ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A BIHARMONIC
DIRICHLET PROBLEM WITH LARGE EXPONENTS

SANJIBAN SANTRA, JUNCHENG WEI

ABSTRACT. We analyze the blow up phenomena of bounded integrable solu-
tions of a semilinear fourth order elliptic problem with a large exponent under
Dirichlet boundary conditions. We extend the results obtained by Ren-Wei in
[25] and [26] to the biharmonic case.

1. INTRODUCTION

The study of asymptotic behavior of fourth order elliptic equations is of con-
siderable interest. Let (M, g) be a smooth four-dimensional Riemannian manifold,
and let us consider the so-called Paneitz operator [24] on the manifold M, as

.2 .
Py = A2y — dwg(gSg — 2Ricy)di

where div, denotes the divergence, d the de-Rham differential and S, Ric, denote
the scalar and Ricci curvature of the metric g respectively and Ag9p = —divg (V)
is the laplacian with respect to g. Under a conformal change of metric §j = e?%g,
the Paneitz operator Py is related to P in the following way

Pyp =e P, (), ¥V ¢ € CF(M).
Moreover, the scalar curvatures of g and § are related by the equation

(1.1) Pyp+Q, = Qze**
where @), is the Q— curvature of the metric g, and @5 is the ()— curvature of the
new metric § and

1

is associated with the Paneitz operator. Integrating (1.1) over M, one obtains

where k, is conformally-invariant. Hence we can write (1.1)

(AyS, + S2 — 3| Ricy|?)

(1.3) Prp+ Q= k2257 _
. (24 g 9 fM Q§e4<p‘
When the manifold is the Euclidean space, then (1.3) transforms to
h(z)e*?
1.4 A2 =p—" .
(1.4) = P et
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This type of problem arises in statistical mechanics and differential geometry and
has been extensively studied by Adimurthi-Robert-Struwe [3], Barakat-Dammak-
Ouni-Pakard [5], Chang-Yang [10], Djadli-Malchiodi [13], del Pino-Kowalczyk-Musso
[12], Lin-Wei [21], [22] , Hebey-Robert [17] and many other authors.

Let © C R* be a bounded C*# domain. In this paper, we study the asymptotic
behavior of a sequence of solutions of the following nonlinear equation

A’y =(@h)? inQ

0
U= 6—3 =0 on 00
as the parameter p — +o00 under the assumption that u satisfies,
(1.6) Jarpr<
Q p

for some C' > 0 independent of p, where u* = max{+u,0}. Note that the least
energy solution to (1.5) satisfy the assumption (1.6). See [6]. The equation has a
very close relationship to (1.4). In course of this paper, we will introduce a blow-up
solution for u, which along a subsequence converges to an entire solution of (1.4).
In two dimensions, an analogous problem was studied by Ren-Wei in [25] and
[26] in a star-shaped domain for the least energy solutions. Adimurthi and Grossi
[2] extended the result to a general two-dimensional domains and obtained more
precise asymptotic behavior for the least energy solutions. Recently, Esposito-
Musso-Pistoia [14] proved for any m € N, u,, exhibits the asymptotic behavior

p/ [Vu,|? 2222 8rme
Q

under some topological assumption on the domain.
For the biharmonic case the problem was studied by Takahashi [29], [30], with the
convexity of the domain 2 and for positive solutions in the Navier boundary case.
Ben Ayed-El Mehdi-Grossi [6] extended to non-convex domains and proved the
single point condensation for least energy solutions, again for positive solutions in
the Navier boundary case.

In this paper we study the asymptotic behavior of all solutions of (1.5) satisfying
the integral bound (1.6). Note that neither we have assumed the convexity of the
domain 2 nor the positivity of the solution.

Define

Up 1= PUp .
Then we call S a blow-up set of a sequence vy, if
(1.7)

S = {z € 0 : 3 a subsequence of v, and =, € Qsuch that z, — z and vy, (Tn) = 400}
Consider the functional I, : HZ(Q) —» R
/ |Au|? d:c— — (u+)p+1dx.

Any solution to (1.5) is in fact a critical p01nt (ﬁ the above functional and by
regularity all solutions u of (1.5) are C®(Q) N C*(Q). (See Lemma B.3 of [31].)
Our first theorem characterize the limit of u, in L* norm.



Theorem 1.1. If u, is a solution of (1.5) satisfying (1.6), then as p — +00,
(1.8) lim ||uplleo = Ve.

p—r—+oo

We note that this type of result is proved in [2] and [6] but only for u, being
a least energy solution. We prove the result in a more general setting and it also
covers finite Morse index solutions satisfying (1.6).

Next we analyze the asymptotic behavior of v, = pu,.

Theorem 1.2. Let u, be a family of solutions of (1.5) satisfying the bound (1.6).
There exists a subsequence vy, such that

(f1) P Jo(uf )P» — 6472 N /e for some positive integer N.

(f2) vp, has ezactly N— blow up points. Let the blow up set S = {z1,---zn}. Then
S C Q and v,, — v for every compact subset of O\ S where

v(z) = 647r2\/EZ G(z,z;)

and G is a Green’s function of A? under Dirichlet boundary conditions. That is,
A%G(z,y) = 6(x —y) in Q

(1.9) oG

G(z,y) = M

(f3) Furthermore, the blow-up points z; € Q, i < j < N satisfy the following

relation

(z,y) =0 on Q.

(1.10) VwH(mj,mj) +vaG(.’Ej,.’El) =0
I#j
where
I _
(1.11) H(z,y) = Glz.y) + 224

is the regular part of the Green’s function G.

Result similar to Theorem 1.2 is proved in [6] for the least energy solutions of
(1.5) under Navier boundary condition. Our result is more general in this context,
as we precisely study the asymptotic of the blow-up solution in order to derive the
result.

