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Abstract. We construct a new class of positive solutions for the classical

elliptic problem
∆u− u + up = 0, p > 2, in R2.

We show that these solutions are of the form u(x, z) ∼
Pk

j=1 w(x − fj(z)),

where w is the unique even, positive, asymptotically vanishing solution of
w′′ − w + wp = 0 in R. Functions fj(z), representing the multiple ends of

u(x, z), solve the Toda system

c2f ′′j = efj−1−fj − efj−fj+1 in R, j = 1, . . . , k,

are asymptotically linear, and satisfy

f0 ≡ −∞ < f1 � · · · � fk < fk+1 ≡ +∞.

The solutions of the elliptic problem we construct have their counterparts in
the theory of constant mean curvature surfaces. An analogy can also be made

between their construction and the gluing of constant scalar curvature Fowler
singular metrics in the sphere.
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1. Introduction

1.1. The Dancer solution to the nonlinear Schrödinger equation. This pa-
per deals with the classical semilinear elliptic problem

(1.1) ∆u− u+ up = 0, u > 0, in RN ,
where p > 2. Equation (1.1) arises for instance as the standing-wave problem for
the standard nonlinear Schrödinger equation

iψt = ∆yψ + |ψ|p−1ψ,

typically p = 3, corresponding to that of solutions of the form ψ(y, t) = u(y)e−it.
It also arises in nonlinear models in Turing’s theory biological theory of pattern
formation [45] such as the Gray-Scott or Gierer-Meinhardt systems, [19, 18]. The
solutions of (1.1) which decay to zero at infinity are well understood. Problem (1.1)
has a radially symmetric solution wN (y) which approaches 0 at infinity provided
that

1 < p <

{
N+2
N−2 if N ≥ 3,

+∞ if N = 1, 2,
see [44, 4]. This solution is unique [25], and actually any positive solution to (1.1)
which vanishes at infinity must be radially symmetric around some point [17].

Problem (1.1) and its variations have been broadly treated in the PDE literature
in the last two decades. These variations are mostly of one of the two types:
(1.1) is changed to a non-autonomous problem with a potential depending on the
space variable; or (1.1) is considered in a bounded domain under suitable boundary
conditions. Typically, in both versions a small parameter is introduced rendering
(1.1) a singular perturbation problem. We refer the reader to the works [2, 3, 7, 11,
12, 13, 16, 20, 21, 27, 29, 30, 39, 37, 38] and references therein. Many constructions
in the literature refer to “multi-bump solutions”, built from a perturbation of the
superposition of suitably scaled copies of the basic radial bump wN . The location of
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their maxima is determined typically by a criterion related either with the potential
or the geometry of the underlying domain.

Much less is known about solutions to this equation in entire space which do not
vanish at infinity (while they are all known to be bounded, see [42]). For example,
the solution wN of (1.1) in RN can be trivially extended to a solution in RN+1

which only depends on N variables. This solution vanishes asymptotically in all
but one variable. For simplicity, we restrict our attention to the case N = 2, and
consider positive solutions u(x, z) to problem (1.1) which vanish as |x| → +∞,
namely

(1.2) lim
|x|→+∞

u(x, z) = 0 for all z ∈ R.

A natural example is given by the one-dimensional bump w1, which we denote in
the sequel just by w, namely the unique solution of the ODE

w′′ − w + wp = 0, w > 0, in R,(1.3)

w′(0) = 0, w(x)→ 0 as |x| → +∞,(1.4)

corresponding in phase plane to a homoclinic orbit for the equilibrium 0. Using this
function we can define a family of solutions u of equation (1.1) with the properties
(1.2) setting u(x, z) := w(x − a), a ∈ R. By analogy with the above terminology,
we may call these solutions ”single bump-lines”. A natural question is whether
a solution that satisfies (1.2) and which is in addition even in x must equal w(x).
The solution w of (1.1) was found to be isolated in a uniform topology which avoids
oscillations at infinity by Busca and Felmer in [6]. On the other hand, a second
class of solutions which are even both in z and x was discovered by Dancer in [9] via
local bifurcation arguments. They form a one-parameter family of solutions which
are periodic in the z variable and originate from w(x). Let us briefly review their
construction: we consider problem (1.1) with T -periodic conditions in z,

(1.5) u(x, z + T ) = u(x, z) for all (x, z) ∈ R2,

and regard T > 0 as a bifurcation parameter. The linearized operator around the
single bump line is

L(φ) = φzz + φxx + (pwp−1 − 1)φ.

It is well known that the eigenvalue problem

(1.6) φxx + (pwp−1 − 1)φ = λφ,

has a unique positive eigenvalue λ1, with Z(x) being a positive eigenfunction. We
observe that as long as 0 < T < 2π√

λ1
= T1 the operator L has a one dimensional

kernel of bounded, periodic and even functions spanned by w′. When T = T1

another bounded, periodic and even element in this kernel, given by

Z(x) cos(
√
λ1z),

appears. Crandall-Rabinowitz bifurcation theorem can then be adapted to yield
existence of a continuum of solutions bifurcating at T = T1. They are periodic in
z with period Tε = 2π√

λ1
+O(ε), even and bounded. In addition they are uniformly

close to w(x) and for ε� 1 their asymptotic form is

u(x, z; ε) = w(x) + εZ(x) cos(
√
λ1z) +O(ε2)e−|x|.
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Of course once we have found the family of solutions u(·; ε), for all sufficiently small
ε we have trivially that for all ϕ:

u(x, z + ϕ; ε) = w(x) + εZ(x) cos(
√
λ1z + ϕ) +O(ε2)e−|x|,(1.7)

is also a solution. Introducing now parameters:

δ = ε cosϕ, τ = −ε sinϕ,

we define:

wδ,τ (x, z) := u(x, z + ϕ; ε).(1.8)

We refer to the functions wδ,τ in what follows as the Dancer solution. We observe
that the Dancer solution is in reality a two parameter family of solutions to (1.1).
The interpretation of the original parameters ε, ϕ ∈ R is that they represent, re-
spectively, the amplitude and the phase shift of the oscillations superposed over the
homoclinic profile w(x). Finally we observe that for sufficiently small δ, τ we have:

wδ,τ (x, z) = w(x) + δZ(x) cos(
√
λ1z) + τZ(x) sin(

√
λ1z) +O(|δ|2 + |τ |2)e−|x|.

(1.9)

1.2. Multiple bump lines. The statement of the main result. The purpose
of this paper is to construct a new type of solutions of (1.1) in R2 that have multiple
ends in the form of multiple bump-lines, and that satisfy in addition (1.2).

At this point it will be convenient to define a multi bump line solution of (1.1)
in a more precise way:

Definition 1.1. We say that u, a solution of (1.1), is a multiple bump line with
2k ends if there exist 2k oriented half lines {aj · x + bj = 0}, j = 1, . . . , 2k (for
some choice of aj ∈ R2, |aj | = 1 and bj ∈ R) such that along these half lines
and away from a compact set K containing the origin, the solution is asymptotic
to wδj ,τj (aj · x + bj) for certain numbers δj , τj, j = 1, . . . , 2k, that is there exist
positive constants C, c such that:

‖u(x)−
2k∑
j

wδj ,τj (aj · x + bj)‖L∞(R2\K) ≤ Ce−c|x|.(1.10)

What we actually look for is a solution is a multiple bump line solution of of
(1.1) whose asymptotic behavior is determined by k curves

γj = {(x, z) | x = fj(z)}, j = 1, . . . , k, f1(z)� f2(z)� · · · � fk(z),

which asymptotically resemble straight lines. The functions fj defining the curves
γj are not arbitrary and turn out to be related to a second order system of differ-
ential equations, the Toda system, given by

(1.11) c2pf
′′
j = efj−1−fj − efj−fj+1 in R, j = 1, . . . , k,

with the conventions f0 = −∞, fk+1 = +∞, where cp is an explicit positive
constant that will be specified later (see (4.44)). The Toda system has a special
scaling property which we will explain now. We observe that if f = (f1, . . . , fk) is
a solution of this system, then function fα defined by

(1.12) fα = (fα,1, . . . , fα,k), fα,j(z) := fj(αz) + 2(j − k + 1
2

) log
1
α
,
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is also a solution. As we will see later the functions fj are asymptotically linear,
namely we have (globally) for α small

fα,1(z)� fα,2(z)� · · · � fα,k(z), f ′α,j(±∞) = a±,jα,

and

fα,j(z) = a±,jα z + b±,j + 2(j − k + 1
2

) log
1
α

+O((cosh z)−ϑα), as z → ±∞,

(1.13)

for certain scalars a±,j , b±,j and ϑ > 0. These are standard facts about the Toda
system that can be found for instance in [23, 36]. The Toda system is a classical
model describing scattering of k particles distributed on a straight line, which in-
teract only with their closest neighbors with forces given by a potential depending
on the exponentials of their mutual distances. Here the z variable is interpreted as
time. This and other properties of the Toda system will be discussed in detail in
section 2.

Before stating our result it will be convenient to agree that χ+ (resp. χ−) is a
smooth cutoff function defined on R which is identically equal to 1 for z > 1 (resp.
for z < −1) and identically equal to 0 for z < −1 (resp. for z > 1) and additionally
χ− + χ+ ≡ 1. With these cutoff functions at hand, we define the 4 dimensional
space

(1.14) D := Span {z 7−→ χ±(z), z 7−→ z χ±(z)} ,

and, for all µ ∈ (0, 1) and all θ ∈ R, we define the space C2,µ
θ (R) of C2,µ functions

h which satisfy
‖h‖C2,µθ (R) := ‖(cosh z)θ h‖C2,µ(R) <∞ .

Given the notion of multiple bump lines in Definition 1.1 our main result is:

Theorem 1.1. Assume that N = 2 and p > 2. Given k ≥ 2, for any sufficiently
small number α > 0, there exists a 4k parameter family of multiple bump line
solutions of equation (1.1) with 2k ends. Their asymptotic profiles are determined
by k curves

γα,j = {x = fα,j(z) + hα,j(αz)}.

Here fα is the scaling (1.12) of f , which in turn is a solution to the Toda system
(1.11) and in particular formula (1.13) holds, that is functions fα,j are asymptoti-
cally linear. Functions hα,j ∈ C2,µ

θ (R)⊕D representing small perturbations satisfy

‖hα,j‖C2,µθ (R)⊕D ≤ C α
κ

with some constants θ, κ > 0.

As we will see the proof of the above theorem starts with building an approximate
solution to (1.1). Each bump line of this solution (represented by one curve γα,j)
consists of three parts: two Dancer ends and a middle ”connector” which is a curved
piece of the homoclinic inserted between the wiggling Dancer pieces. Each of the
2k Dancer ends depends on 2 free parameters. Each curve γα,j depends on 2 initial
conditions for the Toda system. Thus in all there are 4k Dancer parameters and
2k initial conditions for the Toda system. This gives 6k parameters of which 2k
Dancer parameters must be adjusted at the end. As a consequence we obtain 4k
parameter family of solutions.
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There is another, more geometric way, to see this. Let us observe that each end of
the bump line can be translated in any of the two directions, can be rotated and in
addition depends of the Dancer parameter denoted by ε in (1.7). Taking derivatives
of the solution with respect to these parameters leads to 4 elements in the kernel of
the nonlinear Schrödinger operator linearized around the Dancer solution. These
functions are the analogues of the geometric Jacobi fields discussed in section 1.3.
Thus we have 8k ”geometric” elements of the kernel corresponding to 2k ends of the
multiple bump line. This seems at first sight to be inconsistent with the previous
count which gave us only 6k parameters, however we recall that above both ends
of any given bump line were associated with a single curve γα,j and consequently
the first way of counting ”misses” 2k parameters. Now, accepting that we have
8k geometric parameters, it is known [24] that this should imply the existence of
1
2 × 8k = 4k solutions to the original problem. Our result is in agreement with this
intuition.

Remark 1.1. We observe that, by choosing suitable solution to the Toda system
in the case k = 2, it is possible to show the existence a a multiple bump line such
that
(1.15)

lim
x→±∞

uα(x, z) = 0, for all z ∈ R, lim
z→±∞

uα(x, z) = 0, for all x ∈ R.

By the well known result of Gidas, Ni and Nirenberg [17] a positive solution of
equation (1.1) that satisfies the limit conditions (1.15) uniformly must be radially
symmetric around the origin. Theorem 1.1 shows that uniformity cannot be relaxed
in this classical result.

1.3. Geometric counterpart of the Dancer solution. One of the striking fea-
tures of the existence result in Theorem 1.1, which is a purely PDE result, is that
its counterparts can be found in geometric framework. To illustrate this, we will
concentrate on what is perhaps the most appealing one: the analogy between the
theory of complete constant mean curvature surfaces in Euclidean 3-space and the
theory of entire solutions of (1.1). For simplicity we will restrict ourselves to con-
stant mean curvature surfaces in R3 which have embedded coplanar ends. In the
following we will draw parallels between these geometric objects and some solutions
of (1.1).

Embedded constant mean curvature surfaces of revolution were found by Delau-
nay in the mid 19th century [10]. They constitute a smooth one-parameter family
of singly periodic surfaces Dt, for t ∈ (0, 1], which interpolate between the cylinder
D1 = S1(1) × R and the singular surface D0 := limt→0Dt, which is the union of
infinitely many spheres of radius 1/2 centered at each of the points (0, 0, n), n ∈ Z.
The Delaunay surface Dt can be parametrized by

Xt(x, z) = (ϕ(z) cosx, ϕ(z) sinx, ψ(z)) ∈ Dt ⊂ R3,

for (x, z) ∈ R× R/2πZ. Here the function ϕ is the smooth solution of

(ϕ′)2 +
(
ϕ2 + t

2

)2

= ϕ2,

and the function ψ is defined by

ψ′ =
ϕ2 + t

2
.
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As already mentioned, when t = 1, the Delaunay surface is nothing but a right
circular cylinder D1 = S1(1) × R, with the unit circle as the cross section. This
cylinder is clearly invariant under the continuous group of vertical translations, in
the same way that the single bump-line solution of (1.1) is invariant under a one
parameter group of translations. It is then natural to agree on the correspondence
between

The cylinder
D1 = S1 × R ←→ The single bump-line

(x, z) 7−→ w(x) .

