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Abstract

Starting from a bound state (positive or sign-changing) solution to

−∆ωm = |ωm|p−1ωm − ωm in Rn, ωm ∈ H2(Rn)

and solutions to the Helmholtz equation

∆u0 + λu0 = 0 in Rn, λ > 0,

we build new Dancer’s type entire solutions to the nonlinear scalar equation

−∆u = |u|p−1u − u in Rm+n.

1 Introduction

The purpose of this note is to construct new entire (positive or sign-changing) solutions for the elliptic equation

−∆u = |u|p−1 u − u in Rm+n, (1)

where the exponent p > 1 and satisfies some conditions. A solution to (1) corresponds to a standing wave to the
nonlinear Schrödinger equation

−iut = ∆u + |u|p−1u, in Rm+n. (2)

It also serves as models in different areas of applied mathematics such as pattern formation in mathematical biology.
Equation (1) has been studied extensively and there is a vast literature on this subject. Let us first describe

the classical example of Dancer’s solutions. To describe these solutions, we recall that when n = 0, equation (1)
reduces to

−∆u = |u|p−1 u − u in Rm, (3)

which admits a unique positive radially symmetric ground state solution wm decaying exponentially fast to zero at
infinity, provided that p is subcritical, i.e. 1 < p < m+2

m−2 . The linearized equation of (3) around wm is

Lwmη = −∆η +
(
1 − pwp−1

m

)
η,

acting on H2 (Rm) . The essential spectrum of Lwm is [1,+∞). It is known that this operator has a unique negative
eigenvalue −λ1. We choose a corresponding positive eigenfunction Z1 (x). Dancer [8] first constructed new positive
solutions with only partial decaying using bifurcation theory. He proved that for n = 1, there exists a family of
solutions to (1) with the following behavior:

u(x, y) = wm(x) + εZ1(x) cos(
√
λ1y) + o(εe−

1
2 |x|), |ε| << 1, (x, y) ∈ Rm+1. (4)

Moreover such solutions are periodic in y. We call this type of solutions as Dancer’s type.
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The existence of Dancer’s solution generates lots of interest in constructing other type of solutions. Variational
and gluing methods have been successfully applied in the construction of solutions. There is also a deep connection
between the solutions of (1) and the constant mean curvature surfaces (CMC). We refer to [2, 8, 14, 15, 17] and the
references therein for more discussions.

In this paper we extend Dancer’s type solutions to general dimensions n ≥ 3. Let ωm be a bound state solution
(not necessary positive) of equation (3) with ωm (x) → 0 as |x| → +∞. Existence results of this type solutions for
subcritical exponent p could be found in [3, 4]. There are also plenty of sign-changing radial solutions. In fact,
for each integer k ≥ 0 there are sign-changing radial solutions with k zeroes. There are also infinitely many sign-
changing solutions without any symmetry. See [5, 2, 7]. Slightly abusing the notation, we use (x, y) to denote the
vectors in Rm+n, where x represents the first m coordinates. Denote the positive eigenvalues of −Lωm as λ1, ..., λk,
with the corresponding eigenfunctions Z1, ..., Zk. Let Zk+1, ..., Zl be the eigenfunctions of the zero eigenvalue. We
could also assume that Z1, ..., Zl consists an orthonormal basis for the nonnegative eigenspace in L2(Rm). (Note that
we don’t assume the non-degeneracy of w.)

Our main result can be stated roughly as follows: Starting from solutions to the Helmholtz equation

∆u j + λ ju j = 0 in Rn, j = 1, ..., k, (5)

we find a family of solutions to (1) with the following asymptotic behavior:

u(x, y) = ωm(x) + ε

k∑

j=1

Z j(x)u j(y) + o(εe−
1
2 |x|), (x, y) ∈ Rm+n. (6)

As a consequence, for n ≥ 3, there are abundance of solutions near ωm(x). Unlike the classical Dancer’s solution,
these solutions are not periodic in the y variable. As a matter of fact, they converge to ωm (x) as |y| → ∞. The
existence of these type of solutions makes it more difficult to classify entire solutions near the ground state profile.
Nevertheless we believe that all solutions near ωm should be described by (6). We refer to [6, 12] and the references
therein for partial progress on this issue.

