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Abstract. We classify all the solutions to the elliptic Toda system associated

to a general simple Lie algebra with singular sources at the origin and with
finite energy. The solution space is shown to be parametrized by a subgroup of

the corresponding complex Lie group. We also show the quantization result for

the finite integrals. This work generalizes the previous works in [LWY12] and
[Nie16] for Toda systems of types A and B, C. However, a more Lie-theoretic

method is needed here for the general case, and the method relies heavily on the

structure theories of the local solutions and of the W -invariants for the Toda
system. This work will have applications to nonabelian Chern-Simons-Higgs

gauge theory and to the mean field equations of Toda type.

1. Introduction

In this paper, we consider the following Toda systems on the plane. Let g be
a complex simple Lie algebra of rank n, and let (aij) be its Cartan matrix (see
[Hel78, Kna02, FH91] and the Appendix for basic Lie theory). The Toda system
associated to g with singular sources at the origin and with finite energy is the
following system of semilinear elliptic PDEs

(1.1)


∆ui + 4

n∑
j=1

aije
uj = 4πγiδ0 on R2, γi > −1,∫

R2
eui dx <∞, 1 ≤ i ≤ n,

where δ0 is the Dirac delta function at the origin. Here the solutions ui are required
to be real and well-defined on the whole R2 minus the origin.

When the Lie algebra g = A1 = sl2 whose Cartan matrix is (2), the Toda system
becomes the Liouville equation

(1.2) ∆u+ 8eu = 4πγδ0 on R2, γ > −1,
∫

R2
eu dx <∞.

The Toda system (1.1) and the Liouville equation (1.2) arise in many physical
and geometric problems. For example, in the Chern-Simons theory, the Liouville
equation is related to the abelian gauge field theory, while the Toda system is
related to nonabelian gauges (see [Yan01, Tar08]). On the geometric side, the Li-
ouville equation is related to conformal metrics on S2 with conical singularities
whose Gaussian curvature is a constant. The Toda systems are related to holomor-
phic curves in projective spaces [Dol97] and the Plücker formulas [GH78], and the
periodic Toda systems are related to harmonic maps [Gue97].
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From the analytic point of view, one would like to study the following mean field
equation on a compact surface M with a Riemannian metric g

(1.3) ∆gu+ ρ
( heu∫

M
heu
− 1
|M |

)
= 4π

N∑
j=1

γj

(
δpj −

1
|M |

)
on M,

where h is a positive smooth function on M and |M | is the volume of M with respect
to g. This equation again arises from both conformal change of metrics [KW74,
Tro91] with prescribed Gaussian curvature and the Chern-Simons-Higgs theory
on the compact surface M . There are intense interests and extensive literature on
(1.3) concerning solvability, blow-up analysis and topological degrees [Lin14,Mal14,
Tar10,CL03].

In general, we are interested in the following mean field equations of Toda type

∆gui +
n∑
j=1

aijρj

(
hje

uj∫
M
hjeuj

− 1
|M |

)
= 4π

N∑
j=1

γij

(
δpj −

1
|M |

)
on M.

Such systems have been studied in [JW01,JLW06] for Lie algebras of type A. When
carrying out the analysis of such systems, there often appears a sequence of bubbling
solutions near blow-up points. For that purpose, the fundamental question is to
completely classify all entire solutions of the Toda system with finite energy and
with singular sources at the origin as in (1.1).

The classification problem for the solutions to the Toda systems has a long his-
tory. For the Liouville equation (1.2), Chen and Li [CL91] classified their solutions
without the singular source, and Prajapat and Tarantello [PT01] completed the
classification with the singular source. For general An = sln+1 Toda systems, Jost
and Wang [JW02] classified the solutions without singular sources, and Ye and two
of the authors [LWY12] completed the classification with singular sources. This
later work also invented the method of characterizing the solutions by a complex
ODE involving the W -invariants of the Toda system. The work [LWY12] has also
established the corresponding quantization result for the integrals and the non-
degeneracy result for the corresponding linearized systems. The case of G2 Toda
system was treated in [ALW15]. In [Nie16], one of us generalized the classification
to Toda systems of types B and C by treating them as reductions of type A with
symmetries and by applying the results from [Nie12].

In this paper, we complete the classification of solutions to Toda systems for all
types of simple Lie algebras, and we also establish the quantization result for the
corresponding integrals. We note that the remaining types of Toda systems can not
be treated as reductions of type A, and a genuinely new method is needed for our
purpose. We are able to achieve our goal by systematically applying and further
developing the structure theories of local solutions to Toda systems similarly to
[LS92, GL14] and of the W -invariants as in [Nie14]. We furthermore note that it
is the finite energy condition and the strength of the singularities that combine to
greatly restrict the form of the solutions. The current work will lay the foundation
for future applications to the Chern-Simons-Higgs theory and to the mean filed
equations.

Our approach of solving (1.1) will heavily use the complex coordinates and holo-
morphic functions. Let x = (x1, x2) be the coordinates on R2, and we introduce the
complex coordinates z = x1 + i x2 and z̄ = x1− i x2. Therefore we identify R2 with
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the complex plane C. For simplicity, we write ∂z = ∂
∂z = 1

2 ( ∂
∂x1
− i ∂

∂x2
), and simi-

larly ∂z̄ = ∂
∂z̄ = 1

2 ( ∂
∂x1

+i ∂
∂x2

). The Laplace operator is then ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2

= 4∂z∂z̄.
The coefficient 4 here is responsible for the slightly unconventional coefficient 4 on
the left of (1.1), and this coefficient can be easily dealt with (see [Nie16, Remark
1.12]).

Furthermore, our results and proofs are more conveniently presented in a differ-
ent set of dependent variables. Let ui =

∑n
j=1 aijUj . Then the Ui satisfy

(1.4)


Ui,zz̄ + exp

( n∑
j=1

aijUj

)
= πγiδ0 on R2,∫

R2
e

Pn
j=1 aijUj dx <∞,

where γi =
∑n
j=1 a

ijγj and (aij) is the inverse matrix of (aij). The first equation
can also be written as

(1.5) ∆Ui + 4eui = 4πγiδ0 on R2.

(The γi were denoted by αi in [LWY12,Nie16], but we will use αi to denote the ith
simple root of the Lie algebra g in this paper.)

Throughout the paper, we use the Lie-theoretic setup detailed in the Appendix.
Although for the Lie algebras of classical types A,B,C,D, the setup can be made
fairly concrete, we have chosen to present our result in a Lie-theoretic and intrinsic
way, which automatically covers the Lie algebras of exceptional types G2, F4, E6, E7

and E8. Here is our main theorem.

Theorem 1.6. Let G be a connected complex Lie group whose Lie algebra is g with
the Cartan matrix (aij). Let G = KAN be the Iwasawa decomposition of G (see
Eq. (A.7)) with K maximally compact, A abelian, and N nilpotent. Let NΓ be the
subgroup of N (see Definition 6.2) determined by the γi.

Let Φ : C\R≤0 → N ⊂ G be the unique solution of

(1.7)


Φ−1Φz =

n∑
i=1

zγie−αi on C\R≤0,

lim
z→0

Φ(z) = Id,

where Id ∈ G is the identity element, the limit exists because γi > −1, and the root
vectors e−αi ∈ g−αi are normalized as in (A.3) and (A.8).

Then all the solutions to (1.4) are

(1.8) Ui = − log〈i|Φ∗C∗Λ2CΦ|i〉+ 2γi log |z|, 1 ≤ i ≤ n,

where C ∈ NΓ and Λ ∈ A. Here for g ∈ G, g∗ = (gθ)−1 and θ is the Cartan
involution of G, and 〈i| · |i〉 is the highest matrix coefficient for the ith fundamental
representation (see the Appendix).

Consequently, all the solutions to (1.1) are

(1.9) ui = −
n∑
j=1

aij log〈j|Φ∗C∗Λ2CΦ|j〉+ 2γi log |z|, 1 ≤ i ≤ n,
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and they satisfy the following quantization result for the integrals (see (7.22))

(1.10)
n∑
j=1

aij

∫
R2
euj dx = π(2 + γi − κγi), 1 ≤ i ≤ n,

where κ is the longest element in the Weyl group and if −καi = αk, then −κγi :=
γk.

Sections 2 to 7 are devoted to the proof of this main theorem, and the approach
can be summarized as follows. In Sections 2 and 3, we develop the the structure
theories of the local solutions and of the W -invariants for the Toda system, and we
relate them. In Sections 4 and 5, we use the finite energy condition and the strength
of the singularities to greatly restrict the forms of the W -invariants and hence of the
solutions. In Section 6, we take up the monodromy consideration for the solutions
to be well-defined on the punctured plane. Finally in Section 7, we study the
quantization result for the finite integrals by establishing the close relationship of
our current work with that of Kostant [Kos79] on Toda ODE systems.

Consistently with the results in [LWY12,Nie16] for the Lie algebras of types A,B
and C, the solution space to the Toda system is parametrized by the subgroup ANΓ

of a corresponding complex Lie group G. When all the γi are integers, ANΓ = AN
(see Definition 6.2), and the solution space has the maximal dimension. Since N is
a complex group, the real dimension of AN is the same as the real dimension of a
real group corresponding to the real Lie algebra g0 (A.3).

