ON A FOURTH ORDER NONLINEAR ELLIPTIC EQUATION
WITH NEGATIVE EXPONENT
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ABSTRACT. We consider the following nonlinear fourth order equation

TAu — DA%y = #,—L<u<07 in Qu=0, Au=0 on 9N
(L + u)?

where A > 0 is a parameter. This nonlinear equation models the deflection of
charged plates in electrostatic actuators under the pinned boundary condition
(Lin and Yang [22]). It has been proved in [22] that there exists a A, > 0 such
that for A > A., there is no solution while for A < A., there is a branch of maximal
solutions. In this paper, we show that in the physical domains (2D or 3D) the
maximal solution is unique and regular at A = A.. In a two-dimensional convex
smooth domain, we also establish the existence of a second mountain-pass solution
for A € (0,A;). The asymptotic behavior of the second solution is also studied.
The main difficulty is the analysis of the touch-down behavior.

1. INTRODUCTION

We consider the structure of solutions to the following problem

TAu — DA%y = (LJ;\U)2 in ,
(Py) ~L<u<0 in Q,

u=0, Au=0 on 0f2

where A > 0 is a parameter, " > 0, D > 0, L > 0 are fixed constants, and
Q CRY (N > 2) is a bounded smooth domain.
When D = 0, problem (P)) becomes

TA’U, = m in Q,
(@) —L<u<0 in Q,
u =0, on 0f)

which models a simple electrostatic Micro-Electromechanical System (MEMS) de-
vice consisting of a thin dielectric elastic membrane with boundary supported at 0
above a rigid plate located at —L. Here L+wu represents the distance from membrane
to the plate. Recently there have been many studies on (Q),). See, for example, [14],
[15], [16], [10], [11], [12], [7], [8], [17], [25], [24] and the references therein. These
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papers only deal with second order semilinear elliptic equations with singular non-
linearities. Equation (@,) also appears in the study of thin film, see, for example,
2], [3], [5], [19], [20], [21], [18] and the references therein.

In a recent paper [22], Lin and Yang derived the fourth order equation (P,) in the
study of the deflection of charged plates in electrostatic actuators. Here A = aV/?
where V' is the electric voltage and a is positive constant. Associated with (Py) is

the following energy functional

T D A
1.1 E(u) = —|Vul* + =|Aul* —
(L) = [ {GIvur+ Fiaa - 31
where P = [, Z|Vu|?dz is the stretching energy, Q = [, 2|Au[*dz corresponds to
the bending energy, and W = — [, mdaﬁ is the electric potential energy.

Lin and Yang ([22]) considered two kinds of boundary conditions: pinned bound-

ary condition
u = Au =0 on 00

and clamped boundary condition

U= g—z =0 on 0.
For the pinned boundary condition problem (P,), they found that there exists 0 <
A¢ < oo such that for A € (0, A.), (Py) has a maximal regular solution uy, which can
be obtained from an iterative scheme. (By a regular solution uy of (Py), we mean
that uy € C*(Q) NC3(Q) satisfies (Py).) For A > A, (Py) does not have any regular
solution. Moreover, if X', A" € (0, A\.) and X' < A", then the corresponding maximal

solutions uy and uy» satisfy

Uy > uyr  in .

Physically, this is a natural relation because a higher supply voltage results in a
greater elastic deformation or deflection.

The number A., which determines the pull-in voltage, is called the pull-in thresh-
old. It is known from [22] that, for A € (0, A.), ming(L + uy) > 0. Let ¥, = {z €
Q: L+ uy(z) =0} be the singular set of (P,). An interesting question is to study
the limit of uy as A ' A.. The monotonicity of uy with respect to A implies that

there is a well-defined function U so that

U(z) = lim ux(z); —L<U(z)<0, ze€



However U(z) may touch down to —L and cease to be a regular solution to (Py,).
(By [22], U € W;22(€).) For the one-dimensional case, Lin and Yang showed that

loc

U is a regular solution, that is, the set ¥, = ().

In this paper, we will show that for 2D and 3D, U is a regular solution. Moreover,
we also show that there is a unique solution for (Py) at A = \.. To obtain our results,
we first prove that the solutions uy for A € (0, A;) obtained in [22] are stable in some
sense. Furthermore, we also obtain the structure of solutions of (P,) in 2D case.

Our main results of this paper are:

Theorem 1.1. For dimension N = 2 or 3, there ezists a constant0 < C := C(N, L)
independent of A\ such that for any 0 < X\ < A, the mazimal solution uy of (Py)
satisfies ming (L + uy) > C.

Consequently, uy, = limy »\, uy ezists in the topology of C*(Q2). It is the unique
reqular solution to (Py,).

Theorem 1.2. Let N = 2 and ) be a bounded, smooth and conver domain in R?.
For X € (0, \;], any solution of the problem (Py) is reqular and

(i) For 0 < XA < A, problem (Py) admits two solutions: the mazimal solution and
a mountain pass solution.

(#1) For A = \., problem (Py) admits a unique regqular solution.

(#ii) For A > \., problem (Py) admits no regular solution.

Furthermore, the mountain-pass solution V) has the following asymptotic behavior
as A — 0:

. L _ 3
(1.2) maxVy — L as A — 0, lim [ming(L = V)]
Q A0+ A

= 0.
Remark: Theorem 1.2 shows that the bifurcation diagram of (P,) changes drasti-
cally when D > 0. In a nice 2D domain (see [16]), it has been proved in [16] that for
A small, the maximal solution is unique, and there exists 0 < A\, < A, such that the
solutions to (@,) undergo infinitely many turning points. An interesting question is
the asymptotic behavior as D — 0. When Q = B; C R?, the complete bifurcation
picture as well as the asymptotic behavior when D — 0 has been considered in [23].
The organization of the paper is as follows: in Section 2, we present some pre-
liminary results on the first eigenvalue and the corresponding eigenfunction of the
problem
—TAp+DA’¢p=0¢ inQ, ¢=Ap=0 on .

