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BIHARMONIC EQUATION WITH SINGULAR NONLINEARITY
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ABSTRACT. We study the structure of solutions of the pinned boundary value
problem
A

(1 —u)p
where p > 1 and A? is the biharmonic operator and B C RN is the unit ball.
We show that there are infinitely many turning points of the branch of the radial
solutions of (0.1). The analysis of touch-down solutions depends on classification
of the radial solutions of the equation

(0.2) ~A’u=u"? inRN.
We will see that the results in higher dimensional case are similar to the three
dimensional case.

(0.1) Ay = inB, u=Au=0 ondB

1. INTRODUCTION

We continue to investigate existence, uniqueness, asymptotic behavior and further
qualitative properties of radial solutions of the biharmonic equation
(1.1) ~A’y=u"P inRY
where p > 1. The motivation for studying (1.1) is to understand the structure of
solutions of the Navier boundary value problem
(1.2) TAu— DA’u=\L+u)"?inQ, u=Au=0 on 0

where T, D, L > 0, Q C RY is a bounded smooth domain. Problem (1.2) models
the deflection of charged plates in electrostatic actuators (Lin and Yang [22]). Here
A = aV? where V is the electric voltage and a is constant. Associated with (1.2) is

the following energy functional

T D A
1.3 E(w) = | {5/Vu*+ < |Auf - }
(19 ) = [ {GIVu?+ F1auP - 2
where P = [, £|Vu|?dz is the stretching energy, @ = [, 2|Au[*dz corresponds to
the bending energy, and W = — fQ ﬁ(z)da} is the electric potential energy.
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Lin and Yang ([22]) considered two kinds of boundary conditions: pinned bound-
ary condition

u=Au=0 on 02

and clamped boundary condition

uzg—Z:O on 0f).

For the pinned boundary condition, they found that there exists 0 < A, < o©
such that for A € (0,).), (1.2) has a maximal regular solution uy, which can be
obtained from an iterative scheme. (By a regular solution u, of (1.2), we mean that
uy € C*() N C3(Q) satisfies (1.2).) For A > X, (1.2) does not have any regular
solution. Moreover, if X', \" € (0, \.) and X" < \”, then the corresponding maximal
solutions uy and wuy» satisfy

Uy > uyr in .

The number \., which determines the pull-in voltage, is called the pull-in thresh-
old. It is known from [22] that, for A € (0, A;), ming(L + uy) > 0. Let ¥\ = {z €
Q: L+ uy(z) =0} be the singular set of (1.2). An interesting question is to study
the limit of uy as A — A.. The monotonicity of u, with respect to A implies that

there is a well-defined function U so that

U(z) = lim uy(z); —L<U(z) <0, z €

However U(z) may touch down to —L and cease to be a regular solution to (1.2).
For the one-dimensional case, Lin and Yang showed that U is a regular solution,
that is, the set ¥, = 0.

In our previous paper [15], we showed that for N = 2 or 3, U is a regular
solution. Moreover, we also showed that there is a unique solution of (1.2) at A =
Ae. For two-dimensional convex domains, we also established the existence of a
second solution for every A € (0, \.). This shows that at least in two-dimensional
domains, problem (1.2) behaviors subcritically. (Numerical computations as well as
asymptotic behavior as D — 0 are done in [23].)

In our another paper [16] we established the result: when N = 3, for A small,
the mazimal solution of (1.2) is unique. There exists A\, < A, such that the solution
branch has infinitely many turning points for A\ near \,. This shows that problem
(1.2) behaviors supercritically in R®.

We remark that problem (1.2) can find the applications in thin film problems,

see [1], [2], [3], [18], [19], [20], [21]. When D = 0, problem (1.2) can also find the
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applications in MEMS devices, see, [4], [5], [8], [9], [10], [11], [12], [13], [14], [17],
[25], [26].
The applications of problem (1.2) can be found in [16]. By a change v = —u, we

see that v satisfies

A
(1.4)  —TAv+ DA%y = T 0O<v<LinQ v=Av=0 ondf.
—v
As mentioned in [16], for simplicity, we only study the problem
A
(1.5) APy = 0<v<1lin, wv=Av=0 on 0.

(1—v)*
All the results obtained in this paper are still true for (1.4).

The purpose of this paper is to investigate the problem (1.1) in higher dimensions
N > 4. First, we study the properties of entire radial solutions of (1.1) with N > 4.
We seek solutions u of (1.1) which only depend on |z|. Due to the homogeneity,
(1.1) is invariant under a suitable rescaling. This means that existence of a solution
immediately implies the existence of infinitely many solutions, each one being char-
acterized by its value at the origin. To ensure smoothness of the solution, one needs
to require that u'(0) = u"(0) = 0. We see that solutions of (1.1) can be determined
only by fixing a priori value of 4”(0). In this paper, the proofs are performed with a
shooting method which uses as a free parameter the ”shooting concavity”, namely
the initial second derivative u”(0). We consider the general case of (1.1) with a
nonlinearity ©~? and p > 1.

We consider the following initial value problem
(1.6) Ay=—u? u=u(r) nRY, N >4

u(0) =1, «'(0)=4"(0)=0, u"(0)=+>0.
Our first theorem is on the classification of entire solutions to (1.6):

Theorem 1.1. There erists a unique v* € (0,00) such that for v € (0,v*), there
is a unique R, € (0,00) such that Au,(R,) = 0 and (Au,)'(r) <0 forr € (0, R,).
The function R, is continuous and increasing with respect to v and R, — 0o as
v — v*. Fory > ~*, there exists C := C(vy) > 0 such that (Au,)'(r) <0 forr >0,
Au,(r) = C as r — oo and u,, has the growth Cr® near co. For v = +*, we have
(Auy)'(r) <0 forr >0, Auy(r) = 0 as r — 0o. Thus Au,-(r) > 0 for r € (0, 00)
and ul.(r) > 0 for r € (0,00).

It is easy to know that the equation in (1.6) has a singular solution

(1.7) Un(r) = (=Kol 71735



where

(1.8)
8

Bo=Gry

Note that we are interested in the case that Ky < 0. We see that Ky > 0 for
N =2and all p > 1; that Ko < 0for N =3 and 1 < p < 3; that Ky < 0 for
N > 4 and all p > 1. This implies that the main results of [16] should be also true
for 1 < p < 3 (we only discuss the case p = 2 in [16]).

(N(N+2) +(N?—6N —8)p+ (16— 2N — N2)p? — (N —2)(N — 4)p3> .

Theorem 1.1 implies that the equation in (1.6) has a unique entire solution .-
with (Au,-)'(r) < 0 for r > 0 and Au,-(r) = 0 as 7 — 0o. Our second theorem is
on the qualitative properties of this entire solution ..

Let p,, := p(N) be the maximal root of the equation
—(N=2)(N—=4)(p+1)*+4(N*— 10N +20)(p+1)* + 48(N —4)(p+ 1) + 128 = 0.