For an element g in a classical Lie group G, we have that g∗ = ḡt is the conjugate
transpose. The abelian subgroup A can be chosen to consist of diagonal matrices
with positive real entries, and the nilpotent subgroup N can be chosen to con-
sist of unipotent lower-triangular matrices with complex entries. The fundamental
representations are contained in the wedge products of the standard representa-
tions together with the spin representations for the B and D cases. In Section 8
of the paper, we will relate the above general theorem 1.6 to the previous results
[LWY12,Nie16] in the A,B and C cases, and we will spell out more details for our
general theorem in the D case.

The nondegeneracy of the linearized system in this general setting of the Toda
system (1.1) for a simple Lie algebra will be pursued in a future work.

Acknowledgment. Z. Nie thanks the University of British Columbia and the
National Taiwan University for hospitality during his visits in the summer of 2015,
where part of this work was done. The research of J. Wei is partially supported by
NSERC of Canada.

2. Local solutions from holomorphic functions

In this section, we show that the solutions to the Toda system (1.4) for a general
simple Lie algebra locally all come from holomorphic data, which are generalizations
of the developing map in the Liouville case. Our approach follows [LS79], [LS92,
§3.1, §4.1], and [GL14, Appendix]. Since we only consider real-valued solutions to
the Toda systems, we only need the holomorphic data of [LS79] and the compact real
form (unitary structure) comes into play. In [GL14], similar results were obtained
for the periodic Toda systems and the loop groups.
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Therefore this section generalizes the well-known fact that locally the solutions
to the Liouville equation

(2.1) Uzz̄ = −e2U on an open set D ⊂ C
are

(2.2) U(z) = log
|f ′|

1 + |f |2
,

where f is a holomorphic function on D whose derivative is nowhere vanishing.
For simplicity, we introduce the notation C∗ = C\{0} and also recall that g−1 =

⊕ni=1g−αi as in (A.14). We use the terminology that a domain is a connected open
set in C.

Theorem 2.3. Let {Ui} be a set of solutions to the Toda system (1.4). Then there
exists a domain D ⊂ C\R≤0 containing 1 and a holomorphic map

(2.4) η : D → g−1; η(z) =
n∑
i=1

fi(z)e−αi ,

where the fi are holomorphic and nowhere zero on D, such that

(2.5) Ui = − log〈i|L∗L|i〉+
n∑
j=1

aij log |fj |2,

where L : D → N ⊂ G satisfies

(2.6) L−1Lz = η, L(1) = Id.

Here L∗ = (Lθ)−1, and 〈i| · |i〉 is the highest matrix coefficient between the ith
fundamental representation (see the Appendix).

On the other hand, a holomorphic map η =
∑n
i=1 fie−αi : D → g−1 as in (2.4)

on a simply connected domain D where the fi are nowhere zero gives rise to a set
of solutions {Ui} to the Toda system on D.

Proof. Using the notation and the setup in the Appendix, Eq. (1.4) has the follow-
ing zero-curvature equation on C∗

[∂z +A, ∂z̄ +Aθ] = 0, that is,(2.7)

−Az̄ + (Aθ)z + [A,Aθ] = 0, where

A = −
n∑
i=1

1
2Ui,zhαi +

n∑
i=1

exp
(

1
2

n∑
j=1

aijUj

)
e−αi ,(2.8)

Aθ =
n∑
i=1

1
2Ui,z̄hαi −

n∑
i=1

exp
(

1
2

n∑
j=1

aijUj

)
eαi .(2.9)

The zero-curvature equation can also be written as the Maurer-Cartan equation

dω +
1
2

[ω, ω] = 0

for the following Lie algebra valued differential form

ω = Adz +Aθdz̄ ∈ Ω1(C∗, g).

With dz = dx1 + i dx2 and dz̄ = dx1 − i dx2, it is also

ω = (A+Aθ)dx1 + i(A−Aθ)dx2.
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Since the Cartan involution θ on g is conjugate linear, we see that ω takes value
in the fixed subalgebra gθ = k (see the Appendix Subsection A.3). Therefore by
[Sha97, Theorems 6.1 and 7.14], there exists a map on the simply connected domain

F : C\R≤0 → K ⊂ G

to the compact subgroup K = Gθ such that

(2.10)

{
F−1dF = ω

F (1) = Id.

Therefore,

(2.11) F−1Fz = A, F−1Fz̄ = Aθ.

The F has the following Gauss decomposition (A.2) in a domain 1 ∈ D ⊂ C\R≤0

(2.12) F = LM exp(H)

where L : D → N = N− takes value in the negative nilpotent subgroup, and
M : D → N+ takes value in the positive nilpotent subgroup. Furthermore H =∑n
i=1 bihαi : D → h takes value in the Cartan subalgebra, and exp : h → H is the

exponential map to the Cartan subgroup. From F (1) = Id in (2.10), we see clearly
that L(1) = Id.

Now we show that L is holomorphic on D. By the second equation in (2.11), we
have

exp(−H)M−1(L−1Lz̄)M exp(H) + exp(−H)M−1Mz̄ exp(H) +Hz̄ = Aθ.

In view of (2.9), the components in n− = ⊕α∈∆+g−α (see (A.1)) of the above
equation give

(2.13) L−1Lz̄ = 0,

and the components in h give

bi,z̄ = 1
2Ui,z̄, 1 ≤ i ≤ n.

Thus we see that bi,zz̄ = 1
2Ui,zz̄. Taking the conjugate, we also have b̄i,zz̄ = 1

2Ui,zz̄
since Ui is real. Therefore,

(bi + b̄i)zz̄ = Ui,zz̄.

Hence we have, for 1 ≤ i ≤ n,

(2.14) bi + b̄i = Ui − pi
for some real-valued harmonic function pi on D.

By the first equation in (2.11), we have

exp(−H)M−1(L−1Lz)M exp(H) + exp(−H)M−1Mz exp(H) +Hz = A.

Since A ∈ g−1⊕ h by (2.8), we see that L−1Lz ∈ g−1. We denote it by η and write
it out in terms of the basis

(2.15) L−1Lz = η =
n∑
i=1

fi(z)e−αi .

Then the fi are holomorphic by (2.13). Furthermore, by (2.8) the component of
A in g−1 is

∑n
i=1 exp

(
1
2

∑n
j=1 aijUj

)
e−αi where all the coordinates are nowhere

zero, so the fi are nowhere zero on D. Thus we have shown (2.6) and (2.4).



GENERAL TODA SYSTEMS WITH SINGULAR SOURCES 7

Now following the physicists, we denote by |i〉 a highest weight vector in the ith
fundamental representation of G, and 〈i| a lowest weight vector in its dual right
representation such that 〈i|Id|i〉 = 1 (see the Appendix Subsection A.8).

From (2.12), we have
L = F exp(−H)M−1.

Therefore using the ∗ operation from the Appendix Subsection A.4, we have

(2.16) 〈i|L∗L|i〉 = 〈i|(M−1)∗ exp(−H̄)F ∗F exp(−H)M−1|i〉

=
〈
i
∣∣∣ exp

(
−

m∑
j=1

(bj + b̄j)hαj
)∣∣∣i〉 = e−(bi+b̄i),

where we have used the following facts. First, by F ∈ K we have F ∗F = Id.
Secondly, since M−1 ∈ N+ and |i〉 is a highest weight vector, we have M−1|i〉 = |i〉.
Similarly, (M−1)∗ ∈ N− and 〈i| is a lowest weight vector, so 〈i|(M−1)∗ = 〈i|.
Finally, we have hαj |i〉 = δij |i〉 (see Eq. (A.16)). Eq. (2.16) actually shows that
〈i|L∗L|i〉 is real, and this also follows from the Appendix Subsection A.9. Therefore
by (2.14),

(2.17) Ui = − log〈i|L∗L|i〉+ pi.

Now we show that for the above Ui to satisfy (1.4) with L in (2.15), we must have

pi =
n∑
j=1

aij log |fj(z)|2.

This follows from [LS92, §4.1.2] using the Jacobi identity from [LS92, §1.6.4], which
is more rigorously proved in [Nie15]. The identity says that for a general element
g ∈ Gs, the simply connected Lie group with Lie algebra g (see the Appendix
Subsection A.8), we have

(2.18) 〈i|g|i〉〈i|eαige−αi |i〉 − 〈i|ge−αi |i〉〈i|eαig|i〉 =
∏
j 6=i

〈j|g|j〉−aij .

From (2.17) and that pi is harmonic, we have

(2.19) Ui,zz̄ = −〈i|L
∗L|i〉〈i|L∗L|i〉zz̄ − 〈i|L∗L|i〉z〈i|L∗L|i〉z̄

〈i|L∗L|i〉2
.

Now by (2.13) and (2.15), we have

〈i|L∗L|i〉z = 〈i|L∗Lη|i〉 = fi(z)〈i|L∗Le−αi |i〉,

where we have used that for the ith fundamental representation we have e−αj |i〉 = 0
for j 6= i (see Eq. (A.16)). Taking the ∗ operation and noting (A.6), (2.15) also
gives

(2.20) (L∗)z̄(L∗)−1 = η∗ =
n∑
i=1

fi(z)eαi .