Corollary 1.3. Let u, be a least energy solution to (1.5). If S = {zo}, then up to
o subsequence we have

(fl) DPn fg(u;_")p — 6471-2\/5;

(f2) vp, — v for every compact subset of 0\ {zo} and

v(z) = 647°/eG(x, o)

where G is a Green’s function of A% under Dirichlet boundary conditions that is
where o s a critical point of R(x) = H(x,x).

We mention the main difficulties and the main ideas in this paper.

The first difficulty in working with fourth order equations in a general domain,
is the absence of maximum principle in the Dirichlet case. See [11] and [15]. More
precisely, the Dirichlet Green’s function may become negative in some domains.
It is important to note that for the Laplacian case, the method of moving planes
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has been used to show that the blow-up points are away from the boundary as in
[25], and the process was extended by Lin and Wei for biharmonic problems with
Navier boundary conditions [21]. In the Dirichlet case, we cannot apply the method
of moving planes in order to exclude boundary blow-up as in Ren—-Wei [25] and Ben
Ayed-El Mehdi-Grossi[6]. To overcome this difficulty, we use Pohozaev identity and
strong pointwise estimates for blowing up solutions of (1.5) as in Robert—Wei [27].
(Note that by Boggio’s principle [7], the Green function in a unit ball with Dirichlet
boundary conditions is positive and explicitly given by this formula,

1 [ o1
G(z,y) = ) / 3 dv
where [z,y] = /|z —y[2 + (1 — |z[?>)(1 — |y[?), see [15]. In the case of a ball, posi-
tive solutions of (1.5) are radlally symmetric which was proved in [8].)

The second difficulty is to establish the estimate (1.8) for general solutions. Even
in the second order case [2], (1.8) is proved only for least energy solutions. It turns
out that we need more refined (sup+ inf) estimates to establish (1.8). Our results
are new even for the second order case.

In course of the paper we will only prove Theorems 1.1 and 1.2. OQur method
can be used to study the above problem with polyharmonic operators.

Our paper is organized as follows. In Section 2, we collect three useful lemmas.
In Section 3 we give a preliminary estimate of the solutions. We prove that the
blow-up points are isolated and lie inside the domain in Section 4. More refined
estimates as well as the proof of Theorem 1.1 are given in Section 5. Finally
Theorem 1.2 is proved in Section 6.

Notations: Throughout this paper, the constant C' will denote various constants
which are independent of p: the value of C' might change from one line to the other,
and even in the same line. The equality B = O(A) means that there exists C' > 0
such that |B| < C'A. All the convergence results are stated up to the extraction of
a subsequence of p.

2. PRELIMINARY LEMMAS

We state three known results in this section. The first one concerns the properties
of the Green’s function (1.9). The second one is the Pohozaev identity. The third
is the classification result of a fourth order Liouville problem.

Lemma 2.1. There exists C > 0 such that for all z,y € Q, © # y, we have

1
(2.1) |G(z,y)| < Clog (1 + E yl)
and
(2.2) VG (z,y)| < W

for 1 <i < 3. Moreover, there exists a constant C' > 0 depending on 2 such that
(23) G(m,y) Z -C.

Proof. The first two estimates are due to Krasovskii [18]. We also refer Dall’Acqua-
Sweers [11]. The third result (2.3) is due to Grunau-Robert [16] and in fact it tells
us that negative part of the Green’s function is bounded. |



Now we state a Pohozaev identity for fourth order equations.

Lemma 2.2. Suppose u € C*(Q) be a solution of A%u = f(u). Let F(u) =
fo t)dt. Then

/ F(u / (z —y,v)F(u)ds + %vz(m—y,u)ds+2%vds

@0+ [ (Gota=uDu)+ G - 5.0~ (D Do)~ o) ) ds

where —Au = v and v denotes the outward normal derivative of x on Q. In
particular, we have

1 9 Ou ov _
(2.5) /BQ vF(u)ds + 2 /BQ v°vds +/ {&/DU + 8VDu - (Du,Dv)V}ds = 0.
Proof. This identity follows from [23]. O

Our last lemma concerns the classification result of Lin [20] for the following
Liouville equation

(2.6) AW +e% =0in R, eV < +oo.
R4

Lemma 2.3. (Theorem 1.1 and 1.2 of [20]) Suppose W is a solution to (2.6). Then
the following statements hold.
(i) After an orthogonal transformation, W (x) can be represented by

1

W(z) = &2 | eV log dy Za] 2+eo

2.7) )

= —Zaj(x] —29)? — alog|z| + co + o(1),

=1
as |z| = oo. Here aj > 0, co are constants and 2° = (29...,23) € Rt. The
function W satisfies
1 eW ()

2. A = 2
(2.8) W) =~y /R - S,

j=1
Moreover, if a; # 0 for all j, then W is symmetric with respect to the hyperplane
{.7: | z; = .7:2} Ifay = a2 = a3z = a4 =0, then W is radially symmetric with respect
to 20.
(i) The total integration

1

- 3271'2 R4
If a =2, then all a; are zero and W has the following form:

eVWay < 2.

(2.9) W (z) +log24, with X >0.

2)
= 4log — 2
1+ A2z — 202
(i) If W (z) = o(|z|?) at oo, then a = 2.
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3. PRELIMINARY ASYMPTOTIC ANALYSIS

Let up be a family of solutions of problem (1.5) such that there exists constant
C > 0 such that
(3.1) [ <L,
Q p
Recall that v, = pu,. In this section, we give a preliminary estimate on the asymp-
totic behavior of unbounded v,. First we claim the following.

Lemma 3.1. Let up, be a solution of (1.5).
C
(3.2) up > ——.
p
Moreover, if x, € Q is a mazimum point of u,, then uy(zp) > 1 and in particular

(3.3) Jim pllup7 gy = +oo.

