RUPTURE SOLUTIONS OF AN ELLIPTIC EQUATION
WITH A SINGULAR NONLINEARITY

ZONGMING GUO AND JUNCHENG WEI

ABSTRACT. We construct infinitely many non-radial rupture so-
lutions of the equation

1
Ay = w in R¥\{0}, u(0)=0, N >3

with
N—-1-2yN -2
p>pe(N—1):= .
2¢yN —2— (N —5)

1. INTRODUCTION

Of concern is the following nonlinear elliptic equation with negative
exponent

(1.1) Au—u?=0 inRN

where p > 0 and N > 2.

Equation (1.1) arises in the study of steady states of thin films of vis-
cous fluids and in the modeling of electrostatic micro-electromechanical
systems (MEMS). It has attracted extensive studies in recent years, see,
for example, Davila-Ponce [3], Esposito-Ghoussoub-Guo ([6], [7]), Es-
posito [5], Ghoussoub-Guo [8], Guo-Ye-Zhou [10], Guo-Wei [11]-[13],
Jiang-Ni [15] and the references therein.

When p > 0, the structure of positive radial solutions of (1.1) has
been studied by Guo, Guo and Li [9], Guo and Wei [11]. It is shown
that for any a > 0, equation (1.1) admits a unique positive radial
solution u = u(r) such that u(0) = a and u(r) — +oo as r — +o0.
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The solution u satisfies v'(r) > 0 for all » > 0 and
_2 2 2 ~ 5T 1
li p+1 — [—(N—2+—>:| o p+1),
() = p+1 (=077
Moreover, if 2 < N <9 and

P > pe(N)

then wu(r) —Bfﬁr% changes sign infinitely many times. If N > 3 and

0 < p < pe(N), then u(r) > ﬁ_ﬁrﬁ for all » > 0 and the solutions
are strictly ordered with respect to the initial value a = u(0). Here
pe(M) (M is an integer) is the Joseph-Lundgren exponent [14]:

[ P(M), if2<M<09,
pe(M) = { 0, if M > 10,

where
M —2vM —1
P(M) = :
2vVM —1— (M —4)
Note that P(M) is an increasing function of M and p.(2) = 0.
When p > 0, it is still open if all positive solutions are radially

symmetric about some point. It is shown in [12] that if u € C*(RY) is
a positive solution of (1.1), and

2 1
lim ol Fru(a) = 577,

then u is radially symmetric about some point zo € RY. Some qualita-
tive properties of entire solutions of (1.1) are studied in [16]. Solutions
of (1.1) are also classified by using the Morse index theory. Du and
Guo [4] showed that (1.1) does not admit any positive regular solution
that has finite Morse index provided that p > p.(V).

Now we turn to rupture solutions to (1.1). The rupture set of (1.1)
consists of the points where u vanishes. We consider the simplest case
where the rupture is the origin. Thus we consider the following problem

(1.2) Au—u?=0, u>0, in RV\{0}, w(0)=0.
When p > 0, the radial rupture solution to (1.2) takes the form
2 2 ==Y
1. = = |—(N -2+ — P+
(13 U) =U(al) =[5 (V=24 )] el

A basic question we will address in this paper is whether or not all
rupture solutions to (1.2) are radially symmetric (and hence are of the
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form (1.3)). Note that when N = 2 and p = 3, there is a family of
non-radial rupture solution

(1.4) \/m<e(cos 2)2 + ¢ !(sin g)2> :

Besides (1.4), we are not aware of any non-radial rupture solutions to
(1.2). The purpose of this paper is to construct infinitely many positive
non-radial rupture solutions of (1.2) provided

p>pe(N —1).
This gives an negative answer to the above question. Note that

pe(M) is an increasing function of M. Then p.(N) > p.(N —1). This
provides new information on the case p < p.(/N). Note also that

4 \2 2
15 (M—2+—) —8(M—2+—) <0, forp> p(M).
(1.5) . ] rp > pe(M)
Our main result can be stated as follows.

Theorem 1.1. Assume that
(1.6) P> pN 1),
Then there ezist infinitely many non-radial rupture solutions to (1.2).

An interesting consequence of Theorem 1.1 is the following.

Corollary 1.2. For each p > 0, there are infinitely many non-radial
rupture solutions to

(1.7) Au=u"" in R® u(0)=0.