Therefore, similarly we have

〈i|L∗L|i〉z̄ = 〈i|η∗L∗L|i〉 = fi(z)〈i|eαiL∗L|i〉.

Furthermore, we have

〈i|L∗L|i〉zz̄ = |fi|2〈i|eαiL∗Le−αi |i〉.
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Now applying the Jacobi identity (2.18) to (2.19) with g = L∗L gives

Ui,zz̄ = −|fi|2
n∏
j=1

〈j|L∗L|j〉−aij

by aii = 2. By (2.17), this is

Ui,zz̄ = −|fi|2 exp
( n∑
j=1

aijUj −
n∑
j=1

aijpj

)
= − exp

(
log |fi|2 −

n∑
j=1

aijpj

)
exp

( n∑
j=1

aijUj

)
.

Therefore for the Ui to satisfy (1.4), we need log |fi|2−
∑n
j=1 aijpj = 0 which gives

pi =
n∑
j=1

aij log |fj |2.

This proves the formula (2.5).
Now given a holomorphic map η =

∑n
i=1 fie−αi : D → g−1 as in (2.4) on a

simply connected domain D where the fi are nowhere zero, we can construct a
L : D → G, which solves L−1Lz = η as in (2.6) but may not necessarily satisfy
the condition L(1) = Id. Construct the Ui as in (2.5), and they are checked to
satisfy the Toda system (1.4) in the same way as above, where the important point
is again the Jacobi identity (2.18). �

3. W -Invariants of the Toda systems

In this section, we first present the algebraic theories of W -invariants of Toda
systems as developed in [FF96, Nie14]. Then we present a result relating the W -
invariants with the local solutions from the last section.

By definition, a W -invariant (also called a characteristic integral) for the Toda
system (1.4) is a polynomial in the ∂kzUi for k ≥ 1 and 1 ≤ i ≤ n whose derivative
with respect to z̄ is zero if the Ui are solutions.

For example, for the Liouville equation (2.1),

(3.1) W = Uzz − U2
z

is a W -invariant since Wz̄ = 0 for a solution U . Furthermore, plugging in the local
solution (2.2), we have that

(3.2) W =
1
2

(
f ′′′

f ′
− 3

2

(f ′′
f ′

)2
)
,

that is, the W -invariant of the local solution becomes one half of the Schwarzian
derivative of the function f . We aim to generalize such results to general Toda
systems in this section.

For a general Toda system associated to a simple Lie algebra of rank n, there are
n basic W -invariants (see [FF96]) so that the other W -invariants are differential
polynomials in these. One of us in [Nie14] has given a concrete construction and
a direct proof of the basic W -invariants Wj for 1 ≤ j ≤ n. They are obtained by
conjugating one side of the following zero-curvature equation of the Toda system
to its Drinfeld-Sokolov gauge [DS84], which is in turn related to a Kostant slice of
the corresponding Lie algebra [Kos63].
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The Toda system (1.4) on C∗ is also expressed by the following zero-curvature
equation [

− ∂z + ε+
n∑
i=1

Ui,zhαi , ∂z̄ +
n∑
i=1

euieαi

]
= 0,

where ε =
∑n
i=1 e−αi ∈ g−1, and ui =

∑n
j=1 aijUj . (This zero-curvature equation

is related to but different from the one in (2.7), and the current one is not invariant
under the Cartan involution.) Let s be a Kostant slice of g, that is, a homogeneous
subspace s with respect to the principal grading (A.13) such that g = [ε, g] ⊕ s.
Then it is known [Kos63] that dim s = n. Let {sj}nj=1 be a homogeneous basis of s

ordered with nondecreasing gradings by (A.13).

Theorem 3.3 ([Nie14]). There exists a unique M0 ∈ N+, an element in the positive
nilpotent subgroup whose coefficients depend on the derivatives ∂kzUi for 1 ≤ i ≤ n
and k ≥ 1, such that

(3.4) M0

(
− ∂z + ε+

n∑
i=1

Ui,zhαi

)
M−1

0 = −∂z + ε+
n∑
j=1

Wjsj .

Then the Wj for 1 ≤ j ≤ n are the basic W -invariants of the Toda system.

The uniqueness of M0 is easily proved by induction on the grading (A.13) and
the fact from [Kos59] that

(3.5) ker adε ∩b+ = 0.

The right hand side of (3.4) is said to be in the Drinfeld-Sokolov gauge [DS84].
Here is the main result in this section which relates the W -invariants with the

holomorphic data η in (2.4) for local solutions. It generalizes the relation (3.2) to
a general Lie algebra.

Theorem 3.6. For the local solutions (2.5) on a simply connected domain D, there
exists a P1 ∈ B+, an element in the Borel subgroup whose coefficients depend on
the derivatives ∂kz fi for 1 ≤ i ≤ n and k ≥ 0, such that

(3.7) P1

(
− ∂z +

n∑
i=1

fi(z)e−αi
)
P−1

1 = −∂z + ε+
n∑
j=1

Wjsj ,

where the Wj are the W -invariants computed by (3.4) for the local solutions (2.5).
Furthermore P1 is unique up to the finite center of G and is holomorphic on D.

Proof. First we show that for the local solutions (2.5), the W -invariants are also
computed by

(3.8) M1

(
− ∂z + ε+

n∑
i=1

Fihαi

)
M−1

1 = −∂z + ε+
n∑
j=1

Wjsj ,

where M1 ∈ N+, and

(3.9) Fi =
n∑
j=1

aij∂z log fj =
n∑
j=1

aij
f ′j
fj

is the part of Ui,z in (3.4) using just the summand pi =
∑n
j=1 a

ij log |fj |2 in (2.5).
We note that the log’s are well-defined since D is simply connected.
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If we do not impose that the solutions Ui in (2.5) are real-valued, then instead
of (2.20) we can solve for T : D → G such that

(3.10)

{
Tz̄T

−1 =
∑n
i=1 gi(z̄)eαi ,

T (1) = Id,

for n anti-holomorphic functions g1(z̄), . . . , gn(z̄). Then in analogy to the local
solutions (2.5), all the

UTi = − log〈i|T (z̄)L(z)|i〉+
n∑
j=1

aij log(fj(z)gj(z̄)), 1 ≤ i ≤ n,

are solutions to the Toda system (1.4) on D. Clearly the Ui in (2.5) corresponds
to T = L∗, that is, UL

∗

i = Ui in (2.5).
Now the W -invariants WT

j of the solutions UTi satisfy ∂z̄WT
j = 0. Since the WT

j

are polynomials in the ∂kzU
T
i for k ≥ 1, we see that when computing them, we can

in place of the UTi use

ŨTi = − log〈i|T (z̄)L(z)|i〉+
n∑
j=1

aij log fj(z),

that is, we can discard the anti-holomorphic part
∑n
j=1 a

ij log gj(z̄).
Now since ∂z̄WT

j = 0, we see that the WT
j are independent of the T (z̄) in (3.10).

Therefore the WL∗

j = Wj in (3.4) is that same as the W Id
j using the simplest

T (z̄) = Id. Then

Ũ Idi =
n∑
j=1

aij log fj(z)

since 〈i|Id · L(z) = 〈i|L(z) = 〈i| by L(z) ∈ N− and hence 〈i|Id · L(z)|i〉 = 1.
Replacing the Ui in (3.4) by the above Ũ Idi proves (3.8) since Ũ Idi,z = Fi in (3.9).

Now we show that on the simply connected D there is a conjugation to transform
−∂z +

∑n
i=1 fie−αi to −∂z + ε+

∑n
i=1 Fihαi . We choose

(3.11) Q1 = exp
( n∑
k=1

( n∑
j=1

akj log fj
)
hαk

)
∈ H.

Since [hαk , e−αi ] = −aike−αi by (A.10), we have

AdQ1 e−αi = exp
(
−

n∑
k=1

( n∑
j=1

akj log fj
)
aik

)
e−αi = exp

(
− log fi

)
e−αi =

1
fi
e−αi .

It is also clear that

−Q1∂zQ
−1
1 = ∂zQ1Q

−1
1 =

n∑
i=1

( n∑
j=1

aij∂z log fj
)
hαi =

n∑
i=1

Fihαi .

Therefore we have

Q1

(
− ∂z +

n∑
i=1

fie−αi

)
Q−1

1 = −∂z −Q1∂zQ
−1
1 +

n∑
i=1

fi
1
fi
e−αi

= −∂z +
n∑
i=1

Fihαi + ε.

(3.12)
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Then Eq. (3.7) is proved with P1 = M1Q1 ∈ B+.
Again P1 is unique up to the finite center of G by (3.5). Therefore P1 is holo-

morphic since both the fi and the Wj in (3.7) are holomorphic. �

Remark 3.13. Consider a curve L : D → N− on a simply connected domain such
that L−1Lz = η =

∑n
i=1 fi(z)e−αi . Such a curve is called an integral curve of the

standard differential system on N− ⊂ G/B+ [Nie15]. The above proof shows that
there exists a P0 in B+ unique up to the center of G such that

P0(−∂z + η)P−1
0 = −∂z +

n∑
j=1

Ijsj .