In Section 3, we derive a key L' bound for m In Section 4, we show the stability

of the maximal solutions of (P,). In Section 5, we show that the solution at the
pull-in threshold is regular for N = 2 or 3. In Section 6, we show that any weak

solution at the pull-in threshold is unique. In Section 7, we present the structure
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of the solutions of (Py) for 2D case. We show that for 0 < A < A, (Py) admits
at least two solutions: the maximal solution and a mountain pass solution. Finally

in Section 8, we give some asymptotic behaviors of the mountain pass solution as
A— 0t
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2. THE FIRST EIGENFUNCTION

In this section, we study the following eigenvalue problem
(2.1) —TAp+DA*p=0¢ inQ, ¢=A¢p=0 on o

where T, D > 0. We will show that (2.1) has the least eigenvalue o; and the
corresponding eigenfunction ¢; > 0 in 2. Moreover, ¢; is simple, i.e., all the eigen-
functions corresponding to ¢; assume the forms of C'¢; with C' € R.

Proposition 2.1. Problem (2.1) has the least eigenvalue oy such that all the eigen-

functions corresponding to o1 assume the forms of C¢y, where ¢; € C*®(Q) and
¢1 > 0 wn €.

Proof. This proposition may be known, but we can not find the reference. We give
a proof here for completeness.

Consider the following minimization problem
@2 ov=int{ [[TIV6F + DIadlldr: 6 € M, (6l = 1}
Q

where H = H?(Q) N H} () is the function space obtained by taking the completion
under the norm of H2(Q) N HA(Q) (ie. ||| = ( ST V2 + D\AwP]d:p) ") for
the set of smooth functions that satisfy the boundary condition ¢ = A¢ = 0 on 0f).
Since the Sobolev embedding H < L?(f2) is compact, by standard direct method

of calculus of variations, we have at least one minimizer ¢; for the problem (2.2),
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where ¢1 € H, ||¢1]|r2(q) = 1. Furthermore, ¢, is a weak solution to (2.1), namely,

Using the LP-estimates due to Agmon, Douglis and Nirenberg [1], we conclude
that
[01llwr@) < Cllrllzre)
for any p > 1. Thus we have ¢, € C*(Q2) N C3(Q) and hence Ag; = 0 on 99 and ¢,
satisfies (2.1). (See a similar argument in Lemma B.3 of [27].)

It is clear that
_ fQ[T|V¢1|2 + D\Aq&l\?]da: — inf fQ[T\VQS\Q + D|A¢|2]dx

1=

[, $dz  per\{0} [, #%dz
In order to show that ¢; is of fixed sign, we consider the following new problem
(24) —TA?/Jl + DA2¢1 = 0'1‘¢1| in Q, wl = A’l[)l =0 on 0f2.

By Maximum Principle, 11 > 0, —DAvY; + T, > 0 in 2. Furthermore, we have

Y1 > ¢1,9%1 > —¢1 and hence 1 > [¢1] in €.
On the other hand, from (2.4), we obtain

(2.5) /mwmuﬂm% ‘/W@W<Q/WJM

By the minimality of o1, we have
Jo[TIVY1” + D|Agpy *)d
Jo 91 [2da
Thus 1; also attains o; and hence the inequality of (2.5) is actually an equality.
This implies that ¢, = |¢1| in Q. Since ¥; > 0 in 2, we conclude that ¢ is of fixed

sign in €.

(26) g1 =

The above argument actually proves that any nonzero eigenfunction corresponding
to o1 must be of fixed sign in €. So if ¢; and ¢, are two eigenfunctions corresponding
to o1, we may choose ¢1 > 0,0 > 0. Let 2 € Q and C = ﬁ;(“) Then the function
@1 — C'¢ is again an eigenfunction corresponding to ;. By the previous argument,

we see that ¢; = C'¢ in 2. This completes the proof. 0
3. A UnirorM L! BOUND

In this section, we establish a key uniform L' bound for - 1 (=L where v satisfies

—TAv + DA%y = (L:\'u)Q in €,
(Th) 0O<v<L in Q,
v=0, Av=0 on 052
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(which is equivalent to (Py) by taking u = —wv). Note that v € C*(Q) N C?(Q)
provided that v satisfies (7}).

Theorem 3.1. Let Q) be a bounded, smooth and convex domain. Then there exists
a constant C (independent of \) such that for any solution v to (T\) we have

e

3.1 — < —.

(3.1) /Q (L—v)2 = A

As a consequence, we have

(3.2) /(D|Av|2 +TIVoP) < C.
Q

Proof: Let ¢; be given in Proposition 2.1. Multiplying (7)) by ¢; and integrating

over {2, we obtain

1
. = <
(3:3) )\/Q(L_U)Qqﬁl 01/QU</51_C
which implies that
1 Cy
4 < &
(3.4) /Q,(L_U)Q_ ;

for any Q' CC Q, where C¢ is independent of A.
We write (7)) as

Av—l—%w—%vzo in 2

v=w=>0 on 0f).
If we denote fi(v,w) = —Lv+ Sw, folv,w) = ﬁ, we see that % =5 >0 and
% = (LQ_’\U)S > (. Therefore, the convexity of 2, Lemma 5.1 of [26] and the moving

plane method near 002 as in the Appendix of [13] imply that there exist ¢, > 0
and « > 0 depending on the domain 2 only, such that v(z — tv) and w(xz — tv) are
nondecreasing fort € [0,to],v € RY satisfying |v| = 1 and (v,n(z)) > « and z € 0.
Therefore we can find v,5 > 0 such that for any z € Qs := {z € Q : d(z,090) < 6}
there exists a fixed-sized cone I'; (with z as its vertex) with

(i) meas(T'y) > 7,

(ii)) Iy C {z €Q:d(2,00) <},

(iii) v(y) > v(x) for any y € [';.