The idea of proving Theorem 1.1 is simple: we look for separable
solutions ,
u(z) = rriw(w)
where w is a solution of the equation
(1.8) Agnaw + fw —w P =0,
with

2 2
b p+1<N 2Jrp+1>'
An obvious solution to (1.8) is w(w) = ﬁ*rf% which provides a radial
rupture solution of (1.1) as given in (1.3).

To construct positive non-radial rupture solutions of (1.1), we need to
find positive non-constant solutions w(w) of (1.8). In this paper, we will
construct infinitely many positive radially symmetric solutions of (1.8),
i.e., solutions that only depend on the geodesic distance 6 € [0, ).
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In this case, (1.8) can be written in a more convenient form (with
x = cos ), namely

(1.9)
{ (1—22) "5 ((1 - m2)¥wm> +pw—w?P=0, wkx)>0, —-1l<zx<l

w'(1) exists.

Furthermore we only consider the simple case w(—z) =
x € (0,1). Thus w'(0) = 0. Then w(x) := w(f) with w(f) =
for 0 < 6 < /2 satisfies the problem
(1.10)

mj‘é(sinl\fﬁﬁ w@)) + fw(d) —w () =0, w(d) >0, 0<<Z
wy(0) exists, wp(5) = 0.

Even though problem (1.10) is just an ODE, it is clearly supercritical.
Neither the variational method nor the sub-super solution method nor

the bifurcation method works. An important observation is that
(1.11)

) 2 2
w,(0) = A,[sin6]77, 6 € (0, g], A = Pt [N —3

is a rupture solution of (1.10) with two ruptures: # = 0 and 6 = .
We will construct the inner and outer solutions of (1.10) and then glue
them to be solutions of (1.10). Such arguments have been used in [1]
for the supercritical problem Au + Au + u? = 0 in a unit ball in R?
with p > 5. This idea was also used in [2] for constructing non-radial
singular solutions to Lane-Emden equation Au + u? = 0.

The non-radial rupture solutions to (1.1) may serve as good asymp-
totics for non-radial entire solutions to (1.1). We conjecture that for

each of the non-radial singular solutions rﬁw(Q) constructed in The-
orem 1.1 there exists an entire positive solution u to (1.1) such that

(1.12) w(z) — |z|7Tw(8) = of|z|7+1), for |z| > 1.

This paper is organized as follows: in Section 2, we study an initial
value problem and study the asymptotic behavior of the inner solution
when the initial value turns to 0. In Section 3, we study the outer prob-
lem. Namely we solve the problem (1.10) from 6 = 7. The asymptotic
behavior of the outer problem will be analyzed near the origin. Finally
in Section 4, we do a matching of inner and outer solution, thereby
proving Theorem 1.1.
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2. INNER SOLUTIONS

In this section we study solutions w(#) of (1.10) with small initial
values w(0) = @ < 1 and analyze their behaviors near § = 0. Since

Q < 1, we set Q = el (:= €*) with e sufficiently small. In the
following we denote o = 2/(p + 1).

Let w(f) = e*v(%). Then we see that v(0) = 1 and v(r) (r = 6/€)
satisfies
(2.1) Vpr + (N — 2)ecot(er)v, + Be*v —v? =0, v(0) = 1.

Observe that for € > 0 sufficiently small,

cos(er) 1 1 = okot1
t(er) = =——= E l A
cot(er) Sn(er) e 3(67‘) + 2 k(€r)
Thus,
(2.2)
N—-2 (N-2 -
Vpp vr—( 5 )(627’)1)7«4—( E (N—2)€k62(k+1)7’2k+1>U,A—ﬁ(—:%—v_p =0, v(0)=1
r

k=1
When € = 0, we obtain the first approximation of (2.2) which is the
radial solution vy(r) of the problem

(2.3) Av—v?=0 in RNt (0)=1.

The asymptotic behavior of vy is given in the following lemma.

Lemma 2.1. Forp > p.(N—1), there ezist constants ag, by and Ry > 1
such that for r > Ry the unique positive solution vy(r) of (2.3) satisfies

ag cos(wInr) + by sin(wInr)
N3

r2

_2

+ O(?"f(N73+p+1 ) ),

(2.4) vo(r) = Apr® +
where

2
p+1

(2.5) 1\/8<N 34 2 ) (v-3+ 1 )2
. W= - — ) - — S

2 p+1 p+1
Proof. Note that

2 4 \2

8<N—3+—> - (N—3+—) >0, forp> po(N —1).