It can be shown by the method of moving frames [MB08] that the Ij are the
differential invariants for the curve L(z) under the natural action of G on N− ⊂
G/B+.

These are the natural generalizations of the Schwarzian derivative for the group
SL2C to other simple Lie groups. See also [DZ13].

4. Use the finite energy condition

In this section, we adapt the analytical estimates from [BM91,LWY12] using the
finite energy condition and the strength of the singularities to determine the simple
forms of the W -invariants, which will be shown to further restrict the solutions in
the next section.

For a differential monomial in the Ui, we call by its degree the sum of the orders
of differentiation multiplied by the algebraic degrees of the corresponding factors.
For example the above W = Uzz − U2

z in (3.1) for the Liouville equation has a
homogeneous degree 2. It is known from [FF96] and also clear from (3.4) that the
W -invariants Wj involve the ∂kzUi for k ≥ 1 and that the homogeneous degree of
Wj is the same as the degree dj of the corresponding primitive adjoint-invariant
function of the Lie algebra g [Kos59]. We call such degrees the degrees of the simple
Lie algebra and we have listed them in the Appendix Subsection A.11.

Proposition 4.1. The W -invariants for the Toda system (1.4) are

(4.2) Wj =
wj
zdj

, z ∈ C∗, 1 ≤ j ≤ n,

where the dj are the degrees of the Lie algebra g and the wj are constants.

Proof. This proof is an adaption of the proof in [LWY12] of the corresponding
assertion in their Eq. (5.9).

Following [LWY12, Eq. (5.10)], introduce

(4.3) Vi = Ui − 2γi log |z|, 1 ≤ i ≤ n.

Then system (1.4) becomes
∆Vi = −4|z|2γi exp

( n∑
j=1

aijVj

)
,∫

R2
|z|2γi exp

( n∑
j=1

aijVj

)
dx <∞.
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As γi > −1, applying Brezis-Merle’s argument in [BM91], we have that Vi ∈ C0,α

on C for some α ∈ (0, 1) and that they are upper bounded over C. Therefore we
can express Vi by the integral representation formula, and we have

∂kzVi(z) = O(1 + |z|2+2γi−k) near 0,

∂kzVi(z) = O(|z|−k) near ∞,∀ k ≥ 1.
(4.4)

Therefore from (4.3), we have

∂kzUi(z) = O(|z|−k) near 0,∀ k ≥ 1,

∂kzUi(z) = O(|z|−k) near ∞,∀ k ≥ 1.
(4.5)

By Wj,z̄ = 0 and that Wj has degree dj , we see from the above estimates that
zdjWj is holomorphic and bounded on C∗. Therefore zdjWj = wj is a constant by
the Liouville theorem, and so (4.2) holds. �

Theorem 4.6. The W -invariants for the Toda systems (1.4) are also computed by

(4.7) P2

(
− ∂z +

n∑
i=1

zγie−αi

)
P−1

2 = −∂z + ε+
n∑
j=1

Wjsj ,

where P2 : C\R≤0 → B+ is holomorphic and unique up to the finite center of G.

Proof. First we show that the W -invariants for the Toda system (1.4) are also
computed by

(4.8) M2

(
− ∂z + ε+

n∑
i=1

γi

z
hαi

)
M−1

2 = −∂z + ε+
n∑
j=1

Wjsj ,

where M2 ∈ N+.
The Wj are polynomials in the ∂kzUi for k ≥ 1, and Wj = wj

zdj
by (4.2). Since

γi > −1, by (4.4) and (4.5) for the orders at 0, we see that all the terms involving
∂kzVi will not appear in the final form of Wj since their orders of pole are not high
enough. Therefore the Wj can also be computed using just the

2γi log |z| = γi log z + γi log z̄

component of Ui in (4.3). Then the term Ui,z in (3.4) can be replaced by γi

z , and
we get (4.8).

Next we use again the conjugation in (3.11) in our situation, and let

Q2 = exp
( n∑
k=1

log zγ
k

hαk

)
.

Then by (3.12) or by direct computation, we have

Q2

(
− ∂z +

n∑
i=1

zγie−αi

)
Q−1

2 = −∂z + ε+
n∑
i=1

γi

z
hαi .

Then (4.7) is proved with P2 = M2Q2 ∈ B+.
Similarly to Theorem 3.6, P2 is unique up to the finite center of G and is holo-

morphic. �
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5. The holomorphic functions in the local solutions

The W -invariants play essential roles in our approach to classify the solutions.
The work [LWY12] classified the solutions to the Toda systems of type A by relating
them to an ODE whose coefficients are the W -invariants. In this section, we will
use the W -invariants to largely restrict the holomorphic functions fi(z) (2.4) in the
local solutions (2.5) to be fi(z) = zγi as long as we allow some constant group
element.

Theorem 5.1. The local solutions Ui (2.5) on a simply connected domain D ⊂
C\R≤0 that are solutions to (1.4) have the following form

(5.2) Ui = − log〈i|Φ∗g∗gΦ|i〉+ 2γi log |z|, 1 ≤ i ≤ n,
where Φ satisfies (1.7) and g ∈ G is a constant group element.

Proof. We introduce the notation

(5.3) ζ =
n∑
i=1

zγie−αi ,

and then (1.7) becomes Φ−1Φz = ζ.
Consider s = exp(πiE0) where E0 is defined in (A.12) such that αi(E0) = 1 for

1 ≤ i ≤ n. Then Ads e−αi = −e−αi and also Ads−1 e−αi = −e−αi . Actually s2 is in
the center of the group G. We also note that such an element s plays an important
role in Kostant’s approach to the Toda lattices [Kos79, Eq (3.5.5)], where it is called
m.

By Theorem 3.6 and Theorem 4.6, we see that for P = s−1P−1
2 P1s : D → B+

we have
P−1(∂z + ζ)P = s−1P−1

1 P2s(∂z + ζ)s−1P−1
2 P1s

= s−1P−1
1 P2(∂z − ζ)P−1

2 P1s

= −s−1P−1
1

(
− ∂z + ε+

n∑
j=1

Wjsj

)
P1s

= s−1(∂z − η)s = ∂z + η.

(5.4)

Therefore
P−1Pz + P−1ζP = η.

Now consider the product ΦP : D → G from the simply connected domain D to
the group G. We have

(ΦP )−1(ΦP )z = P−1Φ−1ΦzP + P−1Pz = P−1ζP + P−1Pz = η.

Comparison with (2.6) gives, on the basis that both L and ΦP are holomorphic on
D, that

(5.5) L = gΦP,

where g ∈ G is a constant element and actually g = ((ΦP )(1))−1 by the requirement
that L(1) = Id in (2.6).

Now let P = QM be its decomposition with Q ∈ H and M ∈ N+, and write
Q = exp

(∑n
j=1 qjhαj

)
. Then considering the components in g−1 from (5.4), we

have
η = Q−1ζQ.
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By [−hαj , e−αi ] = aije−αi from (A.10) and from the definitions (2.4), (5.3), we see
that

fi = zγie
Pn
j=1 aijqj .

It follows that
n∑
j=1

aij log fj = log zγ
i

+ qi, and

(5.6)
n∑
j=1

aij log |fj |2 = 2γi log |z|+ qi + q̄i, 1 ≤ i ≤ n.

Since |i〉 is a highest weight vector of the ith fundamental representation, we see
that

P |i〉 = QM |i〉 = Q|i〉 = eqi |i〉,
by M ∈ N+ and hαj |i〉 = δij |i〉. Taking the ∗ operation (and using (A.17)), we
have 〈i|P ∗ = eq̄i〈i|.

Therefore by (5.5) and (5.6), the Ui from (2.5) becomes

Ui = − log〈i|L∗L|i〉+
n∑
j=1

aij log |fj |2

= − log〈i|P ∗Φ∗g∗gΦP |i〉+
n∑
j=1

aij log |fj |2

= − log〈i|Φ∗g∗gΦ|i〉 − (qi + q̄i) +
n∑
j=1

aij log |fj |2

= − log〈i|Φ∗g∗gΦ|i〉+ 2γi log |z|.
�

6. The final monodromy consideration

In the local solution (5.2), write the Iwasawa decomposition (A.7)

g = FΛC

with F ∈ K, Λ ∈ A and C ∈ N . Then (5.2) becomes (1.8) by F ∗F = Id and
Λ∗ = Λ.

The solutions Ui in (1.8) are well-defined on C\R≤0 after the branch cut for the
functions zγi . Clearly the Ui satisfy the Toda system (1.4) by the other direction
in Theorem 2.3 and have the right strength of singularities at the origin. Therefore
we have shown that all local solutions are at least defined on C\R≤0 and are of the
form (1.8).

We now want to show that for the Ui in (1.8) to be well-defined on C∗, C needs
to belong to a suitable subgroup NΓ of N . This subgroup was introduced in [Nie16]
already in the classification result for Toda systems of types B and C.

With the Ej ∈ h0 as in (A.11), consider the following element in the Cartan
subgroup

(6.1) tΓ := exp
(

2πi
n∑
j=1

γjEj

)
= exp

(
2πi

n∑
j=1

γjhαj

)
∈ H.