Then for any x € (5, we have

1 1 1 1 1 C
(T —0@) = meas(Ty) /F L—op = ;/95 Y



This implies that ——5 € L*®(€2;) and there are C' > 0 independent of A such that

(L— )
(3.5) sup v < L — CV\.

TENs
Next, we derive estimates for w near 0€2. Multiplying the second equation of the
equivalent system of (7)) by @o-the first eigenfunction of —A and integrating over

(), we obtain

1
. A ———pg= A
(3.6) /Q(L_U)QSDO 1/Q<,00w
where )\ is the first eigenvalue of —A. By (3.3), we have that
1 1
3.7 A =A | ——w <A | ——¢ <C
( ) 1/999071) /Q(L_’U)QSOO_ /Q(L—’U)2¢1_
and hence

/ w < Cy
QI

for any Q' ccC Q. To see the second inequality of (3.7), we notice that there exist
¢; >0(i=1,2,3,4) such that
bd(z) < po(z) < bod(z), L3d(z) < ¢1(x) < Lyd(x)

where d(z) = dist(z, 092). Hence ¢o(x) < C¢y(z). The same reason as above shows
that w < C(Qy).

By elliptic regularity applied to the system (7)) (noting that v, w
bounded in Q5), we have v € C3(£2;) and hence

1 0Av ov
- _—p| & _p %<
/\/Q(L—U)Q a0 On /871 c.

To prove the inequality (3.2), we multiply (73) by v and integrate over 2 to obtain

/|V1)|2+D/|Au|2 /( UU)Q <C.

4. STABILITY OF THE MAXIMAL SOLUTIONS OF (P)

,(L T are all

In this section, we show that the maximal solutions uy to (P,) obtained in [22]
for A € (0, \.) are stable in some sense. Let vy = —uy. Then from [22], for each
A € (0,):), (T)) has a minimal positive solution v,.

We call v, stable if the first eigenvalue oy (v,) of the problem

2)
(4.1) ~TAh+ DA’h= ——"——h+o0h inQ, h=Ah=0 on o

(L — ’U)\)?’
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is nonnegative. By arguments similar to those in the proof of Proposition 2.1, we
see that the first eigenvalue oy (v)) exists and every eigenfunction corresponding to
o1,(va) is of fixed sign if oy 5(vx) > 0.

Lemma 4.1. Suppose that v is a reqular solution of (Ty), u is a reqular supersolution

of (Ty), that is,

~TAu+ DA*u > 2 inQ

0<u<lL in £
u=0, Au=0 on 052

If o1 A(v) > 0, then u > v in Q, and if o1(v) =0 then u = v in Q.

Proof. For a given A and = € Q, by the fact that s — (L —s)~? is convex on (0, L),

we see that

A
4.2) =TA — DA? — —
(4.2) (v+7(u—0))+ (v +7(u—v)) Tt ra—0)
for 7 € [0,1]. Note that (4.2) is an identity at 7 = 0, which means that the first

derivative of the left hand side of (4.2) with respect to 7 is nonnegative at 7 = 0,

> >0 in

ie.,

(4.3) { ~TA(u—v) + DA (u~v) — Bp(u—v)>0 inQ

u—v=0, Alu—v)=0 on 052
Thus, the fact o1 5(v) > 0 implies that v > v in €. Indeed, on the contrary, we see
that 0 # (v —v)~ € H*(Q) N Hy(Q). Multiplying (v —v)~ on both the sides of (4.3)

and integrating it on €2, we see that

71 [ [ =)
gT/QW(u—v)|2dx+D/Q|A(u—v)|2d:v—/9ﬁ[(u—v)]2dfc

<0.

This contradicts oy (v) > 0.

If o1,(v) = 0, we have

—TA(u —v) + DA*(u — v) — ﬁ(u —v) =0 in Q.
Moreover, the second derivative of the left hand side of (4.2) with respect to 7 at
T=01Is
—6AML —v) *(u—v)2>0
which implies that u = v in €. This completes the proof. O

Proposition 4.2. For each A € (0, \.), the minimal positive solution vy of (T) is

stable.
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Proof. Since o1 > 0, we easily see that the first eigenvalue oy »(vy) of problem (4.1)
is positive provided that A is sufficiently small. Now we prove that oy ,(vy) > 0 for
A€ (0,A).

We define

A* =sup{p: v, is a stable solution for A € (0, p)}.

It is clear that \* < A.. To show A\* = )., it suffices to prove that there is no regular
minimal solution for (7)) with A > A\*. For that, suppose w is regular a minimal
solution of (T)«;s) with 6 > 0, then we would have for A < A\*,
A +6 A
—TA DA%y = > in €.
w + w (L—w)Q_(L—w)Q n

Since for 0 < A < A\* the minimal solution v, is stable, it follows from Lemma 4.1

that L > w > vy. Consequently, ¥ = limy =\~ vy exists in C*(Q2) and it is a regular
solution to (T)«). Now from the definition of A* and the implicit function theorem,
we necessarily have oy 5+ (7) = 0. By Lemma 4.1 again, we obtain that w =7 in Q
and hence 6 = 0. This is a contradiction. Therefore, \* = A.. This completes the

proof. O

5. THE REGULARITY OF THE MINIMAL SOLUTION OF (7)) AT A = A,

In this section, we are concerned with the regularity of the minimal solutions of
(Ty) at A = A\.. Normally, the minimal solution vy at A = A, may have singular set
in €, i.e., there exists a set Xy, C Q such that v, (z) = L for x € X,,. But we will
see that for lower dimensional case, v), < L in ().