Our idea of the proof is in the spirit similar to that of [13], where existence of small amplitude solutions to
the Ginzburg-Landau equation in dimension 3 and 4 has been proved. In [11], using dual variational method, the
existence of a sequence of solutions uk of

∆u + u + |u|p−1u = 0 in Rn,

with ‖uk‖Lp → +∞, has been proved under certain condition on p and n. A similar functional-analytical frame was
used.

To describe our main results, we need to introduce some notations. Let λ > 0 be a fixed positive number.
Consider the so-called Helmholtz equation

∆u + λu = 0 in Rn. (7)

We are interested in solutions to (7) with the following decaying property

|u (y)| ≤ C (1 + |y|)− n−1
2 . (8)

There are plenty many solutions to (7) satisfying (8). We start with radial solutions. Let s be a parameter and
n ≥ 2. Consider the equation

ϕ′′ +
n − 1

r
ϕ′ +

(
1 − s2

r2

)
ϕ = 0. (9)

For n = 2, it has a regular solution J2,s, which is the Bessel functions of the first kind. For general n ≥ 2, (9) has a
regular solution

Jn,s (r) = r1− n
2 J

2,
√

( n
2−1)2

+s2
(r) .

It is known that
Jn,s (r) ≤ C (1 + r)−

n−1
2 .

Hence Jn,0(
√
λr) is a solution to (7)-(8).
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Given finitely many points y j ∈ Rn, j = 1, ..., q, functions of the form

q∑

j=1

Jn,0

(√
λ(y − y j)

)

are also solutions of (7) satisfying (8) . In [10], solutions of (7) satisfying (8) with zero level sets arbitrarily close to
any compact surfaces are constructed.

Our main result states that from these solutions of the Helmholtz equation we could construct solutions of (1) .

Theorem 1. Let n ≥ 6 and p ≥ n+2
n−2 . For any ε with |ε| small enough, there is a solution uε to the equation

∆u + |u|p−1 u − u = 0, in Rm+n,

such that

uε = ωn (x) + ε

k∑

j=1

Z j (x) u j (y) + o (ε)

where u j are solutions of (7)-(8), with λ j being the negative eigenvalues of Lωm .

As a corollary of the proof of this theorem, in the case that ωm is the positive radially symmetric solution wm,
we have the following result.

Corollary 2. Let n ≥ 5 and p ≥ n+3
n−1 . Let wm be the unique positive solutions of (1). For any ε with |ε| small enough,

there is a positive solution uε to (1) such that

uε = wm (x) + εZ1 (x) u1 (y) + o (ε) .

Observe that in this corollary, we allow n = 5. This is partly due to the fact that wm is nondegenerate in certain
sense.

Remark 3. We don’t know the decay rates of these solutions to ωm as y goes to infinity.

When we are considering the existence of solutions radially symmetric in the y variable, the requirement that
p ≥ n+3

n−1 could be slightly relaxed. This is the content of our next theorem.

Theorem 4. Let n ≥ 4 and p > n+1
n−1 . For any ε with |ε| small enough, there is a positive solution uε to (1) which is

radially symmetric in the y variable and

uε (x, y) = wm (x) + εJn,0

( √
λ1 |y|

)
+ o (ε) .

When p is an integer, using the same method, we could obtain similar result for n = 3.

Theorem 5. Let n = 3 and p > 1 be an integer. For any ε with |ε| small enough, there is a positive solution uε to
(1) , radially symmetric in the y, such that

uε (x, y) = wm (x) + εJn,0

( √
λ1 |y|

)
+ o (ε) .

Remark 6. An open question is the case of n = 2. We don’t know whether or not there are similar solutions. We
believe that our method of proof for these theorems could potentially be used in other settings.

We will use contraction mapping principle to prove these results. The conditions on p and n are used to ensure
the contraction mapping properties. In Section 2, we prove Theorem 1 and sketch the proof of Corollary 2. In
section 3, we prove Theorem 4 and Theorem 5.