Then a simple calculation implies that p,, > 1 for N > 4. (A simple calculation by
using the Mathlab, we obtain that p,, = 2v/2—1 for N = 4; p,, = 2.0704 for N = 5;
Pm = 2.2361 for N = 6; p,, = 2.3541 for N = 7; p,,, = 2.4415 for N = 8; p,,, = 2.5086
for N = 9; p,, = 2.5616 for N = 10; p,, = 2.6043 for N = 11; p,, = 2.6396 for
N =12))

Theorem 1.2. Let u.-(r) be the entire solution to (1.6) (given by Theorem 1.1).
Then for N > 4 and p > ppm,

) _ 4 1
(1.9) Hm 7~ # T uy (1) = (—Kp)~ #+1.

7—00

Theorem 1.3. Let N > 4 and p > pn,. Then for any a > 0 the equation (1.1)
admits a unique radial positive solution u = u(r) such that u(0) = a and Au(r) — 0

as r — o0. The solution u satisfies u'(r) > 0 for all > 0 and

lim 7‘_1%’(1,(7‘) = (—Ko)_ﬁ.
T—>00

Moreover, if N > 13 or 9 < N <12 and

(1.10) Pm <P = Pe

then u(r) > (—Ko) V@Dt for all v > 0 and the solutions are strictly ordered
with respect to the initial value a = u(0). If N =4 or5 < N <12 and

(1.11) p > max{pc, pn }

then u(r) — (—=Ko)~Y®+pd/ 0+ changes sign infinitely many times.
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Using the Mathlab, we obtain that p, = 1.0536 for N = 5; p. = 1.2047 for N = 6;
pe = 1.4671 for N = 7; p. = 1.8889 for N = 8; p. = 2.5845 for N = 9; p. = 3.8545
for N = 10; p. = 6.7957 for N = 11; p. = 20.2087 for N = 12. Then, p,. < p,, for
N =5;6;7;8.

Let us remark that results similar to Theorem 1.2 and Theorem 1.3 have been

obtained for the following biharmonic equation with power-like nonlinearity
(1.12) (=A)*u = v, u=u(r) >0

in [6] and [7]. However, our proofs are completely different and also work for (1.12).

Finally we consider the structure of radial solutions of (1.5) with
Q=B={zeR": |z|<1}.

Namely we study existence and properties of non-minimal radially symmetric solu-

tions of the problem
(1.13) A’u=A1-u)? inB, u=Au=0 ondB.

By arguments similar to those in [22], we obtain that there exists 0 < A, < oo
such that for A € (0, ], (1.13) has at least positive solution uy € C*(B) N C*(B)
and when A > )., (1.13) has no any regular solution in C*(B) N C3(B).

Now, we put

Cr={ueCYB)NC*B): u=u(|z]) solves (1.13)}

Cy = Uxso{A\} x CN.

Theorem 1.4. For N = 4 or 5 < N < 12 and p > max{p.,pm}, the secondary

bifurcation point of C. does not occur and C, homeomorphic to R with the end points
(0,0) and (A\,1 — |x|ﬁ), where

)\* = —Ko.
Moreover, C, bends infinitely many times with respect to A around ..

Theorem 1.5. For N > 13 or 9 < N < 12 and p,, < p < p., C, is the branch of
the minimal positive solutions of (1.13) with the end points (0,0) and (A, 1— \x|z$)
with )\c = —K().



2. PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1. Since we are only interested in the radial
solutions, by a shooting method, keeping u(0) fixed, say u(0) = 1, we look for

solutions u of the initial value problem over [0, co):

u® (r) + 2520 (1) 4 I () — SENEE (1) = —uP(r)

r3

GO w0) =1, (o) = w"(0) = 0, wi(0)=7>0

which is a radial version of (1.6). By standard ODE theory, we see that for each
v > 0, (2.1) has a unique solution ., (r) for r near 0.
If uw = u(r) is a radial positive solution of (2.1), then

_ptl

ug :=au(a 4 r) (a>0)

is a radial positive solution of the equation in (2.1) such that u,(0) = a.
We apply a shooting method with initial second derivative as parameter. We
remark that Nu”(0) = (Au)(0) and that by ’'Hospital’s rule

! —m . ru"(r) B ul(r) . N+1 m
(Au)'(0) =u (0)+(N—1)11_1)1(1) > =5 u

(0).
This means that the initial conditions in (2.1) also read as
(2.2) u(0) =1, '(0) = (Au)'(0) =0, Au(0) =N~y > 0.

For all v > 0, (2.1)-(2.2) admit a unique local smooth solution u, defined on some
right neighborhood of » = 0. Let

R, = { +00 if w, (r) (Aw,)(r) > 0, Vr >0
77| min{r > 0; u,(r)(Au,)(r) =0}  otherwise.

From now on we understand that u, is continued on [0, R,). Let

I"={y>0; R,<o0, uy(R,) =00},

I"={y>0; R, <00, (Au,)(R,)=0}.

By arguments similar to [16] we see that 1™ = ().

Now we show that
(2.3) I #£0.

To continue our proof, we need a comparison principle, which has been observed
by McKenna-Reichel [24].



Lemma 2.1. (Comparison Principle). Assume that f: (0,00) — (0,00) is locally
Lipschitz and strictly increasing. Let u,v € C*([0, R)) be such that
Vre0,R): A%(r) = f(v(r)) > A%u(r) = f(u(r))
(2.4) v(0) > u(0), +'(0) =w'(0) =0,
Av(0) > Au(0), (Av)'(0) = (Au)'(0) = 0.

Then we have for all v € [0, R) :
(2.5) v(r) > u(r), v'(r) >d'(r), Av(r) > Au(r), (Av)'(r) > (Au)'(r).

Moreover,

(i) the initial point 0 can be replaced by any initial point p > 0 and all four initial
data are weakly ordered.

(i) a strict inequality in one of the initial data at p > 0 or in the differential
inequality on (p, R) implies a strict ordering of v, v', Av, (Av)" and u, v/, Au,

(Au)" on (p, R).
Considering the problem
(2.6) A*v=A1-v)? inB, v=Av=0 ondB

where B is the unit ball of RV, we see from [22] that there is 0 < A, < oo such
that for A € (0, \.], (2.6) has a minimal positive solution vy € C*(B) satisfying
0 < vy < 1. The minimality of v, implies that vy(z) = vy(r). Defining wy = 1 — vy,

we see that w, satisfies the problem

—A’wy = w,? in B, wy=1, Awy=0 ondB.

P+ and @y = wy (1) /&y, we see that @y with

Setting &) := ming w,, y = )\1/46;
wx(0) = ming W, = 1 satisfies the problem
1
— A%y = w," in By, Wy = X A,y =0 on 0B,

where By = {y € RY : [y| < A4, ®/*) Denote Ny, = (Aw,)(0). We see that
Yx € I~. Moreover,

R, = )\1/45;(”1)/4

\ )

This proves (2.3).

Define v* = sup I~. We will show that v* < oco. Indeed, for ¢ > 0 sufficiently
small (e.g. €e < 2(p—1)/(p+1)) and b > 0 sufficiently large, it follows from Lemma
3.5 of [24] that the function v (r) = (1 4 b%r?)!~% satisfies

A%y +v7? <0 on (0,00).
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Now we construct a subsolution to the equation in (2.1) with the growth O(r?). Let
V(r) =1+7r?+v(r). We see that

AV + VP < A%, +0v? <0 on (0,00).