Proof. By Holder’s inequality and p > 1 we have

/Q(uj)p < (/Q(u;r)erl)pil(/leH)# _ (/Q(u;)ml)pilm'pil < %_

Moreover, by Green’s representation and (2.3), we get
C
w(@) = [ G )ray = ~C [ wiwyra > -2

which proves (3.2). This also implies that the points of blow-up of v, are precisely
the point of positive maxima of w,,.
To prove (3.3), we let \; be the first eigenvalue of A? in HZ(Q), i.e.,

A 2
(3.4) A\ = inf M
¢eH2(Q) [ ¢

By Krein-Rutman theorem the first eigenvalue \; is positive. For any solution

up of (1.5) we have
[ 18P = [ @,
Q Q

Also from (3.4) we have i [, |up|?® < [q [Auy|* = [(u)P+! which implies that
At fq lupl® < [ lup[PT. Hence we have maxg |uy(z) [P~ [ (up)?® > A1 [, us which
implies that there exists z, € Q such that |u,(z,)|P~" > A\ and hence ||up||r= >
A17=T — 1 as p — oo. Also from (3.2) we must have uy(z,) > 0. As a result, we
get limp o0 pllupllfe ) = +00. O

Let z;, be a point of maxima of v, in 2 and
(3.5) Eépug_l(mp) =1.

Q—zp

Then by Lemma 3.1, e, = 0 as p — 0. Let 2, := =

1.1, we have to study the blow-up sequence. Using an idea of Adimurth-Struwe [4]
and Adimurthi-Grossi [2], we set

. In order to prove Theorem

up(Tp + €pT) — up(xy)

up(zp)

(3.6) Wp(z) :=p



for x € €)),. Then W, satisfies the problem
P

A*W, = (1 + %> in Q,
P+

ow,

~ Py

We will show that W), converges W in C}t (R*) such that W satisfies

AW = eV in R

(3.7)
Wy

=0 on0Q,

3.8
(3.8) eV = 64r’.
R4

But first we need to show that the problem (3.8) is not a half space problem.
The following lemma asserts that the blow-up point must have some distance from
the boundary.

Lemma 3.2. Then lim M

p=oo g

= 4-00.

Proof. We prove it by contradiction. Assume that d(z,,09Q) = O(ep). Then up to
a rotation, we may assume that €, — (3, +o00) x R® where 8 = lim,_, M.
P

Let R > 0 and z € Bg(0) NQ,. Then we have from the Green’s representation and
Lemma 2.1 that for 1 <43 <3

p

ViW,(z = —2 e Viuy(zy +epx
V@) = s gl + 2p2)
= B [ VL6t + o)y
up(zp) | Jo
pel 1
< C’—p/ —(u})Pdy
up(Tp) Boe, r(p) lzp +epz —ylt" P
pel 1
R N .
up(a:p) Q\B2spR($p) |.CL'p + EpT — y|z( IJ)

Now in Q \ Ba.,r(z,) we have |z, + epx —y| > |y — x| — &,|z| > Rep, and
(up(y)T)P < u(z,)?. Hence we have by definition of ey,

VW@l < Cpi e [ Py + Cp [ ()
P P p)€p Bae, n(as) [Zp + 57 — Y o P
= Cai*‘l/ —.dy+Cp/(u+)”
P Bae,r(Tp) |zp + epr — yl! o’

= L+D

where
I = Ceit / v
P Baeypr(zp) |zp + epz — yl!

and

L= Cp/(“;)p-
Q



8 SANJIBAN SANTRA, JUNCHENG WEI

Since y € By, r(2p) we have y — x, = 26,2 where |2| < 2R and dy = ejdz. And

) et 1
Il = 05274/ 7pdz =C —_—
B2r(0) 6;)|$_z|l B>r(0) |m_’z|z
2R
= C —dz < Cz|*7f| =O(R).
Bor(z) |Z| |

Hence we have from (1.6)
I+, =0(R)+0(1)
and as a result
VW, ()| = O(1).
Moreover, for z € Q, N Br(0) we have
(Wy(z) =W, (0)] < C.

But W,(0) = 0 and hence W), is uniformly bounded in a neighborhood of 0Q,.
Choose %, € 9Q, such that |W,(Z,)| < C. Then we have p < C, a contradiction to
the fact that p — +o0. a

The following lemma concerns the first bubble.

Lemma 3.3. Then W, - W as p — oo in C} (R*) where W satisfies (3.8).

Moreover, W (z) = —4log(1 + ELJ—)

Proof. As Q, — R* as p — oo and by previous lemma we have |ViW,| < C
for x € Bg(0) for i = 1,2,3. By standard elliptic estimate we can conclude that
W, - W as p = oo in Cl‘*oc( 1) where W satisfies

AW =€V, W(0) = 0.

p
Also note that as (1 + %) — e" as p = oo and hence by Fatou’s lemma, we
+
have
W, P 1 U+ 4
W < lim inf <1+—p> = liminf — ( )p < C < +o0.
R4 p=oo Jo p /L PP g a [lupllS

Now we show that in fact W(z) = —4log(1 + L =)-
To this end, we first show that

/ |AW| < CR?
Br(0)
for any R > 0. In fact, by Green’s representation, we have

|AW, ()]

|EI2,Aup(a:p +ep1)|

b
Up (mp)

/A G(zp + epz,y)(u )”dy‘

Hence we have by similar estimates as in Lemma 3.2

>
/ |[AW,(z)|dz < Cp / 7(52/ d—x2)dy < CR%.
Br(0) lluplloo Br(0) [Tp +pT — Y|

up ( xp



Letting p — oo implies that for any R > 0 we have
(3.9) / |AW (z)|dz < CR%.
Br(0)

By Lemma 2.3, there exist nonnegative constants a; > 0,a > 0 and a point
20 = (29, ...,29) € R* such that W (z) = — Y+, ai(; — 29)% — alog |z| + co + o(1)
as |z| = 4o0. Thus we obtain —AW (z) = Z;.l:l 2a; as |z| = +oo. From (3.9), we
get that Z;.l:l a; = 0 and hence a; = 0,7 = 1,...,4 since a; > 0. Hence we have
W(z) = —alog|z| + co + o(1) as |z| = +o0o. And as a result W(z) = o(|z|?) as
|z| = 4+00. By Lemma 2.3, @ = 2. Hence W is radially symmetric around some
point z° and [y, e = 6472 Since by definition, W(0) = 0,VIW(0) = 0, we

conclude from (2.9) and Lemma 2.3 that W (z) = —4log(1 + gf‘/—) Moreover, using

4
the fact that limp_, o ‘fBR (1 + f[) dz = 32|S3| = 6472, we obtain that

V4
lim lim (1 + %> = 6472,
Br(o) p

R— o0 p—o0 +

The next lemma gives a lower bound for the energy.

