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Abstract

We consider the MEMS equation with fringing field

−∆u = λ(1 + δ|∇u|2)(1− u)−2 in Ω, u = 0 on ∂Ω

where λ, δ > 0 and Ω ⊂ Rn is a smooth and bounded domain. We show that when
the fringing field exists (i.e. δ > 0), given any µ > 0, we have uniform upper bound
of classical solutions u away from the rupture level 1 for all λ ≥ µ. Moreover, there
exists λ∗δ > 0 such that there are at least two solutions when λ ∈ (0, λ∗δ); a unique
solution exists when λ = λ

∗
δ ; and there is no solution when λ > λ

∗
δ . This represents

a dramatic change of behavior with respect to the zero fringing field case (i.e. δ = 0)
and confirms the simulations in [14, 11].
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1 Introduction

We consider the following elliptic equation

(Eλ) −∆u =
λ(1 + δ|∇u|2)

(1− u)2
in Ω, u = 0 on ∂Ω,

where δ, λ are positive constants, and Ω is a bounded smooth domain in Rn (n ≥ 2).

Problem (Eλ) arises in the study of electrostatic Micro-Electromechanical System
(MEMS) device. We refer to [5] and the book [13] for detailed discussions on MEMS
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devices modeling. The parameter λ is called the voltage and the term δ|∇u|2 is called a
fringing field (cf. [14, 11]). The eventual singular set {x ∈ Ω, u(x) = 1} is called rupture
set. When δ = 0, problem (Eλ) becomes

(Sλ) −∆u =
λ

(1− u)2
in Ω, u = 0 on ∂Ω.

Recently there have been many studies on (Sλ). We summarize some of the results
here:

• There exists a critical number λ
∗
> 0 such that for 0 < λ < λ

∗
problem (Sλ) has a

minimal stable solution uλ, while for λ > λ
∗

there are no solutions to (Sλ) (see [6]).

• Either the solution branch stops at λ
∗

and limλ→λ∗ ‖uλ‖∞ = 1 (if Ω is a ball in
Rn with n ≥ 8 for example); or the solution branch bends back, we could have
another critical parameter 0 < λ∗ < λ

∗
(when Ω is a ball in Rn with 2 ≤ n ≤ 7; or

convex domain with two axes of symmetry in R2) such that the solution branch takes
infinitely many turns and converges to a rupture solution of (Sλ∗) (see [4, 9, 10]).

• For general strictly convex domains with n ≥ 2, it can be shown that for λ > 0
small, the minimal solution is the unique one for (Sλ) (see [3, 16]). So we must have
a family of solutions (uk, λk) such that limk→∞ λ

k = λ > 0 and limk→∞ ‖uk‖∞ = 1.

In this short note, we show that the fringing field dramatically changes the structure
of solutions of (Eλ) (see Theorem 5 below): we prove that there exists a critical parameter
λ
∗
δ such that for λ > λ

∗
δ there are no solutions to (Eλ); for 0 < λ < λ

∗
δ there are at least

two solutions; and when λ = λ
∗
δ there exists a unique solution. Furthermore, for any fixed

µ > 0, all solutions to (Eλ) with λ ≥ µ are below Cµ < 1, i.e. no ruptures can occur
by using solutions with λ tending to some λ > 0. Our study holds for any dimension
and confirms the numerical results obtained in [14, 11]. Here all solutions considered are
classical solutions.

The results of this paper are also true for the generalized MEMS equation

(Eλ,p) −∆u =
λ(1 + δ|∇u|2)

(1− u)p
in Ω, u = 0 on ∂Ω

where p > 1.

2 A Key Transformation

To study the structure of solutions for (Eλ), we present a suitable transformation, which
leads to considering a semilinear equation. More precisely, we have
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Lemma 1 Let

v = ζλ(u) =

∫ u

0

e
λδ
1−sds, ∀ u ∈ [0, 1), (1)

then u : Ω → [0, 1) is a solution (resp. supersolution, subsolution) of (Eλ) if and only if
v is a solution (resp. supersolution, subsolution) for

(Fλ) −∆v = ρλ(v), v > 0 in Ω, v = 0 on ∂Ω

where ρλ is a smooth increasing function from R+ into (0,∞), defined by

ρλ(v) = ξλ ◦ ζ−1
λ with ξλ(u) =

λe
λδ

1−u

(1− u)2
. (2)

Proof. As ξλ, ζλ are increasing in [0, 1) and limu→1− ζλ(u) =∞, so is ρλ in R+. By direct
calculus, v = ζλ(u) satisfies

−∆v = −e
λδ

1−u∆u− λδe
λδ

1−u

(1− u)2
|∇u|2,

all conclusions are straightforward. �

Otherwise, it is not difficult to prove

Theorem 1 Fix δ > 0, there exists λ
∗
δ ∈ (0,∞) such that for any λ < λ

∗
δ, the equa-

tion (Eλ) has a minimal solution uλ, while for any λ > λ
∗
δ, no solution exists for (Eλ).

Moreover λ 7→ uλ is increasing for λ ∈ (0, λ
∗
δ).

