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Abstract

We show that there exists multi-vortex, non-radial, finite energy so-
lutions to the magnetic Ginzburg-Landau equations on all of R2. We
use Lyapunov-Schmidt reduction to construct solutions which are in-
variant under rotations by 2π

k (but not by rotations in O(2) in general)
and reflections in the x− axis for some k ≥ 7.

1 Ginzburg-Landau equations

1.1 Introduction

The standard macroscopic theory of superconductivity is due to Ginzburg and
Landau [9, 28]. It can be derived from the microscopic theory due to Bardeen,
Cooper and Schrieffer [8, 10]. Stationary states of superconductors occupying
(for simplicity) the plane R2, are described by pairs (ψ,A), where ψ : R2 → C
is the order parameter and A : R2 → R2 is the magnetic potential. These
states satisfy the system of equations

−∆Aψ + λ(|ψ|2 − 1)ψ = 0 (1.1)

∇×∇× A− Im(ψ̄∇Aψ) = 0 (1.2)

called the Ginzburg-Landau (GL) equations. Here λ > 0 is a constant depend-
ing on the material in question: when λ < 1/2 or > 1/2, the material is of type
I or II superconductor, respectively; ∇A = ∇ − iA is the covariant gradient,
and ∆A = ∇A ·∇A. For a vector field A, ∇×A is the scalar ∂1A2−∂2A1 and for
scalar ξ, ∇× ξ is the vector (−∂2ξ, ∂1ξ). Equation (1.2) is the static Maxwell
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equation for the magnetic field B = curl A and supercurrent Im(ψ̄∇Aψ). We
consider here configurations satisfying the superconducting boundary condi-
tion

|ψ(x)| → 1 as |x| → ∞.

The Ginzburg-Landau equations on the plane model superconductors in R3

which are spatially homogeneous in one direction, when neglecting boundary
effects [14]. They also describe equilibrium states of the U(1) Higgs model of
particle physics [16].

Equations (1.1) and (1.2) are Euler-Lagrange equations for the Ginzburg-
Landau energy functional

E(ψ, A) =
1

2

∫

R2

|∇Aψ|2 + (∇× A)2 +
λ

2
(|ψ|2 − 1)2, (1.3)

i.e., solutions of (1.1) and (1.2) are critical points of E : E ′(ψ,A) = 0. Here
E ′(u) denotes the L2 gradient of the functional E at a point u := (ψ,A).

Define the vorticity or the winding number of the vector field ψ : R2 → C
at infinity as deg ψ := deg

(
ψ
|ψ| ||x|=R

)
= 1

2π

∫
|x|=R

d(argψ) for R sufficiently

large. Assuming a pair (ψ, A) has finite energy, then the degree of the vector
field ψ is related to the flux of the magnetic field B = curl A as follows:

∫

R2

B = 2π(deg ψ).

To date, the only non-trivial, finite energy, rigorously known solutions to
equations (1.1)-(1.2) on all of R2 are the radial and equivariant solutions of
the form u = (ψ(n), A(n)), with

ψ(n)(x) = fn(r)einθ and A(n)(x) = an(r)∇(nθ) (1.4)

called n− vortices. Here (r, θ) are the polar coordinates of the vector x ∈ R2

and n = deg ψn is an integer. Existence of n-vortex solutions of the form (1.4)
was proved in [20, 4] using variational methods. The stability and instability
properties of n-vortices were established in [12, 11]. More specifically, in [12],
they showed that for λ < 1/2, any integer degree vortex is stable; for λ > 1/2,
only n = ±1 vortices are stable. When λ = 1/2, all integer degree vortices are
stable [1].

One has the following information on the vortex profiles fn and an (see
[20, 4]): 0 < fn < 1, 0 < an < 1 on (0,∞); f ′n, a′n > 0; and 1− fn, 1− an → 0
as r →∞ with exponential rates of decay. In fact,

fn(r) = 1 + O(e−mλr) and

an(r) = 1 + O(e−r) with

mλ := min(
√

2λ, 2).

At the origin, fn ∼ crn, an ∼ dr2 (c > 0, d > 0 are constants) as r → 0.
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In addition, we have the asymptotics of the field components as established
in [20] as r = |x| → ∞:

j(n)(r) = nβnK1(r)[1 + o(e−mλ|x|)]Jx̂

B(n)(r) = nβnK1(r)[1− 1

2r
+ O(1/r2)] (1.5)

|f ′n(r)| ≤ ce−mλr.

Here j(n) = Im(ψ(n)(∇Aψ)(n)) is the n-vortex supercurrent, βn > 0 is a con-
stant, and K1(r) the order one Bessel’s function of the second kind which
behaves like e−r√

r

(
1 + O

(
1
r

))
as r →∞.

Equations (1.1) and (1.2), in addition to being translationally and rotation-
ally invariant, have translational and gauge symmetries: solutions are mapped
to solutions under the transformations

ψ(x) 7→ ψ(x− z), A(x) 7→ A(x− z)

for any z ∈ R2, and
ψ 7→ eiγψ, A 7→ A +∇γ

for twice differentiable γ : R2 → R. Consequently, solutions (1.4) lead to the
following families of solutions

ψnzγ(x) = eiγ(x)ψ(n)(x− z) Anzγ(x) = A(n)(x− z) +∇γ(x) (1.6)

where n is an integer, z ∈ R2 and γ : R2 → R.
For reviews and books on the Ginzburg-Landau equations of superconduc-

tivity, one can refer to [3, 5, 7, 14, 16, 22, 23], for example.
In the case of the Ginzburg-Landau equation on bounded domains, non-

radial non-magnetic solutions have been found by Bethuel, Brezis, and Helein
[2, 3] and non-radial magnetic solutions have been found by Sandier and Ser-
faty (see references in [23]). This is due to the boundary forces which keep
repelling vortices within the bounded domain.

In the case of the Ginzburg-Landau equation on unbounded domains, Ovchin-
nikov and Sigal [19] conjectured by numerical evidence that for the non-
magnetic Ginzburg-Landau equations on the whole plane, non-radial solutions
do exist. In addition, Gustafson, Sigal and Tzaneteas [14] suggest that for
magnetic vortices, stationary multi-vortex configurations of degrees ±1 occur
with discrete symmetry group. In this paper, we prove rigorously that this
last conjecture is true.

Notation: For the rest of the paper, when we write L2 and Hs, we mean
scalar/vector L2 spaces and scalar/vector Sobolev spaces or order s. We denote
the real inner product on L2(R2;C× R2) to be

〈(
ξ
α

)
,

(
%
β

)〉
:=

∫

R2

{Re(ξ̄%) + α · β}.
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We will denote Lp norms as ‖ · ‖p = ‖ · ‖Lp and Hs norms as ‖ · ‖Hs . Finally,
we will denote the letter c or C for generic constants that do not depend on
any small parameters present.

1.2 Results: Finite-energy non-radial magnetic vortex
solutions

In this section, we state the main result of this paper.
We first define a degree-changing solution of (1.1) and (1.2) as a multi-

vortex configuration containing both positive and negative degree vortices.

Theorem 1.1. Fix λ > 1/2 and an integer k ≥ 7. There exists a sequence,
(ui)i≥0 := (ψi, Ai)i≥0, of non-radial degree-changing solutions to (1.1) and
(1.2) containing kmi vortices, mi → ∞, invariant under rotations by 2π

k
(but

not by rotations in O(2) in general) and reflections in the x2 = 0 line. Each
ui has finite-energy of the form

E(ui) = kmiE(v•) + o(1) as mi →∞, (1.7)

where v• is the +1 or −1 degree vortex.

Recently, Sigal and Tzanateas have found Abrikosov type lattice solutions
with infinite energy on the whole plane [25] and have proven these lattice
solutions are stable under gauge periodic perturbations [26].

We construct these degree-changing, finite-energy, non-radial solutions in
the spirit of the construction of sign-changing, finite-energy, non-radial solu-
tions to the non-linear Schrödinger equation in Rn by Musso, Pacard and Wei
in [18]. In addition, we use the results of effective interaction of magnetic
vortices derived by Gustafson and Sigal in [13].

The solutions ui will be multi-vortex configurations whose vortices are lo-
cated on two equilateral k-gons (a polygon with k sides of equal length) and
on k line segments joining the vertices of the two k-gons. One k-gon, called
the inner k-gon, will be in the interior of the other one, called the outer k-gon.
We will show later that there exists two sequences of integers (pi)i≥0, (qi)i≥0,
both tending to infinity, such that mi = pi + 2qi in Theorem 1.1 (see proof of
Theorem 2.1). For each multi-vortex configuration ui, pi vortices of +1 degree
will be placed, at approximately equal length l between each other, on the
vertices of the inner k-gon and on the line segments joining the vertices of
the two k-gons. Also, 2qi vortices of alternating degrees +1 and −1 will be
placed, at approximately equal length l̄(> l) between each other, on the edges
of the outer k-gon. As pi, qi →∞, the number of vortices in the configuration
kmi = k(pi+2qi) →∞, and both l, l̄ also tend to infinity so that the size of the
inner and outer k-gons grows larger and larger. A cartoon example of solution
ui can be found in Figure 2.1 in Section 2 for k = 7, and small integers p, q.
A more precise description of the solutions ui can also be found in Section 2.
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The rest of the paper is organized as follows. In Section 2, we outline the
main ideas and steps and prove Theorem 1.1. We will use Lyapunov-Schmidt
reduction and break the problem up into two subproblems: the problem in the
”orthogonal” direction and the ”tangential” direction, or reduced problem. In
Section 3, we solve the problem in the orthogonal direction, and in Section
4, we solve the reduced problem. In the Appendix, we include the outline of
proofs of technical results from [13].