Lemma 3.4. Let up be a solution of (1.5), then p [,(uf )P+t > C where C > 0 is
a constant independent of p.

Proof. The proof follows from [25]. For the sake of completeness we prove the
result. Due to the Adams-Moser-Trudinger inequality [1], we obtain V u € HZ(Q)

ﬂ(—uAJ‘uL2>
(3.10) / ’ do < |0
Q

whenever 3 < 3272, Using Gamma, function < e? for all z > 0,s > 0 where

I" is a gamma function we obtain

=y o Ll () | e et
- ulf < — 20— dx x (327°) "z || Aullb 2
STl ML T TAull: (32m7) | Awlly

2
32”2(—||A5||L2> ov_s
/ e dz x (327°) "2 || Aul|32
Q

C19|(3272) 2 || Aul|3..

I(s+1) +1)

IA

(3.11)

IA

Then we have

1 S % _1
lulleco) < (CIRDAT(5 +1) 32e") ¢ Aulo

Hence we have

1
(3.12) lulls () < Dss?[|Au||z2(q)
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where

1
s

(3.13) D, = (0|Q|)%r(§ + 1) (32n2)" 3573
and by Stirling’s formula we obtain
s s 1
Nf-+1] ~(—=
3+1) ~Gm

and hence lim, ,o, Dy, = (641?)%. Moreover, plugging s = p + 1 in (3.12), any
solution of (1.5) yields

)V/s as 8 = o0

A 2
lim inf pr' |

ﬁ Z 6471'26
P (Jo(up )ptt)

hence

-

p—

Py

lim infp(/ (u;)pﬂ) ’ > 647’

p—00 Q

which in fact implies that

(3.14) lim inf p( / (u;)PH) > 64ne.
Q

p—00

The next lemma says that u, is uniformly bounded.

Lemma 3.5. Let u, be a solution of (1.5) satisfying (1.6). Then ||up||r=@) < C
where C is a constant independent of p and hence there exist ¢ > 0,C > 0 such that
¢ <p [o(uh)? < C forp>>1.

Proof. Using the definition of €, and Fatou’s lemma we have

W, p+1
liminfp/(u;f)ijl = 1iminfp||up||gj1€;/ <1+_p> de
p—0o0 Q pP—>0o0 Qp D 4
W p+1
- 1iminf||up||go/ (1+_p>
p—>00 QP p +
> . . 2 W
> timin lupl, [ eVda
(3.15) = 647721ipn_1)ioréf||up||go.

On the other hand, we have
p [ @yt < upliep [ @)

Using (1.6), we deduce that [juy||ec < C and p [ (u})? > C. O
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4. ANALYSIS OF BLOW-UP SET

The purpose of this section is to prove that the blow-up points of v, are isolated,
finite and has quite a distance from the boundary.
Recall that v, = pu, satisfies

(4.1)
vy =0=—= on 0f)

and the blow-up set S is defined at (1.7).
Let g9 > 0 be fixed small number. We define another blow-up set

A:{meﬁ:\fro>0and\fp0>1; p > po suchthatp/ (u;;)pZEO}.
B

In this section, we are going to prove that in fact S = A (Lemma 4.1), A is finite
(Lemma 4.1), and S C 2 (Lemma 4.3).

Let f, = p(u;})?. By Lemma 3.1 and 3.2, v, > —C. Hence v, has only one-sided
(positive) blow-up.
Let z,; €  and we define

(z,r0)NQ

pspzug Hzpi) =1
and
Wpi(a) = Pup(Tp,i + €p,iT) _pup(wp,i)_
Up(%Tp,i)
We say that the property Hj holds if there exists (2p,1,- -+ %px) € QF such that
(i) Ty yoo 22222l = oo, i # j
(i) limyp 1o 222200 = 400
(iii) limp—y 40 Wp,i = —4log(1 + |w| %) in Ct.(RY); Vie{1,2,---k}.
By Lemma 3.1-Lemma 3.3, 7-{1 holds.
The first lemma in this section shows that & = A and that A is finite.

Lemma 4.1. (a) Assume that Hy, holds. Then either Hyy1 holds or there exists a
C > 0 such that

(4.2) ian {lz — z,:*}f, < C Vz € Q.
(b) Then there exists N and C' > 0 such that Hy holds and
(4.3) in2f {lz — 2p4|*} f, < C Vz € Q.

As a consequence, A = {limp_,4 o p;}.
(c) For j =1,2,3 there exists a C > 0 such that

(4.4) inf {|x — 2,7} Vv, < C Vr € Q

i=1,2.-
and hence for any compact set of K C Q\ A we have
V9wl poe(ry < C Vj =0,1,2,3.
(d) In particular, S = A.
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Proof. (a) Let wy(x) = infi=1 2..k{|z — 2p,i[*}fp(z). Assume that y, € Q is such
that 0 < wp(yp) = ||wpl|lcc = 00 when p — oco. Define