We easily see that AV (r) > 0 for r € (0,00) and AV (r) — 2N as r — oco. Setting
7 = V"(0), we see from Lemma 2.1 that the solution us; > V and Auy > AV on
(0,00). On the other hand, the function V(r) = Ar> 4+ D (A > 0, D > 0) is a
supersolution to the equation in (2.1), thus by choosing A and D sufficiently large
and applying Lemma 2.1, we see that uz < V on (0,00). Thus, us is a solution of
(2.1) with growth O(r?) near co. The comparison principle implies that v* < 4. Now
we use Lemma 2.1 to show that R, is an increasing function of . For any v;,7, € I~
and 71 > 72, by Lemma 2.1, we see that u,, (r) > u.,(r) and Au,, (r) > Au,(r) for
r € (0,min{R,,, R,,}|. This clearly implies that R, > R,,. The continuity of R,
on vy can be obtained by standard ODE theory. We easily know that Au,-(r) — 0
as r — oo.

Now we show that u.« is the unique solution to (2.1) with Au(r) — 0 as r — oo.
On the contrary, there are v** > v* such that Auy«(r) = 0, Au,«(r) = 0 as 7 — oo.

Then it follows from the comparison principle that
Uqysr > Uqye 0N (0, 00).
It follows from the equations of .-~ and u,~ that

(PN U A (tyer — ) (1)) = —(u e —u f) >0 on (0,00)

and this implies that
(A — u,2))(r) > 0 on (0,00).

This contradicts the fact that A(uy« —u,+)(r) — 0 as 7 — oo. This implies that .,
is the unique solution of (2.1) satisfying Au(r) — 0 as r — 0o. Since Au,«(r) > 0
for 7 € (0,00), we see that (r¥'ul.(r))" > 0 for 7 € (0,00). Integrating it on (0,7)
and noting u/.(0) = 0, we see that u’.(r) > 0 for r € (0,00). This completes the

proof of Theorem 1.1. 0

3. PROPERTIES OF ENTIRE SOLUTIONS: PROOF OF THEOREM 1.2

Let u,+ be given by Theorem 1.1. We prove Theorem 1.2 in this section.

We use some ideas from [7]. To this end, we use the Emden-Fowler transformation:

(3.1) Uy (1) = rpilv(t),s t =logr (r > 0).



Therefore, after the change (3.1), the equation in (2.1) may be rewritten as

(3.2) v (t) + Ksv"(t) + Kov"(t) + K10’ (t) + Kou(t) = —v?(t), t€R
where the constants K; = K;(N,p) (i =0,...,3) are given by

8
Ky = T —(N—2)(N—4)(P+1)3+2(N2—10N+20)(P+1)2+16(N—4)(p+1)+32]
which is given in (1.8).

2 -
K, = CESAE —(N—z)(N—4)(p+1)3+4(N2—10N+20)(p+1)2+48(N—4)(p+1)+128]

1
Ky = [ (V2 = 10N +20)(p + 1)* + 24(N — 4)(p + 1) + 96|
(p+1)
2

(Note that Ky < 0 for 4 < N < 12 and p > p,.) This implies that the entire
solution of (2.1) corresponds to a solution of (3.2). For v > +*, the solution ., has
a growth O(r?), this corresponds to v(t) — oo as t — oo. We claim that w.,-(r)
corresponds to the solution v of (3.2) satisfying lim; o, v(t) = (—Kg)~Y/ @+,

Note that (3.2) admits the constant solution vy = (—K;)~/®*1) which, by (3.1)
corresponds to the singular solution Uy(r) = (—K)~/@Fp4/ G+ of (2.1).

We now write (3.2) as a system in R*. By (3.1) we have

. (r) = 0 is equivalent to v'(t) = —27v(t).
This fact suggests us to define

wi (t) = v(t)
4

t) ='(t t

walt) = (8) + —o(t)
4

) =v"(t "(t

ws(t) =v ()+p+1v()
4

t — n t + U” t

wy(t) = v"(t) | (t)

so that (3.2) becomes

wggt; = —%wl (t) + wo(t)
wh(t) = ws(t
(3:3) wh(t) = wa(t)
wﬁl(t) = CQU)Q(t) + ng;),(t) + C4’LU4(t) — wl_p(t)
where

K.4i—|—17m
(34) Cpn=-%L :

i—m—1 (Ciyrm(p 1) form=1,2,3,4 with K, = 1.
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This gives that C; = 0 so that the term Cjw;(t) does not appear in the last equation

of (3.3). Moreover, we have the explicit formulae:

C, = —ﬁ[—(J\r—2)(1\f—4)(p+1)3+2(N2—10N+20)(p+1)2
+16(N —4)(p+1) + 32} = —Z%lKO
1 2 2
Cr=—0 iy [(N — 10N +20)(p+ 1)+ 16(N — 4)(p+ 1) + 48
04:—1%[(N—4)(p+1)+6}.

System (3.3) has one stationary point (corresponding to v;)

P((~Ko) 5, i(_KO)—pL,o,o).

p+1
Around this ”singular point” P the linearized matrix of the system (3.3) is given by
4
0" 0 1
Me=1 0 0 1

-pKy Cy C3 C4

The corresponding characteristic polynomial is
vis v+ Ko + Kov? + Kiv + (p+ 1)K,

and the eigenvalues are given by

N+ VN, + 4/ N =N, + 4N

3.5 = =
(3.5) "1 2(p+1) 2 2(p+1)
N+ VN, - 4/N; N — /N, — 4N,
(36) Vg = — , Yy = —
2(p+1) 2(p + 1)
where

Ny :=(N—4)(p+1)+8, Ny:=(N2—4N +8)(p+ 1)

N3: = (IN —34)(N—-2)(p+1)* —8(3N — 8)(N — 6)(p+1)°
+(16N% — 288N + 832)(p+1)% + 128(N — 6)(p + 1) + 256.

Proposition 3.1. Assume p > 1.
(i) For any N > 4, we have v,vy, € R and vy > 0 > v,
(i) For N = 4, we have v, vy ¢ R and R(v3) = R(vs) <0,
(#i) For any 5 < N < 12 there exists p. > 1 such that
if 1 <p<pe, thenvz, vy € R and v3 < vy <0,

if p=pe, then v3,v4s ER and v3 =v4 <0
10



if p> pe, then v3, vy € R and R(v3) = R(v) < 0.
The number p. is the unique value of p > 1 such that

—(N —4)(N* —4N? — 128N +256)(p + 1)* — 128(3N — 8)(N — 6)(p + 1)°
+256(N? — 18N + 52)(p + 1)? + 2048(N — 6)(p + 1) + 4096 = 0.

(iv) For N > 13, we have v3,v4 € R and v3 < vy < 0.

Proof. We first observe that N; > 0 and

No— N2 = (N2—4N+8)(p+1)2 = (N—-4)*(p+1)2—16(N —4)(p+ 1) — 64
= 4N-2)(p+1)?—16(N —4)(p+1) —64
= 4[(N-2)(p+1)>—4(N —4)(p+1) — 16].
Since the equation
(N —=2)z? —4(N —4)z —16 =0

has two roots:

2 2
=—— [(N—4)4++vV/N2—4N +8 =—— [N—4—+v/N2—4N +38
Ty N_2[( )+ +38], N_Q[ + 8],
we see that
(3.7) Ny — NZ2>0 forp+1> .