By a weak solution v € H of (T) we mean 0 < v < L in Q and (L —v)~% € L*(Q)
such that for any ¢ € H,

/[TVU -V + DAvApldr = A / (L —v) pdzx.
Q Q

Lemma 5.1. If v € H is a weak solution to (T)), then there exists C := C(\) > 0

such that p
T
<.
/Q (L—v)*~

For N > 2, any solution v satisfying (L—v) 2 € LP(Q) with p = N/2 is a classical
solution.

Proof. For the first conclusion, we see that since v € H is a solution of (7}),

(5.1) /Q(wadx - %[/Q(|Vv|2+ |Av|2)dx] <cC.
9



On the other hand, we see that
v L 1

(L=v)* (L-vp (L-v)
Thus, (5.1) implies that

(5.2) /Q(Lfv) dx—/ﬂﬁdaﬁ/ﬁﬁdw.

By the Young’s inequality, we have that

(5.3) /Qﬁdx geL/ (L_l e+ Cle DI

where 0 < € < 1/4 and C(e,L) > 0 is a constant. Our first conclusion can be
obtained from (5.1), (5.2) and (5.3).

For N = 2, suppose that v is a weak solution such that T € L'(2). Thus,

(L

—DA?*v = AL —v)2 -~ TAv € L'(Q).
This and the Sobolev’s embedding imply that V3v € L4(Q) for any 1 < ¢ < 2. In
particular, Vv € 02_3(9) for any 1 < ¢ < 2. This and the fact that (L —v)™2 €

L'(Q) clearly imply that v < L in €. In fact, on the contrary, suppose that there
exists zo € Q such that v(zg) = maxqv = L. Then, Vv(xy) = 0 and

v(z) —v(xo) = Vu(€) - (x — x) for z € Q near xy,

where £ =tz + (1 —t)x with t € (0,1). Moreover, since Vv € 02_2(9), we see that
(Vo(€) = Volao)| < M€ — o> "¢ < Mz — o[

and thus,
lv(z) —v(zo)| < Mz — a:0|3_§ for € 2 near z,.

This inequality shows that

1 4
> [ ——dr > M2 — 2|76 dy =
00 /Q(L—v)2 x> /Q\x Ty T = 00,

a contradiction, which implies that we must have ||v||o@) < L.

For N > 3, suppose that v is a weak solution such that (L e € LP(2) with
p = . By the regularity of A%, we see that v € W*P?(Q). The Sobolev’s embedding
theorem then implies that v € C*(Q) with o < 1 since 4 — % = 2. To show that v
is a classical solution, it suffices to show that v < L in 2. Indeed, on the contrary,
there exists zq € 2 such that v(zy) = maxqwv = L. Then, Vv(xy) = 0 and

(5.4) v(z) —v(z) = Vu(£) - (xlo— zo) for z € Q near x,



where & = txg + (1 — t)x with ¢ € (0,1). Moreover, since v € CH1(2), we see that
Vu(€) — Vu(zg)| < M|€ — 0| < M|z — xo]. This and (5.4) imply that

(5.5) lv(x) —v(xo)| < M|z — 20|*T* for 7 € Q.

This inequality shows that

1 P
> ) dz > M — x| 20FP gy =
00 /Q((L—U)Q) x> /Q|a: Zo| T = 00,

a contradiction, which implies that we must have [|v[|oq) < L. This completes the

proof. O

Proposition 5.2. There ezists a constant C := C(L,\) > 0 such that for each
A€ (0, ), the minimal solution vy satisfies ||(L — vx) || 320y < C

Proof. Since the minimal solutions v, are stable, we have

2\
5.6 /7w2dx§/TVw2+DAw2dx
(5.6) ST =) Q[I | |Aw|"]
for all 0 < A < A, and nonnegative w € H.

Let w = v,, we then have

2 A
(5.7) / —————wvydz < /[T\VUA\Q + D|Avy [!ldx :/ k2
Q Q Q

(L - ’U,\) (L - ’U,\)2
Since vy, < L, this implies that
vx
5.8 ———dx < C
9 f syt
and

L? v3 (L — vy)? 1
5.9 ——dzr < / 7’\d$ +/ —dx < (C +/
(5:9) [QL—WP TSN Ay A

Hence

(5.10) /Q(L—liv,\):"’dx < C.

This completes the proof. O
Now we obtain the following theorem, our Theorem 1.1 can be obtained from this

theorem.

Theorem 5.3. For dimension N = 2 or 8, there exists a constant 0 < C =
C(N, L) < L independent of A such that for any 0 < X\ < A, the minimal solution
vy of (Ty) satisfies ||vallc) < C.
Consequently, vy, = limy =\, vx ezists in the topology of C*(Q). It is the unique
classical solution to (T),).
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Proof. By Proposition 5.2 and (3.2), we see that that there is C' > 0 independent
of A such that

loall g2y < C.
Since the mapping A — v, is increasing for A € (0, \.), we see that there is a function
vy, € H%(Q) such that

)\h/n)\lc vy = vy, weakly in H?(Q).
Consequently, vy, is a weak solution of the equation of the equation (7)) at the
critical parameter A.:
Ac

(L —wa,)?

and in the sense of weak solutions, the critical value A, is attainable.