Throughout the paper, we use C to denote a general constant which may vary from step to step.

Acknowledgement. The research of J. Wei is partially supported by NSERC of Canada. Part of the paper was
finished while Y. Liu was visiting the University of British Columbia in 2016. He appreciates the institution for its
hospitality and financial support.
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2 Proof of Theorem 1 and Corollary 2
We first prove Theorem 1. For each ε with |ε| small enough, we will construct a solution uε to (1) in the form:

uε (x, y) = ωm (x) +

l∑

i=1

Zi (x) fi (y) + Φ (x, y) ,

where we require that Φ is orthogonal to Zi in the following sense:
∫

Rm
Φ (x, y) Zi (x) dx = 0, for any y, i.

We obtain that the equations satisfied by fi and Φ are

−∆Φ +
(
1 − p |ωm|p−1

)
Φ +

[−∆ fi − λi fi
]
Zi (x) = N ( f ,Φ) .

Here

N ( f ,Φ) = |uε|p−1 uε − |ωm|p−1 ωm − p |ωm|p−1


l∑

i=1

Zi (x) fi (y) + Φ

 .

Introduce the constant p̄ := min {p, 2} . We have the following estimate for N :

|N ( f ,Φ)| ≤ C


l∑

i=1

| fi| p̄ + |Φ| p̄,
 (10)

provided that | fi| and |Φ| are small.
Let fi (y) = εui (|y|) + hi (y), where for i = 1, ..., k, λi > 0 and ui satisfies

∆ui + λiui = 0 in Rn, |ui| ≤ C(1 + |y|)− n−1
2 (11)

For i = k + 1, ..., l, λi = 0 and ui ≡ 0.
Then we need to solve

−∆Φ +
(
1 − p |ωm|p−1

)
Φ + [−∆hi − λih] Zi (x) = N ( f ,Φ) . (12)

For the sake of convenience, we introduce the notation

LΦ := −∆Φ +
(
1 − p |ωm|p−1

)
Φ.

To get a solution for (12) , it will be sufficient to deal with the system
{ −∆hi − λihi =

∫
Rm

[
Zi (x) N ( f ,Φ)

]
dx, i = 1, ..., l,

LΦ = N ( f ,Φ) −∑l
i=1 Zi (x)

∫
Rm

[
Zi (x) N ( f ,Φ)

]
dx.

(13)

Throughout the paper, we use q′ to denote the conjugate exponent of q. That is,

q′ =
q

q − 1
.

We need the following important generalized Sobolev type inequality (Theorem 2.3 in [16]).

Lemma 7. Suppose the exponent q satisfies

2
n + 1

≤ 1
q′
− 1

q
≤ 2

n
. (14)

Then
‖Φ‖Lq(Rn) ≤ C ‖∆Φ + Φ‖Lq′ (Rn) . (15)
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Note that if u ∈ Lq, then uq−1 ∈ Lq′ . Inequality (14) is equivalent to

n − 2
n
≤ 2

q
≤ n − 1

n + 1
.

That is,
2 (n + 1)

n − 1
≤ q ≤ 2n

n − 2
.

Recall that p̄ = min {p, 2} . Hence under the assumption that n ≥ 6 and p ≥ n+2
n−2 , we have

p̄ ≥ 2n
n − 2

− 1 =
n + 2
n − 2

.

To solve (13) ,we first consider the solvability of the equation

LΦ = ξ (16)

for given function ξ. For this purpose, we introduce the functional space to work with.

Definition 8. The space Eα consists of functions ξ defined on Rm+n satisfying

‖ξ‖∗,α := ‖ξ‖Lα(Rm+n) + ‖ξ‖L∞(Rm+n) < +∞.
The space Ēα consists of l-tuple of functions η = (η1, ..., ηl) with ηi defined on Rn, satisfying

‖η‖∗∗,α := Σl
i=1 ‖ηi‖Lα(Rn) + Σl

i=1 ‖ηi‖L∞(Rn) < +∞.