] P> pe( )
The existence and uniqueness of vy(r) can found in [9] and [11]. Tt

is also known from [9] and [11] that

2

A = (N -3+,

lim r%vg(r) = A,.
r—+400
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To obtain the next order expansion, we use the Emden-Fowler trans-
formation:
V(t) =r"%v(r) — Ay, t=Inr.
It is easy to see that V(t) satisfies the equation
(2.6)
Vit (N=342a)Vi+2(N=34+a)V—g(V) =0, fort>T =InR, R > 10,

where g(p) = (p+ A,) 77 — AP + pA, P ) satisfies
pp+1
9(p) = P td)

2

By the standard argument of variation of constants we obtain the
following integral equation

;(P+2)p2 +O(p*) for p near 0.

t

1 /
V(t) = e’ [acoswt + bsin wt] — — / e?t=t) sinw(t —t')g(V(t"))dt',
w Jr

where 0 = —1(N — 34 2a), w is given in (2.5). Note that g(p) = O(p?)
for p sufficiently small. .
Set V(t) = e7 7"V (). Then V(t) satisfies the integral equation
(2.7)
~ ~ 1 t ’ ’
V(t) :=NV(t) = Csin(wt+D)—— / e " sinw(t—t)g(e”" V(¢))dt,

W Jy

where €' = va? +0?, sinD = &, cos D = % We take t in the range
Ty < t < oo, where Ty = In Ry is suitably large, and consider N V as
a map from C[Tp,00) into itself. We claim that, for each C' > 0 and
suitable T}, the operator N 1% maps the set
B={VeCT),x): |zlo= sup |V(t)]<2C, C>0}

To<t<oo
into itself, and is a contraction mapping on B. Indeed, if |V, < 2C,
then

lg(e”V (1)) = €*'0(1)
and
|INV — Csin(wt + D)||o < C'e™0

where C’ > 0 only depends on C, N, p. Note that o < 0 and ||V ()|
is sufficiently small for V € B for T} suitably large. Thus, if we choose
Ty > 1 suitably large, we see that [NV — Csin(wt + D)|p < C. A
similar calculation shows that

INVI = NVallo < 70| V7 — Valo.

Hence it is possible for each value of C' to choose Tj so that N is a
contraction mapping of B to itself. Thus, we define Vj = C'sin(wt + D)
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and the iteration Vn_i'_l — NV, for n > 0. The contraction mapping the-
orem then ensures that this iteration converges to the unique solution

V.(t) of (2.7) in B. Note that

1 e
’—/ e 7" sinw(t — ) g(e” Vi (t'))dt'| = O(e).
w

To
Then
Vi(t) = e“V,(t) = Coe”t sin(wt + Do) 4+ O(e*) for t € (Tp, 00).
This implies that for r € [Ry, 00),

vo(r) = Apr® + i [ag cos(wInT) + by sin(wInr)] + O(r_(N_3+ﬁ))

and completes the proof of this lemma. O

Lemma 2.2. Let p satisfy the conditions of Lemma 2.1 and vy(r) be

the unique solution of the problem

(2.8)
() + Y2200 (1) + pog T ()or () — E2 () + Bug(r) = 0, 1 € (0, 00),
v1(0) =0, v1(0) =0.

Then for r € [Ry, 00),

(2.9)

vi(r) = Cpr?t* + 7"2_#(0“ cos(wlnr) + by sin(wlnr)) + O(TQ_NT),

where C,, satisfies

_ oo g [PV Z2)
(210)  [(2+a)(N — 1+a) + pA, @], = p[g(pH) 8|,
(ay,b1) is the solution of

{ Diay + dwby = —Bag + L2 bgw — E=2Eg 4 p(p + 1) A, 772 Caq

3

—4way + Dby = —Bby — (N3_2) apw — %G(N_g)bo + p(p + 1)A;(p+2)0pb07

where D, = Mw — w? + pA, P 4, by and w are given in
Lemma 2.1.
Proof. Let

vy (r) = Cpr*t* + h(r)rQ_¥ + 0(r2_¥)
where
h(r) = ¢y cos(wInr) + ey sin(wlnr).
Using the expression of vy(r) in (2.4), (2.9) can be obtained by direct

calculations. Note that

O(r W=3+530) = (=72,
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U

Now we obtain the following proposition.