—TAvy, + DA%y, = in Q

Now we show that v, is a classical solution. The implicit function theorem implies
that the mapping A — vy from (0, \.) to C(Q) is continuous. Thus, we see that
o1,a, = 0. (Otherwise, the implicit function theorem implies that v, will exist for

A > )\..) By arguments similar to those in the proof of Proposition 5.2, we see that
1(L = va)llorz() < C(L).

Note that (5.6) holds with the inequality replaced by an equality. Then Lemma 5.1
implies that for N = 2 and 3, v,, is a classical solution. Thus, there exists C' < L
such that [|vy,[|¢@) < C. Note that [|luallc@m) < l[oalle@ < C < L for A € (0, ).
The uniqueness of vy, of (T)) at A = A, follows from Lemma 4.1. This completes
the proof. O

6. UNIQUENESS OF THE SOLUTION OF (7)) AT A = A,

We first note that the monotonicity with respect to A and the uniform boundedness
of the branch of the minimal solutions imply that the extremal function defined by
vy, = limy »\, vy always exists, and can always be considered as a solution for (T},)
in a weak sense. On the other hand, if there is a 0 < C < L such that |[ox|o@ < C
for each A < A.-just as in the case N = 2 or 3-then we see from Theorem 5.3 that
v), 1s the unique classical solution.

In the following, we only consider the case that v, is a weak solution (i.e., vy, €
W2?(Q), note that we can obtain vy, € H provided that vy, € W;22(Q) by the

loc

moving plane argument) but with the possibility that ||vy,||re() = L.

Theorem 6.1. For A > 0, assume v € H is a weak solution to (1)) such that

|v||zeo() = L. The following assertions are equivalent:
12



(1) o1, (v) > 0, that is v satisfies
2)\/(L — ) 3% < /[T|Vc/>|2 + D|A¢|*dz, Vo € H,
Q Q
(1) A = X and v = vy, in Q.

Theorem 6.1 can be easily obtained from the following proposition.

Proposition 6.2. Let vy, vy be two H-weak solutions of (Th) so that oy x(v;) > 0
fori=1,2. Then vi = vy a.e. in 2.

Proof. For any 6 € [0,1] and ¢ € H, ¢ > 0, we have that

y: = T /Q V(0v + (1 — 0)v)Védz + D /Q A6y + (1 — 6)2) A
Y /Q (L = (6vr + (1 — O)vo)]26dz

= )\/ [[Q(L —01) 2+ (1= 0)(L —v2)7?] = [(L — (Bvy + (1 — O)wq)) %] |da
Q
> 0
due to the convexity of (L — s) 2 with respect to s € (0,L). Since Iys = I 4 = 0,

the derivative of Iy 4 at 6 = 0,1 provides:

/Q TV (01 — 1)V + DA(s1 — 1) Ag] — 2 / (L = 0) (01 — 02)6 > 0

/{;[TV(’Ul — /UQ)V¢ + DA(’Ul — ’U2)A¢] — 2)\/0(11 — ’Ul)_g(’Ul — Ug)(b S 0

for any ¢ € H with ¢ > 0. Testing the first inequality on ¢ = (v; — v9)~ and the

second one on (v; — )™, we obtain that

/Q [T|V(v1 —v3) 2+ D|A(vy — v2)

?] - 2)\/Q(L ) (01— 0a) )2 < 0

/Q [T\V(vl — ) >+ D|A(vy — U2)+‘2] _ 2/\/(L o) (0 — 5)*)? < 0.

Q
Since a1 \(v1) > 0, we have:

(1) If oy x(v1) > 0, then vy < vy a.e in Q.
(2) If oy,x(v1) = 0, which then gives

/Q [TV('Ul —1)V@ + DA(vy — UQ)A@} - 2/\/Q(L ) oy — 1) = 0,

where @ = (v; —v2)T. Since Iy > 0 for any 0 € [0,1] and I, ; = 01, 5 = 0, we get

that 0jpf15 = — [, ﬁ((vl —v7)%)3 > 0. Thus, (v; —ve)™ =0 a.e. in Q. Hence,

v1 < v a.e. in ). The same argument applies to prove the reversed inequality, and

the proof of the proposition is complete. O
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7. STRUCTURE OF SOLUTIONS OF (7)) IN 2D CASE

In this section we obtain the structure of positive solutions of (73 ) in 2-dimensional
case. The main theorem of this section is the following theorem. Our Theorem 1.2
can be obtained from this theorem and Theorem 8.2.

Theorem 7.1. Let Q be a conver smooth domain in R?. For A € (0,)\.], any
solution of the problem (Ty) is regular and

(i) For 0 < X\ < A, problem (Ty) admits two solutions: the minimal solution and
a mountain pass solution.

(ii) For A = \., problem (T\) admits a unique regular solution.
(#i) For A > \., problem (T\) admits no regular solution.

To prove this theorem, we first show the following lemma.

Lemma 7.2. For any fized A > 0, if vy € H is a positive solution of (Ty) then there
erists 0 < 7y < L such that vy < L — 1y in Q2. This also implies that vy is reqular.

Proof. The embedding theorem implies that vy, € C*(Q2) for any 0 < a < 1
and thus the moving plane arguments as in the proof of Theorem 3.1 imply that if

va(Zx) = maxq vy, then ), € Qp, where Qy CC 2. Moreover, by Theorem 3.1, we

have
_92 C
(7.1) / (L)<
and
(7.2) / T(Voy 2 + D(Avy)]dz < C.

