (Zi—Nl/qu“. (5.11)

Previous arguments show that

Slo

JE[UQ] = JE,I[UQ] + O(dN_Q) = JE,I[UA] + E/ISE[UA]UA

1 A A A
+&’ 5/\VUAP /UA— anN U2
I I
anN 5 \grl a+1 a7 qq+1) 170 N—2

Let us compute each term in (5.12).
To compute J. ;[Us], we may use the y-coordinate introduced in (2.24) to expand

det(D®go(y)) =1~ (N = 1)eH(Q)yn + ¢’ ZRkl(Q)ykyl +O0(%y[°) (5.13)

where Ry(Q) is a smooth function of Q. (We do not need to know the exact form of
Ry (Q).) To prove this, we refer to Lemma A.1 of Appendix of [28].
Since @ = Qo + O(9),

det(D®q(y)) =1 - (N - 1)eH(Q)yn +¢ ZRkl Qo) + O( \y\ ). (5.14)

So we have Tof )
£z —
[ v P e Dag(y)ay
ly|< S €

3

= Ay — By1eAH(Q) + Dy + 0(%) (5.15)
since we have
/ VULl < +oo.
RN
Similarly, we have
\\ _
[ i@ e ag )y
<5 €
3
= Awa — By2eAH(Q) + Dy e® + 0(%) (5.16)
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and \If
Vo2 =Dy 2 4ot Dagy)ay

o[,
1<
3

= 2:0wA? + Dy e + 0(%) (5.17)

where Cy is given at (2.3).
Combining (5.15), (5.16) and (5.17), we obtain

J.1lUg] = Axy — ByeAH(Q;) + OneA? + Dye? + o(d™ ?) (5.18)

where By = %BNJ — ;"_F—NIBN,Q and Cy are given by (2.2) and (2.3) respectively.
To compute the second term in (5.12), we note that

e [;SUNUN = ¢ pi<elUs — 2yn >in k(@) 6;%" (N = 1)H(Q)§2]Un + o(d"?)
= l)]\/'74€2 + O(dN_Z)

(5.19)
Similarly, we have
? /\VﬁA\Q + 6/[7,2X — q/Uj{_IUX = Dyse” + o(dV7?) (5.20)
I I I
The last term in (5.12) can be estimated as follows:
N N 1
/ (Ur + 007" — UL — (¢ + 1)UL, — Q(q; Jyr-1p2
I
< O’ / UlUs < cé? (5.21)
lyl <%

since N > 7.
Combining (5.18), (5.19), (5.20) and (5.21), we obtain (2.31).
To prove (2.32), we note that using (5.3)

0 oU,
aAJ[UQ]_/ Sel UQ] Q

g

—&"Uq +2(B(A, Q) = DUx + O(*(1 + Jy)*~™) | 5

+0(?)

/|le|<’—°

Now using the fact that | T 90 | < CUg, we can perform similar estimates to obtain (2.32).
U
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5.2 Proof of Lemma 2.4

The proof is similar as in Lemma 2.3, except now that we have to compute the interaction
terms.

For S.[W], we have
K
S W)= S[U;] + I[W]
7j=1
where I[W] = (EIJK:1 U;)¥ — Z]K:1 U/ denotes the interaction term.
For I[W], we have for |z — 5QZ| <<

1 1.
1W] = O [UU;]) = 0¥ 2 < 2= 2Q > = 0" ¥ <2 - 2Q >757%)
J#1
) (5.22)
For [z — 2Qi| > & where C is large, we have
2 1
IWw]= O(d—(N_2)Q) — 0(5%) _ 0(81.5—% < &Qz’ >_§_%) (5.23)

Combining with Lemma 2.3, we obtain (2.39) and (2.30).
For the energy expansion, we have

Je[W] = ZJ +Z[/ VU;VU; +5/ UU;j| q+1 [ZU]HI ZUqH

i<j Egl

For the interaction terms in the energy expansion, we have

/ VUZVUJ + E/ UZUJ - CMN/ UZqU] = —/ SE[UZ]U] + O(dN_Z). (524)
€ QE QE €
By Lemma 2.2, we have

/ S.[UJU; = O(22 / 0.U;) = O(2d¥5) = o(dV-2) (5.25)

since N > 7.
Similar arguments give

/ ZU Jo1 ZU"“ S (g + DU = o(d¥?) (5.26)

Qe j=1 (E]
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K K
13 U] = ZJE[UJ]—QNZ/ U, + o(d¥?)
j=1 j=1 i>7 €
K !
N _
= Y-y [ v
j=1 i2j -1t
s e
-1
= ZJg[UJ] — TNZ/ o UlU; +O(e 2 )+ o(dV ?)
j=1 iztj 7 p—aQil< A
It is easy to see
AN;?
N an j —_
N UlU; = —/ Ul —2 4 o(dV?
2 /|z—;@i|s;°g 0T 2 e )
_ dN—2 Az Aj ( N—2)
Q5 — Q5|2
where Ey is given by (2.4).
Thus
N-2 N-2
K A7 A7
W)=Y U] = EndV 2y T+ o(d" ).
j=1 i#j Qi — Q51N

Combining with (2.31), we obtain (2.41).
The proof (2.42) is similar by noting that |2%-| < CW.
J

5.3 Proof of Lemma 3.1

We prove (3.5) first. Through scaling, we may assume that ¢ = 1. Let G,(z,y) be the
Green’s function satisfying

aGu (37, y)

o =0 on 0.

—AG,(z,y) + pGu(z,y) =0, in Q,

Note that for p > 1
GN(SE, y) S Gl(‘r: y) (527)

So we may assume also that p = 1.
Then we have for z € (Q,



So it is enough to show that there exists a constant C, independent of x and y, such that

G < 7
G(z,y)| < P

To this end, we decompose GG into two parts:

G(z,y) = K(lz - y|) + H(z,y)

where K (|z — y|) is the singular part of G and H(z,y) is the regular part of G. Certainly
we have |K(|xz — y|)| < W It remains to show that

[H (z,y)| <

< |z —y[N-2

(5.28)

Note that, if d(z,0Q) > dy > 0 or d(y,0Q) > dy > 0, then |H(z,y)| < C and hence
(5.28) also holds. So we just need to estimate H(z,y) for d(z,90) and d(y, 02) small. Let
y € Q be such that d = d(y, 092) is small. So there exists a unique point § € 02 such that
d = |y — g|. Without loss of generality, we may assume 3§ = 0 and the inner normal at 7 is
pointing toward z y-direction. Let y* be the reflection point y* = (0, ..., 0, —d) and consider
the following auxiliary function

H(z,y) = K(|z - y)
Then H* satisfies AH* — pH* = 0 in 2 and on 02
o, . 0 1
S (H () = = 5 (K (17 = y1)) + O y=5).

Hence we derive that
H(J?, y) = _H*(ma y) + O(

.
which proves (5.28) for z,y € 2. This implies that for z € Q

|<C/ 7 |N 5d (5.29)

If x € 0L), we consider a sequence of points z; € Q,z; — x € 02 and take the limit in
(5.29). Lebesgue’s Dominated Convergence Theorem applies and (3.5) is proved.

Since
1

(Z—Q>ﬁN_2/RNW<Z—Q>_ﬁNd$SC<OO

(3.6) is proved.
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