Proposition 2.3. Let p > p.(N — 1) and v(r) be a solution of (2.1).
Then for e > 0 sufficiently small,

Moreover, for r € [Ry, 00),
(2.11)

vp(r) = de SALE Z hy2i =g 81n(wlnT+Ek)—i—0( )

k k(i
where d, ej,Ej (=1, 2, ..., k) are constants. Moreover,

a b
1 1 2 2 1 1 1 1
dy = Cp, e =1/ai + b, SmEl_e1> COSE1—61

1

1
where Cy, a1, by are given in Lemma 2.2.

Proof. Using the Taylor’s expansion of v and the expressions of
vo(7), v1(r), ..., ve—1(r), we can obtain this proposition by the induc-
tion argument and direct calculations. Note that
O(T2_%) = o(r**®).
O

Now we obtain the following theorem.

Theorem 2.4. Let p > p.(N — 1) and w™(6) be an inner solution
of (1.10) with w.(0) = €*. Then for any sufficiently small € > 0 and
0 > Rge but 0 is also sufficiently small,

ook
wmn(@) _ Apea + Cp9a+2 + Z Zd;cGQ(kfj)er#a

€
k=2 j=1

3. [ao cos[wIn &] + by sin[w In 2] L@ coswIn &] + by sinfwIn ¢|

NSy
+€ 2 N-3 N-3 —9

02 02
+Z<Zek2k3923 T sm(wlne—i—Ek)—i—o(O% ))]

Proof. This theorem can be obtained directly from Proposition 2.3 by
setting r = 6/e. O

The following lemmas which are similar to Lemma 2.4 and Lemma
3.3 of [1] respectively will be useful in the subsequent proofs.
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Lemma 2.5. Let p > p.(N — 1) and
p+1

v(Q,0) = Quo(Q™ = 0).
Then for Q‘pTHH > Ro, and for n =0,1,2, v(Q,0) satisfies

o oA
() gorv@o) = {7}
+8(22 {09_762 O sin(wln(Q_%H)—i-D)}
+Q—n+[p7+1(N—3+a)+1}O(Q—(N—ZH-&))’
o, - A0°1
(i) g i(@0) = {7}
anJrl _ N-3 (p+1)(N 3)+1) . _ ptl
+8Q”5)Q{Oe “Q! sin(w In(Q 9)+D)}
+an+[%l(N73+a)+1]0(97(N72+a))7
where

b
D= tan_l(a—o), C = /a3 + b2
0

Proof. These estimates are obtained by the expansion of vy(r) given
above and some calculations. U

Lemma 2.6. In the region 6 = ]O(Q_@:’)a)\, the solution w(Q,0) of
(1.10) with w(Q,0) = Q, wp(Q,0) = 0 satisfies

() [85(@.6) = §5(@.0)| = Qoo
(i) |5 Q. > ~ Q0] =" o)
(m)‘aQQ 8Q2Q6‘— wl\

(iv) | 5(Q.0) - 55(Q.0)] = QU

(0~ )!
077

Proof. This lemma can be obtained from Lemma 2.5 and Theorem

2.4. Note that

PHU(N=) ) o

b T_ D=3
« 4

Moreover,
p+1

QT 0=10(Q %) > Ry
provided () suitably small. O
Now we can write the inner solution obtained in Theorem 2.4 in the
form of parameter Q:
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Theorem 2.7. Let p > p(N — 1) and w§™(0) be an inner solution
of (1.10) with wg(0) = Q. Then for any sufficiently large @ > 0 and
9= l0(Q =)

wé—i}”(@)

>~ k
_ Apea + Cp9a+2 + Z Z d?@(l’+1)(kfj)82j+a

k=2 j 1
Los [ao cos|wIn(Q~ )0] bo sinjw In(Q~ 2 )]
Lo cosjwIn(Q~" 9) by sin[w ln(Q*%H)]
P
+§: (Z FQUFDE=D 2557 sin(w In(Q~ 10)+Ef)+o(e%—¥)>]
k=2 j=

3. OUTER SOLUTIONS

In this section we study the asymptotic behaviors of solutions w(f)
of (1.10) far from 6 = 0.