Let us denote by w2 the unique radially symmetric, decaying solution of (1.1).
Inspection of the other end of the Delaunay family, namely when the parameter t
tends to 0, suggests the correspondence between

The sphere
S1(1/2) ←→ The radially symmetric solution

(x, z) 7−→ w2(
√
x2 + z2)

.

It is tempting to extend this correspondence for the whole range of the Delaunay
parameter by associating the ”intermediate” Delaunay surfaces with the Dancer
solutions. To do this, first of all, we need to find a curve in the function space
that would represent these solutions. However, since we do not have any explicit
formula for the Dancer solution it is not immediately obvious how this curve should
be defined. A natural possibility is to built a one parameter family solution of (1.1)
by using the variational structure of the problem as follows: let ST = R × (0, T )
and consider a least energy (mountain pass) solution in H1(ST ) for the energy

1
2

∫
ST

|∇u|2 +
1
2

∫
ST

u2 − 1
p+ 1

∫
ST

up+1
+ ,

for T > 0. We denote the least energy solution by uT . Let us summarize what
has been proven about it as T varies between T = 0 and T =∞ in [5]. In general
the curve T 7→ uT is analytic except for possibly finitely many T (see also [1] for
related results). After translating and reflecting with respect to line z = T/2, it
can be shown that for all T > 0, uT > 0 must be even in x and with respect to
the line z = T/2, it has a maximum located at (0, T/2) and it is non-increasing in
x, z away from it. Moreover when T < T1 the least energy solution is precisely the
homoclinic while for T > T1 it must depend on 2 variables in a non-trivial way,
and as long as T − T1 is small it is the bifurcating solution described above. For
T sufficiently large the least energy solution is unique and as T → ∞ it converges
uniformly over compacts to w2.

To give further credit to this correspondence, let us recall that the Jacobi oper-
ator about the cylinder D1 corresponds to the linearized mean curvature operator
when nearby surfaces are considered as normal graphs over D1. In the above pa-
rameterization, the Jacobi operator reads J1 =

(
∂2
x + ∂2

z + 1
)
. In this geometric

context, it plays the role of the linear operator L which is the linearization of (1.1)
about the single bump-line solution w. Hence we have the correspondence

The Jacobi operator
J1 =

(
∂2
x + ∂2

z + 1
) ←→ The linearized operator

L = ∂2
x + ∂2

z − 1 + pwp−1 .

Notice that the emergence of the family of Delaunay surfaces due to the loss of
stability of a cylinder when its height varies is the analogue to the emergence of the
Dancer solutions through a bifurcation from the homoclinic branch at T = T1.
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In our construction bounded elements of the kernel of the linearized operator L
play a crucial role. As we will see they correspond to the natural invariances of
the problem: two translations and the derivative of the solution with respect to the
Dancer parameter ε = T − T1 taken at ε = 0. Viewed this way they turn out to
have the same geometric interpretation as the bounded elements in the kernel of the
Jacobi operator J1, which again correspond to translations (3 this time) and the
derivative with respect to the Delaunay parameter. Considering, more generally,
the elements of the kernel with at most polynomial growth we have in the case of
the homoclinic additionally one more function that corresponds to the rotational
invariance of the operator and in the case of D1 two more functions which represent
the rotations of the surface about the two coordinate axes that are orthogonal to
the axis of the cylinder. Counting gives the 4 dimensional kernel of geometric
eigenfunctions for the homoclinic and the 6 dimensional kernel in the case of D1,
but the difference comes from the number degrees of freedom in R2 versus R3. This
geometric eigenfunctions are commonly called the geometric Jacob fields.

With these analogies in mind, we can now translate our main result into the
constant mean curvature surface framework. The result of Theorem 1.1 corresponds
to the connected sum of finitely many copies of the cylinder S1(1)×R which have
a common plane of symmetry. The connected sum construction is performed by
inserting small catenoidal necks between two consecutive cylinders and this can
be done in such a way that the ends of the resulting surface are coplanar. Such a
result, in the context of constant mean curvature surfaces, follows at once from [33].
It is observed that, once the connected sum is performed the ends of the cylinder
have to be slightly bent and moreover, the ends cannot be kept asymptotic to the
ends of right cylinders but have to be asymptotic to Delaunay ends, in agreement
with the result of Theorem 1.1. In fact in [33] a 6k (not 4k as in the present paper)
parameter family of constant mean curvature surfaces whose ends are asymptoticly
Delaunay is constructed. The difference is due to the fact that the number of the
geometric Jacobi fields for the Delaunay end is 6, while for the Dancer solution the
analogous number is 4, as we have pointed out.

There is yet another difference between the two cases which indeed is much more
substantial. The Toda system which governs the location of the multiple bump lines
does not have a counterpart in the connected sum construction of the constant mean
curvature surfaces. This difference is due to the strong interactions in the elliptic
equations.

Another (older) construction of complete noncompact constant mean curvature
surfaces was performed by N. Kapouleas [22] (see also [32]) starting with finitely
many halves of Delaunay surfaces with parameter t close to 0 which are connected
to a central sphere. The corresponding solutions of (1.1) have recently been con-
structed by A. Malchiodi in [28].

It is well known that the story of complete constant mean curvature surfaces
in R3 parallels that of complete locally conformally flat metrics with constant,
positive scalar curvature. Therefore, it is not surprising that there should be a cor-
respondence between these objects in conformal geometry and solutions of (1.1).
For example, Delaunay surfaces and Dancer solutions should now be replaced by
Fowler solutions which correspond to constant scalar curvature metrics on the cylin-
der R× Sn−1 which are conformal to the product metric dz2 + gSn−1 , when n ≥ 3.
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These are given by
v

4
n−2 (dz2 + gSn−1),

where z 7−→ v(z) is a smooth positive solution of

(v′)2 − v2 + n−2
n v

2n
n−2 = − 2

n τ
2.

When τ = 1 and v ≡ 1 the solution is a straight cylinder while as τ tends to 0
the metrics converge on compacts to the round metric on the unit sphere. The
connected sum construction for such Fowler type metrics was carried out by R.
Mazzeo, D. Pollack and K. Uhlenberk [35] (where it is called the dipole construc-
tion). N. Kapouleas’ construction mentioned above is due to R. Schoen [43] (see
also R. Mazzeo and F. Pacard [32]).

2. The Toda system and its linearization

2.1. The Toda system. In the sequel we will consider vector valued smooth func-
tions g : R 7→ Rk. To measure the size of such functions we will use weighted Hölder
spaces C`,µθ (R; Rk) with the norm:

‖g‖C`,µθ (R;Rk) = ‖g(·)(cosh z)θ‖C`,µ(R;Rk).

In this paper the Toda system (1.11) plays a crucial role and thus we will begin
with outlining the basic theory of this system and its linearization, see [23, 36]
for details. It is convenient to consider our problem in a slightly more general
framework then that of the system (1.11). Thus for given functions qj(z), pj(z),
j = 1, . . . , k we define the Hamiltonian

H =
k∑
j=1

p2
j

2
+ V, V =

k−1∑
j=1

e (qj−qj+1).

We consider the following Toda system
dqj
dz

= pj ,

dpj
dz

= −∂H
∂qj

,

qj(0) = q0j , pj(0) = p0j , j = 1, . . . , k.

(2.1)

Observe that that the center of mass moves with constant velocity and the momen-
tum remains constant since if

k∑
j=1

q0j = q̄,

k∑
j=1

p0j = p̄,(2.2)

then from
∑k
j=1 q

′′
j (z) = 0 it follows:

k∑
j=1

q0j(z) = p̄z + q̄.

We will now give a more precise description of these solutions and in particular
their asymptotic behavior as z → ±∞. To this end we will often make use of
classical results of Kostant [23] and in particular we will use the explicit formula
for the solutions of (2.1) (see formula (7.7.10) in [23]).
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We will first introduce some notation. Given numbers w1, . . . , wk ∈ R such that
k∑
j=1

wj = 0, and wj > wj+1, j = 1, . . . , k,(2.3)

we define the matrix
w0 = diag (w1, . . . , wk).

Next, given numbers g1, . . . , gk ∈ R such that
k∏
j=1

gj = 1, and gj > 0, j = 1, . . . , k,(2.4)

we define the matrix
g0 = diag (g1, . . . , gk).

The matrices w0 and g0 can be parameterized by introducing the following two
sets of parameters

(2.5) cj = wj − wj+1, dj = log gj+1 − log gj , j = 1, . . . , k.

Furthermore, we define functions Φj(g0,w0; z), z ∈ R, j = 0, . . . , k, by

Φ0 = Φk ≡ 1
Φj(g0,w0; z) =(2.6)

(−1)j(k−j)
∑

1≤ii<···<ij≤k

ri1...ij (w0)gi1 . . . gij exp[−z(wi1 + · · ·+ wij )],

where ri1...ij (w0) are rational functions of the entries of the matrix w0. It is proven
in [23] that all solutions of (2.1) are of the form

(2.7) qj(z) = log Φj−1(g0,w0; z)− log Φj(g0,w0; z), j = 1, . . . , k.

Namely, given initial conditions in (2.1) there exist matrices w0 and g0 satisfying
(2.3)–(2.4) and the solution is given in the form (2.7). According to Theorem 7.7.2
of [23], it holds

(2.8) qj
′(+∞) = wk+1−j , qj

′(−∞) = wj , j = 1, ..., k.

We introduce variables

(2.9) uj = qj − qj+1.

In terms of u = (u1, . . . , uk−1) system (2.1) becomes

u′′ −Meu = 0,

uj(0) = q0j − q0j+1, u′j(0) = p0j − p0j+1, j = 1, . . . , k − 1,
(2.10)

where

M =


2 −1 0 · · · 0
−1 2 −1 · · · 0

. . .
0 · · · 2 −1
0 · · · −1 2

 , e−u =

 eu1

...
euk−1

 .

As a consequence of (2.6) all solutions to (2.10) are given by

uj(z) = qj(z)− qj+1(z)

= −2 log Φj(g0,w0; z) + log Φj−1(g0,w0; z) + log Φj+1(g0,w0; z).
(2.11)
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Conversely, given a solution u of (2.10) and p̄, q̄ ∈ R, the functions

(2.12) qj =
1
k

(
j−1∑
i=0

iui −
k−j∑
i=0

iuk−i

)
+ p̄z + q̄,

for j = 1, . . . , k (we agree that u0 = uk ≡ 0), are solutions of (2.1) satisfying (2.2).
We will need the following result which has been proven in [14]:

Lemma 2.1. Let w0 be such that

(2.13) min
j=1,...,k−1

(wj − wj+1) = ϑ > 0.

Then there holds
(2.14)

uj(z) =

{
−ck−jz − dk−j + τ+

j (c) +O(e−ϑ|z|), as z → +∞, j = 1, . . . , k − 1,

cjz + dj + τ−j (c) +O(e−ϑ|z|), as z → −∞, j = 1, . . . , k − 1,

where τ±j (c) are smooth functions of the vector c = (c1, . . . , ck−1).

To find a family of solutions of the Toda system (1.11) starting from a solution
of (2.1) we calculate functions qj using (2.12) and set

fj(z) = qj(z) + (j − k + 1
2

) log
1
cp
.(2.15)

Observe that as a consequence of Lemma 2.1 we get that there exist wj , gj , j =
1, . . . , k such that (2.3) and (2.4) holds, that

min
j=1,...,k

(wj − wj+1) = ϑ > 0,

and functions fj satisfy

‖f ′′j ‖C0,µϑ (R;Rk) := ‖f ′′j (cosh z)ϑ‖C0,µ(R;Rk) ≤ C,

fj(z) = a±,jz + b±,j +O
(
(cosh z)−ϑ

)
, z → ±∞.

(2.16)

We also have, taking ϑ smaller if necessary:

min
j
|a±,j − a±,j−1| ≥ ϑ.(2.17)

2.2. The linearized Toda system. Given a solution to the Toda system (1.11)
we will consider its linearization:

cph′′ + Nh = p, h = (h1, . . . , hk), N = (N1, . . . ,Nk)T ,(2.18)

where

Nj = −e fj−1−fjej−1 + [e fj−1−fj + e fj−fj+1 ]ej − e fj−1−fjej+1,(2.19)

and ej are the vectors of the canonical basis in Rk. Thanks to the results of
Lemma 2.1 and in particular estimates (2.16), (2.17) the rows of the matrix N
decay exponentially as |z| → ∞. Also we observe that the fundamental set of the
system (2.18) is given by the following 2k functions:

v]j = ∂cj f , j = 1, . . . , k − 1, v]k = ∂p̄f ,

v[j = ∂dj f , j = 1, . . . , k − 1, v[k = ∂q̄f ,
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where cj , dj are the parameters given in the statement of Lemma 2.1 and p̄, q̄ are
the parameters in (2.2). The kernel of the system (2.18) is given by

K = span {v]j ,v
[
j}.

Notice that functions v]j are linearly growing, while v[j are bounded as |z| → ∞. In
fact from Lemma 2.1 it follows:

v]j(z) = a]±,jz + b]±,j +O
(
(cosh z)−ϑ

)
,

v[j(z) = b[±,j +O
(
(cosh z)−ϑ

)
.

(2.20)

Let χ+, χ− be smooth cut off function such that χ+(z) = 1, z > 1, χ+(z) = 0,
z < 0, χ−(z) = χ+(−z) and finally χ+ + χ− ≡ 1. We will define a 4k dimensional
deficiency space by

D = span {χ±v]j , χ
±v[j}.

Let us observe that the kernel K of the linearized Toda system is a 2k subspace of
D. Therefore, we can certainly decompose

(2.21) D = K ⊕ E ,

where E is a complement of K in D. With this decomposition at hand, we have
the following result which follows from standard arguments in ordinary differential
equations.

Lemma 2.2. Assume that θ > 0. Then the mapping

T : C2,µ
θ (R; Rk)⊕ E −→ C0,µ

θ (R; Rk),
v 7−→ cp v′′ + N v,

is an isomorphism.

Proof. For convenience of the reader we reproduce here the proof, which can be
found in [15]. Standard arguments in ordinary differential equations imply that
there exists a unique solution of (2.18) which satisfies v(0) = v′(0) = 0. We will
denote v = S0(p).