Ay(z) = Pup(Yp +’:)P(5:Z)p)_ Pup(Yp)

where pajub~! (yp) = 1. Then A?A4, = (1 +4 “2)% and we have

wp(yp) = _inf ply, = zpil up(up)
|yp — 'Z'p,i|4

T 4
i=1,---k Oép

|up (Yp)]
o
S C 1nf |yl’ 4$Pa’l|
i=1,--k ag
which implies that M — +oo for all i = 1,2---k as p — oo. Assume that

there exist a ko such that Yp — Tp ko = O(€p.ko)- Then yp — p kg = Op koEp.k, Where
0.k, is uniformly bounded and we have by assumption (iii)

|yp_$p,ko|4fp(yp) = ¢ ,k0|452,kopup(mpako + €p,kobp,ko)?
Woeo

= sl g (14 222 )
P/

< Ce!Wr.ko(0p,k) <C

which implies that im,_,o w,(y,) is finite, a contradiction. Hence 22=22il _ 40,
Ep,i
Now we know that wp(y, + apz) < wp(yp) and hence we have,

To(yp + apx) inf1o.k |yp — xp,i|4
Io(yp) ~infy ook [Yp — Zp,i + apz[t

Let x € Bg(0). Let n € (0,1). Let p > p(R) such that M > R for all 4 =

1,---k. We then have |y, —zp; +apz| > (1—n)|yp — T and hence 1nfz 1,2k |yp
Ty + apz|* > (1 —n)*infi—1 2.k |yp — Tp|*. This again implies that

(u;’ (yp + O‘pw))p 1
ug (yp)r  ~ (1-m)*
that is
Ap P 1
(4.5) (1+?>+§7(1_n)4.

Hence using similar techniques as Lemma 3.2, Lemma 3.3 and (4.5) we can prove
that
|z[2
— o00; Ay, & —4lo 1+—)
' ¥ ( 8v6

(R*) as p — +00. Letting zp 41 := yp and A, = W) 11, then Hyy1 holds.

d(ylh 89)
Qp

in C#

loc
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(b) Let Hj, hold for some k. Then we choose R > 0 such that B, r(2p:) N
B., r(xp,;) =0 for all i # j. Then by Lemma 3.5

¢z opf )v>/UB up(@pa) ()

1 Dl
Y B, r(zpi)  Cpii up(%p,i)

p

Z/ iR (@p,0) up( I:U;)z) A Bl Z e . |/R(0) ( i)+
_ ;mp(x,,,,-n / o)

> Ckminuy(zp;) > Ck

vV

and hence k is bounded. As a result, A = {lim,_, { , z,,;}. Moreover, (4.3) follows
from (4.2).

(c) We have from Green’s representation that for 1 <4¢ <3
Vi@l = pl | ViGlan ) ]

uy (y))Pdy

IA
S
S~
9
g x.
Q
8
<

(4.6) ut (y))Pdy.

Let Rp(z) := ._ian|:1: —2piland Qp; = {x € Q: |x —zp,;| = Rp(x)}. Then we

A
3
5~
B
I
=

have

p[ le-ul iy = b o =91y
Qpi Qp,iNBg—a, ;| (Tp.i)
g

i
+ p/ |z —y| ™7 (u})Pdy.
Qp,i\Blz—zp,il (2p,i)
2

Note that for y € Qp; \ Blo-s,; (2p,s), we have
lo=rpil

. C
P L O Y
plz —y|™ (uy )P < IS Hr—r

and hence
1 C

z—yPle —zpilt T |z —wpul

v o=y ) < [
Qp,i\Bo—z, ;| (Tp,1) Qp,i\Blaa, ;| (Tp.i)
— —=

When Qi N Blo—s, ;1 (Tp,i), we have [z —y| > |z — zpi| — [y — zp,i| > |z — 2p,4
2

and
—J(y TP %
p o — gl Py < ————.
QP:"OBM—EP,H (p,i) |$ - mp,i|
lo=2p.il
Hence for any compact set K C Q\ A we have ||vp|r=(x) < C.

(d) Now we prove that S = A. Suppose 2o ¢ A, then from (¢) we have v, is
uniformly bounded in L*°(K) for some compact set K containing zo and hence
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2o € S. Hence S C A.

Let o € A, then every compact set K containing zo, ||vp[pe~ (k) — +00 as p — oo,
otherwise there exists r > 0 such that [|vp||L~(B,(z0)) < C but fp = p' ?(v})?,
hence f, — 0 as p — oo uniformly in B, (x¢) and this implies a contradiction as

p/ (uf)P +0asr =0
BT(CL'())OQ

implying that z¢ & A. |

It remains to show that A = S lies inside Q. To this end, we first analyze the
behavior of v, outside the blow-up set.

Lemma 4.2. Let x; = lim, o0 Tp j; 5 = 1,2,--- N. Then there exists v; > 0 such
that

pli)rgo ’l)p Z ’YJ :I"J in Cloc(Q\S)

Proof. Since z;’s are isolated, there exist a R > 0 such that Q' = Q\UY_, Bg(=;) is
connected. Then |vp| + |Vu,| < C for all z € Q' by Lemma 4.1. Let 2’ € 00N oY,
then |vp () — vp(2')| < C for all z € . But this implies v, is uniformly bounded
in Q' N Q. By standard regularity we have v, — v as p = oo in C (€2\ S). Choose
r > 0 small such that ub(y) > 0 in B.(z ) Then we have

=» [ Gl 0)dy = S | Gawupmdy+ o).

j=1 Br(z;)

Note that we are using the decay estimate of u, in Q\ B, (z;) from (4.3) of Lemma
4.1: infiy 5. N{|z — 25| }pub(z) < C Vo € Q\S.
Furthermore G(z,.) is continuous in 0\ {z}, we obtain

2 /B Gy + o)

where

T . p 2. . 2
(4.7) ;= lim lim p Br(wj)up(y)dy 2 64~ iminf flupllp e (5, (q,))
by Lemma 3.5.

Finally we prove that no boundary blow-up occurs.
Lemma 4.3. [No boundary blow-up] In particular, SN OQ = 0.