We will choose q to be 2n
n−2 . Then

q′ =
q

q − 1
=

2n
n + 2

.

Lemma 9. Suppose ‖ξ‖∗,q′ < +∞ and
∫

Rm
ξ (x, y) Zi (x) dx = 0, for any y, i.

Then the equation (16) has a solution Φ satisfying

‖Φ‖∗,q ≤ C ‖ξ‖∗,q′
and ∫

Rm
Φ (x, y) Zi (x) dx = 0, for any y, i.

Proof. Note that q = 2n
n−2 > 2 and hence q′ < 2. We then have

‖ξ‖L2 ≤ C ‖ξ‖∗,q′ .

Consider the operator L acting on the space of functions in H2 (Rm+n) even in x variable and which additionally
orthogonal to Zi (x) for each y, i. Then 0 is not in the spectrum of L and hence we have an even solution Φ for the
equation LΦ = ξ, with ‖Φ‖L2 ≤ C ‖ξ‖L2 ≤ C ‖ξ‖∗,q′ and

∫

Rm
Φ (x, y) Zi (x) dx = 0, for any y, i.

On the other hand, since we impose the orthogonality condition on Φ, we also have the L∞ bounds for Φ, that is,

‖Φ‖L∞ ≤ C ‖ξ‖L∞ ≤ C ‖ξ‖∗,q′ .
Therefore, using the fact that q > 2, we find that ‖Φ‖Lq ≤ C ‖Φ‖∗,2 ≤ C ‖ξ‖∗,q′ . This finishes the proof. �
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With all these estimates at hand, we could use the contraction mapping principle to prove Theorem 1.

Proof of Theorem 1. For each h = (h1, ..., hl) with ‖h‖∗∗,q ≤ M1ε
p̄, where M1 is a large constant, we consider the

equation

LΦ = N ( f ,Φ) −
l∑

i=1

Zi (x)
∫

Rm

[
Zi (x) N ( f ,Φ)

]
dx.

Note that the right hand side of this equation is automatically orthogonal to Z (x) for each y. By Lemma 9, we could
write it as

Φ = L−1

N ( f ,Φ) −
l∑

i=1

Zi(x)
∫

Rm
Zi (x) N ( f ,Φ) dx

 := N̄ (h,Φ) .

Observe that the function |ui| p̄ is in Lq′ :
∫

Rn
|ui|p̄q′ dy ≤ C

∫ +∞

0
(1 + r)−

n−1
2

n+2
n−2

2n
n+2 rn−1dr ≤ C.

Now suppose ‖Φ‖∗,q ≤ M2ε
p̄, where M2 is a large constant. Then using the fact that p̄ ≥ q − 1, we deduce

∥∥∥|Φ| p̄
∥∥∥

Lq′ (Rm+n) =

(∫
|Φ| p̄q′

) 1
q′

≤
(
|Φ|(p̄−(q−1))q′

∫
|Φ|(q−1)q′

) 1
q′

≤ M2ε
p̄2
.

Also we observe that

∫

Rn

(∫

Rm
Zi (x) |η (x, y)| dx

)q′

dy ≤
∫

Rn


(∫

Rm
[Z (x)]q dx

) 1
q
(∫

Rm
|η (x, y)|q′ dx

) 1
q′


q′

dy

≤ C ‖η‖q′
Lq′ .

This together with (10) implies that

‖N ( f ,Φ)‖Lq′ ≤ Cε p̄ + (M1 + M2) ε p̄2
.

On the other hand, it follows from direct computation that

‖N ( f ,Φ)‖L∞ ≤ Cεp̄ + (M1 + M2) εp̄2
.

We could then check that N̄ maps the balls of radius M2ε
p̄ of Eq into itself for M2 large enough and ε sufficiently

small.
Next we show that N̄ is a contraction mapping. To see this, for two function Φ1,Φ2, we compute

‖N (h,Φ1) − N (h,Φ2)‖Lq′ ≤ Cεp̄−1 ‖Φ1 − Φ2‖Lq′ ,

‖N (h,Φ1) − N (h,Φ2)‖L∞ ≤ Cεp̄−1 ‖Φ1 − Φ2‖L∞ .