2 Main Steps of Proof of Theorem 1.1

In this section, we outline the main steps of and prove Theorem 1.1.
Consider test functions describing m ≥ 2 number of vortices glued to-

gether with centers at z1, z2, ..., zm, and degrees n1, n2, ..., nm. More specif-
ically, let m ∈ Z+ denote the number of vortices with topological degrees
(n1, n2, ..., nm) ∈ Zm, nj ∈ Z \ {0}; denote the location of the center of each
of these m vortices by z = (z1, z2, ..., zm) ∈ R2m, and let χ : R2 → R denote a
gauge transformation. We associate with each z and χ, a function

vzχ := (ψzχ, Azχ) (2.1)

where

ψzχ = eiχ(x)

m∏
j=1

ψ(nj)(x− zj) (2.2)

and

Azχ =
m∑

j=1

A(nj)(x− zj) +∇χ(x). (2.3)

For a given z ∈ R2m, we take our gauge transformations to be of the form

χ(x) =
m∑

j=1

zj · A(nj)(x− zj) + χ̃(x) (2.4)

with χ̃ ∈ H2(R2;R). Equivalently, our gauge transformations must live in the
space

H2
z (R2;R) := {χ ∈ H2(R2;R) | χ−

m∑
j=1

zj · A(nj)(x− zj) ∈ H2(R2;R)}

to ensure that vzχ ∈ X(n), where

X(n) := {(ψ, A) : R2 → C× R2 | (ψ, A)− (ψ(n), A(n)) ∈ H1(R2;C× R2)}

is the affine space of degree n configurations (see (A.6) and (A.7) in Appendix
A). The pair (z, χ) (or sometimes just z) is called a multi-vortex configuration.
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For z = (z1, ..., zm) ∈ R2m denoting the centers of m ≥ 2 vortices in a vortex
configuration, define the inter-vortex separation as

R(z) = min
i6=j

|zi − zj|.

Define our infinite dimensional manifold of widely spaced multi-vortex con-
figurations

Mmv,ε = {vzχ | (z, χ) ∈ Σε}
parameterized by the set of all centers of vortices and gauge transformations

Σε =

{
(z, χ) | e−R(z)

√
R(z)

< ε and χ ∈ H2
z (R2;R)

}
.

The tangent space to point vzχ ∈ Mmv,ε is

TvzχMmv,ε = span

{
〈γ, ∂χ〉vzχ, ∂

A
(j)
k

zjk vzχ | j = 1, ..., m; k = 1, 2; γ ∈ H2(R2;R)

}
.

consisting of the ”almost zero-modes” defined by (2.1) to (2.4) as follows: the
gauge-tangent ”almost zero-modes” are

Gzχ
γ := 〈γ, ∂χ〉vzχ =

(
iγψzχ

∇γ

)
(2.5)

for γ : R2 → R. Here, the notation 〈γ, ∂χ〉vzχ denotes the Fréchet derivative
of the map χ → (eiχψ,A + ∇χ) evaluated at χ in the direction of γ. The
(gauge-invariant) translational-tangent ”almost zero-modes” are

T zχ
jk := ∂

A
(j)
k

zjk vzχ =
(
∂zjk

+ 〈A(nj)
k (· − zj), ∂χ〉

)
vzχ (2.6)

=

(
eiχ(x)

∏
l 6=j ψ(nl)(x− zl)[∂xjk

− i(A(nj)(x− zj))k]ψ
(nj)(x− zj)

B(nj)(x− zj)e
⊥
k

)

where A
(j)
k := [A(nj)(·−zj)]k, B(n) = ∇×A(n) and e⊥1 = (0, 1) and e⊥2 = (−1, 0).

Note that T zχ
jk are defined by covariant differentiation to ensure that ∂

A
(j)
k

zjk vzχ ∈
H1 × L2, while ∂zjk

vzχ is not. These tangent vectors are called almost zero
modes since they ”almost solve” E ′′(vzχ)η = 0 (see Theorem 3.1(c) below).

Let u = (ψ,A), and denote F (u) = E ′(u), defined as a map from H2 to L2.
Explicitly,

F (u) =

( −∆Aψ + λ
2
(|ψ|2 − 1)ψ

∇×∇× A− Im(ψ̄∇Aψ)

)
. (2.7)

Thus, equations (1.1) and (1.2) can be written as F (u) = 0.
Define orthogonal projections

πzχ := L2 − orthogonal projection onto

span{T zχ
jk , Gzχ

γ | j = 1, ..., m, k = 1, 2, γ ∈ H2(R2;R)} and

π⊥zχ := 1− πzχ. (2.8)
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The operator π⊥zχ projects onto the L2 orthogonal complement of Ran(πzχ),

i.e., π⊥zχ : L2 → [Ran(πzχ)]⊥.

It is clear from definitions (2.5), (2.6), and (2.8) that

TvzχMmv,ε = Ranπzχ.

The proof of existence of a solution to (1.1) and (1.2) relies on the following
two steps:

1. Liapunov-Schmidt Reduction and Solution in the Orthogonal
Direction. We use Liapunov-Schmidt reduction to break the problem
up into its tangential and orthogonal components. We will show there ex-
ists a solution in the orthogonal direction using an implicit function type
argument. More precisely, we will show that for ε > 0 sufficiently small
and for all widely spaced multi-vortex configurations vzχ with (z, χ) ∈ Σε,
there exists a unique wzχε ∈ Ran(π⊥zχ) such that

π⊥zχF (vzχ + wzχε) = 0. (2.9)

2. Reduced Problem and Solution in the Tangential Direction.
We show that the corresponding problem in the tangential direction,

πzχF (vzχ + wzχε) = 0, (2.10)

can be solved by finding a specific widely spaced multi-vortex configu-
ration vzσχ, built from a perturbation of vcχ, an approximate polygonal
solution to (1.1) and (1.2). Note that due to gauge equivariance, we do
not need to solve for the gauge χ.

Steps 1 and 2 will imply our result. Steps 1 and 2 will be done in Sections 3
and 4, respectively.

Remark: In both Steps 1 and 2 above, we require the solutions that we
construct to be invariant under rotations by 2π

k
and reflections along the x2 = 0

line, i.e., solutions u of (1.1) and (1.2) constructed will satisfy

u(Rkx) = u(x) and u(Λx) = u(x), (2.11)

where Rk is the rotation by 2π
k

and Λ is reflection along the x2 = 0 line. There-
fore, we assume for the rest of the paper that our multi-vortex configurations
vzχ and our fixed point/perturbation w satisfies symmetry conditions given by
(2.11).

We note that we do not have a small perturbation parameter here, as is
usually the case in singular perturbation theory techniques such as Lyapunov-
Schmidt reduction. Instead, we will perturb a specific multi-vortex configu-
ration which is almost a solution to (1.1) and (1.2) into a genuine solution of
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(1.1) and (1.2). We describe this in more detail here.

First, denote v0 =

(
ψ(n0)(x)
A(n0)(x)

)
and vde =

(
ψ(nde)(x)
A(nde)(x)

)
two vortices with

degrees n0 and nde at centers z1 = 0 and z2 = de for e a unit vector and d > 0.
Define the interaction energy of the two vortex configuration v(0,de)χ as

W (d) = E(v(0,de)χ)− E0 − Ede, (2.12)

where E0 = E(v0), Ede = E(vde) are the self-energies of vortices v0 and vde. By
definition, the magnitude of force between the two vortices in configuration
v(0,de)χ is given by |∂dW (d)|. We have the following crucial lemma, which is
essentially proven in Lemma 11 of [13], so we will just summarize the main
steps of the proof in Appendix A.

Lemma 2.1. Fix λ > 1/2. To leading order as d → ∞, the force exerted on
vortex v0 by vortex vde, in the direction of unit vector e, is given by

∂dW (d) = n0ndeΨ(d) + O
(
e−d(1+δ)

)
(2.13)

for some δ > 0 small. Here, n0, nde are the respective degrees of the vortices
and the effective magnitude of the inter-vortex force is

Ψ(d) = Cλ>1/2
e−d

√
d

(
1 + O

(
1

d

))
(2.14)

where

Cλ>1/2 =

∫

R2

ex·e(−∆ + 1) B dx

is a positive constant independent of e and B = ∇× A.