Proof. We argue by contradiction. Suppose that zo € Q2 N A. Then since S = A,
we have for all r; > 0 and for all pg > 1; there exists a p > pg such that

(4.8) . / (WP > .
QﬁBrl (1}0)

Choose 71 > 0, such that AN B, (20) = {x0}- Let yp = xo + pp,rv(zo) where

s = faQnBr(zo)<w — Zo, V)(AUP)Q
" fanBT(zo)@(mU)a v)(Avp)?
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where r << ry such that § < (v(zo),v) < 1 for € By(z¢) N Q. Here v(z) is an

outer normal vector to T,,0€) at z. Then it follows that |p,,-| < 2r and

(4.9) / (2 = yp, ) (Av,) da = 0
80N B, (z0)
and hence
(4.10) / (x — 20 — pp.rv(T0), v)(Avy)?dz = 0.
QN B, (zo)

Now applying the Pohozaev identity on QN B,(zo) with y = y,, we obtain

4p° / (uH)Pdz v’ / ( Yul)PHid
= z —yp, ) (u s
(p+1) JornB. (@) © (p+1) Janos, (zo) g P

0 1
+ 2/ &Avpdsjt —/ {(x — yp, v)(Avy)?ds
QN8B (z0) ov 2 JansB, (z0)

A
+ / (T — yp, va)a P gs + / (z — yp, VA’I}p)%dS
QNAB, () ov QNAB, (o) ov
(4.11)F (x — yp, v)(Vvp, VAvy)ds.

QNoB, (mo)

As vp(x) = Ei\; 7iG(z, ;) in CF _(Q\ S) follows from the previous lemma. Again
by the boundary values G(z,zo) = 0. Also note that last five terms in right hand

side O(r?) and hence we have

4p2 / (u+)p+1d$ — p2 / <$ —y l/> (u+)p+1ds
(r+1) JonB.(zo) (r+1) JansB, (z0) P i
+ O@3) =0(?)

as ;77| fonas, () (T — Yp V) (ug )P Hds| < 0p(1)rt. Hence
P’ +\p+1
lim lim —— uy )P dr = 0.
r—0 p—0o0 (p+ ].) /QﬁBr(wo)( p)
By Holder’s inequality we have

2

FEs T 1
ul)Pdr < C( P / ul ”+1) ( TG (p+ 1 #)
p/m(mm <oty () P (p+ 1)

QNB, (z‘o)

and hence

lim lim p (ut)Pdz =0
r=09=0" JonB. (z0) p)

a contradiction to (4.8).

O

The remaining problem is to estimate ||uy||r=(q) and 7;. This will be done in

the next two sections.
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5. REFINED ESTIMATES OF THE BLOW-UP SOLUTION AND PROOF OF THEOREM
1.1

In this section, we give a precise estimate of [|up||z~() and prove (1.8) for
Theorem 1.1. To this end, we need to do some refined analysis of W, (defined at
(3.6)). This kind of estimates are called sup+inf estimates, which was first initiated
by Brezis-Li-Shafrir [9], Li-Shafrir [19] for second order equation, using the method
of moving planes. Lin-Wei [21] used potential analysis to give the sup+inf estimates
for fourth order equation.

Since the estimate is local, throughout this section, we may assume that B;(0) C
and u,(0) = maxg, (o) up(x). For small r > 0 such that u, > 0 in B,(0) we define

(5.1) ap(r) = Up]ZO) /B,(o) ubdz.

The first lemma computes the values of a,.
Lemma 5.1. We have
(5.2) lim lim a,(r) := a = 6477

r—0 p—o0

Proof. By Lemma 4.2, we have

N
Jim vp(z) = Z%‘G(m;%‘)
in 2\ S. We may assume that N =1 and z; = 0. The Green function at the origin
is

A*G(z,0)=0 z€Q,
(5.3) dG(z,0)

The Green’s function can be decomposed into singular part S (fundamental solution
of the biharmonic) and regular part H as

=0 €90

G(z,0) = S(z,0)+ H(z,0)
1 1
(5.4) = 32 log il + H(z,0)
where
A?H(z,0) =0 z €,
1 1
(5.5) H(z,0) = 3z — log |:1:| x € 09,
OH (z,0) 1 0 1
IELY) =9 (1og — 0
v 87r261/(0g|x|> z€9

and hence near the origin can be written as

Glz,0) = — (logl | ())

Let r € (0,1) such that v, > 0 in B,(0). Since v, = 71G(z,0) in C{ (2 0)
(Lemma 4.2) where
m=a lim wu,(0),

—+ o0
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we have
vp =711(G(2,0) + hyp), 2p = —Avp, = 71 (—AG(z,0) — Ah,) on 0B,
where

1 2
—A = —= 1
G(z,0) 82 <|a:|2 +O( ))
and |Vih,| < C for i = 1,2,3. We will use a local Pohozaev identity from Lemma
2.2 in B,(0) on v,. We have

2

4p? p¥l . _ _ P NP+t
@D /BT@( =l [ ey

1/ 2 ov
+ = z,V)z ds+2 —zds
2 8B 01/ P

+ / {%z (z, Dfup)ds—}-% (z,Dzp) — (D’up,sz)(x,V)}ds
8B,

where z, = —Auvj,. Using uniform convergence of v, and its derivatives on compact
sets we have
2

D

Ty /8 () )t ds = o),
1 2 72
2 8BT<$,I/)Zpd8—) T6r?

+o(1),

82,,
o8, v
Ovp
8B, OV

/ (Dvy, D), v) = 2 + o(1).
8B 0

42
(x, Dup)ds — 871 +0o(1),

(x,Dzp) — 87—1 +o(1),

This implies that
2

p +1 712
Pride = 1).
(p+1) /B Y T a2 o)
As a result we have

p2 +1 1 2
5.6 G p— p 1).
(5.6) p+1/BT“" 647?2(1)/&“17) o)

By Fatou’s Lemma, we obtain

W, p
p/ ub = p’u,p((])pé‘;l,/ <1+ —p> dz
B B (0) p
P

™ o
€p

= U’P(O)/ (1 + %>
Bx(0) p

(5.7) > up(O)( eVdr + o(1)> > 647%u,(0) + o(1).