Next, we show that for p > 1

(N2 — NE)
(3.8) Ny > ===
Indeed,
N, — N2
Ny — % = 8(N—2)(N—4)(p+1)*

—16(N? — 10N +20)(p 4+ 1)> — 128(N — 4)(p + 1)* — 256(p + 1)
= (p+1)[B(N—2)(N—-4)(p+1)>—16(N?* — 10N + 20)(p + 1)°
—128(N —4)(p + 1) — 256].

For N = 4.
(N — N7)

N_
3 16

=64(p+1)> — 256 > 0 for p > 1.
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For N >5and p > 1,

N; — (N = Ni) > (p+ D{[16(N — 2)(N —4) — 16(N? — 10N + 20)](p + 1)?

a —128(N —4)(p + 1) — 256}
= (p+1)[(64N —192)(p+1)? — 128(N — 4)(p + 1) — 256]
= 64(p+ DN =3)(p+1)* =2(N —4)(p+1) —4] >0
note that the equation
(N—-3)2>—2(N—-4)z—4=0

has two roots:
2

N-3
In particular, (3.8) implies that N3 > 0. We see from (3.7) that

Ny > N; forp> 2 [(N—4)+VN2—4AN +38] -1

No < N} forpe (1,725[(N —4) + VN2 — 4N + 8] — 1].
For N2 > N,, we see from (3.8) that /Ny +4y/N3 > N;. For Ny > NZ we see
from (3.8) that 4y/N3 > N, — NZ. This implies 4y/N3 + Ny > N, > N? and thus
Ny +44y/N3 > N;. These implies that (i) of Proposition 3.1 holds for p > 1.

We now discuss the properties of v3 and v4. We introduce the function

$1:2, To =

Ny(N,p): = 16Ns— N; = —(N —4)(N> — 4N? — 128N + 256)(p + 1)*
—128(3N — 8)(N — 6)(p + 1)°
+256(N? — 18N + 52)(p + 1)? + 2048(N — 6)(p + 1) + 4096.
For N = 4, we see that

Ny(4,p) = 1024(p+1)> +1024(p + 1)* — 4096(p + 1) + 4096
= 1024(p + 1)*p — 4096p
> 4096p — 4096p = 0.

This implies that (ii) of Proposition 3.1 holds.
For any 5 < N < 12, we see that the first coefficient of Ny(N,p) is positive.
Moreover,
0?N,

5 = —12(N — 4)(N® — 4N? — 128N + 256)(p + 1)°

—T768(3N — 8)(N —6)(p+ 1) + 512(N? — 18N + 52)
12



and simple calculations imply that 3;;24 > (0 for p > 1 and Ny4(N,1) < 0 for any

fixed N € [5,12]. Thus, Nys(N,p) is a convex function of p for any fixed N € [5,12].
Therefore there is a unique p. € (1, 00) such that for each fixed N € [5,12],

Ny(N,p) <0 forl<p<p., Ng(N,p)>0 forp>p,.

This implies that (iii) of Proposition 3.1 holds.
For N > 13, we see that the first coefficient of N4(N,p) is negative. Moreover,
forp > 1,
0?N,

G = L2V (VT ANT 128N + 256)(p + 1)°

—T68(3N — 8)(N —6)(p+ 1) + 512(N* — 18N + 52)
< —1536(3N? — 26N + 48) + 512(N? — 18N + 52)
= —4096N? + 30720N — 47104
< —53248N + 30720N — 47104
—22528N — 47104 < 0.

We also know that Ny(N,1) < 0 for N > 13. On the other hand, we see that for
p>1land N > 13,
aa—]zvf = —4(N —4)(N? —4N? — 128N + 256)(p + 1)° — 384(3N — 8)(N — 6)(p + 1)*
+512(N? — 18N + 52)(p + 1) + 2046(N — 6)
< —T68(3N —8)(N —6)(p+ 1)+ 512(N? — 18N + 52)(p + 1) + 2046(N — 6)
= [~1792N?% + 10752N — 10240](p + 1) + 2046(N — 6)
< —(12544N +10240)(p + 1) 4 2046(N — 6) < 0.

Therefore, Ny(N,p) < 0 for N > 13 and p > 1. This implies that (iv) of Proposition
3.1 holds and completes the proof of this proposition. O

Proposition 3.1 implies that P has three dimensional stable manifold and a one
dimensional unstable manifold for N > 4 and p > 1.

Let u be the unique entire solution of (1.1) with Au(r) — 0 as r — +oo. Let v be
defined according to (3.1) so that it solves (3.2), and w(t) = (w1 (t), wa(t), ws(t), wa(t))
be the vector solution of the corresponding first order system (3.3). Then we see
from Au(r) — 0 as 7 — +oo that
(3.9)

,2(p—1>t[ " ( 8 ) p 4 (
e » () F(N=-24+—— )V (t)+——(N—-2+
(®) p+1 (t) p+1

13

+1)v(t)] —0 ast— oc.
p



Proposition 3.2. We have
tli)rglo w(t) = P.
In particular, the trajectory w is on the stable manifold of P.

To prove this proposition, we first prove some useful lemmas.

Lemma 3.3. Let v be the global solution and assume L € [0, 00| such that

lim v(t) = L.

t—o0

Then L = (—Ky)~Y/@+1),

Proof. We first exclude the case L = +o00. By (3.9), we see that

2(p—1) t

)U(t) :=g(t) = o(e »#1 ") as t — oo.

8 4
”t+(N—2+—) ’t+—(N—2+
V() p+1 v'(t) P+ 1

The standard ODE theory implies that

p+1

t
o(t) = Ble_szt—i—BQe_(N_Hfﬁrl)tﬁ-/ (e—(N—2+,%)(t—S) —e_ﬁ(t_s)>g(s)ds
T
4 __4 4 t 4
< Bse 1"+ Bye »i1 er+i’g(s)ds
T

(@-1)
= 0(62;’“1 ") ast— oo

where T' > 0 is sufficiently large. On the other hand, since v(t) — +oc0 as t — +o0,
we see from (3.2) that

(3.10) v (t) + Ksv"(t) + Ky (t) + K1v'(t) + Kou(t) = o(1), as t — oo.

The corresponding characteristic equation is

,04 +K3p3 +K2p2 +K1,0+K0 =0

which has only one positive root p = %. Therefore,

_2p=1)y

e »1 u(t) = ¢, ¢>0 ast— oo.

This contradicts the fact that v(t) = o(ez(pp;ll)t) obtained above.
If L # (—K)~Y®+D then —v~P(t) — Kgv(t) = o # 0 as t — oo and for € > 0
sufficiently small there exists 7" > 0 such that
(3.11) a—e <o)+ Ku"(t) + K"(t) + Ki'(t) < a+e, VE>T.
Take € < || so that & — € and « + € have the same sign and let
d :=sup |v(t) —v(T)| < 0.
£>T

14



Integrating (3.11) over [T, t] for any ¢ > T yields

(a—e)t—=T)+C — |Kql0 < v"(t) + K3v"(t) + Kv'(t)
< (a4+6)t=T)+C+|Kilo, Vt>T,

where C = C(T) is a constant containing all the terms v(T"), v'(T), v"(T) and v"'(T).