We now prove that v ∈ C2,µ
θ (R; Rk) ⊕ D. To this end, we observe that one can

also find a (unique) solution v̄ of (2.18) which satisfies

|v̄(z)| ≤ C eθz ‖p‖C0,µθ (R;Rk),

in (−∞, 0]. Indeed, using the variation of parameters formula it is easy to show the
existence of a unique solution decaying to 0 at −∞ at some exponential rate. Inte-
grating the equation twice over (−∞, z] shows that in fact v̄ ∈ C2,µ

θ ((−∞, 0]; Rk).
Then v− v̄ is a linear combination of the functions v]j and v[j . This proves that, in
(−∞, 0], the vector valued function v can be decomposed into the sum of a linear
combination of elements in D and a vector valued function which is bounded by a
constant times e θz. A similar decomposition can be derived on [0,+∞). Once this
decomposition is proven, the estimates for the Hölder norm of v follow at once.

In other words, S0 : C0,µ
θ (R; Rk) −→ C2,µ

θ (R; Rk)⊕D is a right inverse for T . The
decomposition D = K⊕E induces the decomposition S0(p) = S̄0(p) + e(p) + k(p),
where S̄0(p) ∈ C2,µ

θ (R; Rk), e(p) ∈ E and k(p) ∈ K. The operator S := S0 − k is
also a right inverse of T and maps onto C2,µ

θ (R; Rk)⊕E as desired. This completes
the proof of the Lemma. �
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2.3. Another important ODE. We will finish this section with a discussion of a
simple problem which, however not directly related to the Toda system considered
above, plays as important role in the sequel. The problem we have in mind is the
following equation:

e′′ + κ2e = g, ‖g(cos z)θ‖C0,µ(R) <∞.(2.22)

We are interested in solutions to this problem which decay exponentially at both
±∞. It is clear that if we define

e(z) = − 1
κ

cos(κz)
∫ z

−∞
g(ζ) sin(κζ) dζ +

1
κ

sin(κz)
∫ z

−∞
g(ζ) cos(κζ) dζ,(2.23)

then this function is the unique solution that decays exponentially at −∞. If we
assume that in addition∫ ∞

−∞
g(ζ) sin(κζ) dζ = 0,

∫ ∞
−∞

g(ζ) cos(κζ) dζ,(2.24)

then we have

‖e(cosh z)θ‖C2,µ(R) <∞,(2.25)

as required. The necessity of imposing the extra condition (2.24) has its direct
consequence for our problem of constructing the multiple bump lines for (1.1). As
we will see it is precisely because of (2.24) that we can fix arbitrarily the amplitudes
and phase shifts of only 2k ends (say all lower ends if we chose so) of the bump lines
and we need to adjust suitably the amplitudes and the phase shifts of the remaining
2k ends (say upper ends) and thus we have only 2k (and not 4k as one might expect)
free parameters corresponding to the amplitudes and the phase shifts.

3. The approximate solution

3.1. Local coordinates near model bump lines. We will fix from now on a
solution to the Toda system f with the properties described in the previous section.
We will also choose v ∈ E . We will assume that

‖v‖E ≤ ακ1 ,(3.1)

where κ1 > 0 is a small number to be chosen later on. With these two functions at
hand we define for each j = 1, . . . , k the model for a bump line to be the curve:

γ̄α,j = {x = (x, z) ∈ R2 | x = fα,j(z) + vj(αz)},

where fα = (fα,1, . . . , fα,k) is the rescaled solution to the Toda system, see (1.12).
We will introduce local coordinates associated with each γ̄α,j . For convenience

we will denote f̄α(z) = fα(z) + v(αz). We will fix the orientation of γ̄α,j in
such a way that the pair of vectors (Tα,j , Nα,j), where the unit tangent Tα,j =

1√
1+α(f̄ ′α,j)

2
(αf̄ ′α,j , 1) and the unit normal Nα,j = 1√

1+(αf̄ ′α,j)
2
(1,−αf̄ ′α,j) are neg-

atively oriented (and the functions f̄ ′α,j are evaluated at αz). Let zj be the arc
length parameter on γ̄α,j i.e.

zj =
∫ z

0

√
1 + α2(f̄ ′α,j)2(αζ) dζ,(3.2)

and let qα,j = qα,j(zj) be the corresponding arc length parametrization.
As it turns out the true asymptotic behavior of the bump line is not exactly

linear but it has an extra exponentially small correction. This correction is an
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unknown to be determined, and in fact this is one of the most important steps
in this paper which involves the linearized Toda system discussed in the previous
section. To describe this perturbation we let h = (h1, . . . , hk) to be a fixed function
such that

‖h‖C2,µθ (R,Rk) ≤ α
κ2 ,(3.3)

with some small parameter κ2. In the sequel we will use the function h of the
stretched argument αz, namely we will write h(αz). To measure the size of this
function it is more suitable to use the weights of the form (cosh z)θα rather than
(cosh z)θ. Thus we will see norms like ‖·‖C`,µθα (R;Rk). In general we have the following
relations:

‖h‖C`,µθα (R;Rk) ≤ ‖h‖C`,µθ (R;Rk), ‖h‖C`,µθ (R;Rk) ≤ α
−`−µ‖h‖C`,µθα (R;Rk).(3.4)

These relations will be used for the function h as well as for several similar type
functions appearing below without specially mentioning them. Thus for instance
from (3.3) and (3.4) it follows:

‖h‖C2,µθα (R;Rk) ≤ εα
κ2 .

A neighborhood of the curve γ̄α,j can be parametrized in the following way:

x = Xα,j(xj , zj) = qα,j(zj) +
(
xj + hj(αzj)

)
Nα,j(zj).(3.5)

Notice that tj = xj + hj(αzj) is simply the signed distance to γ̄α,j . For this reason
our local coordinates can be seen as shifted with respect to the Fermi coordinates
of the curve γ̄α,j .

The distance function is not a smooth function in the whole R2 however we
observe that given fα,v there exists a maximal subset of R2 in which tj is a smooth
function for j = 1, . . . , k. Using the asymptotic (linear) behavior of fα(z),v(αz)
and estimate (3.1) it is not hard to prove that this set contains the set:

Vς = {x = (x, z) | |x| ≤ ς

α

√
1 + z2},

with certain small constant ς. Indeed, the Fermi coordinates are defined as long as
the map (tj , zj) 7−→ x is one-to-one. Using the fact that the curvature of each γ̄α,j ,

kα,j(zj) ∼ α2(cosh zj)−ϑα,

and also the asymptotic behavior as |zj | → ∞:

γ̄α,j(zj) ∼ (O(α)|zj |+O(log
1
α

), zj(1 +O(α2))),

one can show that for each small ςj and each sufficiently small α the Fermi coordi-
nates are well defined around γ̄α,j(zj) as long as:

|tj | ≤
ςj
α

√
1 + z2

j .(3.6)

Noting that the distance between γ̄α,j and any other curve, say γ̄α,i behaves like

dist
(
γ̄α,j(zj), γ̄α,i

)
∼ O(α)|zj |+O(log

1
α

),

we conclude that the constant ς in the definition of the set Vς can be taken as small
as we wish and also, using (3.3), that it can be chosen in such a way that:

x ∈ Vς =⇒ |xj | = |tj − hj(αzj)| ≤
ςj
α

√
1 + z2

j , x = Xα,j(xj , zj).(3.7)
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To accomplish this it suffices to take Vς to be the intersection of all the sets where
(3.6) is satisfied.

In the sequel we will use convenient notation: for a given function f : Vς → R
we set:

X∗α,jf(xj , zj) = (f ◦Xα,j)(xj , zj).(3.8)

We will also need a simple relation between the coordinates xj and xi, which
follows from the definition of the curves γ̄α,j together with elementary geometry.
By definition of the coordinates (3.5) we get:

xi =
[
qα,j(zj)− qα,i(zi)

](
1 +O(α2)

)
+O(ακ2) + xj

(
1 +O(α2)

)
,

zi = zj
(
1 +O(α2)

)
+O(α)(xj − xi) +O(α1+κ2).

(3.9)

Since

qα,i(zj)− qα,i(zi) = O(α)(zj − zi),

in Vς we have

xj − xi = 2(i− j) log
1
α

+O(α2)xj +O(α)zj +O(ακ2),(3.10)

zi − zj = O(α2)zj +O(α log
1
α

) +O(α3)xj .(3.11)

as α tends to 0.

3.2. Laplacian in the local coordinates. It will be useful to have the expression
of the Laplacian in the coordinates defined in (3.5). Let kα,j be the curvature of
the curve γ̄α,j , which in its natural parametrization is given by:

kα,j =
α2f̄ ′′α,j(αz)(

1 + α2(f̄ ′α,j(αz))2
) 3

2
, zj =

∫ z

0

√
1 + α2(f̄ ′α,j(αζ))2 dζ.(3.12)

We define the function Aj by

Aj := 1− (xj + hj)kα,j .

With this notation the following expression for the Laplacian is easy to derive:

∆ =
1
Aj

{
∂xj

(A2
j + α2(h′j)

2

Aj
∂xj

)
− ∂zj

(αh′j
Aj

∂xj

)
− ∂xj

(αh′j
Aj

∂zj

)
+ ∂zj

( 1
Aj
∂zj

)}
.

This formula can be written in the form:

∆ = ∂2
xj

+ ∂2
zj

+ a11,j∂
2
xj

+ a12,j∂xjzj + a22,j∂
2
zj

+ b1,j∂xj + b2,j∂
2
zj
,(3.13)

where:

a11,j =
α2(h′j)

2

A2
j

, a12,j = −
2αh′j
A2
j

, a22,j =
1−A2

j

A2
j

,

b1,j =
1
A3
j

(−kα,jA2
j − α2h′′jAj + α2(h′j)

2kα,j − α(xj + hj)h′jk
′
α,j),

b2,j =
1
A3
j

((hj + xj)k′α,j).

(3.14)



16 M. DEL PINO, M. KOWALCZYK, F. PACARD, AND J. WEI

The reader should keep in mind that functions hj , kα,j are taken as functions of
αzj . Additionally we recall that

kα,j = OC2,µθα (R)(α
2), k′α,j = OC2,µθα (R)(α

3),

and consequently we have in Vς , taking into account (3.7):

a11,j = OC0,µθα (R)(α
2), a12,j = OC0,µθα (R)(α), a22,j = OC0,µθα (R)

(
α2(1 + |xj |)

)
,

b1,j = OC0,µθα (R)

(
α2(1 + |xj |)

)
, b2,j = OC0,µθα (R)

(
α3(1 + |xj |)

)
.

(3.15)

3.3. Asymptotic formulas for the homoclinic and the Dancer solution. In
this section we will list some well known or standard properties of the functions
we will use in the sequel. We will use them without special making any special
reference since there are rather ubiquitous. First we recall that for the homoclinic
solution defined in (1.3)–(1.4) we have:

w(x) = e−|x| +O(e−2|x|), as |x| → ∞.
Second, let us recall that the linearized operator

L = ∂2
x − 1 + pwp−1,(3.16)

has a unique principal eigenvalue λ1 > 0 with corresponding eigenfunction Z(x) >
0. In fact we have

λ1 =
1
4

(p− 1)(p+ 3), Z =
w(p+1)/2√∫

R w
p+1

,

and in paricular

Z(x) = e−
p+1
2 |x| +O(e−(p+1)|x|), as |x| → ∞.

It is also known that λ2 = 0 and the corresponding eigenfunction is w′ while the
rest of the spectrum is strictly negative.

Finally, using the results of [9] and the standard facts about the bifurctatin
solutions, with the aid of barriers, we find that the Dancer solution wδ,τ has an
expansion of the form

wδ,τ (x, z) = w(x) + δZ(x) cos(
√
λ1z) + τZ(x) sin(

√
λ1z) +O

(
(|δ|2 + |τ |2)e−|x|

)
,

for all small δ, τ .

3.4. Definition of the approximate solution. Before giving a precise definition
of the approximate solution let us explain the ingredients from which it is built.
Considering just one of the bump lines we require that its lower and upper ends
be asymptotic to two (possibly distinct) Dancer solutions. These two functions
are ”glued” together by some cutoff function. Let us observe that this way the
amplitudes and the phase shifts of the ends do not change along the end of the
bump line but instead are fixed. This is possible because the ends, whose shape is
determined through the Toda system, are asymptotically linear. However, in the
middle the bump line is curved and there the amplitude and the phase shift must
be allowed to vary. This is quite analogous to bending of a corrugated, plastic pipe
which ”wrinkles” are stretched on the outside but piled up on the inside. To achieve
this extra degree of freedom a function, whose local form is given by ej(αzj)Z(xj)
is added to our approximation. Comparing with the asymptotic formula for the
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Dancer solution we see that this form of the extra correction to the approximate
solution is natural.

Let us be more precise now. We will consider vector functions e ∈ C2,µ
θ (R,Rk)

with the property:

‖e‖C2,µθ (R,Rk) ≤ α
2+κ3(3.17)

where ε, κ3 are small numbers to be chosen later on. In addition we will use 4k real
parameters δ± = (δ±,1, . . . , δ±,k) and τ± = (τ±,1, . . . , τ±,k), such that with some
small κ4:

‖δ±‖+ ‖τ±‖ ≤ α1+κ4 .(3.18)

Denoting by w the homoclinic solution, by wδ,τ the Dancer solution to (1.1) and
by Z the principal eigenvector of the operator L defined in (3.16) we define (using
the notation (3.8)) functions:

X∗α,jw±,j(xj , zj) = wδ±,j ,τ±,j (xj , zj),

X∗α,jw0,j(xj , zj) = w(xj),

X∗α,jZj(xj , zj) = Z(xj).
(3.19)

Now, let Ξ± ≥ 0, Ξ0 ≥ 0 be cutoff functions such that

Ξ+(t) +Ξ0(t) +Ξ−(t) = 1, ∀t ∈ R,
suppΞ+ = (1,∞), suppΞ0 = (−2, 2), suppΞ− = (−∞,−1),

and let

X∗α,jΞ±,j(xj , zj) := Ξ±(αzj), X∗α,jΞ0,j(xj , zj) := Ξ0(αzj).