Clearly t−1
Γ = t∗Γ.
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Definition 6.2. The subgroup NΓ ⊂ N is the centralizer of tΓ in N , that is,

NΓ = {C ∈ N |CtΓ = tΓC}.

Remark 6.3. Here is a more concrete description of NΓ. For a positive root α ∈ ∆+,
write α =

∑n
i=1miαi in terms of the simple roots {αi}ni=1. Define the number

α(Γ) =
∑n
i=1miγi where we replace αi by γi. Also define the subset ∆Γ of ∆+ as

∆Γ = {α ∈ ∆+ |α(Γ) ∈ Z}, and the Lie subalgebra nΓ of n as nΓ =
⊕

α∈∆Γ
g−α.

Then NΓ is the subgroup of N corresponding to nΓ. The reason is that clearly
α(Γ) = α(

∑n
j=1 γjEj) by (A.11), and so AdtΓ eα = exp(2πiα(Γ))eα. Hence we see

that

(6.4) nΓ = nAdtΓ and NΓ = NAdtΓ

are the fixed point sets of the adjoint actions by tΓ.

Theorem 6.5. The Ui in (1.8) are well-defined on C∗ if and only if

C ∈ NΓ.

Proof. For the Ui in (1.8) to be well-defined on C∗, we need that the Ui are invariant
under the change of z 7→ e−2πiz, that is, when one travels once (clockwise) around
the origin.

By the definition (6.1), we have

n∑
j=1

(ze−2πi)γje−αj =
n∑
j=1

zγje−2πγjie−αj = AdtΓ
( n∑
j=1

zγje−αj

)
.

Hence the corresponding solution toΦ̃−1Φ̃z = −
n∑
j=1

(ze−2πi)γje−αj on C\R≤0,

Φ̃(0) = Id,

is

Φ̃(z) = AdtΓ Φ(z) = tΓΦ(z)t−1
Γ .

Therefore the corresponding solution (1.8) to the Toda system is

Ũi = − log〈i|Φ̃∗C∗Λ2CΦ̃|i〉+ 2γi log |z|
= − log〈i|Φ∗t∗ΓC∗Λ2CtΓΦ|i〉+ 2γi log |z|,

where we have used that t∗Γ = t−1
Γ , t−1

Γ |i〉 = e−2πiγi |i〉, and 〈i|tΓ = e2πiγi〈i| from
(6.1). Note that ΛtΓ = tΓΛ since both belong to the Cartan subgroup H. From
γi > −1, it can be shown that the above Ũi is equal to the Ui in (1.8) iff

CtΓ = tΓC,

that is, C ∈ NΓ. �
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7. Relation with Kostant’s work and quantization

In this section, we obtain an explicit expression for the Φ in (1.7) inspired by
[Kos79] and this allows us to obtain the quantization result for the integrals of our
solutions. This section thus establishes a very concrete relationship of our work
with that of Kostant for Toda ODEs (see Proposition 7.14).

Following [LWY12], we denote

(7.1) µi = γi + 1 > 0, 1 ≤ i ≤ n.

Inspired by [Kos79], we introduce the following notation, using (A.11) and (5.3),

w0 =
n∑
i=1

µiEi ∈ h,

ξ = zζ =
n∑
i=1

zµie−αi ∈ g−1.

(7.2)

(It is easy to see from (6.1) that t−1
Γ exp(2πiw0) belongs to the center of G.) For the

concrete expression for Φ in (1.7), we introduce the following setup after [Kos79].
Let S be the set of all finite sequences

(7.3) s = (i1, . . . , ik), k ≥ 0, 1 ≤ ij ≤ n.

We write |s| for the length k of the element s ∈ S, and we also write

(7.4) ϕ(s) =
|s|∑
j=1

αij , ϕ(s, w0) = ϕ(s)(w0) = 〈ϕ(s), w0〉 =
|s|∑
j=1

µij ,

where 〈·, ·〉 is the natural pairing between h′0 and h0 (see (A.3)). Note that ϕ(s) is
equal to the constant function 0 on h if |s| = 0.

For 0 ≤ j ≤ |s| − 1, let sj ∈ S be the sequence obtained from s by “cutting off”
the first j terms (different from [Kos79])

(7.5) sj = (ij+1, . . . , i|s|),

and define

(7.6) p(s, w0) =
|s|−1∏
j=0

〈ϕ(sj), w0〉.

Note then when |s| = 0, we have p(s, w0) = 1. Clearly when |s| ≥ 1, we have

(7.7) p(s, w0) = ϕ(s, w0)p(s1, w0).

Let U(n) = U(n−) be the enveloping algebra of n. For convenience write e−i =
e−αi for i = 1, . . . , n. For s ∈ S as in (7.3), put

(7.8) e−s = e−ik · · · e−i2e−i1 .

We note that the ξ in (7.2) is

(7.9) ξ =
n∑
i=1

zϕ((i),w0)e−(i),

where the s are the simplest (i) for 1 ≤ i ≤ n.
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Proposition 7.10. In the space D̂(N) (see the Appendix Subsection A.8), we have

(7.11) Φ =
∑
s∈S

zϕ(s,w0)e−s
p(s, w0)

.

Proof. We denote the right hand side of (7.11) by Υ, and we show that it satisfies
(1.7) and hence it is equal to Φ. Clearly Υ(0) = 1 corresponding to the empty s.
We also have

(7.12) Υz =
∑
s∈S

ϕ(s, w0)zϕ(s,w0)−1e−s
p(s, w0)

=
1
z

∑
|s|≥1

zϕ(s,w0)e−s
p(s1, w0)

by (7.7).
Let s ∈ S and let {t1, . . . , tn} be the set of all t ∈ S such that t1 = s according

to (7.5). Then by (7.9) and (7.4), we have

zϕ(s,w0)e−s
p(s, w0)

ξ =
n∑
i=1

zϕ(ti,w0)e−ti

p(s, w0)
=

n∑
i=1

zϕ(ti,w0)e−ti

p((ti)1, w0)
.

Therefore we have

(7.13) Υξ =
∑
|s|≥1

zϕ(s,w0)e−s
p(s1, w0)

.

Combining (7.12) and (7.13), we see Υz = 1
zΥξ = Υζ. Therefore Υ−1Υz = ζ,

and (7.11) is proved. �

For its own interest, we have the following algebraic characterization of our Φ in
(1.7), where it was originally defined by an ODE.

Proposition 7.14. The unique map Ψ : C \ R<0 → N = N− such that

(7.15)

{
Ψ−1w0Ψ = w := w0 − ξ,
Ψ(0) = Id

is Ψ = Φ from (1.7).

Proof. Our Ψ is modeled after [Kos79], and its existence and uniqueness (up to the
center of G) follow from Lemma 3.5.2 there. Note that when z = 0, ξ(0) = 0 and
so Ψ(0) can be chosen to be Id. This makes the Ψ unique.

Now we show that Ψ = Φ by verifying that it satisfies the ODE in (1.7). We
note that by (7.2) and (A.11), we have

wz = −
n∑
i=1

µiz
γie−αi = [w0, ζ].

With ψ := Ψ−1Ψz ∈ n = n−, we differentiate (7.15) to get [w,ψ] = wz, which is
then

(7.16) [w0 − zζ, ψ] = [w0, ζ].

We now show that this equation implies that ψ = ζ. We write ψ =
∑
i≤−1 ψi

according to the grading (A.13), and we also note that ζ ∈ g−1. Furthermore by
(7.2) and (7.1), we see that

ker adw0 ∩ n− = 0.
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The components in g−1 of (7.16) give that [w0, ψ−1] = [w0, ζ] and so ψ−1 = ζ.
The components in g−2 of (7.16) give that [w0, ψ−2] − [zζ, ψ−1] = 0, and so by
ψ−1 = ζ we have ψ−2 = 0. A quick induction then shows that all ψi = 0 for
i ≤ −3. Therefore ψ = ζ, and Ψ = Φ by (1.7). �

Remark 7.17. A proof following [Kos79, Prop. 5.8.2] can also be constructed to
show directly that Ψ = Υ for the Υ and Ψ in Propositions 7.10 and 7.14.

Let λ be a dominant weight, and let V λ be the corresponding irreducible repre-
sentation. Let κ be the longest Weyl group element which maps positive roots to
negative roots. Then κλ is the lowest weight of V λ (see the Appendix Subsection
A.10). Throughout the paper we denote the action of κ on h′0 without parentheses.
In the following calculations, we use the Hermitian metric {·, ·} on V λ which is in-
variant under the compact subgroup Ks of Gs (see the Appendix Subsection A.9).
Choose vectors vλ ∈ Vλ and vκλ ∈ Vκλ in the one-dimensional highest and lowest
weight spaces such that

{vλ, vλ} = 1, {vκλ, vκλ} = 1.

(One can choose vκλ to be s0(κ)vλ where s0(κ) ∈ Gs induces the longest Weyl
element κ. See [Kos79, Eq. (5.2.10)].)