Repeating twice more this procedure gives

o+ €

TP +0@) <o (t) < —5(t=T)° +0(t”) ast — co.

This contradicts the assumption that v admits a finite limit as ¢ — oo. This com-

pletes the proof. O

If v is eventually monotonous, then Lemma 3.3 implies that (1.9) holds. So, we
need to consider the case that v oscillates infinitely many times near ¢t = oo, i.e. v
has an unbounded sequence of consecutive local maxima and minima. In the sequel
we always restrict to this kind of solutions without explicit mention.

We define the energy function

’Ulip K() 2

-5 v ()

p—1 2

_ K L

W'(®)* + 5 (" ()"

(3.12) E(t) = 5 5

We prove first that on consecutive extrema of v, the energy is decreasing. For the
proof of the following lemma, the sign of the coefficients K;, K3 in front of the odd

order derivatives in equation (3.2) is absolutely crucial.

Lemma 3.4. Assume that p > p,, and ty < t; and that v'(ty) = v'(t1) = 0. Then
E(ty) > E(t1).

If v is not constant, then the identity is strict.

Proof. From the equation (3.2) we find:

E'(t) = —v )0 (t) — Kov(t)v'(t) — Kov' (£)v" () + v"v™
= (—v? — Kov— K" + v"v"

— (U(4)(t)+K3’UI”+K1’U,)’U,(t)+’U”’U”,.
15



Integrating by parts, this yields:

E(t) — E(ty) = /t " B(s)ds = / " () (8)ds — K / " (s Pds

to to

t1 t1
+K1/ \v'(s)|2ds+/ v"(s)v"(s)ds

to to

t1 t1
- —K3/ |v"(s)|2ds+Kl/ v'(s)[2ds < 0

to to

since K3 > 0 and K; < 0. If v is not a constant, the inequality is strict. 0

Lemma 3.5. Assume p > p,,. There are 0 < 0 < 0y such that

(3.13) 0 <w(t) <60y fort sufficiently large.

Proof. Let {tx}ren denote the sequence of consecutive positive critical points of v,
we see that there are 6y, 6 > 0 such that 6; < v(t;) < 6, for all k. On the contrary,
we can find a subsequence (still denoted by {#;}) such that v(t;x) — 0 or v(tx) — oo
as k — oo. We only consider the first case, the second case is similar. By Lemma
3.4, we see that

(3.14) E(t)) > E(t;) for any large k.

Since v(tx) — 0 as t — oo, we easily see that E(ty) — oo as k — oo, this contradicts
(3.14). This completes the proof. O

Lemma 3.6. Assume p > p,,. For T > 0 sufficiently large,

/ o/ (s)[2ds + / v"(s)ds < 0.

T T

Proof. We take the same sequence {#j }ren as in the proof of Lemma 3.5. We assume
that 7" > t;. Then for any k:

tr 123
—K3/ [v" (s)|*ds + Kl/ |v'(s)[?ds = E(ty) — E(t1) > —E(t;) > —c0.
t1 t1

The statement follows by letting & — oo and using again that K3 > 0 and K; <
0. O

Lemma 3.7.

/ 10" (s)]2ds < oo.

16



Proof. Since u,«(r) > 0 for r € (0,00), we see that v'(t) + ﬁv(t) > 0 for t €

(—00,00) and thus

(3.15) —v'(t) < 1v(t) for t € (—o00,00).

p+
We choose {t}ren as in the previous lemmas. Now we can choose another mono-
tonicity increasing diverging sequence {7y}ren of flex points of v such that v is

decreasing there. We choose
T > T, Tk /‘ o0

U’(Tk) S 0, ’U”(Tk) =0.

It follows from (3.15) and Lemma 3.5 that —v'(7;,) < p+1 v(71x) and thus |[v'(73)] < 269
for all k. We multiply the equation (3.2) by v"” and integrate over (T, 7%) :
(3.16)

/T,c (U(4)(s)+K3v'"(s)+K2v”(s)+K1v'(s)+K0v(s))v"(s)ds =— /Tk v7P(s)v"(s)ds.

T T

We show that all the lower order terms remain bounded, when & — co. We see that

(3.17) ‘/ v"( ds‘ = ‘ Py —p/Tk v_(p+1)(s)|v'(s)|2ds‘ <C

T
by Lemmas 3.5 and 3.6. With the same argument, one also obtains

(3.18) | /T Tkv(s)v"(s)ds‘ <c

The Holder inequality and Lemma 3.6 imply

(3.19) ‘ /Tk U'(s)v"(s)ds‘ <C.

By our choice of 7 (recall that v”(7;) = 0), we obtain

(3.20) ‘/ "(s)o! (s)ds| = () < O

Finally, integrating by parts, we find from (3.16)-(3.20) that

(3.21) / v"(s))?%ds < ‘/ v"( ds‘+|v'" Tw"(T)| < C.

T

Letting £k — oo, we obtain our conclusion. O

Lemma 3.8.

/ lw®(s)[?ds < oo.

T
17



Proof. In view of Lemmas 3.5-3.7 we may find a sequence {s;} such that

lim s, =00, wv(sk) =0(1), lim v'(sx) = lim v"(sg) = lim v"(s) = 0.
k—o0 k—00 k—00 k—00

We multiply the equation (3.2) by v*) and integrate over [T, s;) :
(3.22)

/ " (0@ (5))2ds = /T (Lo (s) — Kou(s) — Kov'(s) — Kov"(s) — Ko™ ()0 (s)ds.

T
By using Lemmas 3.5-3.7 and arguing as in the previous proofs we obtain

| o0 s = [l o)] " = o)

T

/T 0@ (50 (s)ds = O(1) — / (s 2ds = O(1):

/T o (s)!(s)ds = O(1) — /T ()" (s)ds = O(1):
/TSkv(4)(s)v(s)ds: 0(1) —/sk o"(s)v'(s)ds = O(1 )+/Tsk 0"(s)2ds = O(1);

Sk
/ v (s)vP(s)ds —|—p/ v~ P (5)0! (s)ds
T

1/2 5k 1/2
< o() +0(/ "(5) Pds) (/ v/ (s) Pds)
T
< 0(1).
Inserting all these estimates into (3.22), then claim follows. g

Lemma 3.9. -
/ v2(s) (v P (s) + Ky)%ds < oo.

T

Proof. From the equation (3.2) we conclude
(VD (s) + K30™(s) + Ko (s) + K1v'(5))? = v2(s) (v~ P+ (s) + Kp)2.
The statement follows now immediately from Lemmas 3.5-3.8. O

The proof of Proposition 3.2 and Theorem 1.2 will be completed by showing:

Lemma 3.10. Let w = (wy, wy, w3, wy) be as in Proposition 3.2. We assume further
that v = w; has an unbounded sequence of consecutive local mazxima and minima

near t = 0o. Then it follows that

(3.23) lim w(t) = P.

t—00
In particular, lim,_,o, v(t) = (—Kg) ™/ @+,
18



Proof. We first show that the limit of v'(t) as ¢ — oo exists. Define h(t) :=

Ttv’(f)v"(g)dg for ¢ > T. We easily see that the limit of h(t) as ¢ — oo exists.