We will introduce the following convenient notation:

wj = Ξ+,jw+,j +Ξ0,jw0,j +Ξ−,jw−,j .(3.20)

Given these notations we will define the approximate solution of (1.1) in Vς by:

w̄(x) =
k∑
j=1

wj + ej(αzj)Zj .(3.21)

Notice that w̄ depends on the parameters fα,v,h, e, δ±, τ±. We will not emphasize
this dependence unless necessary. Taking now a smooth cutoff function ης supported
in Vς and such that ης ≡ 1 in V ς

2
we define the global approximate solution of (1.1)

by:

w := ης
( k∑
j=1

wj + ej(αzj)Zj
)

= ηςw̄.(3.22)

4. Proof of Theorem 1.1

4.1. Reduction to the nonlinear projected problem. For the proof of the
theorem it is convenient to modify (1.1) slightly. As customary we will consider
initially

∆u− u+ up+ = 0,(4.1)

where u+ is the positive part of u. The modification of the nonlinearity has no
effect on the preceding considerations. Also, once the existence of a solution to
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(4.1) is established, as an immediate consequence of the maximum principle we will
obtain the existence for (1.1) as well.

Let ρ be a cutoff function such that

ρ(s) =

{
1, |s| ≤ 3

4 ,

0, |s| > 7
8 .

(4.2)

We define:

X∗α,jρj = ρ
( xj

log 1
α

)
.(4.3)

Finally, we define the function w′0,j by:

X∗α,jw
′
0,j = w′(xj),

where w is the homoclinic solution of (1.1).
We look for a solution to (4.1) in the form u = w + ϕ where ϕ is a function to

be determined. Denoting by S(u) the nonlinear Schrödinger operator in (4.1) we
expand:

S(w + ϕ) = L(ϕ) + S(w) +N(ϕ),

where S(w) is defined in (4.15) and

L(ϕ) = ∆ϕ− ϕ+ pwp−1ϕ,

N(ϕ) = (w + ϕ)p+ − wp − pwp−1ϕ.

This way our problem can be written in the form:

L(ϕ) + S(w) +N(ϕ) = 0,

and in principle it should be possible to reduce to a fixed point problem for the
nonlinear function

ϕ+ L−1
(
S(w) +N(ϕ)

)
= 0,

provided that the operator L−1 is, in a suitable sense, bounded. But this is of course
what we do not expect in general since in some sense L is a small perturbation, at
least near a fixed bump line, of the operator

L = (∂2
x + ∂2

z − 1 + pwp−1),

which has bounded kernel spanned by the functions w′(x), and Z(x) cos(
√
λ1z),

Z(x) sin(
√
λ1z).

To deal with this (indeed fundamental) difficulty we will reduce the problem to
the following projected nonlinear problem:

L(ϕ) + S(w) +N(ϕ) +
k∑
j=1

cjw
′
0,jρj +

k∑
j=1

djZjρj = 0.(4.4)

In the following sections we will describe:
(1) how to solve (4.4) for the unknowns ϕ and c = (c1, . . . , ck), d = (d1, . . . , dk)

with given fixed parameters v,h, e, δ±, τ±, and
(2) we will show how to adjust these parameters to achieve c ≡ 0, d ≡ 0.

This clearly will yield a solution to (4.1) (and (1.1)) as described in Theorem 1.1.
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4.2. The decomposition procedure. In this section we will explain how to de-
compose the projected nonlinear problem into k + 1 coupled equations. The ad-
vantage of this procedure is that we can deal separately with k problems, each of
which is associated with a single bump line, and an extra (k + 1)th problem that
accounts for a cumulative, far field behavior of the bump lines.

To begin with we need to introduce cutoff functions χ, χj , j = 1, . . . , k as folows:

χ(s) =

{
1, |s| ≤ 7

8 ,

0, |s| > 15
16 .

(4.5)

We define:

X∗α,jχj = χ
( xj

log 1
α

)
.(4.6)

Comparing this with the definition of the cutoff functions ρ, ρj in (4.2)–(4.3) we
see that

χjρj = ρj , χjχi = 0, j 6= i.(4.7)

This last statement follows from the fact that the distance between any two model
bump lines is at least like 2 log 1

α +O(1) and the definition of χj .
We look for a solution of (4.4) in the form

ϕ =
k∑
j=1

φjρj + ψ.(4.8)

It is straightforward to check that this function is the solution if we require that
functions φj , j = 1, . . . , k and ψ satisfy the following system of equations:

χjL(φj) + cjw
′
0,jχj + djZjχj = χj(S(w) +N)− χj(L−∆ + 1)ψ,(4.9)

(∆− 1)ψ =
(
1−

k∑
i=1

ρi
)
(S(w) +N)−

k∑
i=1

[
L(φiρi)− ρiL(φi)

]
−
(
1−

k∑
i=1

ρi
)
(L−∆ + 1)ψ,

(4.10)

where N = N(
∑k
j=1 φjρj + ψ). Indeed, multiplying (4.9) by ρj , using (4.7) and

adding all the equations we get (4.4). This is a coupled system however the coupling
terms are of higher order (in α). Additionally the linear operator on the right hand
side of (4.9) expressed in the local coordinates is a small perturbation of the basic
linearized opertator L already seen above. We will take advantage of these facts in
what follows.

We further recast (4.9)–(4.10). Clearly φj is a solution of (4.9) if[
∂2
xj

+ ∂2
zj

+ g′p
(
w0,j

)]
X∗α,jφj = X∗α,jkj −X∗α,j(cjw′jχj)−X∗α,j(djZjχj),(4.11)

where
X∗α,jkj = X∗α,j

[
χj
(
S(w) +N)

)]
−X∗α,j

(
χj(L−∆ + 1)ψ

)
−X∗α,j

(
χjL(φj)

)
+ (X∗α,jχj)

[
∂2
xj

+ ∂2
zj

+ g′p
(
w0,j

)]
X∗α,jφj .

(4.12)

Again this is evident because of (4.7). We observe that (4.11) can be seen as an
equation in (xj , zj) ∈ R2. In particular functions X∗α,jφj , as solutions of (4.11) are
defined for all (xj , zj) ∈ R2, although in reality these variables correspond to the
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local coordinates of γ̄α,j in a subset of R2 only. It is important to remember that
this subset contains suppχj .

Let us now consider equation (4.10). Denoting φ = (φ1, . . . , φk) and the right
hand side of (4.10) by Q = Q(φ, ψ) we can write:

(∆− 1)ψ = Q(φ, ψ).(4.13)

This way (4.9)–(4.10) is reduced to the system of equations given by (4.11) and
(4.13). This is a nonlinear system for the unknowns φj , j = 1, . . . , k and ψ with
functions cj and dj to be determined as well. Because (4.11) carries all long range
interactions between the bump lines we will refer to it and its modifications as the
interaction system. Equation (4.13) will be called the background equation.

4.3. The error of the initial approximation. Let us analyze the right hand
sides of the (4.11), (4.13). We introduce the following weighted Hölder norms:

‖φ‖C`,µσ,a(R2) = sup
x∈R2

(
(coshx)σ(cosh z)a‖φ‖C`,µ(B1(x))

)
.(4.14)

The error of the global approximation w is defined by:

S(w) = ∆w− w + wp.(4.15)

This function depends in particular on the parameters v,h, e, δ±, τ±, and although
this dependence is usually not emphasized sometimes it will be necessary to denote:

S(w) = S(w; v,h, e, δ±, τ±).

We always assume that these parameters satisfy estimates (3.1), (3.3), (3.17) and
(3.18) with some fixed κi > 0, i = 1, . . . , 4. In particular we notice that the most
involved is the dependence of the error on h through the local variables (xj , zj).
We will go back to this issue in more detail later.

We state the main result of this section.

Proposition 4.1. The function S(w; v,h, e, δ±, τ±) is a continuous function of its
parameters and for each sufficiently small α the following estimate holds:

‖X∗α,j(χjS(w))‖C0,µσ,θα(R2) ≤ Cα
2,(4.16)

where 0 < σ < min{p − 2, 1}, θ ∈ (0, ϑ) and ϑ is the constant defined in (2.13).
Moreover S(w) is a Lipschitz function of its parameters h, e, and denoting S(`) =
S(w; v,h(`), e(`), δ±, τ±), ` = 1, 2, we have:

‖X(1)∗
α,j (χ(1)

j S(1))−X(2)∗
α,j (χ(2)

j S(2))‖C0,µσ,θα(R2)

≤ C
(
α2‖h(1) − h(2)‖C2,µθα (Rk;R) + ‖e(1) − e(2)‖C2,µθα (Rk;R)

)
.

(4.17)

Observe that we regard functions X∗α,j(χjS(w)) as defined on the whole plane
R2. This is correct since these functions are supported in the region where the local
coordinates are well defined.

The proof of this lemma is fairly technical but at the same standard (see [14, 15]
for similar results) and is postponed to section 5. We should make a comment
regarding the Lipschitz property (4.17). We observe that expressing the error S(`)

in local variables (xj , zj) we have to use relations (3.9) to express variables (xi, zi)
in terms of (xj , zj). These relations involve the components of the function h(`) as
higher order terms. Using the Implicit Function Theorem one can prove that in



THE TODA SYSTEM AND MULTIPLE-END SOLUTIONS 21

fact local coordinates with respect to different bump lines are C2,µ functions of the
local coordinates of one fixed line.

So far we have estimated the error near the bump lines. Another proposition is
needed to estimate the norm in the complement of the sets supp ρj . Recall that we
have S(w) ≡ 0 in R2 \ Vς . We will denote

V oς = Vς \
k⋃
j=1

supp ρj .

Proposition 4.2. Under the hypothesis of the previous Proposition we have for
each j = 1, . . . , k:

‖S(w)(cosh zj)θα‖C0,µ(V oς ) ≤ Cα2+ 3
4σ.(4.18)

Similarly to (4.17) we have

‖S(1) − S(2)‖C0,µ(V oς ) ≤ Cα
3
4σ[α2‖h(1) − h(2)‖C2,µθα (Rk;R) + ‖e(1) − e(2)‖C2,µθα (Rk;R)].

(4.19)

We prove this result in section 5. Here we comment only that in Proposition 4.2
we consider the error as a function of the variable x ∈ R2 and the weight function
depends in particular on z, since zj = zj(z) by its definition as the arc length
parameter of γ̄α,j .

4.4. Existence of the background function. In order to solve the system (4.11)–
(4.13) we will use the Banach fixed point theorem. A convenient way to implement
it is to solve first (4.13) with given φ. To accomplish this we need to make some
assumptions regarding the initial size of the functions φj . We will assume from now
on that functions φj are such that with σ and θ as in the hypothesis of Proposition
4.1 we have

‖X∗α,jφj‖C2,µσ,θα(R2) <∞, j = 1, . . . , k.(4.20)

We assume above that X∗α,jφj is a function defined in the whole plane and the
weight functions are taken with respect to the variables (xj , zj). We have the
following Lemma:

Lemma 4.1. Assuming that (4.20) holds there exists a unique solution of (4.13)
such that for all j = 1, . . . , k we have:

‖ψ(cosh zj)θα‖C2,µ(R2) ≤ Cα
3
4σ
(
α2 +

k∑
j=1

‖X∗α,jφj‖C2,µσ,θα(R2)

)
.(4.21)

In addition ψ is a continuous function of the parameters v,h, e, δ±, τ± and a Lip-
schitz function of φ and also of the parameters h, e and the following estimates
hold:

‖(ψ(φ(1))− ψ(φ(2)))(cosh zj)θα‖C2,µ(R2) ≤ Cα
3
4σ

k∑
j=1

∥∥X∗α,j(φ(1)
j − φ

(2)
j

)∥∥
C2,µσ,θα(R2)

,

(4.22)

and
‖(ψ(h(1), e(1))− ψ(h(1), e(1)))(cosh zj)θα‖C2,µ(R2)

≤ Cα 3
4σ
(
α2‖h1 − h2‖C2,µθα (Rk;R) + ‖e1 − e2‖C2,µθα (Rk;R)

)
.

(4.23)
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The proof of this Lemma is postponed to section 6.

4.5. Invertibility of the basic linearized operator. We will develop now the
main functional analytic tool needed to solve the system of equations (4.11). Let
us recall the definition of the basic linearized operator L in (3.16):

L = (∂2
x + ∂2

z − 1 + pwp−1).

We will consider the problem of existence of the unique solution of

L(φ) = h, in R2,(4.24)

which additionally satisfies:∫
R
w′(x)φ(x, z) dx = 0 =

∫
R
Z(x)φ(x, z) dx.(4.25)

We will assume below that∫
R
w′(x)h(x, z) dx = 0 =

∫
R
Z(x)h(x, z) dx,(4.26)

and

‖(coshx)σ(cosh z)ah‖C0,µ(R2) <∞.(4.27)

Proposition 4.3. There exists an a0 > 0 such that given h satsifying (4.26)–
(4.27) with σ ∈ (0, 1), a ∈ [0, a0), there exists a unique bounded solution φ = T (h)
to problem (4.24) which defines a bounded linear operator of h in the sense that

‖(coshx)σ(cosh z)aφ‖C2,µ(R2) ≤ C‖(coshx)σ(cosh z)ah‖C0,µ(R2),

and φ satisfies additionally the orthogonality conditions (4.25).

The proof of this Proposition is postponed to section 7.
We will adopt the above theory to deal with the system of nonlinear and nonlocal

equations (4.11).

4.6. Existence of solutions to the interaction system. Given what we said
above we will describe the procedure that will give the solution of (4.11). By what
we said in previous section we are reduced to considering the following fixed point
problem

X∗α,jφj = T
(
X∗α,jkj −X∗α,j(cjw′0,jχj)−X∗α,j(djZjχj)

)
,(4.28)

where cj and dj must chosen in such a way that the orthogonality conditions in
(4.26) are satisfied. These conditions read in this case:

cj

∫
R
X∗α,j((w

′
0,j)

2χj) dxj =
∫

R
X∗α,j(kjw

′
0,j)dxj ,

dj

∫
R
X∗α,j(Z

2χj) dxj =
∫

R
X∗α,j(kjZ) dxj .