Remark: For our construction of non-radial magnetic vortex solutions to
work, it is crucial that the interaction force be exponentially decaying. The
construction outlined below does not work for non-magnetic vortices on the
whole plane as the interaction energy is of logarithmic order.

Having precise knowledge of the effective interaction force between two
vortices, it is natural to ask if there exists a multi-vortex configuration which
is almost forceless, static or in equilibrium? In other words, does there exists
a vzχ such that

m∑
j=1

m∑

k 6=j

nknjΨ(|zk − zj|) zk − zj

|zk − zj| = 0 (2.15)

or almost zero? The answer is yes. The idea for such the construction of
a configuration originated in the work of Kapouleas [17] in finding compact
constant mean curvature surfaces. This idea was subsequently used by Wei
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and Yan [29] to construct infinitely many non-radial positive solutions and by
Musso, Pacard and Wei [18] to construct finite energy sign changing solutions
with dihedral symmetry for the nonlinear Schrödinger equation in Rn. We
describe more precisely this almost forceless, static equilibrium multi-vortex
configuration now.

Approximate polygonal solution

First, we construct an approximate polygonal solution of F (u) = 0 satisfy-
ing (2.11) as in [18]. The approximate polygonal solution will be a multi-vortex
configuration whose vortices are placed on an inner and outer equilateral k-
gon (a polygon with k sides of equal length) and on line segments joining the
inner and outer k-gons.

We begin by fixing an integer k ≥ 7 and assuming there exists two positive
integers, p, q and two positive real numbers l, l̄ which satisfy the relation

(
sin

π

k

)
pl = (2q − 1)l̄. (2.16)

Let us define the vertices of the inner and outer equilateral k-gons to be at
points Ri

ka1 and Ri
kap+1 for i = 0, . . . , k − 1, where

a1 =
l̄

2 sin π
k

e1, ap+1 = a1 + ple1 (2.17)

and Rk is a rotation by 2π/k. In other words, the vertices of the inner and
outer k-gons are the orbits of the two points a1 and ap+1 by rotation Rk. Define
an inner spoke joining the inner and outer k-gons as a line segment connecting
the two vertices Ri

ka1 and Ri
kap+1, for a fixed i = 0, . . . , k− 1. Note that there

are k of these inner spokes or line segments.
Now, we place magnetic vortices on the vertices of the inner and outer

k-gons, on the k inner spokes and on the k edges of the outer k-gon. More
precisely, the magnetic vortices on one inner spoke are located at points

ar := a1 + (r − 1)le1, for r = 2, ..., p, (2.18)

and on the other k − 1 inner spokes at points Ri
kar for i = 1, ..., k − 1 and

r = 2, ..., p. The magnetic vortices on one edge of the outer k-gon are located
at points

bs := ap+1 + sl̄t, for s = 1, ..., 2q − 1, (2.19)

and on the other k−1 edges of the outer k-gon at points Ri
kbs for i = 1, ..., k−1

and s = 1, ..., 2q − 1. In (2.19),

t = (− sin(π/k), cos(π/k)). (2.20)

Note that the distance from the origin to ap+1 is pl + l̄
2 sin(π/k)

, and due to

(2.16), the edges of the outer k-gon all have length 2ql̄. Figure 2.1 gives an
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Figure 2.1: The location of the vortices in the approximate polygonal solution
vcχ for k = 7, p = 7 and q = 4. The darker (blue) and lighter (red) dots
represent +1 and −1 vortices, respectively.

example picture of the approximate polygonal solution described in between
equations (2.16) and (2.20) when k = 7, p = 7 and q = 4.

We collect all the magnetic vortex centers defined above into the vector

c := (a1, . . . , ap+1, b1, . . . , b2q−1, ..., R
k−1
k a1, ..., R

k−1
k b2q−1) ∈ R2k(p+2q) (2.21)

and define the approximate polygonal solution as

vcχ :=

(
eiχ

∏k−1
i=0

{[∏p+1
r=1 ψ(nr)(· −Ri

kar)
] [∏2q−1

s=1 ψ(ns)(· −Ri
kbs)

]}
∑k−1

i=0

[∑p+1
r=1 A(nr)(· −Ri

kar) +
∑2q−1

s=1 A(ns)(· −Ri
kbs)

]
+∇χ

)

(2.22)
where the degrees of the vortices in vcχ are

nr = 1 for all r = 1, . . . , p + 1 and

ns = (−1)s for all s = 1, . . . , 2q − 1. (2.23)

Note that vcχ satisfies symmetry conditions (2.11) and by the arrangement of
+1 and −1 degree vortices as defined in (2.23), the multi-vortex configuration
vcχ is observed to be almost forceless. An example picture of a configuration
vcχ can be found in Figure 2.1.

Perturbation of the approximate polygonal solution

Now, we try to perturb the approximate polygonal solution into a ”gen-
uine” solution by perturbing the points ar and bs: let

yr := ar + αre1, r = 1, . . . , p + 1, (2.24)

and
zs := bs + βst + l̄γsn, s = 1, . . . , 2q − 1 (2.25)
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where

n = (cos(π/k), sin(π/k)). (2.26)

Since we require our solutions to be invariant under rotations by 2π/k and
reflections in the x2 = 0, i.e., we require solutions u to satisfy (2.11), then zs

and z2q−s must be related by the equation

z2q−s = RkΛzs

for all s = 1, ..., q. This relation and the fact that RkΛt = −t and RkΛn = −n
imply that for s = 1, ..., q,

βs = −β2q−s and γs = γ2q−s.

In particular, βq = 0, and therefore, the total number of free parameters is in
fact just 2q + p.

Define the vectors

α := (α1, . . . , αp+1) ∈ Rp+1, β := (β1, . . . , βq−1) ∈ Rq−1, γ := (γ1, . . . , γq) ∈ Rq

and the set of free perturbation parameters by

σ :=



(α, β, γ) :

|αr| ≤ 1, r = 1, . . . , p + 1
|βs| ≤ 1, s = 1, . . . , q − 1
l|γs| ≤ 1, s = 1, . . . , q



 ∈ Rp+2q. (2.27)

We note here that the bound 1 on αr, βs, lγs is arbitrary and could be replaced
with any finite constant. We collect the perturbed vortex centers into the
vector

zσ := (y1, ...., yp+1, z1, ..., z2q−1, . . . , R
k−1
k y1, . . . , R

k−1
k z2q−1) ∈ R2k(p+2q),

(2.28)
and denote the perturbation of the approximate polygonal solution as

vzσχ :=

(
ψzσχ

Azσχ

)
(2.29)

with vcχ given in (2.22) and zσ in (2.28). The degrees of the vortices in vzσχ

are the same as in vcχ (see (2.23)). Note that for l large enough, (zσ, χ) ∈ Σε

since R(zσ) ≈ l.

The main Theorem 1.1 now follows from the following theorem:

Theorem 2.1. Fix λ > 1/2 and k ≥ 7. There exists a positive constant ε0

such that for all ε satisfying 0 < ε log1/4(1/ε) < ε0 and for all l > 1
ε0

, if l̄ solves
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(i) Force Balancing Condition:

Ψ(l) = 2 sin
π

k
Ψ(l̄) (2.30)

and if p, q are positive integers satisfying

(ii) Polygonal Closing Condition:

(
2 sin

π

k

)
pl = (2q − 1)l̄, (2.31)

then (1.1) and (1.2) has a solution of the form

u = vzσχ + w

where zσ = c+O(e−δl) for some δ > 0 and χ is a gauge function with (zσ, χ) ∈
Σε; w = O(ε log1/4(1/ε)) in H2(R2;C× R2) and u has finite energy given by

E(u) = k(p + 2q)E(v•) + O

(
e−R(zσ)

√
R(zσ)

)

as R(zσ) ≈ l → ∞. Here, v• is the +1 or −1 degree vortices and c, zσ, and
vzσχ are defined in (2.21), (2.28), and (2.29), respectively.

Remarks:

1. The condition k ≥ 7 is purely geometrical in nature and is required so that
the vortices at yp and z1 in zσ do not interact too much. More precisely, if
k ≤ 6, one can approximate the distance between vortices at yp and z1 to be
2l sin

(
π
4
− π

2k

)
+ O(1) < l + O(1) as l →∞. Therefore, when considering the

forces between the nearest neighbors on yp (see definition (4.20)), one has to
also consider z1 and Λz1 instead of only yp−1 and yp+1. This is very important
when showing that equation (2.10) can be reduced to an equivalent solvable
Toda system for perturbed parameters σ = (α, β, γ) defined in (2.27) (see
(4.34) and the proof of Proposition 4.2 below).

2. The ”Force Balancing Condition” is required so that the l.h.s. of (2.15) is
almost equal to zero. More precisely, (2.30) is required so that the leading order
expressions for the inter-vortex forces in the multi-vortex configuration vzσχ

cancel out and have an ”almost” forceless equilibrium/static solution (again,
see the proof of Proposition 4.2 below).