Let w,.(0) be the singular solution given in (1.11). We first obtain
the following lemma.

Lemma 3.1. Equation

(3.1)
1 d d
—SinNﬂg@(m N-2p dz( )>+ﬁ¢( J+pw; P (O)p(0) =0, 0<6 < g,

admits two fundamental solutions ¢1(0) and ¢o(0). Moreover, any so-
lution ¢(0) of (3.1) can be written in the form

d(0) = c101(0) + ca92(0), where ¢; and co are constants,

which satisfies that as 6 — 0,

(3.2)  ¢(0) = 0% | cos(w In g) + o sin(w In g) + 0(92*¥).
Proof. Let ¢(6) = [sinf]*¢(f). We see that ¢(6) satisfies the equa-
tion

(3.3) sin? 0" (0)+ (N —2+2a) sin 0 cos 0 (0) +(p+1) A, P () =

Under the Emden-Fowler transformations:

Y(t) =¢(0), t= lntang,
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we obtain that for t € (—o0,0),

1/ 262t !
(3.4) v"(t)+ (N -3+20) (1- = eﬂ)w (1) +2(N=3+a)u(t) = 0.
Note that
t 2 2t
sinf = 2—6 cos e _ 2e

1+ e’ A

We can obtain solutions of (3.4) by shooting backwards under the con-
ditions ¢ (0) = a, ¢’(0) = 0. The standard ODE arguments imply that
(3.4) admits two fundamental solutions 1,1y € C?(—00,0) such that
any solution ¥(t) of (3.4) satisfies
U(t) = Loy () 4 La(t)
where ¢; and /5 are two constants. Now we show that as t — —oo,
P(t) = e [ls coswt + Ly sinwt] + O

where 0 = —(£52 + ).

We see that the characteristic equation of (3.4) admits a pair roots
M =0+iw, Ay =0 — 1w as t — —oo since

(N=3420)>=8(N —-3+a)<0 forp>p(N —1).

By the standard argument of variation of constants we obtain the fol-
lowing integral equation

I /
P(t) = e[l coswt + ysinwt] + — / e” ) sinw(t — ') () () dt,
w Jr
where T € (—o00,0) with sufficiently large |77, j(¢)(t') = —(N — 3 +

2&)%@&’@’), Setting ¥ () = e~"(t), we see

(35)  (t) = [egcoswt+e4sinwt]+l / tsinw(z—t’)j(z/})(t')dt',
w Jr
where

A 2¢e ~ A

JW)E) = = (N =3+ 20) =55 (09 (t) +9/(+))-
It follows from (3.5) that
(3.6) [l = [scoswt + Lysinwt]o < 7(lo|[|$llo + [[4']]o),

where 0 < 7:=7(T) = 0 as T — —oo and ||pllo = Sup_,ccier |p(1)].
On the other hand, we see that z(t) := ¢/(t) satisfies the equation

2'(t) + (N —3+2a)2'(t) + 2(N — 3+ «)z(t) + h(t,¥(t),¥'(t)) =0
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where
262t 262t
’ o . 2 _ - /
(e 90, 9'(0) = (N =3+ 20 5 (1 7 ) V')
2€2t 2€2t
—2(N — 20) ————1)' 2(N — N — 200) ——~ .
(N =3+ 20) 2t/ (1) 2N =3+ a)(NV =3 + 20) o bl
Thus,
(3.7)
t
e~/ (t) = [l5 cos wt + Lg sin wt] +l/ sinw(t—t)h(t', ('), ' (t"))dt,
w Jr
where
65 = 830' + €4w, 66 = £40' — w€3
and
R R ) 2t 2€2t R R
(90, 9'(0) = (N = 3+ 20 s (1= 4 ) (090 +9/(0)
262t R 5
—2(N =3+ 2a)m(0¢(t) +'(t))
26215 R
It follows from (3.7) that
(38) e~/ (t) = [t coswt + L sinwt]llo < T(|o[[|¢llo + [14']]o)
where 7 is as in (3.6). Since ¢/(t) = e~/ (t) — o@)(t), it follows from
(3.6) and (3.8) that by choosing |T'| suitably large,
(3.9) ldllo < C, [l'llo < C
where C' = C(p, N, T, l3,¢,). Both (3.9) and (3.5) imply that as t —
(3.10) D(t) = [l coswt + £y sinwt] + O(e).
Therefore, as t — —o0,
(3.11) Y(t) = e7![ls cos wt + Ly sinwt] + O(e7H2H).
This implies that as 6 — 0T,
(3.12)
e AN 0 _ 7 5 e G\o+2
o(0) = [sin ] (tan 5) |:£3 cos(w In 5)—1—64 sin(w In 5)4—0(6 )} +O<[sm 0] (tan 5) >