(4.29)

Let us make a comment about the structure of the system (4.28). Of course it
can be written, alternatively as a system oh PDEs:[

∂2
xj

+ ∂2
zj

+ g′p
(
w(xj)

)]
X∗α,jφj = X∗α,jkj −X∗α,j(cjw′0,jχj)−X∗α,j(djZχj).(4.30)

This system is coupled only through the background function ψ (hidden in X∗α,jkj)
considered in each equation restricted to the set suppχj . As given in Lemma 4.1
this function is a function of x = (x, z) ∈ R2. Since we can express these variables in
terms of the local coordinates in suppχj ⊂ Vς we are justified in writing something
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like X∗α,j(χjψ). Similar observation applies to other functions appearing on the
right hand side of (4.30). The key point is that functions X∗α,jkj are supported in
Vς where the local coordinates of all curves γ̄α,j are well defined.

We will examine the size of the functions X∗α,jkj in the weighted Hölder norms.

Lemma 4.2. We assume that

‖X∗α,jφj‖C2,µσ,θα(R2) ≤ α
3
4σ.(4.31)

With the notations of Proposition 4.1 the following estimate holds for j = 1, . . . , k:

‖X∗α,jkj‖C0,µσ,θα(R2) ≤ Cα
2 + Cα

3
8σ

k∑
i=1

‖X∗α,iφi‖C2,µσ,θα(R2).(4.32)

Moreover, functions X∗α,jkj are Lipschitz as functions of φ and we have

‖X∗α,jkj(φ
(1))−X∗α,jkj(φ

(2))‖C0,µσ,θα(R2) ≤ Cα
3
8σ

k∑
j=1

‖X∗α,jφ
(1)
j −X

∗
α,jφ

(2)
j ‖C2,µσ,θα(R2),

(4.33)

We prove this Lemma in section 8.
We will now turn our attention to functions cj , dj given by (4.29). It is easy to

see that we have in fact:

‖cj‖C0,µθα (R) + ‖dj‖C0,µθα (R) ≤ C‖X
∗
α,jkj‖C0,µσ,θα(R2),(4.34)

and consequently,

‖X∗α,j(cjw′0,jχj)‖C0,µσ,θα(R2) + ‖X∗α,j(djZχj)‖C0,µσ,θα(R2) ≤ C‖X
∗
α,jkj‖C0,µσ,θα(R2)

≤ Cα2 + Cα
3
8σ

k∑
i=1

‖X∗α,iφi‖C2,µσ,θα(R2),

by (4.32). The Lipschitz property of the functions cj , dj in terms of the unknowns
φj is also clear. Using these facts, the results of Lemma 4.2 and (4.28) we can apply
Banach contraction mapping theorem to conclude:

Proposition 4.4. The interaction system (4.28)–(4.29) has a unique solution φ =
(φ1, . . . , φk) such that

k∑
j=1

‖X∗α,jφj‖C2,µσ,θα(R2) ≤ Cα
2.(4.35)

The proof of this proposition is rather straightforward. We need to set up the
fixed point scheme for the operator defined in (4.28) in the space of functions
φ : (R2)k → Rk with the weighted norm defined, component by component, as in
the statement of the proposition. We do this in the set of functions satisfying in
addition (4.31). Observe that while X∗α,jkj depends on the component functions
of φ the coupling between the equation is only through the operator ψ, which is
nonlocal but easy to handle thanks to Lemma 4.1. We leave the details of the proof
to the reader.

In the sequel we will need one more property of the solution of the interaction
system. We observe that X∗α,jφj is a function of the parameters v,h, e, δ±, τ±. As
for the nature of the dependence of X∗α,jφj on these parameters we have:
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Lemma 4.3. The solution of the system (4.28)–(4.29) is a continuous function of
the parameters v,h, e, δ±, τ± and a Lipschitz function of h, e. Moreover we have:

‖X(1)∗
α,j φj(h

(1), e(1))−X(2)∗
α,j φj(h

(2), e(2))‖C2,µσ,θα(R2) ≤ Cα
2‖h(1) − h(2)‖C2,µθα (Rk;R)

+ C‖e(1) − e(2)‖C2,µθα (Rk;R).

(4.36)

To prove Lemma 4.3 we observe that the operator defined in (4.28) is a uniform
contraction in the set of functions satisfying (4.31) as long as (3.1), (3.3), (3.17)
and (3.18) are satisfied. In addition for each fixed φ the right hand side of (4.28)
is a continuous function of the parameters v,h, e, δ±, τ± and Lipschitz function of
h, e. This follows from Proposition 4.1, Lemma 4.1. From the Banach contraction
mapping theorem we conclude (4.36).

We will finish this section with the discussion of the rate of decay of the solution
ϕ to (4.4) which is given by (4.8), namely

ϕ =
k∑
j=1

φjρj + ψ,

in terms of the original variables x = (x, z) rather than the local variables. We
observe that whenever

‖X∗α,j(ρjφj)‖C2,µσ,θα(R2) ≤ Cα
2,

then

‖ρjφj‖C2,µσ∗,θ∗α(R2) ≤ Cα
2−σ∗(k+1)(4.37)

since, because of (3.5), we have:

x = xj(1 +O(α2)) + zjO(α) + 2(j − k + 1
2

) log
1
α
.(4.38)

Of course in (4.37) we must take σ∗ < σ and θ∗ < θ. Estimate of a similar type
can be shown for the background function ψ as well by a slight modification of the
proof of Lemma 4.1 (see also Remark 6.1 in section 6). Thus taking σ∗ sufficiently
small we get:

‖ϕ‖C2,µσ∗,θ∗α(R2) ≤ Cα,

which is the estimate we claimed in the statement of Theorem 1.1 (see (1.10) in
Definition 1.1) .

4.7. Derivation of the reduced equations. In order to finish the proof of the
Theorem 1.1 we need to adjust the (so far undetermined) parameters v,h, e, δ±, τ±
in such a way that cj = 0, dj = 0. In other words, by (4.29), we need:∫

R
X∗α,j(kjw

′
0,j) dxj = 0,(4.39) ∫

R
X∗α,j(kjZ) dxj = 0.(4.40)

We will refer to (4.39) as the reduced system. We will first show that it is equivalent
to a nonlinear and nonlocal system of second order in variables h = (h1, . . . , hk)
and e = (e1, . . . , ek). This is a system of 2k equations with 2k unknowns. The first
k equation which determine h have the form, to main order, of the linearized Toda
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system discussed already in section 2. In particular a solution which decays expo-
nentially exists only if we can chose suitably the unknown function v = (v1, . . . , vk).
On the other hand the system for e consists of decoupled (to main order) linear
equations of the form considered in section 2.3. As we have indicated each of the k
equations requires 2 extra solvability conditions if we seek solutions in the exponen-
tially decaying class. These requirements lead to 2k constraints on 4k parameters
δ±, τ±. Considering (4.39) we have the following

Proposition 4.5. Equations (4.39) are equivalent to the following system of equa-
tions:

cp(h + v)′′ + N(h + v) = P, h = (h1, . . . , hk), v = (v1, . . . , vk),(4.41)

and N = (N1, . . . ,Nk)T , where

Nj = −e fj−1−fjej−1 + [e fj−1−fj + e fj−fj+1 ]ej − e fj−fj+1ej+1,(4.42)

and ej are the vectors of the canonical basis in Rk. The function P satisfies:

‖P‖C0,µθ (R;Rk) ≤ Cα
ν1 ,(4.43)

where we choose

ν1 = min{1− µ, 2κ1 − µ, 2κ2 − µ, 1 + κ4 − µ, κ2 + κ4 − µ,
3
4
σ − µ},

provided that (3.1), (3.3), (3.17) and (3.18) are satisfied. The constant cp is defined
by

cp =

∫
R(w′)2 dx

−p
∫

R w
p−1w′e x dx

> 0.(4.44)

In addition P is a continuos function of v,h, e, δ±, τ± and a Lipschitz function of
h, e and we have:

‖P(h(1), e(1); ·)−P(h(2), e(2); ·)‖C0,µθ (R;Rk)

≤ Cαν1−µ(‖h(1) − h(2)‖C0,µθ (R;Rk) + ‖e(1) − e(2)‖C0,µθ (R;Rk)).
(4.45)

Proof. It is not hard to show that the main order terms in the projection of the
function X∗α,jkj onto w′0,j come from the projection of X∗α,j(χjS(w)). Accepting
this fact for now (in section 9 we will provide some more details to justify this
claim) we will focus on computing the asymptotic form of this term. In order to
make the calculations more accessible we will assume that k = 2. This way we
are able to emphasize the important points without obscuring them with compli-
cated notations. We will compute first the projection of X∗α,1(χ1S(w)) onto w′0,1.
Expressing ∆ in local coordinates, using the notation (3.13)–(3.14), and neglecting
the higher order terms (in α) we get

∫
R
X∗α,1(χ1S(w)w′0,1) dx1 ∼

∫
R

b1,1(∂x1w0,1)2 dx1 + p

∫
R
wp−1

0,1 w0,2∂x1w0,1 dx1.

(4.46)
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In section 9 we will show that the difference between the left and the right member
in (4.46) is negligible. Now to compute the integrals we use (3.14) to get:

∫
R

b1,1(∂x1w0,1)2 dx1

=
∫

R
(∂x1w0,1)2[−kα,1A−1

1 − α2h′′1A
−2
1 + α2(h′1)2kα,1 − α(x1 + h1)h′1k

′
α,1] dx1

= −α2(f ′′1 + h′′1)
∫

R
(w′)2 dx+OC0,µθ (R)(α

3−µ)(‖h1‖2C2,µθ (R)
+ ‖f1‖2C3,µθ (R)

)

(4.47)

where we use (3.12) to replace kα,1 by f ′′1 . Notice that the exponential weights
we take are like (cosh z)θ. In other words in estimating P we take C0,µ

θ (R) norm
instead of C0,µ

θα (R), which is the norm we in which we have actually measured the
errors. This entails loss of a power of α hence the remainder is a factor of α3−µ.
This small detail, which we have already mentioned in (3.4) will be present in all
subsequent calculations. Finally we remind the reader that above all functions of
the arc length z1 are taken of the scaled argument αz1.

To compute the second term in (4.46) we will use a refinement of (3.9) which
reads:

x2 =
[
qα,1(z1) + h1(αz1)− qα,2(z1)− h2(αz1)

](
1 +O(α2−µ)

)
+O(α2−µ)z1 +O(α2−µ log

1
α

) + x1

(
1 +O(α2−µ)

)
.

(4.48)

Using this we can write:

∫
R
wp−1

0,1 w0,2∂x1w0,1 dx1 =
∫

R
wp−1(x1)w′(x1)w(x1 + q̃α,1(z1)− q̃α,2(z1)) dx1

+
∫

R
wp−1(x1)w′(x1)[w(x2)− w(x1 + q̃α,1(z1)− q̃α,2(z1))] dx1,

(4.49)

where q̃α,j(z1) = qα,j(z1)+hj(αz1). To evaluate the first integral above we observe
that its leading order behavior comes from integration over the set where |x1| ≤
3
2 log 1

2 , which means x2 < − 1
2 log 1

α +O(1). Using the asymptotic formula

w(x) = e−|x| +O((coshx)−2),

and denoting:

c1 =
(
p

∫
R
wp−1(x)w′(x)e x dx

)
,

we get: ∫
R
wp−1(x1)w′(x1)w(x1 + q̃α,1(z1)− q̃α,2(z1)− h2(αz1)) dx1

= c1 exp
(
q̃α,1(z1)− q̃α,2(z1)

)
(1 +OC2,µθ (R)(α

3
2−µ))

= c1α
2e f1(αz1)−f2(αz1)

+ c1α
2e f1(αz1)−f2(αz1)(h1(αz1) + v1(αz1)− h2(αz1)− v2(αz1))

+OC2,µθ (R)(α
2+ν1).

(4.50)
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The second term in (4.49) is estimated in a similar way. Notice that since w′(x) < 0,
x > 0 therefore the factor c1 = p

∫
R w

p−1(x)w′(x)e x dx < 0.
In combining (4.47), (4.49) and (4.50) we use the fact that f is a solution of the

Toda system (1.11). In this manner we get:

cp(h1 + v1)′′ + e f1−f2(h1 + v1 − h2 − v2) = OC0,µθ (R)(α
ν1).

Analogous calculations can be done of course for the projection onto w′0,2. This
gives the assertion of the Proposition, (4.43), except for the detailed calculations
which we will discuss in section 9.

Finally, for the continuity and the Lipschitz property (4.45) of P we observe
that the former follows from the corresponding statements for S(w), ψ and φ, see
Proposition 4.1, Lemma 4.1, Lemma 4.3 respectively. The details are somewhat
tedious but at the same time standard. �

We will now turn our attention to the second projected equation (4.40). We
have:

Proposition 4.6. Formula (4.40) is equivalent to the following system of equations:

e′′ +
λ1

α2
e = Q,(4.51)

where

‖Q‖C0,µθ (R;Rk) ≤ Cα
ν1 .(4.52)

In addition statement (4.45) holds, with obvious modifications, for Q in place of P.

Proof. We will again present simply the main point in the proof and postpone some
details to section 9. We consider the leading order term in (4.40)

∫
R
X∗α,j(χjS(w))X∗α,jZj dxj ∼

∫
R

[∂2
xj

+ ∂2
zj

+ g′p(w(xj))](ej(αzj)Z(xj))χjZ(xj) dxj .

(4.53)

Terms that we have neglected above are of smaller order, and in fact they satisfy
an estimate similar to (4.52) but with an extra factor α2. We have in particular
interaction terms similar to the ones considered in (4.49) but with Z(xj)Z(xi) in
place of the products w0,jw0,i. Because we have Z(x) ∼ e−ap|x|, as |x| → ∞ with
ap ≥ 3

2 we can neglect them in this case.
To calculate the right hand side of (4.53) we use the fact that Z is the principal

eigenfunction of ∂2
xj

+ g′p(w(xj)). This gives immediately∫
R
X∗α,j(χjS(w))X∗α,jZj dxj ∼

(
α2e′′j (αzj) + λ1ej(αzj)

)( ∫
R
χZ2 dx

)
.

Formula (4.51) follows after dividing by α2. The proof of the Lipschitz property is
left to the reader. �

Now we recall that from our considerations in section 2.3 it follows that problem
(4.51) is solvable in exponentially decaying class if in addition to (4.40) the following
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conditions hold: ∫
R

∫
R
X∗α,j(kjZ)Z(xj) cos(

√
λ1zj) dxjdzj = 0,∫

R

∫
R
X∗α,j(kjZ)Z(xj) sin(

√
λ1zj) dxjdzj = 0.