Suppose that there is A\g > 0 and sequences {\;} and {v;} with maxqv; = L —¢;
such that \; — Ao, ¢ — 0 as ¢ — oo. Making the transformation: w; = L — v;, we

see that w; with ming w; = ¢; satisfies the problem
TAw; — DA*w,; = )\iwi_z in 2, w; =L,Aw; =0 on 0f.
Define z; = Aw;, then
(7.3) —DAz +Tz = \w;? in Q, 2 =0 on 0.
It is known from (7.3) that z(z) = A [, Gr.p(z,y)w; *(y)dy, where Gr,p(z,y) is
the Green’s function of the operator —DA + TId. Let w;(x;) = mingw;. Then

r; € Qo CC €L Setting w;(y) = “ and y = )\;/461-_3/4(3: — x;), we see that w; with
w;(0) = ming, w; = 1 and @, satisfies the problem
_ L
(7.4) N PEPTA b — DAXG; = @77 in i, @ = —, Ayl; =0 on 9%,
€

%

14



where Q; = {y = /\;/46;3/4(.T — ;) : € Q}. On the other hand,
By = A2 g = NP [ G, € %)
Note that N =2 and w; > ¢; in 2. The Holder iQnequality implies that
Al < € ( [ (Gnota o) ( [ witui(ea)”

< oang( [(Gnotwopa) " ( [ vit@)”

=
3 o

< Ckg

~.

where we have applied (7.1). Choosing p sufficiently large, we see that
(7.5) |AyW;(y)] = 0 for y € Q; a.e. as i — oo.

On the other hand, it follows from (7.4), (7.5) and the regularity of the operator
TA—DA? that w; — W in Ct (R?) as i — oo, where W with W(0) =1 and W > 1

loc

in R? satisfies the equation

(7.6) —~DA’W =W in R?, W(0)=1.
Meanwhile, (7.5) implies that AW = 0 in R?. This contradicts (7.6) and completes
the proof of this lemma. O

In the remaining of this section, we establish the existence of the second solution.
Note that in the energy functional (1.1), the integral [, ﬁmdm‘ is not well-defined
for v € H?(Q2). Therefore we don’t have a good energy functional to work with.
Our idea is to modify the nonlinearity so that the mountain-pass lemma works, and
then show that the resulting solution has no singularity.

We first modify the nonlinearity. Since the nonlinearity g(v) = ﬁ is singular
at v = L, we need to consider a regularized C' nonlinearity g.(v), 0 < € < L, of the

following form:

()_ (L,lv)za v<L—ce¢
ge\V) = 6%_(Lege)_*_ 1 )’UZ, v>L —e.

e3(L—e
For A € (0, \.), we study the regularized semilinear elliptic problem:
(7.7) ~TAv + DA*y = \g.(v) in Q, v=Av=0 on .

From a variational viewpoint, the action functional associated to (7.7) is
1
Joalw) = / [TVo[2 + D(Av)2dz — A / G.(v)dz, v e,
Q Q

where G(v) = [7_ ge(s)ds.
15



Fix now 0 < € < 7,/4, where 7y is given in Lemma 7.2. The minimal solution
v, of (7)) is still a solution of (7.7) so that o1 (v,) > 0. In order to motivate the
choice of g¢(v), we briefly sketch the proof of Theorem 7.1. First, we prove that v, is
a local minimum for J, »(v). Then, by the well-known Mountain Pass Theorem, we
show the existence of a second solution V., for (7.7). (Similar idea has been used
in [6].) The subcritical growth:

(7.8) 0 < ge(v) < Ce(1+[v])
and the inequality:
(7.9) 3G(v) < wvge(v) forv>L—0,

for some sufficiently small § > 10e independent of €, Cc > 0, will yield that J
satisfies the Palais-Smale condition.
In order to complete the details of the proof of Theorem 7.1, we first need to show

the following:
Lemma 7.3. The minimal solution v, of (1)) is a local minimum of J.  on H.
Proof. Since # — C*(Q) for any 0 < o < 1, we only need to show that v, is a

local minimum of J, , in C*(2) for some 0 < o < 1. Indeed, since oy, (vy) > 0, we

have the following inequality:

1
(7.10) /[T|Vg0|2 + D(Ay)?|dz — 2)\/ 73902&13 > 01,,\/ Ordx
Q a(L—uv,) Q

for any ¢ € H, since v, < L — 7, < L — € (see Lemma 7.2). Now, take any
¢ € HNC*(Q) such that ||¢||ca < dx. Since vy, < L—1y, if 0y < ¢, then v, +¢p < L—¢

and we have that:

Jea(vy + @) = Jea(ny)
1
=3 /Q[T|Vg0\2 + D(Ap)?dx + /Q[TVQ,\ -V + DAv, Ay|dx

_)\/( —Ul,\ SD L_lv,\>
1 % %
)

L—-vy,—9p L_UA (L—Q,\)2 (L_Q,\?’