R4
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On the other hand,

P’ + p? +\p+1
5.8 ——u,(0 P> / P
(5.8) P+ luP( )/Br(o)(uP) —p+1 BT(O)(UP)

Hence we derive from (5.6) and (5.8) that

. . P 2 4.
(5.9) }1_% hlr)ris;ipp/Br updr < 64w plgglo up(0).
Combining (5.7) and (5.9), we obtain (5.2). O

Define
5p(2) = Pup(w)‘
up(0)
We now derive an important decay estimate for the blow-up solution @p. In order
to do so we first deduce the decay estimate for solution W, defined by

up(ep7) — up(0)

5.10 Wy(z) :=p , € B1(0).
( ) P( ) up((]) >
Further we define

b
5.11 By = / uPldz
( ) g Up(O) B1(0) b

which can be written as

p
(5.12) ﬂ,,:/ (1+%) dz
B b7+
and
D
5.13 By = ap(r) + / uPdzx.
(5:13) b = (1) up(0) /B, (0\B.0) ©

Note that the second term goes to zero as p — oo (by Lemma 4.1) and hence we
have

(5.14) B, — 64n?

as p — oo.
The next lemma gives the decay estimates of W}, which will be needed later.

Lemma 5.2. For any 6 > 0, there exist rs > 0 and po(d) € N such that

(5.15) [Wy(z)| < — (Sﬂ% - ) log |z| + Cs

for some Cs > 0 provided || > 2rs and p > po.

Proof. Using (5.14), given § > 0 we can choose rs > 1 and pg € N sufficiently large
such that

p
(5.16) / (1 + %) > 64n” — 0 for all p > po.
ly|<rs P/ 2
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Without loss of generality let Wy(z) > 0 in B4 (0). By Green’s function represen-
ep
tation for |z| > 2rs, we have

1 lyl Wp P
W, = — I 1+— ) d o1
P(m) 87'('2 B, 0g |$ _y|( + P N y+ ( )
1 p
L e M (1Y
8% Jiyi<rs  Jall1 — 4| P/,
1 W,\?
+ - / log vl (1+—p) dy
8m |z —yl » /)y
B 1 {rs<Iyl<2la-l}
1 w,o\?
+ = / log v 1+—2) dy+0(1)
82 |z -yl P
+
B 1 n{ly|>rs,|y|>2|z—y[}
€p
1 2 p
< —210g£ (1+%) dy + 2(logZ)/ (1+%
82 |a| Jiyj<rs p 8 B n{lyl>rs} p
1 w,\?
+ (loglyD{ 1+ =2 ) dy
8 2
T B 1 0{jy|2rs |y[22]2—yl} P/
1 1 P
+ —2/ log —— <1+%) +0(1)
872 Jp 1 nflylzrslyl>2la—yl} 1@ =Y P/,

1 27‘5

)

wW,\* 0
ﬁlogm » (1+—p) +8—10g2|m|(647r — Bp + >+O( ).
YIsTs

p
Hence for z € B (0) with |z| > 2r;
€p

ﬂp 27‘5 é
Wp(z) < 87r21 g — 7] +8—log2|a:|+05

(5.17) < (ﬁ - ) log || 4+ Cs.
82
as log 2|sz <0. a

Remark 5.3. Let r = rs. For log é <|z| < %, let us define a radial function

Bylal) = /|| (1+ W"T@))idy

where rg < 1. Note that by Lemma 5.2 as 8, — 6472 we can consider |W,(z)| <
7log 2 Tal whenever |z| > 2r. Using this decay estimate we have

P
/ (1 + o (y)> dy < / ¢!Vl
ly|>rolz| p + ly|>7ol |
J =0 ()
ly|>ro|z| |y| |1'|

1Bp(I2]) — 5|

IN

(5.18)

IA

for |z| > log é

p

+

dy
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Remark 5.4. The Pohozaev identity in Lemma 2.2 on a ball centered at the origin
of radius r can be written as

_ B (Au)? Ou 0Au
4/B,.F(U) = /(9B |z| F(u)ds /(-)B,T[ 5 +81“ 5 ds

[d

0 ( Ou
(5.19) + /8& o (r§>Auds.

Lemma 5.5. For |z| =log X, we have

Bp 1
2 — P g —| <
(5 0) ‘WP 87T2 0og |Z'| _Ca
oW, B, 1 1\
. P < —
(5.21) ‘ o &l <0 logsp EI B
(5.22) AW, +&i <o (105> _1| |2
' Pl An? 22| — °8 Ep o ’
o ([ oW, L
. = <
(5.23) or (r or )‘ _O<|$| )
and
AW, B, 1 1\ ',
: B — :
(5.24) ‘ o 272 (2 _O((logep) |z]

Moreover, (5.20) holds for log é <|z| < EL

Proof. For logi < |z| < ;' and using the fact that Bo(|z]) = By = O(L5) we
have

= g [y e (1) o
= % log ﬁ +0(1)
= % log ﬁ +0(1).
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Wyla) _ 1 /| E(M)(ijy))pdywm)
+

or 82 yl< L Or |||z — y|?
1 0 ((x—y,w)>( Wp(y)>p 4
= —— — 1+ dy + O(ep + |2|77)
82 |y|<ro\z| or\ |z —yf? P /. !
= g [ (14 2) e ogar)
87? ] ly|<rolz| p /g
1
B 1
T O
-1
ﬂp1+0 |ar:|1log1 .
87 |z
1 1 P
AW, (z) = ——2/ 2(1+W"(y)) +O(|$|_5)
4r ly|<rolz| |x—y| p +
=) ( (y)
4m? ly|<rolz| |'7"| b
212 Jyy|<role| |f”| +
— BP 1 -3
= Tgepp T O\
_ ﬂ 1 .
_ _&L = (1g L)
= T +O(|.7:| log :, .
Similarly we have
0 ( OWy(z) 1 / 0 ((w—y,w)>< Wp(y)>”
- - = 1 dy+ 0O
8r< or ) 872 Jiy<a Or \ |z —y]? + i y+0lep)
1 / o <<$—y,$))< »(y ))p 4
= - (=) (14 dy + O(ep + |z
872 Jiy\<role) O \ & —y/? P /4 (& + 2[5
o1 _ _
= )ty + 0t + e
212 iyl <rolal
= O(|z[?).
The proof of (5.24) follows similarly as above. O

Using the fact that
Wp(é‘;lm) = Op(x) —p

and (5.20) we have
|

82 ogep + O(1).