(4.54)

We will now show that (4.54) leads to conditions on δ±, and τ±. Let us denote
the first integral above by Υj . We have (see section 9 for details):

Υj =
∫

R

∫
R
X∗α,j(χjS(wj))Z(xj) cos(

√
λ1zj) dxjdzj +O(α1+ν1),

where wj is defined in (3.20). With the notation (3.13)–(3.14) we get

X∗α,j(S(wj)) ∼ [∂2
xj

+ ∂zj ]wj + gp(wj),(4.55)

where the neglected terms give at the end contributions of order O(α1+ν1) to Υj .
It is not hard to see that, after neglecting lower order terms, (c.f. considerations

in section 5, (5.1) and also section 9)

[∂2
xj

+ ∂2
zj

]wj + gp(wj) ∼ α2[Ξ ′′+,jw+,j +Ξ ′′0,jw0,j +Ξ ′′−,jw−,j ]

+ 2α[Ξ ′+,j∂zjw+,j +Ξ ′0,j∂zjw0,j +Ξ ′−,j∂zjw−,j ]

= α2[Ξ ′′+,j(w+,j − w0,j) +Ξ ′′−,j(w−,j − w0,j)]

+ 2α[Ξ ′+,j∂zjw+,j +Ξ ′−,j∂zjw−,j ].

We note that by (3.3) we have:

∂zjw±,j ∼
√
λ1Z[−δ±,j sin(

√
λ1zj) + τ±,j cos(

√
λ1zj)],

w±,j − w0,j ∼ Z[δ±,j cos(
√
λ1zj) + τ±,j sin(

√
λ1zj)],

where the neglected parts are of order OC∞(R2)

(
|δ±,j |2 + |τ±,j |2)(cosh xj)−1

)
and

consequently their contribution is relatively smaller. Denoting

Θ±,j = [δ±,j cos(
√
λ1zj) + τ±,j sin(

√
λ1zj)], ζ0 =

∫
R
χZ2,(4.56)

we calculate:

Υj ∼ ζ0
∫

R
[α2Ξ ′′+,jΘ+,j + 2αΞ ′+,jΘ

′
+,j ] cos(

√
λ1zj) dzj

+ ζ0

∫
R

[α2Ξ ′′−,jΘ−,j + 2αΞ ′−,jΘ
′
−,j ] cos(

√
λ1zj) dzj

=
√
λ1ζ0(τ+,j − τ−,j).

Similar calculations can be done for the second integral in (4.54). Denoting it by
Λj we can summarize our considerations as follows:

Lemma 4.4. With the notation introduced above it holds:

Υj =
√
λ1ζ0(τ+,j − τ−,j) +O(α1+ν1),

Λj =
√
λ1ζ0(δ+,j − δ−,j) +O(α1+ν1).

(4.57)
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For future references we will denote:

Ῡj = Υj −
√
λ1ζ0(τ+,j − τ−,j),

Λ̄j = Λj −
√
λ1ζ0(δ+,j − δ−,j),

and Υ = (Ῡ1, . . . , Ῡk) and Λ = (Λ̄1, . . . , Λ̄k).

4.8. Solution of the reduced system. We will now complete the proof of The-
orem 1.1. To this end we have to solve the following system of equations (see
Proposition 4.5, Proposition 4.6 and Lemma 4.4):

cp(h + v)′′ + N(h + v) = P(v,h, e, δ±, τ±),(4.58)

e′′ +
λ1

α2
e = Q(v,h, e, δ±, τ±)(4.59) {√

λ1ζ0(τ+ − τ−) = Υ (v,h, e, δ±, τ±),√
λ1ζ0(δ+ − δ−) = Λ(v,h, e, δ±, τ±).

(4.60)

Proposition 4.7. System (4.58)–(4.60) has a 2k parameter family of solutions
in the sense that for each choice of k components of the vector (δ−, δ+) ∈ R2k,
and k components of the vector (τ−, τ+) ∈ R2k this system has a solution for the
remaining 2k components of (δ−, δ+), (τ−, τ+) and the functions v,h, e.

Proof. First we choose κi, µ ∈ (0, 1), and 0 < σ < min{p− 2, 1} in such a way that

min{1− µ, 2κ1 − µ, 2κ2 − µ, 1 + κ4 − µ, κ2 + κ4 − µ,
3
4
σ − µ} = ν1 > max{κi}.

Second we fix k components of (δ−, δ+) ∈ R2k. For simplicity we assume that the
fixed components correspond to the lower ends of the bump lines, however it is
easy to see that any combination of k ends will do. We will denote them by δ−.
Similarly we fix τ−. We assume that the fixed vectors satisfy

‖δ±|+ ‖τ±‖ ≤
1
2
α1+κ4 .(4.61)

(c.f. (3.18)). Now we will solve the system by a fixed point argument following the
three steps below.
Step 1. We fix ṽ, h̃, ẽ, δ̄, τ̄ satisfying, respectively, (3.1), (3.3), (3.17) and (4.61).
We set δ̃+ = δ̄ + δ− and τ̃+ = τ̄ + τ− and use these functions and parameters,
together with δ−, τ− to calculate the right hand sides of the equations (4.58)–(4.60)
above. We observe that these functions satisfy the assertions of Proposition 4.5,
Proposition 4.6 and Lemma 4.4. In particular they are Lipschitz as functions of h̃
and ẽ and continuous as functions of ṽ and δ̃±, τ̃±.
Step 2.

Next, we use the Banach contraction mapping theorem to solve (4.58)–(4.60) for
h and e. We observe that as a result we get the following system:

cp(h + v)′′ + N(h + v) = P(ṽ,h, e, δ−, τ−, δ− + δ̄, τ− + τ̄ ),{√
λ1ζ0τ = Υ (ṽ,h, e, δ−, τ−, δ− + δ̄, τ− + τ̄ ),√
λ1ζ0δ = Λ(ṽ,h, e, δ−, τ−, δ− + δ̄, τ− + τ̄ ),
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Using the theory developed in section 2 we find in addition that

‖h‖C2,µθ (R;Rk) ≤ C‖P‖C0,µθ (R;Rk) ≤ Cα
ν1 ,

‖e‖C2,µθ (R;Rk) ≤ Cα
2‖Q‖C0,µθ (R;Rk) ≤ Cα

2+ν1 ,
(4.62)

and that v, δ, τ satisfy

‖v‖E ≤ Cαν1 ,
‖δ‖+ ‖τ‖ ≤ Cα1+ν1 .

(4.63)

Step 3. We notice that the map

(v, δ, τ ) : E × Rk × Rk −→ E × Rk × Rk,
(ṽ, δ̄, τ̄ ) 7−→ (v, δ, τ ),

is continuous and, because of the choice of ν1 and (4.63), we can use Browder’s
theorem to find a fixed point of this map. In summary we obtain a solution to
(4.58)–(4.60) as claimed. �

We recall that in the statement of Theorem (1.1) we assert the existence of 4k
parameter family of solutions. So far we have only demonstrated a 2k parameter
family of solutions of the system (4.58)–(4.60) however the missing 2k parameters
are easy to find. Indeed at the beginning of our considerations we have chosen a
solution of the Toda system (1.11) represented by f . Of course this solution depends
on 2k real parameters representing its initial conditions. These, together with the
choice of 2k Dancer parameters give the 4k parameter family of solutions.

5. Proof of Propositions 4.1 and 4.2

5.1. Evaluation of the error in the case of two bump lines. In order to make
the argument more transparent we will consider the special case of two bump lines
i.e. k = 2 Recall that we have gp(t) = −t + tp+, p > 2. Let us consider the error
restricted to the set:

U1 := {x1 + x2 ≤ 0} ∩ V ς
2
.

In this set it s convenient to write (with the notation (3.20)):

S(w) = ∆(w1 + w2) + gp(w1) + gp(w2)︸ ︷︷ ︸
E1

+ [∆ + g′p(w1 + w2)](e1Z1 + e2Z2)︸ ︷︷ ︸
E2

+ gp(w1 + w2 + e1Z1 + e2Z2)− gp(w1)− gp(w2)− g′p(w1 + tw2)(e1Z1 + e2Z2)︸ ︷︷ ︸
E3

.

To estimate the first term we notice that using Taylor’s expansion we get

wpj = Ξ+,jw
p
+,j +Ξ0,jw

p
0,j +Ξ−,jw

p
−,j

+
(
w0,j +Ξ+,j(w+,j − w0,j) +Ξ−,j(w−,j − w0,j)

)p
−Ξ+,j

(
w0,j + (w+,j − w0,j)

)p −Ξ0,jw
p
0,j −Ξ−,j

(
w0,j + (w−,j − w0,j)

)p
= Ξ+,jw

p
+,j +Ξ0,jw

p
0,j +Ξ−,jw

p
−,j

+OC0,µ(U1)

(
(|δ±,j |2 + |τ±,j |2)(cosh xj)−2(cosh zj)−ϑα

)
,
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since the 0th and the 1st order term in (w±,j −w0,j) in the two middle lines cancel
out, and the the quality wpj = wp±,j holds whenever Ξ±,j = 1. Using this and
denoting by Pj the differential operator (∆− ∂2

xj
− ∂2

zj
) we can write:

E1 =
2∑
j=1

[
Pj(Ξ+,jw+,j) + Pj(Ξ0,jw0,j) + Pj(Ξ−,jw−,j)

+ 2
2∑
j=1

[
∂zjΞ+,j∂zjw+,j + ∂zjΞ0,j∂zjw0,j + ∂zjΞ−,j∂zjw−,j

]
+

2∑
j=1

[
∂2
zj
Ξ+,jw+,j + ∂2

zj
Ξ0,jw0,j + ∂2

zj
Ξ−,jw−,j

]
+OC∞(R)

(
(|δ±,,j |2 + |τ±,j |2)(cosh xj)−2(cosh zj)−ϑα

)
.

(5.1)

We observe that the term involving Pj above is, because of (3.15), of order α2 and
in addition it decays in x1 and zj exponentially, like (cosh xj)−σ(cosh zj)−θα, for
any σ < 1. In making this claim we use of the asymptotic form of the Dancer
solution and also estimates (3.3), (3.18). Similar estimate can be proven for the
two following terms since for example we have

∂zjΞ+,j(αzj) = αΞ ′+,j(αzj), ∂2
zj
Ξ+,j(αzj) = αΞ ′′+,j(αzj)

and δ±,j , τ±,j ∼ α1+κ4 , while on the other hand ∂zjw0,j = 0. Thus we get:

‖E1‖C0,µσ,θα(U1) ≤ Cα
2.(5.2)

The second term denoted by E2 above satisfies an estimate of the same type by
(3.17). We observe also that for any σ < 1:

‖E1‖C0,µθα (U1∩V oς ) ≤ Cα
2+ 3

4σ,(5.3)

since in U1 ∩ V oς we have |x1| ≥ 3
4 log 1

α . It is important that in (5.3) we take the
exponential weight in the norm only in the z1 direction. Again, same estimate is
true for E2.

Finally, we estimate the term denoted by E3. It is not hard to see that the
leading order in E3 comes from the first three terms in its definition and thus we
have:

E3 ∼ gp(w1 + w2)− gp(w1)− gp(w2)

= pwp−1
1 w2 − wp2 +

p(p− 1)
2

(ζw1 + (1− ζ)w2)p−2w2
2

∼ pwp−1
1 w2,

with some ζ ∈ (0, 1). The last relation is easily justified, since in U1 we have
w1 � w2. We need to consider the product wp−1

1 w2. We use (3.9) to express x2 in
terms of x1 to get, as z1 → ±∞:

x2 = x1 + (a±,1 − a±,2)αz1 − 2 log
1
2

+ (x1 + z1)O(α2) +O(1),

where the coefficients a±,j satisfy (2.17). From this we find:

|w1w2| ≤ Cα2(cosh x1)cα
2
(cosh z1)−ϑα+cα2

,(5.4)
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with some c > 0. In all we have then, with 0 < σ < p− 2:

|wp−1
1 w2| ≤ Cα2(cosh x1)−σ(cosh z1)−θα,(5.5)

hence, with θ < ϑ,

‖E3‖C0,µσ,θα(U1) ≤ Cα
2.(5.6)

From this (4.16) it follows in the set U1 ∩ suppχ1. Exactly same argument can be
carried out in the set

U2 := {x1 + x2 > 0} ∩ V ς
2
.

It is also easy to see from the above considerations that S(w) is continuous as a
function of its parameters.

To conclude (4.18) restricted to the set U1 ∩ V oς we observe that as x1 >
3
4 log 1

α
in U1 ∩ V oς from (5.5) we get:

‖wp−1
1 w2‖C0,µθα (U1∩V oς ) ≤ Cα

2+ 3
4σ.

Finally in the complement of U1 ∪ U2 in Vς we have for instance the following
terms to estimate for each j = 1, 2:

∂2
xj

(X∗α,jης)(X
∗
α,jwj) + 2∂xj (X

∗
α,jης)∂xj (X

∗
α,jwj) ≤ Ce−|xj | = Ce−σ|xj |e−(1−σ)|xj |.

In the support of ∂2
xj

(X∗α,jης), ∂xj (X
∗
α,jης) we have

|xj | ≥
ς

2α

√
1 + |zj |2,

hence we can estimate, with some constants C1, C2 depending on σ and ς:

e−(1−σ)|xj | ≤ e−
C1
α e−

C2
α |zj | ≤ Cα2e−θα|zj |,

provided that α is taken sufficiently small. It follows from this:

|∂2
xj

(X∗α,jης)(X
∗
α,jwj)|+ |2∂xj (X∗α,jης)∂xj (X∗α,jwj)| ≤ Cα2e−σ|xj |e−θα|zj |.(5.7)

We obtain (4.18) noting that in V oς we have

|xj | ≥
3
4

log
1
α
.(5.8)

(Notice that the estimate (4.18) does not carry any weight in xj).
To show the Lipschitz property (4.17) we observe that the dependence on the

function h appears in the expression for the operator Pj above and also in the
nonlinearity because of the formula (3.9), through terms of order ακ2 . In particular
the leading order term for S(·,h(1))−S(·,h(2)) comes from estimating an expression
similar to (5.4). This gives the factor α2 in the first line in the estimate (4.17).
As for the the Lipschitz dependence on e we observe that the leading behavior of
S(·, e(1))− S(·, e(2)) comes form the linear term (in e) denoted above by E2. Thus
the second part of the estimate (4.17) follows. We omit somewhat tedious details.
Again using (5.8) we conclude (4.19).
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5.2. The error in the general case. In the general case S(w), i.e. when k > 2
and p > 2 we consider the following subsets of R2:

Uj := {xj + xj−1 ≥ 0} ∩ {xj + xj+1 ≤ 0} ∩ V ς
2
,

U1 := {x1 ≤ 0} ∩ {x1 + x2 ≤ 0} ∩ V ς
2
,

Uk := {xk + xk−1 ≥ 0} ∩ {xk ≥ 0} ∩ V ς
2
.