Indeed, for any large 1, to with 7' < t; < t5, we see from Lemma 3.6 that

to 1/2 to 1/2

Ih(ts) — h(ty)] < (/ (v'(g))%zg) (/ |v"(§)|2) 50 as t1, s — 00,
t1 t1

Thus, lim;_, h(t) exists and this implies lim; o, v'(t) exists. Lemma 3.6 implies

that lim;_,o v'(t) = 0. Thus, we can obtain that lim; . v"(t) = 0, lim;_,o v (t) = 0

and limy_,o v™® (¢) = 0. Tt is easily seen from the equation (3.2) that

lim (v ?(t) + Kov(t)) = 0.

t—o0

This implies that
lim v(t) = (—K,) Y@+,

t—00

This completes the proof. O

4. PROPERTIES OF ENTIRE SOLUTIONS: PROOF OF THEOREM 1.3
Let us define

(4.1) 7 =v; + . j=1,2,3,4.

p+1
A direct computation shows that r” are the four fundamental solutions to
(4.2) A%y = pUy ®H1y,

Using Proposition 3.1 and direct calculations, we have the following proposition:

Proposition 4.1. (i) For any N > 4 and p > 1, we have
(4.3) 7 >0>2—-N>1.
(i1) For any N =4 or 5 < N <12 and

(4.4) P> P,

we have U3, iy ¢ R and R(73) = R(0) = X <0.
(#3) For any N > 13 or 5 < N <12 and p < p., we have

(4.5) A—N <5<

<y <0, v3404=4—N.

(iv) For any 5 < N < 12 and p = p., we have 3 = i, = 2N

2
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We need to consider two cases:

Case 1: N=4or 5 < N <12 and p > p,.

Case 2: N>13or5< N <12and 1< p<p..

For the first case, we prove that u(r) — Uy(r) must have infinitely many intersec-

tions. This amounts to the study of the following linearized equation
(4.6) A%p=pu=P g @(r) = 0 as r — +oo.
First we have the following lemma.

Lemma 4.2. (1) If $(0) = 0, then ¢ =0,
(2) If $(0) = 1, then A¢(0) < 0.

Proof. (1) Suppose ¢(0) = 0 and A¢(0) # 0. We may assume that A¢(0) > 0. Since
#(0) = ¢'(0) = 0, we may assume that ¢(r) > 0 for r € (0, R) and ¢(R) = 0. (R can
be +00.) Then in (0, R), (A¢)'(r) > 0 and hence A¢(r) > 0 for r € (0, R). This
implies that ¢'(r) > 0 and ¢(r) > 0 for » € (0, R]. This contradicts with ¢(R) = 0.

(2) follows from the same arguments. O

As a consequence of (1) of Lemma 4.2, we have
Lemma 4.3. The solution to (4.6) is given by

(4.7) o(r) = C(p:l_ 1u(r) - ru'(r))
for some C # 0.

The following theorem gives the asymptotic behavior of u for the first case.

Theorem 4.4. For r sufficiently large,
(4.8) u(r) = (=Ko) V@D @) L A re cos(B1nr) + Myr® sin(B1lnr) + O(r*~0)

where 6 = 7%)/]\7_3 >0, v =a— ﬁ +146 and M} + MZ # 0. (Note that it is

known from Proposition 4.1 that « = (4 — N)/2 <0.)

Proof. Using the Emden-Fowler transformation (3.1) and letting v(t) = (=Kg) /P14
h(t), we see that h(t) satisfies

(4.9) A (t) + Ksh™(t) + Koh"(t) + K b (t) + (1 + p)Koh(t) + O(h?) =0, t > 1.
Therefore in the leading order, we can write

(4.10) h(t) = Mie® 54 cos Bt + Mael® 5+ sin Bt + Mae”! + o(e"'?)
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(note that we have from Theorem 1.2 that lim;_, A(¢t) = 0). This then implies that

as r — +oq,
(4.11) o(r) = Mir®cos(BInT) + Myr®sin(B1Inr) + Msr”™ + o(r™)

where ¢(r) = r#h(t) = u(r) — Uy(r).
We now show that M7 + M2 # 0.
Suppose now that M; = M, = 0. Then we have

(4.12) o~ N as r — 400

where Kk = —; —(IN—2) > 0 by Proposition 4.1. Furthermore, ¢(r) has no zeroes for
r large. We show that this is impossible. In fact, it is easy to see that ¢ must change
sign in (0,400). Otherwise, we assume ¢(r) > 0 for r > 0 (note that u(r) > Uy(r)
for r small). Then using the behavior of ¢ near oo and integrating the equation

A?p =Uy? —u™ over RV, we see that

/ (Us? —uP)yrVtdr =0
0

which contradicts with ¢ =u — Uy > 0.
Suppose ¢(r) has exactly k zeroes in (0,+00) (recalling that ¢ has no zeroes
when r is large) and ¢(r) ~ 7>V * as r — +oc, we easily see that r¥ 1¢'(r) has k
N—-1, .1

)
zeroes. On the other hand, since the function n(r) := r™ *¢'(r) satisfies n(0) =
1

and n(r) — 0 asr — 400, we see that 7'(r) has k+1 zeroes. Thus Ap(r) = x—=n'(r )
has at least k+ 1 zeroes. Similar idea implies that ¥ ~1(A)’(r) has at least k zeroes
and (1"~ (Ag)'(r))" has at least k41 zeroes. Therefore, A%p = —— (rV=1(Ayp)'(r))’

has at least k+ 1 zeroes. This contradicts our assumption that ¢ has k zeroes, since

2, _ UgP—u” P (r)—u=?(r)
A Y= Ou Uy SO and u(r) Uo(r)

completes the proof of the second part of Theorem 1.3. O

> 0 for all » > 0. This proves our claim and

To prove the first part of Theorem 1.3, we need the following two theorems. (We
need to consider Case 2.)

Theorem 4.5. We have u(r) > Uy(r) for r > 0.
Theorem 4.6. The solution of (4.6) remains constant sign.

The proofs of both theorems depend on the use of comparison principle for fourth
order equations.

We prove Theorem 4.6 first.
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Proof of Theorem 4.6: Assume Theorem 4.5 holds, i.e. u(r) > Uy(r). Let ¢(r)
be a solution of (4.6). By Lemma 4.2, we may assume that ¢(0) = 1, A¢(0) < 0.
Let (r) = r”. Then it is easy to see that
(4.13) A2 = pUy Py

By Proposition 4.1, we have 3 > 4 — N. This implies that fBT(O) r~4 ol < +oo.
So we can multiply (4.6) by 1 and (4.13) by ¢ and integrate over B,(0) to obtain
(4.14)

0= / (U — =01 g 4 /
. (0) )

= Il(T') + IQ(T‘) —+ 13(7')
where [;(r) are defined at the last equality.