(5.25) Up(x) = Sﬂp log|z| +p+ —
Corollary 5.6. As a result, we have

. 1
(5.26) Bt &2 ]| S <O((log—) 27" ),
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1\ !
<O(<log—) |:c|_2>,
€p

0 [ 00, 5

Z(rz2) <

6r(rar>‘—0('m' )
and

NG, B, 1 1\,
. - < —
(5.29) ‘ or 22 |z3| — O\ los €p 2

whenever |z = &, log L.
p

-, Bp 1
(5.27) ‘Avp+4 2 TP

(5.28)

Proof of Theorem 1.1. Multiplying (1.5) by u, and integrating over By, we obtain
Oup

A
p[ dwlae = [ whrtop [ WPy [ s
B, B 8B1 ov 8B1 v

(5.30) - p/Bl ()Pt + 0(11_)).

Let us now use Corollary 5.6 to estimate the two integrals in (5.30).
Note that from definition of €, we have

(5.31) logp +4loge, + (p — 1) log u, (0) = 0.
We will calculate
(5.32) / |Au, Pdz.

epA

This is the same as estimating AW, in A = {z € , : logi < lz| < é} By
definition, u,(0)AW, = pe}Au,(epz). Using Lemma 5.5 and integrating both sides
of (5.22) we obtain

By (uy(0))? 1 -
/E |Aup|2dm = (472)2 lu 152)) w410g_p +O(p 2)

p

— 5127 (“”;g)) log —+O(p 2

(up(O))

= 12872 log up(0) + O(p~?)

where wy = 272 is the volume of unit sphere in R*. This implies that

(5.33) » / |Au,Pdz = 12872 (u,(0))? log 1y (0) + o(1).

We use Lemma 5.2 and dominated convergence theorem to conclude

p/B1 (up)ide = (“”(0))2/13L (1 - %):

(5.34) = (647” + 0(1))(up(0)).
Substituting (5.33) and (5.34) into (5.30), we obtain that

1
logu,(0) = 3

which implies that u,(0) — /e as p = +o0. O
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6. PROOF OF THEOREM 1.2

In this section, we complete the proof of Theorem 1.2.
By Lemma 4.2 and Lemma 5.1, we have that v, — Zjvzl v;G(z, z;) in Q\S, where
we can compute

(6.1) v = apEToo uy(zp ;) = 647%\/e

where u,(2p,;) = max up(z).
Br(z;)

This proves (f1) — (f2) of Theorem 1.2.

Now we prove the identity in (f3). Let » > 0 be a small number such that
B.(z;) C Q and B,(z;) N B.(x;) = 0, i # j. It is enough to prove the identity for
1=1.

Applying Lemma 2.2 to v, on the domain Q \ B,(z1), we have

1 0z Ov
/ vF(vp) + 3 / Z2v+ / {O—:Dvp + 8—;sz - (sz,Dvp)V}ds =0
8(Q\ B (1)) O(Q\ B, (z1)) 8(Q\ By (1))
where z, = —Aw,, where F(v,) = %(uj)”“.
Since up = Vup = 0 on 012, we obtain
1 0z ov
/ vF(vp) + 3 / v+ / {a—prvp + 8—;sz - (sz,Dvp)V}ds =0.

8B, (z1) B(Q\B, (z1)) 8B, (z1)

Letting p — 00, we obtain

1 9 0z ov _
3 / 22v + / {gDv—l—%Dz—(Dz,Dv)u}ds—O
O(2\B:(z1)) 0By (z1)

where v = limp 400 vp, 2 = —Av. Note that v(z) = 64#2\/52;\’:1 G(z,z;) and
—Av(z) = 647%\/e Zjvzl (—AG(z,x;)). But from (1.11), we have

N
v 1
(6.2) W_H(m,x1)+ZG(a:,mj)—@logm—mﬂ,
Jj=2
z ol 11
) ——— = (-A)H —-A N+ .
63 gz = CAH@) + 3 A6 +
Hence we have
1
(GENad Fr= o

(N By (z1))
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By using mean value theorem [28],

1 0z 1 N T
(6472, /€)? gDv = / (- on2r3 +0(1)) <Vz(H($,w1) + Z V,G(z, ;) — 87?27'2)
8B, (1) 8B, (21) i=2
1 N
= ~551 / V.H(x,21) +ZVEG(3U,$]-)) + O(r)
8B (z1) i=2
N
= —(VwH(x’l‘,ml)+ZV$G(a:f,a:j)) + O(r).
j=2
1 ov T N T
(6477'2\/5)2 ED’Z = (_27_[_2,,,4 + 0(1)) va(l',.’L'l) + ZVzG(.’E,Z’]) - R72r2
0B:(z1) OB, (z1) Jj=2
1 N
= ~551 / (VwH(x,ml) +§VZG(:U,:1:J-)) +0(r)

8BT(£L'1)

N
= - (Vzﬂ(x’é‘,xz) + ZVEG(.%';,.'L’J')> + O(r).

=2

W / (Dz, Doy = <(_# +0(1)), (v:cH(.'U,SUl) +§VzG(SL’,£L‘j) - S:TT2)>

8By (z1)

N
= (Ve300 + 3 V.Glatay) ) +00)
j=2
where ¥ € B,(x1); i = 1,2, 3. Letting r — 0, we have 2f — z; and hence we have
N
VeH(21,21) + szG(Z‘l,.’I]j) =0.
=2
We can obtain the other identities in a similar way.
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