With the notation (7.4) and (7.8), the vector e−svλ is a weight vector with weight
−ϕ(s) + λ. Since different weight spaces are orthogonal, by Proposition 7.10 we
have

(7.18) {Φvλ, vκλ} =
( ∑
s∈Sλ

cs,λ
p(s, w0)

)
z〈λ−κλ,w0〉,

where Sλ = {s ∈ S |ϕ(s) = λ − κλ}, and cs,λ = {e−svλ, vκλ}. It is known that
coefficient in the parentheses is nonzero by [Kos79, Prop. 5.9.1] (and can be made
positive real with suitable choices).

The following theorem is the main result of this section. It provides the asymp-
totic behavior of our solutions and proves the quantization result for our integrals.

Theorem 7.19. The solutions Ui in (1.8) satisfy that

(7.20) Ui = 2(γi − 〈ωi − κωi, w0〉) log |z|+O(1), as z →∞,

where ωi is the ith fundamental weight. Consequently, the solutions ui in (1.9)
satisfy that

(7.21) ui = −2(2− κγi) log |z|+O(1), as z →∞,

where if −καi = αk then −κγi = γk.
The finite integrals in (1.1) are quantized as

(7.22)
n∑
j=1

aij

∫
R2
euj dx = π(µi − κµi),

where −κµi = 〈−καi, w0〉. Therefore we have

(7.23)
n∑
j=1

aij

∫
R2
euj dx = 2π(1 + γi), 1 ≤ i ≤ n,

except the following cases:
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(i) g = An, we recover the quantization in [LWY12]

(7.24)
n∑
j=1

aij

∫
R2
euj dx = π(2 + γi + γn+1−i), 1 ≤ i ≤ n.

(ii) g = D2n+1 and i = 2n or 2n+ 1, we have

−
∫

R2
eu2n−1 dx+ 2

∫
R2
eu2n dx = π(2 + γ2n + γ2n+1),

−
∫

R2
eu2n−1 dx+ 2

∫
R2
eu2n+1 dx = π(2 + γ2n + γ2n+1).

(7.25)

(iii) g = E6 and using the labeling in the Appendix Subsection A.5, we have
6∑
j=1

aij

∫
R2
euj dx = π(2 + γ1 + γ6), i = 1, 6,

6∑
j=1

aij

∫
R2
euj dx = π(2 + γ3 + γ5), i = 3, 5,

(7.26)

Proof. To show the asymptotic behavior (7.20), we prove

(7.27) e−Ui = |z|−2γi |z|2〈ωi−κωi,w0〉(ci + o(1)), as z →∞.

By (1.8) and (A.18), we have

e−Ui = |z|−2γi〈i|Φ∗C∗Λ2CΦ|i〉 = |z|−2γi{ΛCΦvωi ,ΛCΦvωi}.

We know that
{ΛCΦvωi ,ΛCΦvωi} =

∑
v

∣∣{ΛCΦvωi , v}
∣∣2,

where the sum ranges over an orthonormal basis of weight vectors of the ith fun-
damental representation Vi. By Proposition 7.10 and that µi > 0 from (7.1), we
see that the highest power of z appears in the norm squared of {ΛCΦvωi , vκωi},
that is, the coordinate of ΛCΦvωi in the lowest weight vector vκωi . Furthermore,
by (A.17) we have

{ΛCΦvωi , vκωi} = {Φvωi , C∗Λvκωi} = Λκωi({Φvωi , vκωi}+ lower order terms),

where Λκωi = exp(〈κωi, H〉) if Λ = exp(H) for H ∈ h. Using (7.18), we see that
(7.27) holds with

ci = (Λκωi)2
∣∣∣ ∑
s∈Sωi

cs,ωi
p(s, w0)

∣∣∣2.
By ui =

∑n
j=1 aijUj , γi =

∑n
j=1 aijγ

j , αi =
∑n
j=1 aijωj , and 〈αi, w0〉 = µi, and

assuming that −καi = αk for some 1 ≤ k ≤ n, we see

ui =
n∑
j=1

aijUj = 2(γi − 〈αi − καi, w0〉) log |z|+O(1)

= 2(γi − µi − µk) log |z|+O(1) = −2(2 + γk) log |z|+O(1)

= −2(2− κγi) log |z|+O(1),

which is (7.21).
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Integrating (1.5) and using (7.20), we have

4
∫

R2
eui dx = 4πγi − lim

R→∞

∫
∂BR

∂Ui
∂ν

ds

= 4π〈ωi − κωi, w0〉.

The linear combinations of the above using the Cartan matrix clearly give (7.22),
which implies the more concrete version (1.10) in Theorem 1.6.

Except three cases, −κ = Id and so (7.23) follows immediately. The three
exceptions are for the Lie algebras of type An, D2n+1 and E6, where −κ represents
the symmetry of the Dynkin diagram of the Lie algebra. In the An case,

−καi = αn+1−i, 1 ≤ i ≤ n,

that is, −κ is the reflection of the Dynkin diagram about its center. Therefore we
have (7.24), and this is the quantization result in [LWY12, Theorem 1.3], up to the
factor of 4.

In the D2n+1 case, we have

−κα2n = α2n+1, −κα2n+1 = α2n, −καi = αi, 1 ≤ i ≤ 2n− 1,

that is, −κ permutes the last two roots at the node and preserves the others. This
proves (7.25).

In the E6 case, using the labeling in the Appendix Subsection A.5 we have

−κα1 = α6, −κα6 = α1,

−κα3 = α5, −κα5 = α3,

−κα2 = α2, −κα4 = α4.

This then proves (7.26). �

8. Examples and relations with previous results

For classical groups, we discuss the Lie-theoretic setups in more concrete terms.
To make our result more explicit especially to the analysts, we present the examples
of A2 Toda systems and relate them with the previous results in [LWY12, Nie16].
Then we will present the example of D4 to illustrate our new result in this paper.

It is known [FH91] that the Lie groups SLn+1C and SpnC are simply connected,
but π1(SOmC) ∼= Z/2 for m ≥ 3 and its universal cover is SpinmC. However as
discussed in the Appendix Subsection A.8, all the calculations can be done in the
simpler SOmC.

Then for an element g in these classical groups, g∗ = ḡt is the conjugate trans-
pose. The compact subgroups K ⊂ G are characterized by g−1 = g∗, and they
are

SU(n+ 1) ⊂ SLn+1C, SO(2n+ 1) ⊂ SO2n+1C,
Sp(2n) ⊂ Sp2nC, SO(2n) ⊂ SO2nC.

Clearly for SLn+1C, the nilpotent subgroup N consists of unipotent lower-
triangular matrices with complex entries, and the abelian subgroup A consists of
diagonal matrices with positive entries that multiply to 1.
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Choose the symmetric and skew-symmetric bilinear forms κm and Ω2n for SOmC
and Sp2nC to be

(8.1) κm =

 1

. .
.

1


m×m

, Ω2n =
(

κn
−κn

)
.

Then the nilpotent subgroups N ⊂ G in these cases consist of unipotent lower-
triangular matrices with complex entries, which preserve the corresponding bilinear
forms. The abelian subgroups A ⊂ G consist of diagonal matrices with positive
entries whose symmetric pairs with respect to the secondary diagonal multiply to
1.

The first fundamental representations of these classical groups are just their
standard representations, that is, the standard actions of SLn+1C on Cn+1, SOmC
on Cm, and Sp2nC on C2n. The ith fundamental representations are the irreducible
representations with the same highest weights in the ith wedge products of the
standard representations, except that at the end there are 1 spin representation
for Bn and two half-spin representations for Dn. Therefore the highest matrix
coefficients 〈i| · |i〉 are just the leading principal minors of rank i of the matrices in
the standard representations, except for the spin representations where one needs
to do more work.

Example 8.2 (A2 Toda system). The group is G = SL3C, and the solution to
Φ−1Φz =

∑2
i=1 z

γie−αi =

 0
zγ1 0

zγ2 0


Φ(0) = Id

is

Φ(z) =

 1
zµ1

µ1
1

zµ1+µ2

µ2(µ1+µ2)
zµ2

µ2
1

 .

General elements Λ ∈ A and C ∈ N are of the form

Λ =

λ0

λ1

λ2

 , C =

 1
c10 1
c20 c21 1

 ,

where λi > 0 and λ0λ1λ2 = 1. Then

X := ΛCΦ =

 λ0

λ1

(
zµ1

µ1
+ c10

)
λ1

λ2

(
zµ1+µ2

µ2(µ1+µ2) + c21
zµ1

µ1
+ c20

)
λ2

(
zµ2

µ2
+ c21

)
λ2

 .

Therefore by Theorem 1.6, we see that

e−U1 = |z|−2γ1
〈1|X∗X|1〉 = |z|−2γ1

(X∗X)1,1

= |z|−2γ1
(
λ2

0 + λ2
1

∣∣∣zµ1

µ1
+ c10

∣∣∣2 + λ2
2

∣∣∣ zµ1+µ2

µ2(µ1 + µ2)
+ c21

zµ1

µ1
+ c20

∣∣∣2).
Noting that our γ1 is their α1, this clearly matches with the main Theorem 1.1
in [LWY12] after some suitable correspondence. In particular, Eq. (1.11) there
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matches our condition that λ0λ1λ2 = 1 by the coefficient 4 in our equation (1.1)
and that our power functions now have the coefficients for the µ’s.