3. The ”Polygonal Closing Condition” is purely geometrical in nature too,
and relates the distances between vortices on the ”inner spokes” (l) and ”outer
edges” (l̄) of the polygon.
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4. For λ < 1/2, the inter-vortex forces are always attractive and do not depend
on the degrees of the vortices in the configuration (see Lemma 6.1(b) of [21]).
Therefore, we cannot construct almost forceless configurations for λ < 1/2 as
we do here for λ > 1/2.

Theorem 2.1 will be proven in Section 4.2. Now we are ready to prove our
main theorem.

Proof of Theorem 1.1. By (2.14), Ψ(l) is a strictly decreasing function of l
for l large enough. Hence, Ψ has an inverse function Ψ−1 (defined on a suitable
domain) for large enough l, and therefore, (2.30) defines l̄ as a function of l
via formula l̄ = Ψ−1[(2 sin(π/k))−1Ψ(l)]. Using (2.30) and (2.14), we obtain

l̄ = l + ln
(
2 sin

π

k

)
+ O(l−1). (2.32)

Substituting (2.32) into (2.31), we obtain

2q − 1

p
= 2 sin

π

k

[
1− l−1 ln

(
2 sin

π

k

)
+ O(l−2)

]
. (2.33)

Now choose positive integers p and q large enough such that

0 <
2q − 1

p
− 2 sin

π

k
< ε0. (2.34)

From (2.33) and (2.34), it is clear that there exists a unique l with l > ε−1
0 >

−2 sin π
k

ln(2 sin π
k )

ε0
such that (2.33) is satisfied, i.e., (2.31) is satisfied. Therefore,

by Theorem 2.1, there exists two sequences of positive integers (pi)i≥0, (qi)i≥0

tending to infinity with 2qi−1
pi

→ 2 sin π
k
, and a sequence, (ui)i≥0, of degree-

changing non-radial solutions of (1.1) and (1.2) with energy given by (1.7)
where mi := pi + 2qi. This last statement comes from the fact that as R(z) →
∞, the energy of the a multi-vortex configuration vzχ containing m vortices is

given by E(vzχ) =
∑m

j=1 E(nj) +O

(
e−R(z)√

R(z)

)
(see Lemma 7 in [13]) where E(nj)

is the self energy of the jth vortex of degree nj. In this case, our multi-vortex
configuration vzσχ has k(2q + p) = km vortices of degree either +1 or −1 with
self energy of each vortex E(v•). Here, R(zσ) ≈ l → ∞ since p, q → ∞ in
(2.33).

3 Solution in the Orthogonal direction

In this section, will show that for ε > 0 sufficiently small and for (z, χ) ∈ Σε,
there exists a unique wzχε ∈ Ran(π⊥zχ) such that (2.9) is satisfied.
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We first state the following theorem from [13] which is crucial in our anal-
ysis. Parts (a) to (e) of the theorem below is proven already in [13] and [27]
for λ > 1/2. We will reprove part (d) in Appendix A, as their is a slight
modification to the original proof in [13].

For real numbers g, h, define the error function

Γg,h(ε) = εg logh(1/ε). (3.1)

Theorem 3.1. For ε > 0 sufficiently small and for (z, χ) ∈ Σε,

(a) (Almost solution)

‖F (vzχ)‖L2 = O(Γ1, 1
4 (ε)); (3.2)

(b) (Almost Orthogonality)

〈T zχ
jk , T zχ

lm 〉 = γ(nj)δjlδkm + O(Γ1, 1
2 (ε)), (3.3)

where

γ(nj) =
1

2
‖∇

A(nj)ψ(nj)‖2
2 + ‖curlA(nj)‖2

2, (3.4)

and
〈T zχ

jk , Gzχ
γ 〉 = O(Γ1, 1

4 (ε))‖γ‖L2 . (3.5)

(c) (Almost zero modes) Write

Lzχ := E ′′(vzχ).

Then
‖LzχT zχ

jk ‖L2 = O(Γ1, 1
2 (ε)) and (3.6)

‖LzχGzχ
γ ‖L2 ≤ cΓ1, 1

4 (ε)‖γ‖L2 . (3.7)

Therefore, from (2.8), (3.6) and (3.7), it follows that

Lzχπzχ = O(Γ1, 1
2 (ε)) in L2. (3.8)

(d) (Coercivity of Hessian) There exists an ε̃0 > 0 such that for 0 < ε < ε̃0,
(z, χ) ∈ Σε and w ∈ Ran(π⊥zχ),

〈w, Lzχw〉 ≥ c1‖w‖2
H1 ≥ c2‖w‖2

2 (3.9)

for some positive constants c1 and c2.

(e) (Invertibility of Hessian) There exists an ε̃0 such that for all 0 < ε < ε̃0,
(z, χ) ∈ Σε and w ∈ Ran(π⊥zχ), we have

‖Lzχw‖L2 ≥ ω‖w‖H2

for some constant ω > 0.
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Remark. If the distance between the two vortices in the two vortex con-
figuration v(0,de)χ is d = l and Ψ(l) < ε, then by Lemma 2.1, e−R((0,de))√

R(0,de)
< ε.

Therefore, if we choose l large enough in the polygonal multi-vortex configu-
ration zσ such that Ψ(l) < ε, then since l̄ = l + O(1) by (2.32), e−R(zσ)√

R(zσ)
< ε,

and all the statements of Theorem 3.1 will apply. We will assume this will be
the case for the rest of the paper.

Using Theorem (a) and (e) and the nonlinear estimates in Lemma 3.1 below
brings us to the following main result of Step 1.

Theorem 3.2. There exists positive constants δ0 and ε0 such that for all 0 <
Γ1, 1

4 (ε) < ε0 and for every (z, χ) ∈ Σε, there exists a wzχε ∈ BH2(0, δ0) ∩
Ran(π⊥zχ) such that (2.9) is true. In addition:

‖wzχε‖H2 ≤ DΓ1, 1
4 (ε) (3.10)

where D = D(ω, κ) and

κ := sup
ε>0

1

Γ1, 1
4 (ε)

‖F (vzχ)‖L2 . (3.11)

Proof. This is a basic implicit function type argument, which can be found
in [24, 21]. We begin with the following definitions. Let v = vzχ + w, where

vzχ =

(
ψzχ

Azχ

)
∈ Mmv,ε , and w =

(
ξ
B

)
∈ H2 with w ⊥ TvzχMmv,ε. Using

Taylor expansion, we have

F (vzχ + w) = F (vzχ) + F ′(vzχ)w + N(vzχ, w), (3.12)

where F ′(vzχ) and N(vzχ, w) is defined by this relation and explicitly given by

F ′(vzχ)w = (3.13)(
[−∆Azχ + λ

2
(2|ψzχ|2 − 1)]ξ + λ

2
ψ2

zχξ̄ + i[2∇Azχψzχ + ψzχ∇] ·B
Im([∇Azχψzχ − ψzχ∇Azχ ]ξ) + (−∆ +∇∇+ |ψzχ|2) ·B

)

and

N(vzχ, w) = (3.14)(
λ(2ψzχξ̄ + ψ̄zχξ + |ξ|2)ξ + ||B||2(ψzχ + ξ) + i[(∇ ·B)ξ + 2B · ∇Azχξ]

−Im(ξ̄∇Azχξ) + B(2Re(ψ̄zχξ) + |ξ|2)
)

.

We need the following nonlinear estimate:

Lemma 3.1. There exist positive constants C2, C3, C4 independent of z, χ, ε
such that for all w ∈ H2 with ‖w‖H2 ≤ C2,

‖N(vzχ, w)‖
L2 ≤ C3 ‖w‖2

H2 , (3.15)
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and

||∂wN(vzχ, w)||H2→L2 ≤ C4||w||H2 . (3.16)

Proof. Lemma 3.1 follows directly from Sobolev embedding theorems and the
mean value theorem (see [24]).

Let ε satisfy 0 < ε < ε̃0 so that Lzχ is invertible by Theorem 3.1e. Using the
Taylor expansion (3.12) and abbreviating π⊥zχF (vzχ) to F⊥

zχ and π⊥zχN(vzχ, w)

to N⊥
zχ(w), we rewrite equation (2.9) as a fixed point equation w = Szχ(w) for

the map Szχ defined on H2 by

Szχ(w) = −L−1
zχ

[
N⊥

zχ(w) + F⊥
zχ

]
. (3.17)

Let ω, C2, C3 and C4 be the constants in Theorem 3.1e and Lemma 3.1. Set
δ0 = min(C2,

ω
2C3

, ω
2C4

) and ε0 = min(ε̃0,
δ0
2κ

ω), where κ is defined in (3.11).