This in turn will imply that N̄ is a contraction map. We then conclude that it has a unique fixed point in the ball of
radius M2ε

p̄, denote it by Φh.
To solve the system (13), it remains to solve the system of equations

−∆h j − λ jh j =

∫

Rm

[
Z j (x) N ( f ,Φh)

]
dx, j = 1, ..., l.

We write it as

h j = D j

(∫

Rm
Z j (x) N ( f ,Φh) dx

)
:= D j (h) , j = 1, ..., l.
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Here the operator D j = limε→0

(
−∆ − λ j + iε

)−1
. Then we are finally lead to solve the fixed point problem

h = D(h) := (D1(h), ...,Dl(h)). (17)

Making use of the estimate of Lemma 7, we could show that D (h) maps the ball of radius M1ε
p̄ of Ēq into itself for

M1 large and ε small and is a contraction mapping. We therefore get a fixed point h for this mapping, which yields
a solution for our original problem. �

In the rest of this section, we sketch the proof of Corollary 2. In this case, we seek for a solution in the form

uε (x, y) = wm (x) + Z1 (x) f (y) + Φ (x, y) .

Note that Z1 is radially symmetric in x. Here Φ is required to be radially symmetric in x and orthogonal to Z1 for
each y. We write the function f in the form f (y) = εu1 (y) + h (y) . Then similar as before, we prove the existence
of solution by contraction mapping principle in suitable Banach spaces. Here we could work with functions h in
the space Fα, and Φ in the space F̄α, defined similarly as before.

Definition 10. The space Fα consists of functions ξ defined on Rm+n which is radially symmetric in x, satisfying

‖ξ‖∗,α := ‖ξ‖Lα(Rm+n) + ‖ξ‖L∞(Rm+n) < +∞.
The space F̄α consists of functions η defined on Rn, satisfying

‖η‖∗∗,α := ‖η‖Lα(Rn) + ‖η‖L∞(Rn) < +∞.
Then we choose the exponent α to be

α =
2(n + 1)

n − 1
.

With this choice, under the assumption of Corollary 2, for n ≥ 5, one has p̄ = min{p, 2} ≥ α − 1. Then the rest of
the proof follows from the arguments in that of Theorem ??.

3 Proof of Theorem 4 and Theorem 5
We first prove Theorem 4. The idea is still using contraction mapping principle but we make the advantage of radial
symmetry. For the sake of convenience, we drop the subscript of wm and simply write it as w. We also write Z1 as
Z, λ1 as λ. Denoting r = |y| . We are looking for a solution uε in the form

uε (x, y) = w (x) + Z (x) f (r) + Φ.

Here Φ is radially symmetric in x and in y. Plug this into the equation

−∆uε + uε − |uε|p = 0,

we get

LΦ +

[
− f ′′ − n − 1

r
f ′ − λ f

]
Z (x) = N ( f ,Φ) .

Let f (r) = εJn,0 (r) + h (r) . Then we need to solve

LΦ +

[
−h′′ − n − 1

r
h′ − λh

]
Z (x) = N

(
εJn,0 + h,Φ

)
. (18)

Here we require that ∫

Rm
Φ (x, y) Z (x) dx = 0, for any y.

We are lead to solve { −h′′ − n−1
r h′ − λh =

∫
Rm Z (x) N

(
εJn,0 + h,Φ

)
dx

LΦ = N
(
εJn,0 + h,Φ

) − Z (x)
∫
Rm Z (x) N

(
εJn,0 + h,Φ

)
dx.

We need to solve the equation
LΦ = ξ (19)

for given function ξ defined in Rm+n.
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Definition 11. The space S β consists of those functions ξ radially symmetric in the x and y variable, with

‖ξ‖ := sup
(x,y)

∥∥∥∥ξ (x, y) (1 + |y|)β e−
1
2 |x|

∥∥∥∥
C0,α(B(x,y)(1))

< +∞.