Here the minimal solution means that for any solution u to (Eλ), we have uλ ≤ u in
Ω.

Proof. The result is a direct consequence of the following claims:

(i) If (Eλ) is solvable with λ > 0, then (Eλ′) is solvable for any λ′ ∈ (0, λ).

(ii) The equation (Eλ) has no solution for λ sufficiently large.

(iii) For λ > 0 small enough, we have a solution to (Eλ).

(iv) If (Eλ) is solvable, then there exists a minimal solution uλ.

If u is a solution to (Eλ), it is clearly a supersolution to (Eλ′), so v = ζλ(u) is a
supersolution to (Fλ′) by Lemma 1. As ρλ′(0) = λ′eλ

′δ > 0, 0 is always a subsolution.
Moreover ρλ′ is locally Lipschitz in R+, so we have a solution to (Fλ′), which yields the
claim (i).
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The claim (ii) comes from the fact that any solution of (Eλ) is a supersolution for the
equation (Sλ), which has no solution for large λ. Let −∆ξ = 1 in Ω and ξ = 0 on ∂Ω, fix
c > 0 such that c‖ξ‖∞ < 1. We can check that for cξ is a supersolution of (Eλ) if λ > 0
is small enough, this leads to the claim (iii).

The last claim is due to the monotonicity of ρλ (cf. (4) below), ζλ and the monotone
iteration for (Fλ) as −∆vn+1 = ρλ(v

n) with Dirichlet boundary condition and v0 ≡ 0. �

Remark 1 Of course, the transformation v = ζλ is not really necessary for the above
proof. Thanks to the monotonicity of function g(u) = (1− u)−2, we can consider directly
the following iteration operator w = Tu, the unique solution of

−∆w =
λ(1 + δ|∇u|2)

(1− u)2
in Ω, w = 0 on ∂Ω.

3 Stability of Minimal Solutions

The minimal solution for (Eλ) will ensure some stability properties, even though the
equation (Eλ) does not have a variational structure. First, for the linearized operator of
(Eλ):

Lλϕ = −∆ϕ− 2λ(1 + δ|∇u|2)

(1− u)3
ϕ− 2λδ∇u∇ϕ

(1− u)2
,

we can define the principal eigenvalue µ1 of Lλ, associated to the Dirichlet boundary
condition (cf. [12]). Then a solution u of (Eλ) is said to be stable if and only if µ1(Lλ) ≥ 0.
Another idea is to use the transformation v = ζλ(u) and the corresponding linearized
operator. Following the ideas in [1], we obtain

Theorem 2 Let λ ∈ (0, λ
∗
δ), the minimal solution vλ of (Fλ) satisfies∫

Ω

|∇ϕ|2 ≥
∫

Ω

ρ′λ(vλ)ϕ
2dx, ∀ ϕ ∈ H1

0 (Ω). (3)

Furthermore, vλ is the unique solution of (Fλ) verifying (3) and uλ is the unique stable
solution of (Eλ).

Moreover, u = ζ−1
λ (v) implies

ρ′λ(v) =
(
ξλ ◦ ζ−1

λ

)′
(v) =

ξ′λ
ζ ′λ
◦ ζ−1

λ (v) =
λ2δ

(1− u)4
+

2λ

(1− u)3
> 0. (4)

As the minimal solution uλ of (Eλ) is just ζ−1
λ (vλ), we conclude then

Theorem 3 For λ ∈ (0, λ
∗
δ), the minimal solution uλ is the unique solution of (Eλ)

verifying the following stability condition:∫
Ω

|∇ϕ|2 ≥
∫

Ω

[
λ2δ

(1− uλ)4
+

2λ

(1− uλ)3

]
ϕ2dx, ∀ ϕ ∈ H1

0 (Ω). (5)
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4 Bifurcation and Uniform Estimate

Using the equation (Fλ) and the standard bifurcation theory of Rabinowitz (section 3 of
[15]), we can say that, a solution curve (λ, v) exists in R+ × C(Ω), it goes from (0, 0) to
the “infinity”. By Theorem 1, the only possibility is that ‖v‖∞ tends to ∞. For (Fλ),
when ‖v‖∞ →∞, we show that λ must tend to 0 by the following result.

Theorem 4 For any µ > 0, there exists a constant Cµ > 0 such that any solution of
(Fλ) with λ ≥ µ verifies ‖v‖∞ < Cµ. Consequently, there exists cµ ∈ (0, 1) such that any
solution u of (Eλ) with λ ≥ µ verifies u ≤ cµ < 1.

Proof. In fact, using integration by parts, we can see that

v = ζλ(u) ∼ (1− u)2

λδ
e
λδ

1−u as u→ 1−.

Hence for µ ∈ (0, λ
∗
δ) fixed, there exist positive constants C, C ′ such that

Cv(ln v)4 ≤ ρλ(v) ≤ C ′v(ln v)4 ∀ (λ, v) ∈ [µ, λ
∗
δ)× [2,∞).