We will show that for ε satisfying 0 < Γ1, 1
4 (ε) < ε0, Szχ maps the ball B⊥

δ0
=

BH2(0, δ0) ∩ [Ran(π⊥zχ)] continuously into itself. Let w ∈ B⊥
δ0

. Then for ε

satisfying Γ1, 1
4 (ε) < ε0 and ||w|| ≤ δ0 ≤ C2, we have by Theorem 3.1e and

Lemma 3.1

‖Szχ(w)‖
H2 ≤ 1

ω

∥∥N⊥
zχ(w) + F⊥

zχ

∥∥
L2

≤ 1

ω

(
C3 ‖w‖2

H2 +
∥∥F⊥

zχ

∥∥
L2

)

≤ 1

ω

(
C3δ

2
0 + κΓ1, 1

4 (ε)
)
≤ δ0,

where in the second last inequality, we used (3.11), and in the last inequality,
we used the definition of δ0 and ε0. Therefore Szχ(w) is in B⊥

δ0
too.

In addition, for w and w′ in B⊥
δ0

, we have from (3.16) and the mean value
theorem that

‖N(vzχ, w) − N(vzχ, w′)‖
L2 ≤ C4δ0 ‖w − w′‖H2 . (3.18)

Hence, (3.18) and our choice of δ0 imply

‖Szχ(w)− Szχ(w′)‖
H2 =

∥∥L−1
zχ (N⊥

zχ(w)−N⊥
zχ(w′))

∥∥
L2

≤ C4δ0

ω
‖w − w′‖H2 ≤ 1

2
‖w − w′‖H2 .

Therefore, Szχ is a contraction map and so Szχ has a unique fixed point wzχε

in B⊥
δ0

. By the definition of the map Szχ, this fixed point solves (2.9) which
proves the first part of Theorem 3.2.

For the second part of Theorem 3.2, we note that
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‖Szχ(0)‖
H2 =

∥∥L−1
zχ F⊥

zχ

∥∥
H2 ≤ ω−1 ‖F (vzχ)‖

L2 .

But for the fixed point wzχε, we have

wzχε = Szχ(wzχε) = Szχ(0) + Szχ(wzχε)− Szχ(0).

Consequently,

‖wzχε‖H2 ≤ ‖Szχ(0)‖
H2 + ‖Szχ(wzχε)− Szχ(0)‖

H2

≤ ω−1 ‖F (vzχ)‖
L2 +

1

2
‖wzχε‖H2 .

Since ||F (vzχ)||L2 ≤ κΓ1, 1
4 (ε) by (3.11), the last inequality implies part a) with

D = 2ω−1κ:

||wzχε||H2 ≤ 2ω−1κΓ1, 1
4 (ε). (3.19)

4 Reduced problem and solution in the tan-

gential direction

In this section, we solve the reduced problem (2.10) for (z, χ) ∈ Σε in Step 2
of section 2 and prove Theorem 2.1.

Denote by πg
zχ and πt

zχ the L2-orthogonal projections onto the gauge and
translational ”almost” tangent vectors, respectively. By definition, we have

πzχ = πg
zχ + πt

zχ. (4.1)

By (4.1), solving (2.10) for (z, χ) ∈ Σε is equivalent to solving the coupled
system of equations

πg
zχF (vzχ + wzχε) = 0 (4.2)

and
πt

zχF (vzχ + wzχε) = 0 (4.3)

for the pair (z, χ) ∈ Σε. We will show that if there exists a multi-vortex
configuration z such that (z, χ) ∈ Σε solves (4.3) for ε > 0 sufficiently small
and χ ∈ H2

z (R2,R) arbitrary, then due to gauge invariance, one can show that
this same (z, χ) ∈ Σε solves (2.10), i.e., this same (z, χ) ∈ Σε solves both (4.2)
and (4.3). Therefore, to find (z, χ) ∈ Σε which solves (2.10), we are reduced
to finding a multi-vortex configuration z which solves (4.3).

In subsection 4.1, we will show that if there exists a multi-vortex config-
uration z such that (z, χ) ∈ Σε solves (4.3) for ε > 0 sufficiently small and
χ ∈ H2

z (R2,R) arbitrary, then this same (z, χ) ∈ Σε solves (2.10). In subsec-
tion 4.2, we will prove that (4.3) is satisfied for zσ defined in (2.28) of Section
2, and then finish the proof of Theorem 2.1.
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4.1 Independence of Gauge and solution to reduced prob-
lem

In this subsection, we will prove the following proposition.

Proposition 4.1. Suppose there exists a multi-vortex configuration z such
that (z, χ) ∈ Σε solves (4.3) for ε > 0 sufficiently small and χ ∈ H2

z (R2;R)
arbitrary. Then this same (z, χ) ∈ Σε solves (2.10).

Before we prove Proposition 4.1, we need some definitions and notation.
Define the symmetry action of gχ on the vectors v = (ψ, A) (solutions of G-L
equations) as

gχv =

(
eiχψ

A +∇χ

)
(4.4)

and the action of g̃χ on vectors w = (ξ, B) (perturbations around solutions)
as

g̃χw =

(
eiχξ
B

)
. (4.5)

From Theorem 3.2, we know that for ε > 0 sufficiently small and for all
(z, χ) ∈ Σε, wzχε is a unique fixed point of map Szχ defined in (3.17). Dropping
the z and ε dependance everywhere (equivalently, fixing z and ε), we have

wχ = Sχ(wχ), χ ∈ H2
z (R2;R). (4.6)

Now we are ready to state the following required lemma.

Lemma 4.1. Let w0 and wχ be unique fixed points of maps S0 and Sχ, respec-
tively. Then

wχ = g̃χw0. (4.7)

Proof. Let w0, wχ be the unique fixed points of the maps S0, Sχ, respectively.
Denoting Lχ := F ′(vzχ), L⊥χ := π⊥χ Lχπ⊥χ , vχ := gχv0 = (ψχ, Aχ) and w0 =
(ξ, B), one can show using (4.4) and (4.5) that

π⊥χ (g̃χw0) = g̃χπ⊥0 (w0); (4.8a)

F (gχv0) = g̃χF (v0); (4.8b)

N(vχ, wχ) = g̃χN(v0, w0); (4.8c)

Lχ = g̃χL0g̃
−1
χ and hence (L⊥χ )−1 = g̃χ(L⊥0 )−1g̃−1

χ . (4.8d)

Indeed, (4.8a) comes from (4.1) and the explicit expressions for πt
χ = πt

zχ and
πg

χ = πg
zχ. More precisely, for w = (ξ, B) and using Dirac notation (see [24]):

πt
χw =

∑

jk

∑

lm

|T χ
jk〉

[
(βχ)−1

]
(jk)(lm)

〈T χ
lm|w〉 (4.9)

πg
χw =

(
iψχJ [Im(ψ̄χξ)−∇ ·B]
∇J [Im(ψ̄χξ)−∇ ·B]

)
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where |T χ
jk〉 =

(
eiχ

∏
l 6=j ψ(l)[∇Aψ]

(j)
k

(∇× A)e⊥j

)
= g̃χ|T 0

jk〉, [βχ](jk)(lm) = 〈T χ
jk|T χ

lm〉 =

〈T 0
jk|T 0

lm〉 (which is invertible by (3.3)) and J = (−∆ + |ψχ|2)−1. Now, (4.8b)
to (4.8d) comes from the explicit expressions for F, Lχ and N from (2.7), (3.13)
and (3.14), respectively.

Now, using (4.8) and the fact that Sχ(wχ) = −(L⊥χ )−1(F (vχ) + N(vχ, wχ))
(see (3.17)), we have

Sχ(wχ) = g̃χS0(w0). (4.10)

By assumption that w0 and wχ are unique fixed points of the maps S0 and
Sχ, respectively (see (4.6)), (4.10) implies (4.7) and are done with the proof
of Lemma 4.1.

From the above lemma, we have the following important

Lemma 4.2. For ε > 0 sufficiently small and (z, χ) ∈ Σε, define the reduced
energy by

Φ(z, χ) := E(vzχ + wzχε)

for wzχε defined in Theorem 3.2. Then Φ is independent of gauge χ ∈ H2
z (R2;R).

Proof. Let vzχ := gχvz0 and wzχε := g̃χwz0ε. Then for any χ ∈ H2
z (R2;R), we

have
vzχ + wzχε = gχ(vz0 + wz0ε) (4.11)

by (4.4), (4.5), and (4.7) in Lemma 4.1. Therefore, by (4.11) and the gauge
invariance of the G-L energy functional (1.3), we obtain

Φ(z, χ) = E(vzχ + wzχε) = E(vz0 + wz0ε) = Φ(z, 0).

We are ready to prove Proposition 4.1. First, let’s denote

vzχε := vzχ + wzχε =: (ψzχε, Azχε). (4.12)

Proof of Proposition 4.1. Suppose there exists a multi-vortex configura-
tion z such that (z, χ) ∈ Σε solves (4.3) for ε > 0 sufficiently small and
χ ∈ H2

z (R2;R) arbitrary. We will show that the equation

F (vzχ + wzχε) =
∑

jk

cjkT
zχ
jk + Gzχ

γ0
, (4.13)

where Gzχ
γ and T zχ

jk is the almost gauge and translational zero mode defined
in (2.5) and (2.6), respectively, only has solutions cjk = 0 for all vortices j,
k = 1, 2 and γ0(x) = 0, i.e., (z, χ) ∈ Σε solves (2.10).