(Ad) — Ade] + /a (v —(ayyg

B (0) B

Let us assume that there exist 71,75 € (0,400] such that
(415) (15(7') > Oa re (0,7"1), ¢(7”1) = Oa A¢(r) < 0, re (05T2)a A¢(7”2) = 0.

We divide our proof into three cases:

Case 1: 7 = 7s.

In this case, we take 7 = r; = ro. Then we have I;(r) > 0, Ir(r) > 0, I3(r) > 0.
The identity (4.14) gives a contradiction.

Case 2: r9 < 11.

In this case, we take r = 7. Then it is easy to see that I (ry) > 0, Iy(re) =
faBM(O)[(AQS)’w — A¢y'] > 0. It remains to estimate I3(rq).

To this end, we first show that A¢ > 0 for r € (ro,71). In fact, since A%¢p =
pu~®¢ > 0in (0,71), we see that A¢ must be positive for » > 75 and near r,.
Suppose that there exists r3 < r; such that A¢(rs) = 0. Then we have A¢ > 0,
A(A¢) > 0 in (r9,73). This is impossible (since A¢ must attain its maximum in
(r9,73) where A(A¢) < 0).

Now we consider the function ®(r) = r¥=1(Ayp¢' — (A)'¢). Its derivative is
given by

'(r) = (V) Ap(r) = (rVTH(AY) (r)) é(r)
= rNAG(r) A (r) — o(r)A%Y(r)] < 0 for r € (ry,71).
(Here we have used the fact that Aty < 0.) So ®(ry) < ®(r1) = r¥ LA (r) ' (r1) >
0. As a consequence, we have proved that I3(ry) = ry f{“)Brz(O) ®(ry) > 0. So again,

we have I1(rg) > 0, Io(r2) > 0, I3(r2) > 0 and a contradiction to the identity (4.14).

Case 3: r; < rs.
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The proof is similar to Case 2. In this case, we take » = r;. Then it is easy to see
that I1(r1) > 0, I3(r) faB Az/zqﬁ ] > 0. It remains to estimate I5(r1).

As before, we first show that o(r) < 0 for r € (r1,72). In fact, since A¢ < 0 in
(0,72), we see that ¢ must be negative for r > r; and near r;. Suppose that there
exists 73 < ry such that ¢(r3) = 0. Then we have A¢ < 0, ¢ < 01in (r1,73). This is
impossible (since ¢ must attain its minimum in (r3,7) where A¢ > 0).

Now we consider the function ¥(r) = 7V 1((A@)'p — A¢y)'). Its derivative is
given by

U(r) = (FNHAY) () v(r) — (VY (r) Ag(r)
= rIN[AZG(r)(r) — Ag(r)Ay(r)] < 0 for r € (ry, 7).

)i
So ¥(ry) > \Il(rz) = 10 " (AB) (r9)p(r5) > 0. As a consequence, we have proved
that I(ry) = r] NfaB \I’(Tl) > 0. So again, we have I1(ry) > 0, Iy(r;) > 0,
I3(r;) > 0 and a contradlctlon to the identity (4.14). These contradictions imply
that ¢ remains constant sign and this completes the proof. 0
Proof of Theorem 4.5: The proof is similar to that of Theorem 4.6. Let
éo = u(r) — Up(r). Then it is easy to see that ¢, satisfies

(4.16) A2¢o = Uy? — (Up + ¢0) ™" < pUy ® s, 7> 0.

Now let 1)y = r”. Then by Proposition 4.1, 74 > (4—N)/2. Thus fBR(O) =4 ol 1y <
CfBR(O) r=4r=M/2 < o since N > 9. Thus the integral Uy ®*Y ¢giy is integrable.
Similar to (4.14), we have the following identity

(4.17) / [(Ado)' o — Aot + / (Ao — (Ao o] < 0.
08,(0) 9B, (0)

Now note that ¢9 > 0, A¢gy < 0 for r small. So we may assume (4.15). The case
r1 = 1y is easy to exclude. We just need to show the case r, < 7'1 To this end, we
first show that Agy > 0 for r € (79, 71). In fact, since A%¢y = —(Up+¢o) >0
n (0,71), we see that A¢y must be positive for r > ry and near 5. Suppose that
there exists 73 < 71 such that A¢g(rs) = 0. Then we have A¢y > 0, A(A¢y) > 0
n (rg,73). This is impossible (since A@y must attain its maximum in (79, r3) where
A(Agy) < 0). The rest of the proof is exactly the same as before. We omit the
details. O

Theorem 4.6 yields very important estimates on the asymptotic behavior of .

Corollary 4.7. (1) Under the assumptions of Case 2. Then the set of solutions

{ua(r)} to (1.1) is well ordered. That is if a > b then u,(r) > uy(r) for all r > 0.
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(2) If N > 13 or 9 < N < 12 and p,, < p < p¢, then we have the following
asymptotic expansion for u:
(418) ’U,(T‘) = (_KO)_l/(p+1)T4/(p+l) + Ml,,,174 + O(T,max(2ﬂ4,173))
where My # 0. If 9 < N < 12 and p = p,, then we have the following asymptotic

expansion for u:
(4.19) u(r) = (= Ko) Y@@t 4 (M) 4 Mylogr)r 2 + O(r* ).
Proof of Corollary 4.7: For (1), we note that ¢ = %% satisfies (4.6) with

#(0) = 1. By Theorem 4.6, ¢ > 0. Thus uy(r) > u(r) for a > b.
For (2), we have

(W20)  ulr) = (~Kg) VDO L Mg My g Q)
If M2 = 0, then
(421) u(r) = (_KO)_l/(P‘Fl)T‘l/(IH-l) + O(Tﬁg)

which implies that ¢ = O(r”®). Now as in the proof of Theorem 4.6, we have
(4.22) / p(Uy P — = D)) grPsp N1 —
0

where the integral is finite because /3 > 4 — N and 203 < 4 — N. This is impossible
since ¢ > 0 and u(r) > Up(r). So My # 0.

When p = p,, (4.19) follows from the fact that 73 = 7, = %. O

5. STRUCTURE OF RADIAL SOLUTIONS OF (1.13): PROOF OF THEOREM 1.4

In this section we study the structure of radial solutions of (1.13) and prove
Theorem 1.4.
Note that (1.13) is reduced to

(5.1)
u®(r) + 2(1\2_71)“,,,(7«) + Wu“(r) — (N_Q#u’(r) == W for r € (0,1)
0<u(r)<1

uw(l) =0, «"(1)+ (N —1)u/(1) =0, «'(0) =u"(0)=0
where u = u(r) for r = |x|. We apply the phase plane analysis as in [12].
Next we introduce the initial value problem
(5. 2)
{ )(lz 2(N-1) u"(r) + Wuum _ wu:m —— W for r € (0,1)

w(0) = A € (0,1), u'(0) = u"(0) = 0. '
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Make the changes:
1—
o(y) = 22U i gy,
1-A

Then (5.2) is reduced to (for y € (0, \V/4(1 — A)~(P+1/4))

o (y) + HNH" (y) + B0 (y) — B2 (y) == —v7(y)
63 { 0<v<

v(0) =1, 2'(0) =v"(0) =0.
Setting § = A/4(1 — A)~»*+V/4  we see that the solution v(y) of (5.3) depends on
0, we denote it by vy. Moreover, vg(f) = =5, (Ayvp)(d) = 0. We claim that
vp(y) — uy+(y) for all y € (0,00) as § — oo. This can be seen from Theorem 1.1.