Since, by (3.22), w = w̄ in V ς
2

we can write

S(w) =
k∑
j=1

χUjS(w̄) + S
(
(1− ης)w̄)

)
,(5.9)

where χUj denotes the characteristic function of the set Uj .
We fix a j and consider the error restricted to the set Uj . Setting for convenience

gp(t) = −t+ tp+ and using the notation (3.20) we have in Uj :

S(w̄) = ∆wj + gp(wj)︸ ︷︷ ︸
E1,j

+ ∆
(
ej(αzj)Zj) + g′p(wj)

(
ej(αzj)Zj

)︸ ︷︷ ︸
E2,j

+
∑
i6=j

∆wi + gp(wi)︸ ︷︷ ︸
E1,i

+
∑
i 6=j

∆
(
ei(αzi)Zj

)
+ g′p(wi)

(
ei(αzj)Zi

)︸ ︷︷ ︸
E2,i

+ gp

( k∑
i=1

wi + ei(αzi)Zj
)
−

k∑
i=1

gp(wi)−
k∑
i=1

g′p(wi)
(
ei(αzj)Zi

)
︸ ︷︷ ︸

E3

.

(5.10)

All the components above can be estimated using the same argument as in the case
of two lines noting that the error due to the interactions between the bump lines
is the biggest when the closest neighbors are considered. Another observation is
that in the Taylor expansion of the nonlinear function gp(w), p > 2 around wj all
components with powers higher than 2 give rise to terms that are negligible. We
leave the details to the reader.

6. The background equation: Proof of Lemma 4.1

Let us consider first the following problem:

(∆− 1)ψ = h, in R2,(6.11)

where h ∈ C0,µ(R2) is such that

‖h(cosh zj)θα‖C0,µ(R2) <∞,(6.12)

for j = 1, . . . , k (here zj = zj(z) via (3.2)). Since by assumption h ∈ C0,µ(R2) as
well, by maximum principle and elliptic regularity theory we get the existence of a
unique solution ψ such that

‖ψ‖C2,µ(R2) ≤ C‖h‖C0,µ(R2).

We will now prove:

‖ψ(cosh zj)θα‖C2,µ(R2) ≤ C‖h(cosh zj)θα‖C0,µ(R2).(6.13)
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As we will see (4.21)) will follow from this. Using (3.2) we see that functions of the
form:

ψθα,ν = (cosh zj)−θα + ν
[

cosh(
x

2
) + cosh(

z

2
)
]
,

with ν ≥ 0 and α sufficiently small are positive supersolutions for ∆− 1 in R2. In
fact:

(∆− 1)ψθα,ν ≤ −
1
4
ψθα,ν .

Considering now the function

ωθα,ν,M = M‖h(cosh zj)θα‖C0,µ(R2)ψθα,ν − ψ,

where M large is to be chosen, we get:

(∆− 1)ωθα,ν,M ≤ −
M

4
‖h(cosh zj)θα‖C0,µ(R2)ψθα,ν + h

≤ −M
4
‖h(cosh zj)θα‖C0,µ(R2)ψθα,ν

+ ‖h(cosh zj)θα‖C0,µ(R2)(cosh zj)−θα

≤ 0.

By letting ν → 0 we get the upper bound:

ψ(cosh zj)θα ≤ C‖h(cosh zj)θα‖C0,µ(R2).

The lower bound and the rest of the proof of (6.13) follow by a straightforward
argument and are left to the reader.

Next we need to examine the size of the function Q and also its dependence on
φ and h, e and other parameters. We will now assume φ to be given and of finite
C2,µ
σ,θα(R2) norm. We will show that

‖Q(cosh zj)θα‖C0,µ(R2) ≤ Cα2+ 3
4σ + Cα

3
4σ

k∑
j=1

‖X∗α,jφj‖C0,µσ,θα(R2).

from which, using (6.13) the required estimate will follow. In the remainder of the
proof we will use the fact that in the suppQ we have

|xj | ≥
3
4

log
1
α
,

(c.f. (5.8)) to estimate terms whose norm (including the exponential weight in xj)
is bounded (see for example the proof of estimate (4.18)). We observe that the first
term on the right hand side above comes from (1−

∑k
i=1 ρi

)
S(w) and has already

been estimated in (4.18). To estimate the remaining terms involved in Q we observe
that they depend on the functions φ and ψ, see (4.10). For example, using the fact
that the derivatives of the functions ρj are supported in the set where

3
4

log
1
α
≤ |xj | ≤ log

1
α
,

we get for all j = 1, . . . , k

‖(Lφjρj)− ρjL(φj))(cosh zj)θα‖C0,µ(R2) ≤ Cα
3
4σ‖X∗α,jφj‖C2,µσ,θα(R2).
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Finally we will use (5.8) and the fact that L−∆ + 1 = pwp−1
+ with p > 2 to get:

∥∥[(1− k∑
i=1

ρi
)
(L−∆ + 1)ψ

]
(cosh zj)θα

∥∥
C0,µ(R2)

≤ Cα 3
4σ‖ψ(cosh z)θα‖C2,µ(R2).

Summarizing, we have found:

‖Q(φ, ψ)(cosh zj)θα‖C0,µ(R2) ≤ Cα
3
2σ‖ψ(cosh zj)θα‖C2,µ(R2)

+ Cα
3
4σ
[
α2 +

k∑
j=1

‖X∗α,jφj‖C2,µσ,θα(R2)

]
.

(6.14)

Now assuming that φ is given, using (6.11)–(6.13) and a standard fixed point ar-
gument we find a ψ = ψ(φ) that satisfies (4.13). Moreover we have:

‖ψ(φ)(cosh zj)θα‖C2,µ(R2) ≤ Cα
3
4σ
[
α2 +

k∑
j=1

‖X∗α,jφj‖C2,µσ,θα(R2)

]
.(6.15)

Since the function Q(φ, ψ) is a uniform contraction (as a function of ψ) and it is
continuous (as function of its parameters, assuming of course that φ is continuous),
we conclude that ψ is a continuous function of v,h, e, δ±, τ±. It is also easy to see
that ψ(φ) is Lipschitz as a function of φ and in fact we have:

‖[ψ(φ(1))− ψ(φ(2))](cosh zj)θα‖C2,µ(R2) ≤ Cα
3
4σ

k∑
j=1

∥∥X∗α,j(φ(1)
j − φ

(2)
j

)∥∥
C2,µσ,θα(R2)

.

(6.16)

Final estimate in Lemma 4.1, namely (4.23) follows from (4.19).

Remark 6.1. We observe that a slight modification of the proof of (6.13) gives

‖ψ(cosh z)a(cos z)σ‖C2,µ(R2) ≤ C‖h‖C0,µσ,a(R2).(6.17)

In the case at hand we have, with σ∗ < σ, θ∗ < θ

‖Q‖C0,µσ∗,θ∗α(R2) ≤ Cα
3
4σ−σ∗(k+1)

[
α2 +

k∑
j=1

‖X∗α,jφj‖C2,µσ,θα(R2)

]
,

because of (4.38). Therefore when φ is the true solution of (4.4) we get:

‖Q‖C0,µσ∗,θ∗α(R2) ≤ Cα
2−σ∗(k+1),

which is the same type of estimate as (4.37).

7. A priori estimates and invertibility of the basic linear operator

7.1. Non-degeneracy of the homoclinic. In this section we will consider first
the following linearized operator

L0(φ) = φxx + g′p(w)φ, g′p(w) = pwp−1 − 1.

We recall some well known facts about L0. First notice that L0(w′) = 0 i.e. has
one dimensional kernel. Second we observe that

λ1 =
1
4

(p− 1)(p+ 3), Z =
w(p+1)/2√∫

R w
p+1

,
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correspond, respectively, to principal eigenvalue and eigenfunction of L0. Except
for λ1 > 0 and λ2 = 0 the rest of the spectrum of L0 is negative. This means in
particular that there exists a positive constant γ0 such that

〈L0(φ), φ〉 ≥ γ0‖φ‖2L2(R),(7.1)

whenever

〈φ,w′〉 = 0 = 〈φ,Z〉.
From (7.1) it also follows that there exists a γ > 0 such that:

〈L0(φ), φ〉 ≥ γ(‖φx‖2L2(R) + ‖φ‖2L2(R)),(7.2)

As another consequence of these facts we observe that problem

(7.3) L0(φ)− ξ2φ = h,

is uniquely solvable whenever ξ 6= ±
√
λ1, 0 for h ∈ L2(R). Actually, rather standard

argument, using comparison principle and the fact that L0 is of the form

L0(φ) = φxx − φ+ q(x)φ, |q(x)| ≤ Ce−c|x|,
can be used to show that whenever h is for instance a compactly supported function
then the solution of (7.3) is an exponentially decaying function.

Let us consider now the basic linearized operator

L(φ) = L0(φ) + φzz,

defined in the whole plane (x, z) ∈ R2. Using (7.1) we get that

〈L(φ), φ〉 ≥ γ0‖φ‖2L2(R2),(7.4)

whenever ∫
R
φ(x, z)w′(x) dx = 0 =

∫
R
φ(x, z)Z(x) dx, for all z.

Equation L(φ) = 0, has 3 obvious bounded solutions

w′(x), Z(x) cos(
√
λ1z), Z(x) sin(

√
λ1z).

Our first result shows that converse is also true.

Lemma 7.1. Let φ be a bounded solution of the problem

(7.5) L(φ) = 0 in R2.

Then φ(x, z) is a linear combination of the functions w′(x), Z(x) cos(
√
λ1z), and

Z(x) sin(
√
λ1z).

Proof. Let assume that φ is a bounded function that satisfies

(7.6) φzz + φxx + (pwp−1 − 1)φ = 0.

Let us consider the Fourier transform of φ(x, z) in the z variable, φ̂(x, ξ) which is
by definition the distribution defined as

〈φ̂(x, ·), µ〉R = 〈φ(x, ·), µ̂〉R =
∫

R
φ(x, ξ)µ̂(ξ)dξ,

where µ(·) is any smooth rapidly decreasing function. Let us consider a smooth
rapidly decreasing function ψ of the two variables (x, ξ). Then from equation (7.6)
we find ∫

R
〈φ̂(x, ·), ψxx − ξ2ψ + (pwp−1 − 1)ψ〉Rdx = 0.
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Let ϕ(x) and µ(ξ) be smooth and compactly supported functions such that

{
√
λ1,−

√
λ1, 0} ∩ supp (µ) = ∅.

Then we can solve the equation

ψxx − ξ2ψ + (pwp−1 − 1)ψ = µ(ξ)ϕ(x), x ∈ R,

uniquely for a smooth, rapidly decreasing function ψ(x, ξ) such that ψ(x, ξ) = 0
whenever ξ 6∈ supp (µ). We conclude that∫

R
〈φ̂(x, ·), µ〉Rϕ(x) dx = 0,

so that for all x ∈ R, 〈φ̂(x, ·), µ〉R = 0, whenever {
√
λ1,−

√
λ1, 0} ∩ supp (µ) = ∅, in

other words
supp (φ̂(x, ·)) ⊂ {

√
λ1,−

√
λ1, 0}.

By distribution theory we find that φ̂(x, ·) is a linear combination (with coefficients
depending on x) of derivatives up to a finite order of Dirac masses supported in
{
√
λ1,−

√
λ1, 0}. Taking inverse Fourier transform, we get that

φ(x, z) = p0(z, x) + p1(z, x) cos(
√
λ1z) + p2(z, x) sin(

√
λ1z),

where pj are polynomials in z with coefficients depending on x. Since φ is bounded
these polynomials are of zero order, i.e. pj(z, x) ≡ pj(x), and the bounded functions
pj must satisfy the equations

L0(p0) = 0, L0(p1)− λ1p1 = 0, L0(p2)− λ1p2 = 0,

and the desired result follows. �

7.2. A priori estimates for the basic linearized operator. The linear theory
used in this paper is based on a priori estimates for the solutions of the following
problem

(7.7) L(φ) = h, in R2.

The results of Lemma 7.1 imply that such estimates without imposing extra condi-
tions on φ may not exist. The form of the bounded solutions of L(φ) = 0 and (7.4)
suggest the following orthogonality conditions:

(7.8)
∫

R
φ(x, z)w′(x) dx = 0 =

∫
R
φ(x, z)Z(x) dx, for all z ∈ R.

With these restrictions imposed we have the following result concerning a priori
estimates for this problem.

Lemma 7.2. Assuming that φ is a bounded solution of (7.7) satisfying (7.8) we
have

‖φ‖L∞(R2) ≤ C‖h‖L∞(R2).

Proof. We will argue by contradiction. Assuming the opposite means that there
are sequences φn, hn such that

‖φn‖∞ = 1, ‖hn‖∞ → 0,
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and

L(φn) = hn, in R2,(7.9) ∫
R
φn(x, z)wx(x) dx = 0 =

∫
R
φn(x, z)Z(x) dx, for all z ∈ R.(7.10)

Let us assume that (xn, zn) ∈ R2 is such that

|φn(xn, zn)| → 1.

We claim that the sequence xn is bounded. Indeed, if not, using the fact that
Lφ = ∆φ−φ+O(e−c|x|)φ and employing elliptic estimates we find that the sequence
of functions

φ̃n(x, z) = φn(xn + x, zn + z),
converges, up to a subsequence, locally uniformly to a solution φ̃ of the equation

∆φ̃− φ̃ = 0, in R2,

whose absolute value attains its maximum at (0, 0), This implies φ̃ ≡ 0, so that xn
is indeed bounded. Let now

φ̃n(x, z) = φn(x, zn + z).