To begin, by (4.12), Lemma 4.2 and chain rule, we have for any γ0 ∈
H2(R2;R),

0 = 〈γ0, ∂χ〉Φ(z, χ) = 〈γ0, ∂χ〉E(vzχε) = 〈E ′(vzχε), 〈γ0, ∂χ〉vzχε〉. (4.14)
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Using the fact that 〈γ0, ∂χ〉gχv =

(
iγ0ψ
∇γ0

)
by (4.4), then by (4.11) and the

notation in (2.5) and (4.12), we obtain

〈γ0, ∂χ〉vzχε =

(
iγ0ψzχε

∇γ0

)
. (4.15)

Since E ′(u) = F (u), then by (4.14) and (4.15),

0 =

〈
F (vzχ + wzχε),

(
iγ0ψzχε

∇γ0

)〉
. (4.16)

Now, taking the inner product of (4.13) with Gzχε
γ0

= (iγ0ψzχε,∇γ0), we
obtain using (4.16) and denoting ψzχε = ψzχ + ξzχε,

0 =
∑

jk

cjk〈T zχ
jk , Gzχε

γ0
〉+ 〈γ0, [−∆ + |ψzχ|2 + Re(ψzχξzχε)]γ0〉. (4.17)

Similarly, taking the inner product of (4.13) with T zχ
j′k′ and using the fact that

(z, χ) ∈ Σε solves (4.3), we have

0 =
∑

jk

cjk〈T zχ
jk , T zχ

j′k′〉+ 〈T zχ
j′k′ , G

zχ
γ0
〉. (4.18)

Note that (4.17) and (4.18) is a coupled system for real coefficients cjk and
gauge function γ0 ∈ H2(R2;R). Using Theorem 3.1(b) and the fact that
[−∆ + |ψzχ|2 + Re(ψzχξzχε)] is a positive operator for ε sufficiently small (by
(3.10) in Theorem 3.2 and using Lemma 5.1 in [15]), the only solution to (4.17)
and (4.18) is cjk ≡ 0 for all vortices j, k = 1, 2 and γ0(x) ≡ 0. This concludes
the proof of Proposition 4.1.

4.2 Solution along translational modes

In the last subsection, we found that if there exists a multi-vortex configuration
z such that (z, χ) ∈ Σε solves (4.3) for ε > 0 sufficiently small and χ ∈
H2

z (R2;R) arbitrary, then this same (z, χ) ∈ Σε solves (2.10). In this section,
we find a z with (z, χ) ∈ Σε which solves (4.3) and complete the proof of
Theorem 2.1. In fact, we will show that zσ defined in (2.28) will solve (4.3)
for a specific perturbation parameter σ ∈ Rp+2q, defined in (2.27).

To begin with, let’s Taylor expand (4.3) to obtain

πt
zχ


F (vzχ) +

O(Γ1, 14 (ε))2︷ ︸︸ ︷
F ′(vzχ)wzχε +

O(Γ1, 14 (ε))2︷ ︸︸ ︷
Nzχ(vzχ, wzχε)


 = 0. (4.19)
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The last two terms can be estimated to be of O(Γ1, 1
4 (ε))2 in L2. Indeed, the

last term is O(Γ1, 1
4 (ε))2 due to (3.15) and (3.10) in Theorem 3.2. Also, from

the expression for πt
zχ = πt

χ in (4.9), we can estimate ‖F ′(vzχ)wzχε‖L2 by

〈T zχ
jk , F ′(vzχ)wzχε〉 = 〈F ′(vzχ)T zχ

jk , wzχε〉
≤ ‖F ′(vzχ)T zχ

jk ‖L2‖wzχε‖L2 = O(Γ1, 1
4 (ε))2

where we used self-adjointness of F ′(vzχ) in the first equality and (3.6) and
(3.10) in the last estimate. Note that by Theorem 3.1(a) and (4.19), πt

zχF (vzχ)
is the leading order term in (4.3). Therefore, to solve for z in (4.3), we need
to investigate the solutions of

πt
zχF (vzχ) = 0

for a configuration z more closely (and not for χ due to gauge invariance).
In fact, we will find that the perturbed approximate polygonal solution vzσχ

defined in (2.29) is the right candidate to solve this equation for a specific
perturbation parameter σ ∈ Rp+2q defined in (2.27). We need some definitions
and notation first, followed by a crucial lemma.

For the perturbation of the approximate polygonal solution zσ in (2.28),
we define two vortices located at zk and zj ∈ zσ to be nearest neighbors to
each other, and write ”zk n.n. zj ∈ zσ”, as follows:

zk n.n. zj ∈ zσ ⇐⇒ |zk − zj| ≤ l + O(1) as l →∞. (4.20)

We write ”zk »»»n.n. zj ∈ zσ” if zk and zj ∈ zσ are not nearest neighbors to each
other, i.e., if (4.20) is false. In addition, it will be useful to write the multi-
vortex interaction energy in terms of the sum of interaction energy between
two vortices W (defined in (2.12)) plus a remainder. Hence, let’s define the
remainder term as

Υzχ := E(vzχ)−
∑

j

E(nj) −
∑

j 6=k

W (|zj − zk|). (4.21)

Finally, for compactness in notation in the statements below, denote the effec-
tive interaction force between two vortices of degrees nk, nj, at positions zk, zj,
to be

~Ψ(zj, zk) := nknjΨ(|zk − zj|) zk − zj

|zk − zj| , (4.22)

where Ψ is defined in (2.14).
Now, we are ready to state the following crucial lemma.

Lemma 4.3. For the perturbation of the approximate polygonal solution vzσχ

defined in (2.29), we have, as l →∞:

πt
zσχF (vzσχ) = 0 ⇐⇒

∑
zk n.n. zj∈zσ

~Ψ(zj, zk) + Remj(zσ) = 0

for all vortices zj ∈ zσ (4.23)

21



where ~Ψ(zj, zk) is defined in (4.22) and

Remj(zσ) :=
∑

zk »»»n.n. zj∈zσ

~Ψ(zj, zk)+
∑

k 6=j

[
∇zj

W (|zk − zj|)− ~Ψ(zj, zk)
]
+∇zj

Υzσχ.

(4.24)
In addition, we have

Remj(zσ) = O(e−l(1+δ)) as l →∞ (4.25)

for all vortices zj ∈ zσ.

Proof. By (4.9) and the fact the (βχ)−1 is non-degenerate, we have

πt
zσχF (vzσχ) = 0 ⇐⇒ 〈F (vzσχ), T

zσχ
j′k′ 〉 = 0 for all vortices j′, k′ = 1, 2;

⇐⇒ ∇zj′

[
E(vzσχ)−

∑
j

E(nj)

]
= 0 for all vortices j′;

⇐⇒ ∇zj′

[∑

j 6=k

W (|zk − zj|) + Υzσχ

]
= 0 for all vortices j′;

⇐⇒
∑

zk n.n. zj′∈zσ

~Ψ(zj′ , zk) + Remj′(zσ) = 0 for all vortices j′.

(4.26)

In the second equivalence, we used the chain rule and the fact that our
gauge transformations are of form (2.4); in the third equivalence, we used
(4.21); and in the last equivalence, we used (4.24) and the fact that

∑
k 6=j′ =∑

zkn.n.zj′
+

∑
zk»»»n.n.zj′

.

To show that Remj(zσ) = O(e−l(1+δ)), we note that the first term in (4.24)
is of O(e−l(1+δ)) since the sum is over non-nearest neighbors and by definition
(4.20) and form of Ψ in (2.14). The second term in (4.24) is of O(e−l(1+δ))

since ∇zj
W (|zk − zj|) − ~Ψ(zj, zk) = O(e−l(1+δ)) by (2.13) and (4.22). For the

last term in (4.24), we note that by (4.21), it is straightforward to show

Υzχ =
m∑

j 6=k 6=l;1≤p,q,r≤2

∫
(f 2

j − 1)p(f 2
k − 1)q(f 2

l − 1)r + · · ·

+
m∑

j1 6=j2 6=···6=jm;1≤p1,p2,...,pm≤2

∫
(f 2

j1
− 1)p1(f 2

j2
− 1)p2 · · · (f 2

jm
− 1)pm

+
m∑

j=1;j 6=k 6=l

∫
(f 2

k − 1)(f 2
l − 1)|(∇Aψ)j|2

+2
m∑

j<l;k 6=j,l

∫
(f 2

k − 1)Re
[
(ψ̄∇Aψ)j(ψ̄∇Aψ)k

]
. (4.27)
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Therefore, ∇zj
Υzχ = O(e−l(1+δ)) for some δ > 0 by (4.27), (1.5) and Lemma

12 of [13].