Uu
>

where we have used (7 10). Since now

1 2 902 3
_ _ _ <C
L-vy—¢ L-vy, (L-u)? ([L-u)3l"~ @
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for some C' > 0, we have that

o
Toaln+9) = Jua(w) 2 (%2 - €08) [ 7 >0

provided d, small enough. This proves that v, is a local minimum of J,  in the C*

topology and completes the proof of this lemma. O
Fix some ball By, C 2 of radius 27, r > 0. Take a cut-off function y so that xy =1

on B, and x = 0 outside By,. Let w. = (L — €)x € H. We have that:

(L—¢)?
2

as € = 0. Moreover, we can find that for € > 0 small, the inequality

Je,)\ (we) S

A
19 + D(axPds - 5B > —o0
Q

(7.11) Jen(we) < Jea(vy)-
Fix now e > 0 small enough in order that (7.11) holds, and define

Cex = inf max J, 5 (v),
’ ~€ET vey ’

where I' = {v : [0,1] — H;~ continuous and v(0) = v,, v(1) = we}. We can
then apply the Mountain Pass Theorem to get a solution V., of (7.7), provided
the Palais-Smale condition holds at level ¢, ). The embedding theorem and the
maximum principle imply that V,y > 0 in 2.

Lemma 7.4. Assume that {v,} C H satisfies

(7.12) Jepa(n) <C, Ty (v) =0 in H

for A\, = X > 0. Then the sequence (vy,)n is uniformly bounded in H and therefore
admits a convergent subsequence in H.

Proof. By (7.12) we have that:

/ T(V0, 2 + D(Avy)dz = Ay / 9e(vn)vndz + o [[vnl2)
Q Q

as n — 400 and then,

c > % / [TV un|* + D(Avn)*Jdz = A / Ge(vn)dz
Q

Q

- é/ﬂ[T\Vun\Q—i—D(Avn)Q]d:L'-i-)\n/Q (%vnge(vn) _Ge(vn))dx+0(||vﬂ“7{)

1 2 2 1
2 6 /Q[T|an| + D(AU") ]dl‘ + )\n /{UR>L0} (g’l)nge(vn) - Ge(’l)n))dl‘
+o([|vnl) — C(0)
> é/ﬂ[T\an\Z + D(Aw,)?dz + o(||vn||%) — C(0)
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in view of (7.9). Where C(f) > 0 depends on € but is independent of €. Hence,
SUP,en [|Vnlln < +oo.
The compactness of the embedding H — C*(Q) for any 0 < a < 1 provides that,

up to a subsequence, v,, — v weakly in H and strongly in C*(2) for some 0 < @ < 1
and some v € H. By (7.12) we get that [,[T|Vv|* + D(Av)*|dz = A [, ge(v)v, and
then,

/Q[T|V(vn — )] + D(A(v, — v))dz

:T[/ﬂwunﬁ—/ﬂ\w?} +D[/Q(Avn)2—/Q(Av)2] +o(1)
= [ i = [ g+ o(1) 50

as n — +o0o. This completes the proof. 0

Proof of Theorem 7.1
We only need to show (i) and it is enough to show that for any fixed A > 0, the
mountain pass solution V y satisfies V, y < L — € in Q.

Since V. € H, by the same argument as in Theorem 3.1, we easily see that

(7.13) [ 9.V < €/

where C' is independent of €. In fact, we see that
Jea(Ver) < max Jex(v)
vEY0
where g : [0,1] = H; Yo(v) = tv, + (1 — t)w, for ¢t € [0,1]. Thus,
Jea(Ver) <C

where C' > 0 is independent of €. On the other hand, we see

1
C 2§ [IIVVal? + DAV lde [ GulVir)de
Q Q

1
- v
6|| A

1
o) [ (5Verg Vi) = GulVo) d
Q

> g fVellie [ (§antVin) - GV s — 0
> LVoalBdz - C(0).
Thus,
Vel <C
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where C' > 0 is independent of €. The embedding H — C°(f2) implies V; , < C in
2. By the moving plane argument as in the proof of Theorem 3.1, we have that
Vea < L — 0 in (5, where (25 is given in the proof of Theorem 3.1 and 6 is given by
(7.9). This implies that (7.13) holds.

Let W, = AV, ». Then W, satisfies the equation

~TW, + DAW, = \g.(Vex) € L*().
Since N = 2, the Brezis-Merle inequality ([4]) implies that
/ \Welidz < C, Vg>1
where C' is independent of e. rl?his also yields that
IVellw2a@y < C.

By choosing ¢ > 3 sufficiently large, we see from the embedding W2?(Q) — C'*2(1)
that V., < Cin Q.

Now we show that V., < L in Q for € sufficiently small. On the contrary, we
suppose that there is a sequence {¢;} with ¢, — 0 as ¢ — oo such that maxgq V, » > L.
Denote V¢, x(z;) = maxg V,, . By arguments similar to those in the proof of Lemma
5.1, we see that

Ve (@) = Veu(@) < Clz — 22
Thus,
V(@) > V(@) = Clz —2* > L — ¢
provided that |z — z;| < (¢;/C)?/3. But

Cz/gq(‘/;i,)\)deei_Z/ da::Cef/?’—)oo
Q {lz—=i]<(e:/C)*/}
as ¢ — oo. This is a contradiction.
Now we claim that there exists 6 > 0 independent of € such that
‘/6,)\ S L—6 in Q

for e sufficiently small. On the contrary, there are sequences {¢;} and {V;} = {V,, .}
with ¢, — 0 as © — oo such that maxqV; = L — & and & — 0 as i — oo. Set
Z; =L —V;. Then Z;(z;) := ming Z; = §; and Z; satisfies

where
Zi > €
(€i—Z5)*

%) 4 S(T—e)’ Z; < €.




Making the transformations: Zi(y) = Z;/& and y = & */*(z — z;) we see that

ZZ(O) = ming Z; = 1 and Z; satisfies the problem

2

where Q; = {y = 5-73/4(:13 —x;): ¢ € Q} and

2

1 > &

. 72 i

We consider two cases for {¢} (we can choose subsequence if necessary):

(i) There is 0 < A < oo such that ¢ < A for all ¢,

(ii) § — oo as 1 — oo.