Note that for sufficiently small z > 0, tan z = z+O(2?®) and In(tan z) =

In(z+0(z*)) = Inz+O0(2?). The Taylor’s expansions of sin § and tan
imply that (3.2) holds. This completes the proof. O
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Remark 3.2. For any § > 0 sufficiently small, if ¢; and ¢, in (3.2)
satisfy that ¢; = ¢1d, co = é20, where ¢; and ¢, are constants, then as
0 — 0",
(3.13)

N-3

¢(0) == ¢5(0) = 06~ >

Indeed, if 05 = 038, ¢4 = 048, where {3 and (, are constants, we see from

(3.8) that

[El cos(w In g) + o sin(wIn g) + 0(5)92_¥.

~ \{!WHO + [l < C6
where C' := C(p, N, T, {5,¢4) > 0 is independent of . Hence

W(t) 1= Ys(t) = e78[l5 cos wt + Uy sinwt] + O(8)el7+2),

For any 6 > 0 sufficiently small, if w € C?(0, §) is a solution of (1.10)
and

w(0) = w,(0) + d¢5(0) + 65 (6),
where
is a solution of (3.1) with

¢ = €10, Ccg = G20,

then 15(0) satisfies the problem
(3.14)

st (5020 2(0)) + 3(6) + pui "V (6)
+072 [<w* + 8¢5 + 820) P — wyP + pws Vg + 62w TV | =0,
V(5) = =@ (5) + ad5(3))-
Lemma 3.3. For any 0 > 0 sufficiently small and each fized pair
(¢1,¢2), (3.14) admits solutions s € C*(0,7/2).

Proof. We set the initial value conditions on ¢ of (3.14) at § = 7/2:
¥(mw/2) =1 provided

V(5) = (@l (35) + @dh(3)) = 0
(m/2) = 0 provided
V(5) = ~(@dh(35) + @dh(3)) £ 0.

Then, the standard shooting argument in ODE implies that (3.14)

admits a unique nontrivial solution s in C*(0,7/2). Note that there

is no singularity of (3.14) for 6 € (0,7/2). Note also that 15 depends

on ¢; and ¢,. O
Now we obtain the following proposition.

0<6<m/2,
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Proposition 3.4. For any 6 > 0 sufficiently small and s being given
2
in Lemma 3.3, then for 0 = |O(6@-))|,

N-3

(3.15)  s(0) =6~ "2 [cfl cos|w In g] + do sin[w In g]] + 0(92f¥)7

where ch and d~2 are constants depending on ¢; and ¢ but independent

of 6.

Proof. Setting 15(6) = [sinf]“s(#), we see that t5(0) satisfies the
problem

(3.16)
{ s~in2 00" (0) + (N — 3 + 2a) cos 0 sin 6/ (0) + 2(N — 3+ a)¥(0) + G(1(0)) = 0,
V(5) = ¥5(3),

where

-p

G((0)) = [sin0]>~072 | w,(0) + 0¢5(0) + 6[sin 6]*)(0)
—w.? + pw; P5¢5(0) + 62 pw PV sin 0] (6).

Under the Emden-Fowler transformations:

2(t) =), t=In tang

we obtain
(3.17) 2
(1) + (N =3+20) (1- 12j62t>z’(t)+2(N—3+a)z(t)+G(z(t)) —0.