The space S̄ β consists of those radially symmetric functions η defined in Rn, with

‖η‖ˆ,β := sup
∥∥∥(1 + |y|)β η (y)

∥∥∥
C0,α(By(1)) < +∞.

Lemma 12. Suppose ξ is function radially symmetric in x, y with ‖ξ‖ < +∞ and
∫

Rm
ξ (x, y) Z (x) dx = 0, for any y.

Then the equation (19) has a solution Φ, radially symmetric in x, y, satisfying

‖Φ‖ ≤ C ‖ξ‖ .
Proof. The proof of this type result is by now standard, we omit the details and refer to [9] for a proof. �

Next we proceed to the analysis of the first equation of the system. Let η be a function which decays at certain
rate at infinity. The homogeneous equation

h′′ +
n − 1

r
h′ + λh = 0

has two linearly independent solutions Jn (·) and Nn (·) . They both decay like r−
n−1

2 at infinity. Jn is regular near 0
and Nn is singular near 0. Moreover, Nn (r) = O

(
r2−n

)
for r close to zero. Variation of parameter formula tells us

that the function

Nn (r)
∫ r

0
Jn (s) η (s) sn−1ds − Jn (r)

∫ r

0
Nn (s) η (s) sn−1ds

is a solution of the nonhomogeneous equation

h′′ +
n − 1

r
h′ + λh = η. (20)

Lemma 13. Let η ∈ S̄ β with β > n+1
2 . Then the equation (20) has a solution h ∈ S̄ n−1

2
satisfies

‖h‖ˆ, n−1
2
≤ C ‖η‖ˆ,β .

Proof. Consider the following solution for (20) :

h (r) := Nn (r)
∫ r

0
Jn (s) η (s) sn−1ds − Jn (r)

∫ r

0
Nn (s) η (s) sn−1ds.

We have, for r > 1,

|h (r)| ≤ C ‖η‖ˆ,β r−
n−1

2

∫ r

0
s

n−1
2 −βds

≤ C ‖η‖ˆ,β (1 + r)−
n−1

2 .

This gives us the desired estimate. �

With these a priori estimate, one could prove Theorem 4 by contraction mapping principle, similar as before.
We omit the details.

Now we proceed to prove Theorem 5. We consider the case p = 2. The other cases are similar, but notations
will be heavier. The main point to prove this theorem is to prove a priori estimate for the solutions of the equation
(20) . Since n = 3, the fundamental solution J3 and N3 of the ODE

ϕ′′ +
2
r
ϕ′ + λϕ = 0
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has the asymptotic behavior

J (r) := J3 (r) = r−1 cos
(√
λr − ζ

)
+ O

(
r−2

)
, as r → +∞.

N (r) := N3 (r) = r−1 sin
(√
λr − ζ

)
+ O

(
r−2

)
, as r → +∞.

where ζ ∈ R is a constant depends on λ. Let ρ be a cutoff function such that

ρ (r) =

{
1, r > 2,
0, r < 1.

The key observation is the following

Lemma 14. Let

η (r) = ρ (r) r−2
[
k1 sin2

(√
λr − ζ

)
+ k2 cos2

(√
λr − ζ

)
+ k3 sin

(√
λr − ζ

)
cos

(√
λr − ξ

)]
+ η̄

with ∥∥∥η̄ (r) (1 + r)3
∥∥∥

C0,α +
∑
|ki| < C.

Then the equation

h′′ +
1
r

h′ + λh = η

has a solution h ∈ C0,α[0,+∞), with

h (r) = c1r−1 sin
(√
λr − ζ

)
+ h̄ (r) , r > 1,

where ∣∣∣h̄ (r)
∣∣∣ + |c1| ≤ C (1 + r)−2 .

The solution h will be denoted by H (η) .

Proof. Consider the solution

h (r) = N (r)
∫ r

0
J (s) η (s) s2ds − J (r)

∫ r

0
N (s) η (s) s2ds

= N (r)
∫ r

0
J (s) ρ (s) sin2

(√
λs − ζ

)
ds + J (r)

∫ +∞

r
N (s) ρ (s) sin2

(√
λs − ζ

)
ds.