Note that for each 6, there is a unique 7y such that (vg)”(0) = 5. We easily see
that vy — v* as § — oo, where ¥v* is defined in Theorem 1.1. The standard ODE
theory implies that our claim holds.

We apply the Emden-Fowler transformation:

__4
% (t) =y " op(y), t=1Iny
where 7 = Inf. Then (5.3) changes to
(5.4)
2V (1) + K32"(t) + K2 (t) + K12 () + Koz, (t) = —27P for t € (—o0,7)
4
0< 2 (t) < Lye v’

4
: —=t_n _ 16
limy , o er+i'2)(t) = (

4 4
. _4 4 _ . =t _1 _ —2
limy, ooert 2. (1) =1, limy, ert 2 (t) = — p+1)2"

4
p+1’
Through the above transformation, the boundary conditions: u(1) = Au(l) =

correspond to

2 (r) = A7V )4 (N1 P) () (N1 2P () =0,

p+1 p+1 p+1
In other words for any 7 € R, (\;,u,) defined by
( ze(rtnr) ot
UT()_l 2 (T) T+a
Ar = p+—1();
ep+1 2+(T)
| ()(m)+ (N— 1+ 22)2 () + 54 (N = 1+ 52) 2 (7) = 0

satisfies (5.1), and conversely, every solution of (5.1) is written in the form of (5.5).
Hence C, is homeomorphic to R. Since vp(y) — V (y) as 0 — oo, where V (y) is the

solution of the equation

Vi (y) + 2Dy (y) BN () WDV y(y) — —y=r(y) y € (0, 00)
V(0)=1, V'(0)=V"(0)=0.
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Moreover, we easily see that z,(t) — Z(t) for all t € (—o0,00) as 7 — oo, where
Z(t) is the unique solution of the problem
{ ZO(t) + Ky 2(8) + K, 2'(t) + Ky 2'(8) + KoZ(t) = —Z77(8) for t € R

limy, oo €7 Z(8) = 1, Timy, o €71 2/(t) = limy , o0 712" (1) = T

4
Pl
The singular point w = P corresponds to (A, u) = (A, 1 — \x|#) since z.(7) —
(=K)~Y/®+) as 7 — oo, where )\, = —Kj.
To prove that C. bends infinitely many times with respect to A around A,, we
only need to show that P is a spiral attractor. Since w is on the stable manifold
of the singular point P, we see that all trajectories of system (3.3) are eventually

tangential to the space
S = {s1X1 + S9x3 + by : 51, 82,0 € R}.

Where x; 4+ ix, denotes eigenvectors of the matrix Mp defined in Section 3 corre-
sponding to the complex eigenvalues v3, v4. y denotes the eigenvector of the matrix

Mp corresponding to the real negative eigenvalue v4,. But by Theorem 4.4, we have
(5.6) v(t) = (Ko) V*+D) 4 My e 51 cos Bt+ M,e® 71 sin Bt + Mze”** +o(e")

where M2 + M2 # 0. Thus P is a spiral attractor. This shows that C, must bend
infinitely many times with respect to A around A,.
Next we show that the secondary bifurcation point of C, does not occur, which is

the content of the following lemma.

Lemma 5.1. For any k € (0,1), there is at most one X :== A(k) € (0,)\;] with
(A, uz) € Cr and usz(0) = k.

Proof. Suppose there are A\j, Ay € (0, A\] with Ay # Ay, say Ay > Ag and (A, uy,),
(A2, uy,) € C, such that uy,(0) = uy,(0) = &. If we set uy = uy,, us = uy, and
zj =1 —wj(r) for j = 1,2, then
(5.7)

—A%z; = )\jzj_p, z;(0) =1 — &, z;-(O) = z;-”(O) =0, z(1)=1, (Az)(1)=0.
23 (1—r)@FD/437 1Y)

Let Z;(y) = - . We see that Z; (j = 1, 2) satisfies
(5.8)
_ 1
Ajvj = —v;”, 0;(0) =1, vj(0) = vf"(0) =0, v;(m) = 7. (Ayy)(r;) =0

where 7; = )\;/4(1 — k)~Pt/4 Since A\; > )y, we see that 71 > 7. Suppose

(v1)yy(0) > (v2)yy(0), by the comparison principle (see Lemma 2.1), we see that
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v1(y) > wva(y) for y € (0,75]. This contradicts the fact that vi(72) < we(m) =
——. Suppose (v1)yy(0) < (v2)yy(0), by the comparison principle again, we see
that (Avy)(72) < (Awy)(72) = 0, but this contradicts the fact that (Awv;)(r2) >
(Avy)(71) = 0. Thus, (v1)yy(0) = (v2)yy(0) and thus, v = ve, 11 = 7. Therefore,

A1 = 9. This is a contradiction and completes the proof. O

6. STRUCTURE OF RADIAL SOLUTIONS OF (1.13): PROOF OF THEOREM 1.5

In this section we prove Theorem 1.5. We also apply the phase analysis to consider
the problem (5.1).

Consider the initial value problem

(6.1)
{ u®(r) + Ay (r) 4 SRy (r) - EAR Iy (r) = f2r for r € (0,1)
u(0) = A€ (0,1), w(0)= "'( ) =0.

By making the changes:

o(y) = 1— U(T)’ y = ML — A) 0D/,

1-A
we see that (6.1) is reduced to (for y € (0, \Y/4(1 — A)~(p+1)/4))
o0 (5) + KDy 4 DS (LN (y) = op(y

v(0) =1, v'(0) =v"(0) =0.

Setting § = A\/4(1 — A)~(®*1)/* and using arguments similar to those in the proof of
Theorem 1.4, we see that the solution v(y) of (6.2) depends on 6, we denote it by vj.
Moreover, vg(f) = 1=, (Ayvg)(0) = 0. By arguments similar to those in the proof
of Theorem 1.4, we see that vg(y) — u,+(y) for all y € (0,00) as § — co. By using

the expressions as in (5.4) and (5.5), we see that C, is homeomorphic to R and
Ar = M(=—Ky), Ar =1, u(r) = 1- PPt as T — 00.

Moreover, for any ¢ € HZ(B), we see that
[ 186 = p(~Ko)e?lda
B

> [ [ ()

> 0.
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The latter inequality is the well-known Hardy’s inequality. Note that for N > 13 or
5 < N<12and 1< p<p., we see that
N(N - 4))2
1 .
This implies that (—(Kj),1 — rp%l) is a stable solution of (1.12).
On the other hand, it is known from [22] that for any A € (0, \.), (1.13) has a

minimal solution u, satisfying u, > 0 in B. Arguments similar to those in the proof

p(—Kp) < (

of Lemma 5.1 imply that the secondary bifurcation point of C, does not occur. Thus,
Ae = Ay = —Kj. This completes the proof. O
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