For the first case, we have that there is 0 < A; < A such that lim;_, 2—2 = A,.
If A, <1, since Z; > 1, we have that h; = Zi_2 < 1in Q; for i sufficiently large. If
1 < A; < A, we also have that izi < (Cin Qi for ¢ sufficiently large, where 0 < C' < o0

is independent of . Moreover, for ¢ > 3,

[ A, Z|9dy = 53/2/— A, Z;|dy
Q; Q;

= 5(123/\AzZi|qda:—>0
Q

as i — oo. Thus, the regularity of A? implies that Z; — Z in C (R?) with

loc

Z(0) = ming: Z = 1 and Z satisfies the equation
—~DA’Z =)Z7? in R?

provided A; < 1 and the equation

DA’Z = \h(Z) in R?

provided 1 < A; < A, where

- Ai%—Al?Z, 7 < A

Moreover, for any large ball Bg of R?, fBR |AZ|(y)dy = 0. This is impossible.

For the second case, we see that & = o(¢;) for i sufficiently large. Thus, Z;(z;) =
& = o(e;). Note that [, [AZ;|%dx < C, we see that Z; € Wy?(2). The embedding
W2UQ) — C1+3(Q) gives

1Zi(x)| < Zi(2:) + Clz — z:[*? < &
20



2/3
provided |z — z;| < (;—&,) . Thus

1 B
Cz/h,i(Z,-)dmz —2/ dz > Ce; * = o0
Q Z;<€;

€
as ¢ — oo. This is a contradiction either. Therefore,

Via<L—6 in

where § > 0 is independent of e. This also implies that V, ) is a solution of (7}).
This completes the proof of (i) of Theorem 7.1 and the proof of Theorem 7.1. [

8. THE ASYMPTOTIC BEHAVIOR OF THE MOUNTAIN PASS SOLUTION AS A — 0

In this section we will study the asymptotic behavior of the mountain pass solution
Vy obtained in Theorem 7.1 as A — 0.

Lemma 8.1.
aa(Va) <0 for0 < A< A..

Proof. Let v, be the minimal solution of (73) so that V, > v,. If the linearization

around V) had nonnegative first eigenvalue, then Lemma 4.1 would also yield V) < v,

so that v, and V), necessarily coincide, a contradiction. 0
Theorem 8.2.
(8.1) max V=L as A — 0.
Moreover,
(8.2) lim el = VF
) A—=0t A .

Proof. Suppose that there are sequences {\;} and {V;} = {V),} such that \; - 0
as 1 — oo and maxqV; < L — 4, where 0 < § < L is independent of 7. Then it
follows from the equation of V; that V; — 0 in C°(Q) as i — oo (we can choose
subsequences if necessary). This contradicts the fact that oy ,,(V;) < 0 for all i.
Thus, (8.1) holds.

By Theorem 3.1, we see that

)\/(L—V,\)_Qdﬂf—f-/ |AV,\‘2 <C
Q Q

for any A sufficiently small, where C' is independent of A\. Since AV), satisfies

A 1
—DA(AV)\) = DAV, + m €L (Q), AVy =0 on 012
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By the Brezis-Merle inequality ([4]), we have, for any ¢ > 1,
(8.3) / AV, Jidz < C
Q

for any A sufficiently small.
Let Vy(z)) = maxq V). Setting W, = L—V), we see that &, := W, (z,) = ming W)
and £, — 0 as A = 0. Now we claim that

8.4 lim 2 = 0.
(8.4) 1m)\

Suppose not, there are sequences {)\;} and {&} with \; — 0 as i — oo such that
l —>C>00r 53 — 00 as 1 — 00.
We first cons1der the case that % — 00 as ¢ — 00. Then defining WZ = W;/&;, we
see that W; satisfies the problem
A ~
TAW; — DA?W; = §W in ), W;=1L/&, AW;=0 on 5.
Since W; > 1, we see that W; — W in C3

loc

(Q) as i — oo and W with W(0) =
ming W = 1 satisfies the equation
(8.5) TAW —DA*W =0 inQ, W =00, AW =0 on dQ.
Setting Z = AW, we see from (8.5) that
TZ—-DAZ=0inQ, Z =0 on 0f.

The strong maximum principle then implies that Z = 0 in €2 and hence AW =0 in
Q). The maximum principle then implies that W = 1 in Q and a contradiction.

Now we consider the case that limi%wi—é — C' > 0. Defining W, =W, /& again,
we see that W; satisfies the problem

i . .
(8.6) TAW; — DA?W; = §W in Q, W;=0L/&, AW;=0 on 0.

Setting Z;i = AVAVi, we see that Z; satisfies the problem

(8.7) TZ; — DAZ; = gw inQ, Z;=0 on 0.

Therefore,
5 A .
Zi = 5/ Gr,p(z,y)W; > (y)dy
i Ja
and hence |Z;| < C, where C > 0 is independent of i. We now obtain from the

regularity of A% and (8.6) that W; — W in C? () and W satisfies the equation

TAW — DA’W = éW—Q inQ, W=o00, AW =0 ondQ.
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On the other hand, we see from (8.7) that Z; — Z in C'(Q) as i — oo and Z = AW

satisfies the problem
. 1. .
TZ — DAZ = 5W*2 inQ, Z=0 on 0.

Since we easily know that AW < C on Q and hence A(W — Cp) < 0 in €2, where
—Ap=1inQ and p = 0 on 8Q. The maximum principle implies that W can not
be oo on 0f). Thus, (8.2) holds. This completes the proof of Theorem 8.2. a
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