We have
∫ r

0
J (s) ρ (s) sin2

(√
λs − ζ

)
ds =

1
2

∫ r

0
J (s) ρ (s) ds − 1

2

∫ r

0
J (s) ρ (s) cos

(
2
√
λs − 2ξ

)
ds.

Using the fact that J (s) = s−1 cos
(√
λs − ζ

)
+ O

(
s−2

)
, we could estimate

∫ r

0
J (s) ρ (s) ds =

∫ +∞

0
J (s) ρ (s) ds + O

(
r−1

)
,

∫ r

0
J (s) ρ (s) cos

(
2
√
λs − 2ξ

)
ds =

∫ +∞

0
J (s) ρ (s) cos

(
2
√
λs − 2ζ

)
ds + O

(
r−1

)
.

Similarly, for r > 1, ∣∣∣∣∣∣
∫ +∞

r
J (s) ρ (s) η̄ (s) s2ds

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ +∞

r
s−1s−3s2ds

∣∣∣∣∣∣ ≤ Cr−1.

Hence
h (r) = c1r−1 sin

(√
λr − ζ

)
+ h̄ (r) , r > 1,

where ∣∣∣h̄ (r)
∣∣∣ + |c1| ≤ C (1 + r)−2 .

This finishes the proof. �
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Definition 15. The space Pα consists of functions η (r) of the form

η (r) = c1ρ (r) r−1 sin
(√
λr − ζ

)
+ η̄ (r) ,

with
‖η‖#,α = |c1| + sup

k≥0

∥∥∥(1 + r)2 η̄ (r)
∥∥∥

C0,α([k,k++1]) .

With the previous results at hand, one could then use the contraction mapping principle to prove Theorem 5.

Proof of Theorem 3. The proof is similar as before. We sketch it.
We search for a solution of the form

w (x) + Z (x) (εJ (|y|) + h (r)) + Φ (x, y) ,

where
∫
Rm Φ (x, y) Z (x) dx = 0, for any y. We need to solve

{ −h′′ − 1
r h′ − λh =

∫
Rm Z (x) N (εJ + h,Φ) dx,

LΦ = N (εJ + h,Φ) − Z (x)
∫
Rm Z (x) N (εJ + h,Φ) dx.

For each h ∈ P0,α with ‖h‖#,α ≤ Mε2. We write

h (r) = c1ρ (r) sin
(√
λr − ζ

)
+ h̄ (r) ,

By Lemma 12, the second equation in this system could be solved and we obtain a solution Φ = Φh with
∥∥∥Φh (x, y) (1 + r)2

∥∥∥
C2,α ≤ Cε2.

We insert this solution into the first equation of the system and proceed to solve

−h′′ − 1
r

h′ − λh =

∫

Rm
Z (x) N (εJ + h,Φh) dx. (21)

Note that
N (εJ + h,Φh) = (εJ + h)2 + Φ2

h + 2 (εJ + h) Φh = 2εJh + h2 + ε2J2 + O
(
(1 + r)−3

)
.

We write the equation (21) as

h = H
(∫

Rm
Z (x) N (εJ + h,Φh) dx

)
:= H̄ (h) .

Note that for the function 2εJh + h2 + ε2J2, the coefficient of the r−2 part has the form

k1 cos2
(√
λr − ξ

)
+ k2 sin2

(√
λr − ξ

)
+ k3 sin

(√
λr − ξ

)
cos

(√
λr − ξ

)
.

We would like to get a solution for this equation by contraction mapping principle. By Lemma 14, for each h ∈ Pα

with ‖h‖#,α ≤ Mε2, we have the estimate
∥∥∥H̄ (h)

∥∥∥
#,α ≤ Cε2 + CMε3.

Hence for ε small enough H̄ maps the ball of radius Mε2 into itself and one could also check it is a contraction
map. We then get a fixed point for this map and thus complete the proof. �
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