With Lemma 4.3 in place, we are now in a position to write down more
explicitly the form of the reduced translational projection problem (4.3)

πt
zσχF (vzσχ + wzσχε) = 0 (4.28)

for perturbed approximate polygonal solution vzσχ. As we will show below, due
to the fact that our solution must satisfy symmetry relations in (2.11), solving
(4.28) for unknown vortex positions zj ∈ zσ is equivalent to solving a non-
linear system of p + 2q equations for p + 2q unknown perturbation parameters
σ = (α, β, γ) ∈ Rp+2q of vzσχ defined in (2.27) (see (4.34) below). To describe
this system of p + 2q equations in p + 2q unknowns, we require a discussion
first, followed by some definitions.

We first note that by (4.9) and the fact the (βχ)−1 is non-degenerate,
solving (4.28) for zσ is equivalent to solving the following system of k(p + 2q)
equations

〈F (vzσχ + wzσχε), ~T
zσχ
j 〉 = 0 (4.29)

for unknown vortex positions zj ∈ zσ defined in (2.28). Here, we used the

notation ~T
zσχ
j = {T zσχ

jk }k=1,2. Now, due to the fact that our configuration of
vortices zσ must satisfy symmetries in (2.11), we only need to solve (4.29) for
zj in a ”base configuration of zσ” defined by the set

Π := {yr, zs ∈ zσ | r = 1, ..., p + 1, s = 1, ..., q} (4.30)

(see discussion in between (2.26) and (2.27)). Recall that yr and zs are de-
fined in (2.24) and (2.25), respectively. Therefore, solving for zσ in (4.28) is
equivalent to solving the p + q + 1 equations

〈F (vzσχ + wzσχε), ~T
zσχ
j 〉 = 0 for zj ∈ Π. (4.31)

To solve (4.31) for zj ∈ Π, Taylor expand F around vzσχ and denoting

Remj(zσ) := 〈F ′(vzσχ)wzσχε + N(vzσχ, wzσχε), ~T
zσχ
j 〉, (4.32)

we obtain

0 =
∑

zkn.n.zj∈Π

~Ψ(zj, zk) + Remj(zσ) + Remj(zσ), zj ∈ Π, (4.33)

where we used Lemma 4.3. Note that (4.33) is a non-linear system of p+ q +1
equations for p + 2q unknown perturbation parameters σ = (α, β, γ) ∈ Rp+2q.

To summarize this discussion above, we have shown that solving for zj ∈ zσ

in (4.28) is equivalent to solving for σ ∈ Rp+2q in (4.33). In Proposition 4.2
below, we will show that solving for σ ∈ Rp+2q in (4.33) is equivalent to solving
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for σ ∈ Rp+2q in (4.35) below. We will require some definitions before we state
Proposition 4.2.

Let Tn̄ denote the n̄× n̄ invertible Toda matrix

Tn̄ =




2 −1 0 . . . 0

−1 2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . 2 −1

0 . . . 0 −1 2



∈ Rn̄×n̄

with inverse given by

(T−1
n̄ )ij = min(i, j)− ij

n̄ + 1
.

Define vectors

α′ =




−λ1α1

0
...

κ̄
κ
β1 − 1

κ
cot

(
π
k

)
γ1 − λ2αp+1


 ∈ R

p+1, β′ =




sin(π/k)αp+1

0
...
0


 ∈ R

q−1,

and

γ′ =




−1
l̄
cos(π/k)αp+1

0
...
−γq


 ∈ R

q

where

λ1 = −2
κ̄

κ
sin

(π

k

)
, λ2 = 1 +

κ̄

κ
sin

(π

k

)
− 1

κl̄
cot

(π

k

)
cos

(π

k

)

and κ, κ̄ = −(logΨ)′(l),−(logΨ)′(l̄). Note that by (2.14), κ = 1 + 1
2l

+ O(l−2)
as l →∞.

The explicit form of (4.28) can now be described in the following

Proposition 4.2. Suppose ε > 0 satisfies 0 < Γ1, 1
4 (ε) < ε0 (defined in

Theorem 3.2), Ψ(l) < ε and l and l̄ satisfy the force balancing condition
(2.30). Then there exists real valued functions Aσ = (Aα, Aβ, Aγ) and Qσ =
(Qα, Qβ, Qγ) of vector (l, p, q, α, β, γ), uniformly bounded as l →∞, such that
solving the reduced problem in (4.28) for zσ is equivalent to solving the non-
linear, finite dimensional system

Tp+1α + α′ + Qα + Aα = 0

Tq−1β + β′ + Qβ + Aβ = 0 (4.34)

Tqγ + γ′ + Qγ + Aγ = 0

for unknown free perturbation parameters σ = (α, β, γ) ∈ Rp+2q with α ∈ Rp+1,
β ∈ Rq−1 and γ ∈ Rq. In addition, Aσ = O(e−δ2l) for some δ2 > 0 and Qσ is
of at least quadratic order in α, β and γ.
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Proof. Proposition 4.2 has already been proven rigourously in Proposition 5.1
of [18]. The reduced translational equation (5.4) in Proposition 5.1 of [18] is
of the same form (and has the same properties) as (4.34) above, except here,
we have labeled Qσ = Dσ and Aσ = e−δ2lBσ. Therefore, we will just outline
the proof of Proposition 4.2 here. At the end of the outline of proof, we will
also give an idea of why conditions k ≥ 7 and (2.30) are required in Theorem
2.1.

The basic outline of the proof of Proposition 4.2 has already been discussed
after equation (4.28), and summarized in the paragraph after (4.33). We will
now complete the missing steps and refer readers to the proofs of statements
in [18].

Recall that that solving for zj ∈ zσ in (4.28) is equivalent to solving for
σ ∈ Rp+2q in (4.33). Now, it was proven in Lemmas 5.2 and 5.3 in [18] that
solving for σ ∈ Rp+2q in (4.33) is equivalent to solving for σ ∈ Rp+2q in (4.34).
More precisely, in Lemma 5.2 of [18], they show that

∑
zkn.n.zj∈Π

~Ψ(zj, zk) = 0 ∀zj ∈ Π ⇐⇒
Tp+1α + α′ + Qα = 0
Tq−1β + β′ + Qβ = 0
Tqγ + γ′ + Qγ = 0

(4.35)

for some Qσ = (Qα, Qβ, Qγ) of at least quadratic order in α, β, γ. In other
words, they show that computing the p + q + 1 equations for the nearest
neighbor forces for each zj ∈ Π in the first term on the right hand side of
(4.33) is equivalent to the p + 2q equations in first 3 sets of terms in system
(4.34).

To show (4.35), Musso, Pacard and Wei in Lemma 5.2 of [18] consider the
nearest neighbor forces on each spike/soliton in the same multi-spike/soliton
configuration as our multi-vortex configuration vzσχ in (2.29). In addition, the
interaction function between spikes/solitons (see equation (5.3) and Lemma
5.1 of [18]) is of the same exponential order as our effective interaction force
between magnetic vortices (see (2.14)). The fact that the configuration and the
interaction function of spikes/solitons in [18] are the same as the configuration
and effective interaction force of magnetic vortices in this work leads to the
important observation that the proof of Lemma 5.2 in [18] is the same as
the proof of (4.35) here. The only difference between the proof in Lemma
5.2 in [18] and the proof of (4.35) here is that to balance the forces, we use
the natural degree of the vortex to determine direction of the force instead of
manually putting in the ”sign” of the force for the spike or soliton. One can
find some example computations that go into the proof of (4.35) at the end of
this outline of proof of Proposition 4.2.

To complete the outline of proof of Proposition 4.2, we define for each
zj ∈ Π,

(Ãσ)j :=
1

Ψ(l)
[Remj(zσ) + Remj(zσ)], (4.36)

where Remj(zσ) and Remj(zσ) are defined in (4.24) and (4.32), respectively.
One can show that there exists smooth functions Aσ = (Aα, Aβ, Aγ) : Rp+1 ×

25



Rq−1 × Rq → Rp+1 × Rq−1 × Rq of vector (l, p, q, α, β, γ) such that

∑
zkn.n.zj∈Π

~Ψ(zj, zk)

+Ψ(l)(Ãσ)j = 0
∀zj ∈ Π

⇐⇒
Tp+1α + α′ + Qα + Aα = 0
Tq−1β + β′ + Qβ + Aβ = 0
Tqγ + γ′ + Qγ + Aγ = 0.

(4.37)

Indeed, (4.37) was shown in Lemma 5.2 and 5.3 of [18]. Finally, by (4.25),

(4.19), and since (Γ1, 14 (ε))2

Ψ(l)
= O(e−δ2l) for some δ2 > 0 (since Ψ(l) < ε), then

(Ãσ)j = O(e−δ2l) in (4.36), and hence Aσ = O(e−δ2l) also, which proves the
last statement in Proposition 4.2.

To conclude this outline of the proof of Proposition 4.2, we will compute
the nearest neighbor forces on yr for r = 2, . . . , p and yp+1 on the l.h.s. of the
equivalence in (4.35) to give readers an idea why (a) (4.35) is true and (b) why
conditions k ≥ 7 and (2.30) are required in Theorem 2.1. For further details,
please see proof of Proposition 5.1 and Lemma 5.2 in [18].