Furthermore, the condition that if γj+1 + · · ·+γi /∈ Z for some j < i, then cij = 0
exactly matches our current condition that C ∈ NΓ.

For the Toda systems of types A (and C and B), the U1 determines the other
Ui’s. So our current result is compatible with [LWY12].

Similarly for Toda systems of type C and B, the current results are related to
those in [Nie16]. Now let us present the D4 example in some detail, since this
illustrates our new result.

Example 8.3 (D4 Toda system). For simplicity, we present this example using con-
crete numbers. Let γ1 = − 1

2 , γ2 = 1, γ3 = 2, γ4 = 3, and then γ1 = 3, γ2 = 13
2 , γ

3 =
17
4 , γ

4 = 19
4 by γi =

∑n
j=1 a

ijγj .
The solution to

Φ−1Φz =
∑4
i=1 z

γie−αi =



0

1√
z

0

z 0

z2 0

z3 0 0

−z3 −z2 0

−z 0

− 1√
z

0


Φ(0) = Id

is

Φ(z) =



1 0 0 0 0 0 0 0

2
√
z 1 0 0 0 0 0 0

1
5 z

5
2 1

2 z
2 1 0 0 0 0 0

2
165 z

11
2 1

15 z
5 1

3 z
3 1 0 0 0 0

1
156 z

13
2 1

24 z
6 1

4 z
4 0 1 0 0 0

− 1
1026 z

19
2 − 1

108 z
9 − 1

12 z
7 − 1

4 z
4 − 1

3 z
3 1 0 0

1
6210 z

23
2 1

540 z
11 11

540 z
9 1

12 z
6 1

10 z
5 − 1

2 z
2 1 0

− 64
312455 z

12 − 768
312455 z

23
2 − 384

13585 z
19
2 − 8

65 z
13
2 − 8

55 z
11
2 4

5 z
5
2 −2

√
z 1


.

General elements Λ ∈ A and C ∈ N are of the form

Λ = diag(λ1, λ2, λ3, λ4, λ
−1
4 , λ−1

3 , λ−1
2 , λ−1

1 ), λi > 0,

C =



1
c21 1
c31 c32 1
c41 c42 c43 1
c51 c52 c53 0 1
c61 c62 c63 c64 c65 1
c71 c72 c73 c74 c75 c76 1
c81 c82 c83 c84 c85 c86 c87 1


.

Solving Ctκ8C = κ8 (see (8.1)), we see that the coordinates are the c’s above the
secondary diagonal, that is, the cij for j < i ≤ 8 − j, 1 ≤ j ≤ 3, and the other c’s
are solved in these.
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Furthermore, for the current γ’s, α(Γ) in Remark 6.3 is not an integer if α
contains α1. Therefore the subgroup NΓ in our case is obtained by letting ci1 = 0
for 2 ≤ i ≤ 7, which are coordinates corresponding to the roots α1, α1 + α2, α1 +
α2 + α3, α1 + α2 + α4, α1 + α2 + α3 + α4, α1 + 2α2 + α3 + α4.

The solution space in this case has dimension 16 = 4+2·6 and is parametrized by
the positive numbers λ1, . . . , λ4 and the complex numbers c32, c43, c53, c42, c52, c62,
which are coordinates corresponding to the roots α2, α3, α4, α2 + α3, α2 + α4, α2 +
α3 + α4.

Therefore with X = ΛCΦ, we see that

e−U1 = |z|−2γ1
(X∗X)1,1,

e−U2 = |z|−2γ2
(X∗X)[1,2],[1,2],

where U2 involves the leading principal 2× 2 minor.
Now to determine U3 and U4, we need the 3rd and the 4th fundamental repre-

sentations of D4, which are the two half-spin representations. (There is the triality,
the symmetry for α1, α3 and α4 in the case of D4, but we disregard that since that
symmetry is not valid for higher Dn.) Then U3 and U4 are expressed in terms of
the highest matrix coefficient of X∗X for the spin representations. These can be
concretely computed, with the help of a computer algebra system such as Maple,
by the Lie algebra spin representations and the exponential map. (See [FH91] for
more details on the spin representations).

Appendix A. Background and setup from Lie theory

In this appendix, we provide the details for the Lie-theoretic background and
setup needed in this paper. Our basic references are [Kna02,Hel78,FH91].

A.1. Cartan subalgebra and root space decomposition. Let g be a complex
simple Lie algebra. The Killing form B(X,Y ) = Tr(adX adY ) is a symmetric
nondegenerate bilinear form on g, where adX : g → g; Z 7→ [X,Z] is the adjoint
action of X. Let h be a fixed Cartan subalgebra, whose dimension n is the rank of
the Lie algebra.

Let g = h ⊕
⊕

α∈∆ gα be the root space decomposition of g with respect to h,
where ∆ denotes the set of roots. The roots are linear functions on the Cartan
subalgebra h, and for Xα ∈ gα and H ∈ h, we have [H,Xα] = α(H)Xα. It is known
that dimC gα = 1.

Let ∆ = ∆+ ∪∆− be a fixed decomposition of the set of roots into the sets of
positive and negative roots, and let Π = {α1, . . . , αn} be the set of positive simple
roots.

We furthermore introduce the following standard subalgebras of g

(A.1) n = n− = ⊕α∈∆+g−α, n+ = ⊕α∈∆+gα, b+ = h⊕ n+.

A.2. Gauss decomposition. Let G be a connected complex Lie group whose Lie
algebra is g. Let H be the Cartan subgroup of G corresponding to h. Denote the
subgroups of G corresponding to n = n−, n+ and b+ in (A.1) by N = N−, N+ and
B+. Here B+ is called a Borel subgroup of G. Then by the Gauss decomposition
(see [LS92, Eq. (1.5.6)] and [Kos79, Eq. (2.4.4)]), there exists an open and dense
subset Gr of G, called the regular part, such that

(A.2) Gr = N−N+H.
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We note that HN+ = N+H by hn = (hnh−1)h, where h ∈ H and n ∈ N+. Clearly
Gr contains the identity element of G.

A.3. Split and compact real forms. By [Kna02, Theorem 6.6 and Corollary
6.10], the complex Lie algebra g has a split real form

(A.3) g0 = h0 ⊕
⊕
α∈∆

Reα,

where h0 = {H ∈ h |α(H) ∈ R,∀α ∈ ∆}, and the eα ∈ gα form a Cartan-Weyl
basis.

There exists a basis Hαi for 1 ≤ i ≤ n of h0 such that

(A.4) B(Hαi , H) = αi(H), ∀H ∈ h.

The positive definite Killing form B on h0 also introduces an inner product on the
real dual space h′0 = HomR(h0,R) by (αi, αj) = B(Hαi , Hαj ) for 1 ≤ i, j ≤ n.

The split real form (A.3) defines a Cartan decomposition of the Lie algebra into
vector subspaces

g = k⊕ ik,

k = ih0 +
∑
α∈∆+

R(eα − e−α) +
∑
α∈∆+

Ri(eα + e−α),

ik = h0 +
∑
α∈∆+

Ri(eα − e−α) +
∑
α∈∆+

R(eα + e−α).

(A.5)

Here k is subalgebra and it is compact in the sense that the restriction of the Killing
form B|k×k is negative definite.

The Cartan decomposition (A.3) determines the Cartan involution θ of g which is
+1 on k and −1 on ik. We often write Xθ for θ(X) with X ∈ g. Define X∗ = −Xθ,
and we see that

(A.6) H∗αi = Hαi , (iHαi)
∗ = −iHαi , e∗α = e−α, and (ieα)∗ = −ie−α.

Therefore ∗ and θ are conjugate linear with respect to the split real form.

A.4. Iwasawa decomposition. From the Cartan decomposition (A.5), we also
have the following Iwasawa decomposition [Kna02, Proposition 6.43] of the Lie
algebra into Lie subalgebras

g = k⊕ a⊕ n, where a = h0, n = n−.

Let G be a connected complex Lie group whose Lie algebra is g. Then we have the
corresponding Iwasawa decomposition on the group level [Kna02, Theorem 6.46]

(A.7) G = KAN,

whereK,A andN are the subgroups inG corresponding to k, a and n. The subgroup
K is compact, the subgroup A is abelian, and the subgroup N is nilpotent. The
groups A and N are simply connected. (The usual version using n+ = ⊕α∈∆+gα
implies our current version using n− after one application of the Cartan involution
θ.)

The Cartan involution θ on g also lifts to the group G [Kna02, Theorem 6.31],
and we continue to denote it by the same notation. Then K = Gθ is the subgroup
fixed by θ. For g ∈ G, define g∗ = (gθ)−1. Then (gh)∗ = h∗g∗, and an element
F ∈ K if and only if F ∗F = Id. Furthermore, from (A.6) we see that (N+)∗ = N−.
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For the purpose of doing representation theory, we let Gs be a connected and
simply connected Lie group with Lie algebra g. Then it is known that Gs is the
universal covering of a general G whose Lie algebra is g. Let Gs = KsAsNs be
its Iwasawa decomposition, while G = KAN is the Iwasawa decomposition of G.
Then A and N are simply connected and hence isomorphic to As and Ns. Only
Ks is a covering of K.