Then φ̃n converges uniformly over compacts to a bounded, nontrivial solution φ̃ of

L(φ̃) = 0 in R2,∫
R
φ̃(x, z)wx(x) dx = 0 =

∫
R
φ̃(x, z)Z(x) dx, for all z ∈ R.

Lemma 7.1 then implies φ̃ ≡ 0, a contradiction and the proof is concluded. �

Using Lemma 7.2 we can also find a priori estimates with norms involving expo-
nential weights. When the weights involve only the x variable we have the following
a priori estimates.

Lemma 7.3. Assuming that ‖(coshx)σh‖C0,µ(R2) < +∞, σ ∈ [0, 1), then a bounded
solution φ of (7.7)–(7.8) satisfies

(7.11) ‖(coshx)σφ‖C2,µ(R2) ≤ C‖(coshx)σh‖C0,µ(R2).

Proof. We already know that

‖φ‖L∞(R2) ≤ C‖(coshx)σh‖C0,µ(R2).

We set φ̃ = φ‖(coshx)σh‖−1
C0,µ(R2). Then we have

L(φ̃) = h̃, where ‖(coshx)σh̃‖C0,µ(R2) = 1,

and also ‖φ̃‖L∞(R2) ≤ C. Let us fix a number R0 > 0 such that for x > R0 we have

pwp−1(x) <
1− σ2

2
,

which is always possible since w(x) = O(e−c|x|). For an arbitrary number ρ > 0 let
us set

φ̄(x, z) = ρ[cosh(z/2) + eσx] +Me−σx,

where M is to be chosen. Then we find that,

L(φ̄) ≤ −M(1− σ2)
4

e−σx, for x > R0.
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Thus
L(φ̄) ≤ h̃, for x > R0,

if
M(1− σ2)

4
≥ ‖(coshx)σh̃‖C0,µ(R2) = 1.

If we also also assume
Me−σR0 ≥ ‖φ̃‖∞,

we conclude from maximum principle that φ̃ ≤ φ̄. Letting ρ → 0 we get (since M
can be fixed independent on ρ),

φ̃ ≤Me−σx, for x > 0,

hence
φ ≤M‖(coshx)σh‖C0,µ(R2)e

−σx, for x > 0.
In a similar way we obtain the lower bound

φ ≥ −M‖(coshx)σh‖C0,µ(R2), for x > 0.

Finally, the same argument for x < 0 yields

‖(coshx)σφ‖L∞(R2) ≤ C‖(coshx)σh‖C0,µ(R2).

The required estimate now follows from local elliptic estimates and the proof is
concluded. �

When we also take into account the exponential decay in the z variable we have
the following a priori estimates.

Lemma 7.4. There exists a0 > 0 such that assuming ‖h(coshx)σ(cosh z)a‖C0,µ(R2) <
+∞, σ ∈ (0, 1), a ∈ [0, 1), for any bounded solution φ to problem (7.7)-(7.8) we
have

‖(coshx)σ(cosh z)aφ‖C2,µ(R2) ≤ Cσ‖(coshx)σ(cosh z)ah‖C0,µ(R2).

Proof. We already know that

‖(coshx)σφ‖C2,µ(R2) ≤ C‖(coshx)σ(cosh z)ah‖C0,µ(R2).

Then we may write

ψ(z) =
∫

R
φ2(x, z) dx,

and differentiate twice weakly to get

ψ′′(z) = 2
∫

R
φ2
z dx+ 2

∫
R
φzzφdx.

We have ∫
R
φzzφdx =

∫
R
φ2
x dx+

∫
R

(1− pwp−1)φ2 dx+
∫

R
hφ.(7.12)

Because of the orthogonality conditions (7.8) we also have by (7.2) that,∫
R
φ2
x dx+

∫
R

(1− pwp−1)φ2 dx ≥ γ
∫

R
(φ2
x + φ2) dx, γ > 0.

Hence we find that for a certain constant C > 0

ψ′′(z) ≥ γ

4
ψ(z)− C

∫
R
h2(x, z) dx,
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so that
−ψ′′(z) +

γ

4
ψ(z) ≤ C

σ
e−2a|z|‖(coshx)σ(cosh z)ah‖2C0,µ(R2).

Since we also know that ψ is bounded by:

|ψ(z)| ≤ C

σ
‖(coshx)σ(cosh z)ah‖2C0,µ(R2),

we can use a barrier of the form ψ+(z) = M‖h‖2σ,ae−2az+ρe2az, with M sufficiently
large and ρ > 0 arbitrary, to get the bound 0 ≤ ψ ≤ ψ+ for z ≥ 0 and any
a <

√
γ

4 ≡ a0. A similar argument can be used for z < 0. Letting ρ → 0 we get
then ∫

R
φ2(x, z) dx ≤ Cσe−2a|z|‖(coshx)σ(cosh z)ah‖C0,µ(R2), a < a0.

Elliptic estimates yield that for R0 fixed and large

|φ(x, z)| ≤ Cσe−a|z|‖(coshx)σ(cosh z)ah‖C0,µ(R2) for |x| < R0.

The corresponding estimate in the complementary region can be found by barriers.
For instance in the quadrant {x > R0, z > 0} we may consider a barrier of the form

φ̄(x, z) = M‖(coshx)σ(cosh z)ah‖C0,µ(R2)e
−(σx+az) + ρe

x
2 + z

2 ,

with ρ > 0 arbitrarily small. Fixing M depending on R0 we find the desired
estimate for |(coshx)σ(cosh z)aφ| in this quadrant by letting ρ→ 0. The argument
in the remaining quadrants is similar. The corresponding bound for the C2,µ(R2)
weighted norm is then deduced from local elliptic estimates. This concludes the
proof. �

7.3. The existence result for the basic linearized operator: Proof of
Proposition 4.3.

Proof. We will argue by approximations. Let us replace h in (4.24) by the function
h(x, z)χ(−R,R)(z) extended 2R-periodically to the whole plane. With this right
hand side we can give to the problem (4.24) a weak formulation in the closed
subspace H1

R ⊂ H1(R2) of functions that are 2R-periodic in z and which also
satisfy the orthogonality conditions in (4.24). To be more precise we say that φR
is a weak solution of this problem if for

〈L(φR), η〉 :=
∫ ∞
−∞

∫ R

−R
∇ψ · ∇η dxdz +

∫ ∞
−∞

∫ R

−R
(1− pwp−1)ψη dxdz,

we have

〈L(φR), η〉 =
∫ ∞
−∞

∫ R

−R
hη dxdz

for all tests functions η ∈ H1(R2) which are 2R periodic and which satisfy∫
R
w′(x)η(x, z) dx = 0 =

∫
R
Z(x)η(x, z) dx, for all z ∈ (−R,R).

Because of the orthogonality conditions the bilinear form a(ψ, η) = 〈L(ψ), η〉 is
actually positive definite in H1

R and consequently there exists a unique φR ∈ H1
R

which satisfies

a(φR, η) =
∫ ∞
−∞

∫ R

−R
hη dxdz, for all η ∈ H1

R.
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Given that φR satisfies the orthogonality conditions we check that also for any
smooth, compactly supported in (−R,R) function η̃(z) we have

a(φR, w′(x)η̃(z)) = 0 =
∫ ∞
−∞

∫ R

−R
hw′(x)η̃(z) dxdz,

a(φR, Z(x)η̃(z)) = 0 =
∫ ∞
−∞

∫ R

−R
hZ(x)η̃(z) dxdz.

This proves that φR is the unique weak solution of L(φR) = h in the space of
H1(R2) functions which are 2R periodic in z. Letting R → +∞ and using the
uniform a priori estimates valid for the approximations completes the proof of the
Proposition. �

8. Estimates for the interaction system

We begin by proving Lemma 4.2.

Proof. We will use the definition of X∗α,jkj in (4.12) to estimate term by term. First
we observe

‖X∗α,j(χjS(w))‖C0,µσ,θα(R2) ≤ Cα
2,

by (4.16). Next we will consider the nonlinear (in φj and ψ) term. Since by
assumption

‖X∗α,jφj‖C2,µσ,θα ≤ α
3
4σ,

therefore by (4.21) we have

‖X∗α,j(χjψ)(cosh zj)θα‖C2,µ(R2) ≤ Cα
3
4σ
(
α2 +

k∑
i=1

‖X∗α,jφj‖C2,µσ,θα(R2)

)
≤ Cα 3

2σ.

(8.1)

We will now estimate the nonlinear term, for which we get:

χjN = N(
k∑
i=1

ρiφi + ψ) = χjN(ρjφj + ψ),

using (4.7). Let us observe that N is a ”quadratic” function of its argument. Indeed,
with p > 2 we have for any t, s ∈ R, t ≥ 0:

|(s+ t)p+ − tp − ptp−1s| ≤ C max{tp−2, |s|p−2}|s|2,
Then it follows:

|X∗α,j(χjN)| ≤ C(|X∗α,jφj |2 + |X∗α,j(χψ)|2)

We have in suppX∗α,j(χj):

|xj | ≤
15
16

log
1
α
,(8.2)

hence, by (8.1)

‖(cosh xj)σ(cosh zj)θαX∗α,j(χjψ)‖2C0,µ(R2) ≤ Cα
− 15

8 σ‖(cosh zj)θαX∗α,j(χjψ)‖2C0,µ(R2)

≤ Cα− 3
8σ
(
α2 +

k∑
i=1

‖X∗α,iφi‖C2,µσ,θα(R2)

)2
.
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Using this we find:

‖X∗α,j(χjN)‖C0,µσ,θα(R2) ≤ C
[
α4− 3

4σ + ‖X∗α,jφj‖2C2,µσ,θα(R2)
+ α

3
8σ
( k∑
i=1

‖X∗α,iφi‖C2,µσ,θα(R2)

)](8.3)

The next term we need to estimate is

X∗α,j
(
χj(L−∆ + 1)ψ

)
= X∗α,j(pχjw

p−1
+ ψ).

Using the fact that X∗α,j(χjw
p−1
+ ) is an exponentially decaying function (in xj)

‖X∗α,j(χjw
p−1
+ ψ)‖C0,µσ,θα(R2) ≤ C‖(cosh zj)θαX∗α,j(χjψ)‖C0,µ(R2)

≤ α 3
4σ
(
α2 +

k∑
i=1

‖X∗α,iφi‖C2,µσ,θα(R2)

)
.

(8.4)

To estimate the last term we observe that using (3.15) we get :

‖X∗α,j [χj(∆− ∂2
xj
− ∂2

zj
)φj ]‖ ≤ Cα‖X∗α,jφj‖C2,µσ,θα(R2),

and also ∥∥X∗α,j[χj(g′p(w)− g′p(w0,j)
)
]φj
∥∥ ≤ Cα‖X∗α,jφj‖C2,µσ,θα(R2),

making use of (3.3), (3.17), (3.18). The proof of the Lipschitz property (4.33) is
standard and is omitted. �

9. The reduced problem: error of the projections

In this sections we will fill in some details in the computations in section 4.7.
We will begin with (4.39). We have computed the leading order of∫

R
X∗α,j(χjS(w)w′0,j) dxj ,

which in particular gives rise to the Toda system, see (4.46)–(4.50). In particular
we have neglected terms denoted by Pj(Ξ±,jw±,j), Pj(Ξ0,jw0,j) in (5.1). Among
these lower order terms we will concentrate on one, representative term, namely,
using the notation (3.13)–(3.14) and (4.56),∫

R
a12,jΞ±,jχj(∂2

xj ,zjw±,j)w0,j dxj ∼ −α
√
λ1h

′
jΘ
′
±,jΞ±,j

∫
R
w′Z ′ dx.

Now we observe that

‖α
√
λ1h

′
jΘ
′
±,jΞ±,j‖C0,µθ (R) ≤ Cα

2+κ2+κ4−µ ≤ Cα2+ν1 ,

as long as (3.3) and (3.18) hold. Another important term comes from

X∗α,j
(
χj(L−∆ + 1)ψ

)
∼ X∗α,j

(
pχj(wj)

p−1
+ ψ

)
.(9.5)

Using Lemma 4.1 we get∥∥∫
R
X∗α,j

(
χj(wj)

p−1
+ ψ

)
w′0,j dxj

∥∥
C0,µθ (R)

≤ Cα2+ 3
4σ−µ ≤ α2+ν1 .

Other calculations can be done a similar way.
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To see a representative term (slightly different than the ones we have seen above)
in (4.40) we will recall the definition of kj (4.12) and in particular consider this
component of kj that depends on the unknown function φj linearly, namely:

−X∗α,j
(
χjL(φj)

)
+ (X∗α,jχj)

[
∂2
xj

+ ∂2
zj

+ g′p
(
w0,j

)]
X∗α,jφj .

Although perhaps not immediately obvious but rather straightforward is the fol-
lowing relation∫

R

[−X∗α,j
(
χjL(φj)

)
+ (X∗α,jχj)

[
∂2
xj

+ ∂2
zj

+ g′p
(
w0,j

)]
X∗α,jφj ]Z(xj) dxj

∼
∫

R
X∗α,j

(
χj(g′p

(
w0,j)− g′p(wj))φj

)
Z(xj) dxj .

Then we get∥∥ ∫
R
X∗α,j

(
χj(g′p

(
w0,j)− g′p(wj))φj

)
Z(xj) dxj

∥∥
C0,µθ (R)

≤ Cα3+κ4−µ ≤ Cα2+ν1 .

Let us now consider some of the terms we have neglected while considering Υj .
One of them is∣∣ ∫

R

∫
R

X∗α,j
(
χj(g′p

(
w0,j)− g′p(wj))φj

)
Z(xj) cos(

√
λ1zj) dxjdzj

∣∣
≤ Cα1+κ4‖φj‖C2,µσ,θα(R2)

∫
R
(cosh z)−θα dz

≤ Cα2+κ4 .

Another, similar in type term, is (c.f. (9.5)):∣∣ ∫
R

∫
R
X∗α,j

(
χj(wj)

p−1
+ ψ

)
Z(xj) cos(

√
λ1zj) dxjdzj

∣∣
≤ C‖ψ(cosh zj)θα‖C0,µ(R2)

∫
R

(cosh z)−θα dz

≤ Cα1+ 3
4σ.

These terms are bounded by α1+ν1 for sufficiently small α. The rest of the calcu-
lations follow the same scheme and are omitted.
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