By the standard argument of variation of constants and Lemma 3.1, if

o1(t) = [sind]~¢1(6),  da(t) = [sin6] s (6),



NONRADIAL RUPTURE SOLUTIONS 15

then we obtain the following integral equation for T € (—o0,0) and |T|

suitably large,
B . F=01()da(t) + da(t) o (t )4
t) = V1¢1(t) + Va20a(t) + = = = dt’
Z( ) 1¢1( ) 2¢2( ) L ¢1<t,)¢ ( ) ¢/ (t/>¢ ( )
= 'Yy coswt + Vg sinwt] + O(el7)
L [* emsinw(t —t) + O(e™)
/T € 14+ 0(e?)
= e[V coswt + Vg sinwt] + O(€(U+2)t>

—i—p(p ) /t sinw(t —t') [6“/52] [o(t"))2at’

G(z(t)dt

é / Psinw(t —t )O([e“t/(ﬂ 2[p(t')]3> dt’
é/ tsinw(t — t)O(e*) [e”tléz} [p(t)]2at’
Sl

bsinw(t —t")O(e Qt/)O([e"t,cSQ] 2[p(t’)}g)dt'

where
p(t') = (¢ coswt’ + G sinwt’) + e 7" z(t).
Setting 2(t) = e 7'z(t), arguments similar to those in the proof of

Lemma 3.1 imply that there exists C' := C(N,p,T) > 0 but indepen-
dent of 4 such that

(3.18) |2 — [th coswt + Yy sinwt]||p < C
provided that for ¢ € [27°, 1077,

(3.19) 6% = |0(e®=)].

Therefore,

(3.20) 2(t) = e[ cos wt + Py sinwt] + O(el7F2))
provided that (3.19) holds. Therefore,

(3.21)

s(0) = [sin O] ( tan g>a [191 cos[w In Z]—H?g sinfw In 9]—1—0(02)} +0 ([sin 0]~ ( tan g>a+2)
provided
(3.22) 0 =|0(577)|.

The Taylor’s expansions of sinf and tan¥ imply that (3.15) holds
provided that (3.22) holds. This completes the proof of this propo-
sition. 0
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Now we are in the position to obtain the following theorem.

Theorem 3.5. For any 6 > 0 sufficiently small, problem (1.10) admits

out

outer solutions wi" € C*(0,7/2) satisfying
(3:23) W (6) = w.(0) + 095(6) + 8%5(0), € (0,5), wh(5)=0.

Moreover,
(3.24)
A Y3 cos(win &) + Yy sin(wln &) 1
out _ a '4 a+2 2 2 2
wg(6) = A= 5 IS [ = +o( N,;s_z)]
provided
(3.25) 0= 0(677)),

where 93 and Y4 are constants which are independent of o.

Proof. This theorem can be obtained from the expression of w(#),
(3.21) and the Taylor’s expansions of sinf and tan . Note that for

0 > 0 sufficiently small and 6 = ]0(5%)],
O(0*+) = o(6%6> "7").
O

Remark 3.6. It is know from (3.19) that §% = |O(6?77)|. Thus wg"
can also be expressed by
(3.26)

A
out — A poe— p a+2 2
ws™ () o0 30+ 1)9 +0

9 : 9
[193 cos|w In 5] ];1:;94 sinfw In 5] +520<90_¥>] ‘
0=
4. INFINITELY MANY SOLUTIONS OF (1.10) AND PROOF OF
THEOREM 1.1

In this section we will construct infinitely many regular solutions for
(1.10) by combining the inner and outer solutions.
We first construct a solution of problem
(4.1)
{ mjg(sinN—?e@—g(e)) + Bw(®) —wP(B) =0, w(®) >0, 0<0<Z,
w(0) =@ (=€), wy(3) =0
by using the expressions in Theorems 2.7 and 3.5. The variables () and
0 are then chosen to ensure that, at a fixed § = © chosen to satisfy

0 =0(Q =)

such that .
Wi (0) = ug"(©)



NONRADIAL RUPTURE SOLUTIONS 17

and
w(6) — w3 @) =0,

These can be done by arguments similar to those in the proof of Lemma
6.1 of [1]. From the choice of () and § we deduce the existence of a
C? function w(f) defined by w(f) = wE™(#) for # < © and by w(f) =
w§™(#) for # > ©. Thus w(f) satisfies (4.1).
We first see that
Ay
(4.2) Sp+1) Cp

Note that
2+ a)(N -1+ «a) —I—pA;(pH)