We have also the uniform estimate ρλ(v) ≥ Cv + µ for (λ, v) ∈ [µ, λ
∗
δ)× R+, the proof of

Theorem 2.1 in [2] holds and shows that there exists Cµ > 0 such that ‖v‖∞ < Cµ <∞.
The conclusion for u is an immediate consequence. �

An important consequence is just the uniqueness of solution for (Eλ∗δ ). We shall use the

problem (Fλ). Now v∗ = limλ→λ∗δ
vλ is a smooth solution for the limit problem (Fλ∗δ ), we

claim that µ1

[
−∆−ρ′

λ
∗
δ
(v∗)

]
= 0. In fact, the stability of v∗ (in the sense of (3)) means that

µ1

[
−∆− ρ′

λ
∗
δ
(v∗)

]
≥ 0, while the definition of λ

∗
δ prevents to have µ1

[
−∆− ρ′

λ
∗
δ
(v∗)

]
>

0. Hence we get a positive eigenfunction ϕ1 satisfying −∆ϕ1 − ρ′λ∗δ (v
∗)ϕ1 = 0 in Ω and

ϕ1 = 0 on ∂Ω.

If we have a solution v of (Fλ∗δ ) such that v 6= v∗, we know that v ≥ v∗ as v ≥ vλ for

any λ < λ
∗
δ . Let φ = v − v∗, so −∆φ = ρλ∗δ (v)− ρλ∗δ (v

∗) ≥ 0 by (4), the strong maximum
principle implies that φ > 0 in Ω. Remarking also that ρ′′λ > 0 in R+ for any λ > 0,
then −∆φ− ρ′

λ
∗
δ
(v∗)φ > 0 in Ω. By multiplying with ϕ1 and integrating by parts, we get

immediately a contradiction.

Another consequence is that v∗ is a bifurcation point for the solution curve, which will
continue with ‖v‖∞ tending to ∞ and the associated λ must go to zero. So we get at
least two solutions to (Fλ) for any λ ∈ (0, λ

∗
δ). Coming back to u, we obtain the main

theorem of this paper.

Theorem 5 If a family of solutions {uk} of (Eλk) verifies limk→∞ ‖uk‖∞ = 1, then
limk→∞ λ

k = 0. Furthermore, u∗ = limλ→λ∗δ
uλ is the unique solution of the limit equation

(Eλ∗δ ) while for any λ ∈ (0, λ
∗
δ), the equation (Eλ) has at least two solutions.
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5 Estimate of λ
∗
δ

Here we compare λ
∗
δ with λ

∗
in lower dimension situation.

Theorem 6 For n < 8 and δ > 0, we have

λ
∗

1 + δ‖∇u∗‖2
∞
≤ λ

∗
δ ≤ λ

∗
(6)

where λ
∗

is the critical value for the problem (Sλ) and u∗ is the unique solution of (Sλ∗).

Proof. As any solution of (Eλ) is supersolution of (Sλ), it is clear that λ
∗
δ ≤ λ

∗
. On the

other hand, when n < 8, u∗ is a smooth function with ‖u∗‖∞ < 1 (see [4]). Obviously u∗
is a supersolution for (Eλ) with

λ =
λ
∗

1 + δ‖∇u∗‖2
∞
,

so we get the lower bound. �

Therefore λ
∗
δ = λ

∗
+ O(δ) in dimension two, this confirms somehow the formal result

in [11] (see also another bound of λ
∗
δ in section 5 of [14]).

6 Remarks and Open Questions

As we have seen in Theorem 5, the introduction of fringing field basically destroys the
infinite fold point structure of the basic membrane problem (Sλ) for any smooth domain.

There are still some interesting questions:

• Do we have some weak solutions with ‖u‖∞ = 1 for (Eλ)? We turn to conjecture that
no weak solution exists for the fringing field model. In fact, using Sobolev embedding
and boot-strap argument, any weak solution of (Fλ) satisfying ρλ(v) ∈ L1(Ω) is
indeed smooth. However, if u is a just weak solutions for (Eλ), it is not clear that
v = ρλ(u) is then a weak solution for (Fλ).

• In [11], Lindsay and Ward derived the following asymptotic behavior of λ
∗
δ :

λ
∗
δ = λ∗ − Cδ +O(δ2) (7)

in the case of a unit disk or a slab in R2, where C > 0 is a constant depending on
u∗ of the unit disk or slab without the fringing field. Can we prove rigorously this
first order expansion (7)? A key point seems to prove a uniform upper bound for
v∗ as δ tends to zero.
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• In nice domains (disks, convex domains with two axes of symmetry in R2), it has
been shown that for the problem (Sλ), there exists a λ∗ > 0 such that the solution
branch has infinitely many turns as λ crosses λ∗ (see [9, 10]). On the other hand,
in the presence of fringing field, there are at most finitely many turns. What is the
asymptotic behavior of the solutions near λ∗ as δ → 0+?

• It seems that there are no studies on the corresponding parabolic equation

ut −∆u =
λ(1 + δ|∇u|2)

(1− u)2
. (8)

What is the effect of the fringing field on (8)? Can we establish results similar to
[1, 7, 8]?
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