A.5. Cartan matrices and classification of simple Lie algebras. We further
specify the normalization of the eαi and e−αi for 1 ≤ i ≤ n in (A.3) by requiring
that

(A.8) αi(hαi) = 2, where hαi = [eαi , e−αi ].

By [Kna02, Eq. (2.93)], the relation of the hαi with the basis (A.4) is that

(A.9) hαi =
2Hαi

B(Hαi , Hαi)
=

2Hαi

(αi, αi)
.

The benefit of the choice of the hαi is that the Lie subalgebra generated by eαi , hαi ,
and e−αi is isomorphic to a copy of sl2 with the standard basis

e =
(

0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
.

Then the Cartan matrix (aij) of g is

(A.10) aij = αi(hαj ) =
2(αi, αj)
(αj , αj)

, 1 ≤ i, j ≤ n.

There are four infinite series of classical complex simple Lie algebras and five
exceptional Lie algebras with the following Cartan matrices

An = sln+1 :

 2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1
−1 2

 , Bn = so2n+1 :

 2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −2
−1 2

 ,

Cn = sp2n :

 2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1
−2 2

 , Dn = so2n :


2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1 −1
−1 2
−1 2

 ,

G2 :
(

2 −1
−3 2

)
, F4 :

( 2 −1
−1 2 −2
−1 2 −1
−1 2

)
,

E6 :

 2 −1
2 −1

−1 2 −1
−1 −1 2 −1

−1 2 −1
−1 2

 , E7 :


2 −1

2 −1
−1 2 −1
−1 −1 2 −1

−1 2 −1
−1 2 −1
−1 2

 ,

E8 :


2 −1

2 −1
−1 2 −1
−1 −1 2 −1

−1 2 −1
−1 2 −1
−1 2 −1
−1 2

 .

In the above, the labelling of the roots for the exceptional Lie algebras follows
[Kna02, pp 180-1]. We require that n ≥ 2 for Bn and Cn, and n ≥ 3 for Dn.
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Furthermore we have the following isomorphisms

B2
∼= C2, D3

∼= A3.

A.6. Principal grading. There exist Ej ∈ h0 such that

(A.11) αi(Ej) = δij , for 1 ≤ i, j ≤ n.

By (A.10), we have Ej =
∑n
k=1 a

kjhαk , where (akj) is the inverse Cartan matrix.
Define the so-called principal grading element

(A.12) E0 =
n∑
j=1

Ej ∈ h0, such that αi(E0) = 1, for 1 ≤ i ≤ n.

Define gj = {x ∈ g | [E0, x] = jx}. Then

(A.13) g =
∑
j

gj

is the principal grading of g, and we have

(A.14) g−1 = ⊕ni=1g−αi .

A.7. Representation spaces. The weight lattice is ΛW = {β ∈ h′0 |β(hαi) ∈
Z,∀1 ≤ i ≤ n}. A weight β is called dominant if (β, αi) ≥ 0 for all 1 ≤ i ≤ n. The
weight lattice is a lattice generated by the fundamental weight ωi for 1 ≤ i ≤ n
such that

ωi(hαj ) =
2(ωi, αj)
(αj , αj)

= δij .

An irreducible representation ρ of g on a finite-dimensional complex vector space
V has the weight space decomposition V = ⊕Vβ , where β ∈ ΛW and ρ(H)(v) =
β(H)v for H ∈ h and v ∈ Vβ . There exists a unique highest weight λ with a
one-dimensional highest weight space Vλ such that ρ(n+)Vλ = 0.

The Theorem of the Highest Weight [Kna02, Theorem 5.5] asserts that up to
equivalence, the irreducible finite-dimensional complex representations of g stand
in one-one correspondence with the dominant weights which sends an irreducible
representation to its highest weight. We denote the irreducible representation space
corresponding to a dominant weight λ by V λ.

There is a canonical pairing between the dual space V ∗ = Hom(V,C) and V
denoted by 〈w, v〉 ∈ C with v ∈ V and w ∈ V ∗. V ∗ has a right representation ρ∗ of
g defined by

(A.15) 〈wρ∗(X), v〉 = 〈w, ρ(X)v〉, X ∈ g.

The representation corresponding to the ith fundamental weight ωi is called the
ith fundamental representation Vi of g. We choose a highest weight vector in Vi
and following the physicists [LS92] we called it by |i〉. We choose a vector 〈i| in
the lowest weight space in V ∗i and require that 〈i|Id|i〉 = 1 for the identity element
Id ∈ G. For simplicity, we will omit the notation ρ for the representation.

Therefore we have (see [LS92, Eq. (1.4.19)])

(A.16) X|i〉 = 0, ∀X ∈ n+; hαj |i〉 = δij |i〉; and e−αj |i〉 = 0, ∀j 6= i.

That is, in the ith fundamental representation, only e−αi may bring the highest
weight vector down. Similarly we have 〈i|Y = 0 for Y ∈ n = n−, and 〈i|eαj = 0 if
j 6= i.
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A.8. Lift the representation to the group. Let Gs be a connected and simply
connected Lie group whose Lie algebra is g. Then all the irreducible representations
of g lift to representations of Gs, and in particular the fundamental representations
Vi do. For g ∈ Gs, the pairing 〈i|g|i〉 is called the highest matrix coefficient [LS92, p.
45] because it is the matrix coefficient for the highest weight vector.

It is clear that g|i〉 = |i〉 for g ∈ N+, 〈i|g = 〈i| for g ∈ N−, and exp(H)|i〉 =
eωi(H)|i〉 for H ∈ h from the corresponding Lie algebra facts in Subsection A.7.

A representation of g also leads to a representation for the universal enveloping
algebra U(g) [Kna02]. For µ, ν ∈ U(g) and g ∈ Gs, 〈i|νgµ|i〉 denotes the pairing of
〈i|ν in V ∗i with g(µ|i〉) in Vi.

In our main Theorem 1.6, we can work with a general Lie group G whose Lie
algebra is g instead of only the simply connected Gs. The reason is that the
simply connected compact subgroup Ks of Gs is used only in passing. Our results
are expressed using N and A, and they are simply connected and the same for a
general G and the simply connected Gs (see Subsection A.4).

In Section 7 on asymptotic behaviors and quantization, we also need the following
setup from [Kos79, §5.7]. Let C[Gs] be the group algebra of Gs where Gs is regarded
as an abstract group. Let D(Gs) = C[Gs]⊗CU(g). We endow D(Gs) with the weak
∗ topology, and let D̂(Gs) be its completion.

Also let D(N) = D(N−) be the subalgebra of D(Gs) generated by N = N− and
n = n−, and let D̂(N) = D̂(N−) be the closure of D(N) in D̂(Gs). Our Proposition
7.10 is stated in this space D̂(N), where an element in N is expressed in U(n).

A.9. The real structure using invariant Hermitian form. There is a more
concrete realization of the dual V ∗i in Subsection A.7. By averaging, there is a
Hermitian metric {·, ·} on Vi (conjugate linear in the second position) invariant
under the compact group Ks of a simply connected Gs. The important property
of this Hermitian form is that [Kos79, Eq. (5.11)]

(A.17) {gu, v} = {u, g∗v}, g ∈ Gs, u, v ∈ Vi.

Therefore we have an isomorphism V̄i → V ∗i ; v 7→ {·, v}, where V̄ is the vector
space V with the conjugate scalar multiplication. Furthermore the right represen-
tation of G on V ∗ now corresponds to the right action V̄ ×G→ V̄ ; (v, g)→ g∗v by
comparing (A.15) and (A.17). Choose vωi ∈ Vi to be a highest weight vector for
the ith fundamental representation, and we require that {vωi , vωi} = 1. Then the
term in (1.8) is, with g = ΛCΦ,

(A.18) 〈i|g∗g|i〉 = {g∗gvωi , vωi} = {gvωi , gvωi} > 0.

A.10. Weyl group. The Weyl group W of a Lie algebra g is the finite group
generated by the reflections in the simple roots on h′0

ri(β) = β − 2(β, αi)
(αi, αi)

αi, 1 ≤ i ≤ n.

In the Weyl group, there is a unique element κ ∈W that is the longest element
in the sense that when one writes it as a product of the simple reflections it has
the maximal length. (Actually the maximal length is the number of positive roots.)
This κ on h′0 maps all the positives roots to the negative roots and vice versa.
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The κ is −Id except in the following cases: An, D2n+1 and E6, where −κ
represents the outer-automorphism of the corresponding Lie algebra represented
by the symmetry of its Dynkin diagram. (See [Dav08, Remark 13.1.8].)

Therefore −καi is still a simple root and it is hence αk for some 1 ≤ k ≤ n. In
fact −καi = αi except the three cases mentioned above.

For the irreducible representation Vλ with a highest weight λ, its lowest weight
is κλ.

A.11. Degrees of primitive adjoint-invariant functions on g. The degrees of
the primitive homogeneous adjoint-invariant functions of the simple Lie algebras
are listed as follows

Lie algebras degrees
An 2, 3, · · · , n+ 1
Bn 2, 4, · · · , 2n
Cn 2, 4, · · · , 2n
Dn 2, 4, · · · , 2n− 2, n
G2 2, 6
F4 2, 6, 8, 12
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
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