2(p+2) /2(p+2) 2p 2
= N — 2 (N — _c
p+1 (p—i—l + 3>+p—}-1< 3+p—|—1>
4(p* 4+ 5p + 4)
= +4(N -3
(p+1)2 =9
3
=4(N -2+ ——.
( +p+1)
2N — 2) 4 3
e A S 5\ S
3(p+1) b 3(p+1)< p+1>
It follows from (2.10) that (4.2) holds.
Define @, and §2 by
_ (1)
(4.3) wnQ, > +D=whn2 '+ ¢+ 2mmn,

with m > 1 being an integer suitably large,

2+b2 o
4.4 52 =[S0 TH s

where ¢ satisfies that
9
o= tan’l(ﬁ—;l).
Note that

032 7) = 0(Q. "),
(4.5)
ap cosfw In(Q™ 5 O)]+hysinw In(Q 5 6)] = /a3 + b} sin(wlnb+wln Q™5 +D),
(4.6)

0 . 7 . _
V3 cos[w In 5] + ¥4 sinfw In 5] = /U2 + 97 sin(wnf +wn2™* + ¢).
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Then we claim that the values of Q and 62 required to satisfy these
conditions may be obtained as small perturbations of the values of @),
and 62 given in (4.3) and (4.4), i.e

(4.7) Q=a.(1+0(@ ™)),

(4.8) 5% = 52<1+O<Q ﬁ))
To show this we define the function F(Q, §?) b
F7(Q,6%) = (0°F (wh"(0)—ug™ (@) 077 (ws(O)—uwi™ O] __)-

(We treat 62 as a new variable.) Taking Q = Q. and 6% = §2 we find
a bound for F(Q., §?) by making use of the behavior of wm“(é’) deter-
mined by Theorem 2.7, and the behavior of w$"(6) given in Theorem
3.5. Accordingly we ﬁnd for some M > 1 suitably large,

(4.9) O T F (Qx,0?) <M64@” ® + small terms.

We now seek values of () and §% which are small perturbations of Q,
and 02 and for which F(Q, %) = 0. As in [1], we need to evaluate the
Jacobian of F at (Q.,d2). We can obtain the following estimates from
Lemmas 2.5, 2.6 and Theorems 2.7, 3.5:

OF(Q, 5?) C —gsinT—@COST Q;gfl, —FEsint
Q.8 | ¢ —50087—1—@&117 Q*_%_l, —FEcosT

+small order terms,

=1/a2+ b3, FE =/0U3+ 9%

+1)

T—wln@—i—wan* Ea +D=whO+wn2'+ ¢+ 2mn.

where

Note that
o (N-3)p+1)

o 4
To simplify this expression we define the function G(x,y) by

Gx,y) = F(Q. + Q. % 62 +y).
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Using the bounds for F given in (4.9) and (3.26) and the results in
Lemmas 2.5, 2.6, we express G(z,y) in the form

G(z,y)

C —§SIHT—%COST, —EsinTt

x
=C+ N + small terms ( )
C —gCOST—Fw(p—JrSiIlT , —FEcost Yy

2
+E(2*(67)7! + y*07),
where C is a constant vector independent of (z,y) which is bounded

above by M§2©7. Also |E| is bounded independently of z, y, @ and 6.
Thus,

G(z,y)=C+1L ( ";j ) + T(z,y),
where L is a linear operator which, from a direct calculation, is seen to
be invertible. If we define the operator J mapping R? into itself by
J(z,y) = —(L7'C+ L' T(,y)),

then, provided that Q). is suitably large, a direct calculation shows that
J maps the set B into itself, where B is the ball

46207 M
B {wn): e My
(p+ DwE+/a2 + b3
We may therefore apply the Brouwer Fixed Point Theorem to conclude
that J has a fixed point in B. This point (z, y) satisfies both G(x,y) =
0 and

(2 +47)/7 < Adter,
where A is a constant independent of J,, @), and ©. By substituting for

@ and d, and then taking © to have the upper limiting value of Q, ©~,
we deduce the values given in (4.7) and (4.8). We have obtained a C?
solution of (1.10) for each fixed m large. Hence, we obtain the following
theorem which implies Theorem 1.1.

Theorem 4.1. For any integer m > 1 large and () and § given in
(4.7) and (4.8), problem (4.1) admits a C? solution wg s(0). Moreover,

there is © = |O(Q@ % )| such that
w"(©) = ug(©).
(wg™)5(©) = (wi™)5(8).

As a consequence, problem (1.10) admits infinitely many radially
symmetric solutions.
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