To begin with, we Taylor expand the interaction/inter-vortex force in (2.14)
as in [18]:

Ψ(|l̃e + a|) l̃e + a

|l̃e + a| = Ψ(l̃)(e− κ̃a‖ + l̃−1a⊥ + O(|a|2)) (4.38)

as l̃ → ∞. Here, |e| = 1 and a = a‖ + a⊥ where a‖ is parallel to e and a⊥ is
perpendicular to e, and κ̃ = −(logΨ)′(l̃).

For fixed r = 2, . . . , p, the nearest neighbors to yr is yr−1 and yr+1. Since
yr+1 − yr = le1 + (αr+1 − αr)e1 by (2.24), then using (4.38) and Lemma 2.1,
the total force on the vortex at yr is

Ψ(|yr+1 − yr|)( ̂yr+1 − yr) + Ψ(|yr−1 − yr|)( ̂yr−1 − yr) (4.39)

= Ψ(l)[κ(−αr−1 + 2αr − αr+1)e1 + Qα]

where Qα is of quadratic order in α and x̂ = x
|x| is the unit vector notation.

Note that since the degrees of the vortices are all +1 for yr, r = 1, ..., p + 1
(see by (2.23)), then the sign in front of both terms in (4.39) must be positive
by (2.13). Also note that if k ≤ 6 and r = p, then we have to consider the
force of z1 and Λz1 on yp too (since they are a distance < l + O(1) from yp

and so are nearest neighbors by (4.20) - see Remark 1 under Theorem 2.1).
But since k ≥ 7, then the distance between z1 (and also Λz1) to yp is greater
than l, and so they are not nearest neighbors and therefore we can group the
contribution of these forces into the Ãα := Ψ(l)Aα = O(Ψ(l)e−δ2l) term.

For yp+1, the nearest neighbor forces are yp, z1 and Λz1. Using (2.24) and
(2.25), we have

yp − yp+1 = −le1 + (αp − αp+1)e1

z1 − yp+1 = l̄t + (β1 + sin(π/k)αp+1)t + (l̄γ1 − cos(π/k)αp+1)n, and

Λz1 − yp+1 = l̄Λt + (β1 + sin(π/k)αp+1)Λt + (l̄γ1 − cos(π/k)αp+1)Λn.
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Therefore by (4.38), the total force on yp+1 is

Ψ(|yp − yp+1|)( ̂yp − yp+1)−Ψ(|z1 − yp+1|)( ̂z1 − yp+1)

−Ψ(|Λz1 − yp+1|)( ̂Λz1 − yp+1) (4.40)

=
[
Ψ(l)− 2 sin

π

k
Ψ(l̄)

]
e1 −Ψ(l)κ(αp+1 − αp)e1

+Ψ(l̄)

[
κ̄(β1 + sin

π

k
αp+1)

(
2 sin

π

k

)
+

1

l̄

(
l̄γ1 − cos

π

k
αp+1

)(
cos

π

k

)]
e1

+Ψ(l)Qα. (4.41)

Note that the middle two terms in (4.40) have negative signs since the vortices
at z1 and Λz1 have degree −1 by (2.23). Now, using the force balancing con-
dition (2.30), the leading order first term in (4.41) vanishes. This is precisely
what we meant by Remark 2 under Theorem 2.1, i.e., for the forces to balance,
it is crucial that the relation between l and l̄ satisfies (2.30).

To proceed, we need the following lemma from [18] (see Lemma 5.4 of [18]
and the discussion right before this lemma).

Lemma 4.4. Suppose all the conditions of Proposition 4.2 are satisfied. In
addition, if l, l̄ and positive integers p, q satisfy polygonal closing condition
(2.31), then system (4.34) has a solution σ = (α, β, γ) ∈ R2q+p with |σ| =
O(e−δl) for some δ > 0.

Now, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. From Theorem 3.2, there exists an ε0 > 0 such
that for all ε > 0 satisfying 0 < Γ1, 1

4 (ε) < ε0 and (z, χ) ∈ Σε, there exists a
wzχε ∈ Ran(π⊥zχ) such that (2.9) is true. Hence, all that remains to solve is the
reduced problem (2.10) for the pair (z, χ) ∈ Σε. By Proposition 4.1, if there
exists a multi-vortex configuration z such that (z, χ) ∈ Σε solves (4.3) for ε > 0
sufficiently small and χ ∈ H2

z (R2;R) arbitrary, then this same (z, χ) ∈ Σε

solves (2.10). Therefore, we are reduced to solving (4.3) for a multi-vortex
configuration z.

By Proposition 4.2, if l, l̄ satisfy force balancing condition (2.30), then find-
ing a multi-vortex configuration z = zσ to solve (4.3) is equivalent to finding
perturbation parameters σ = (α, β, γ) ∈ Rp+2q to solve system (4.34). By
Lemma 4.4, if l, l̄ and positve integers p, q satisfy polygonal closing condition
(2.31), then system (4.34) has a solution σ = (α, β, γ) ∈ Rp+2q satisfying
|σ| = O(e−δl) for some δ > 0.

Therefore, by Theorem 3.2, Propositions 4.1 and 4.2 and Lemma 4.4, we
have shown that there exists a σ = (α, β, γ) ∈ Rp+2q satisfying |σ| = O(e−δl)
such that

zσ := c + O(e−δl) solves πzσχF (vzσχ + wzσχε) = 0. (4.42)
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Therefore,
u = vzσχ + wzσχε solves (1.1) and (1.2) (4.43)

with w = O(ε log1/4(1/ε)) by (3.10) in Theorem 3.2. Also, note that solution
(4.43) satisfies symmetry condition (2.11) by construction.

To end the proof of Theorem 2.1, we note a couple of technicalities. Firstly,
0 < Γ1, 1

4 (ε) < ε0 and (z, χ) ∈ Σε implies that 0 < ε < ε0 and e−R(zσ)√
R(zσ)

< ε.

Therefore, R(zσ) > log
(

1
ε0

)
− 1

2
log(R(zσ)), and the condition R(zσ) ≈ l >

1
ε0

> log
(

1
ε0

)
− 1

2
log(R(zσ)) in Theorem 2.1 guarantees that all the assump-

tions and conclusions of Theorem 3.2 hold. Secondly, zσ − c ∈ R2k(p+2q)

is of O(e−δl) in (4.42) since zσ − c contains elements of the form αrR
i
ke1,

βsR
i
kt + l̄γsR

i
kn for r = 1, ..., p + 1, s = 1, . . . , 2q − 1, i = 0, . . . , k − 1 (see

(2.21), (2.24), (2.25) and (2.28)) and |σ| = O(e−δl).

A Proof of Lemma 2.1 and Theorem 3.1(d)

In this Appendix, we prove Lemma 2.1 and Theorem 3.1 (d). Denote [u]ψ,A

as the complex and vector components of u ∈ L2(R2;C× R2).

Proof of Lemma 2.1. This Lemma is proven in Lemma 11 of [13] so we
will just summarize the proof.

For

W (z) := E(vzχ)−
m∑

j=1

E(nj),

[13] showed that for fixed l, and since the integral of of over R2 of three
nonoverlapping widely spaced vortices is of O(e−R(z)(1+δ)) for some δ > 0, we
have

∂zlm
W (z) = 〈E ′(vzχ), T zχ

lm 〉 = 〈Ezχ, T zχ
lm 〉+ O(e−R(z)(1+δ)) (A.1)

where

Ezχ =


 −e−iχ

∑
j 6=k

(∏
l 6=j,k ψl

)
(∇Aψ)j(∇Aψ)k

∑m
j=1

[∑m
k 6=j(1− f 2

k )
]
j(nj)




and T zχ
lm is defined in (2.6). Therefore,

〈[Ezχ]ψ, [T zχ
lm ]ψ〉 = nl

∑

k 6=l

nk

∫

R2

(
(1− a)f 2

r

)
(|x− zk|)

(
2(1− a)ff ′

r

)
(|x− zl|)

× x− zk

|x− zk| + O
(
e−R(z)(1+δ)

)
(A.2)
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and

〈[Ezχ]A, [T zχ
lm ]A〉 = nl

∑

k 6=l

nk

∫

R2

(
(1− a)f 2

r

)
(|x− zk|)

(
a′(1− f 2)

r

)
(|x− zl|)

× x− zk

|x− zk| + O
(
e−R(z)(1+δ)

)
. (A.3)

Note that in the expression for 〈[Ezχ]ψ, [T zχ
lm ]ψ〉 differs from the one in [13] by

2 since the sum
∑

j 6=k is symmetric in j and k in the expression for [Ezχ]ψ.

Now, using the fact that |∇×B| = (1− a)f 2/r by (1.2) and (−∆+1)B =
(2(1− a)ff ′+ a′(1− f 2))/r by straight forward computation (see also Lemma
7 in [13]), we see that by (A.1) to (A.3),

∂zl
W (z) = nl

∑

k 6=l

nk

∫

R2

|∇ ×B|(|x− zk|)[(−∆ + 1)B](|x− zl|) x− zk

|x− zk|
+O

(
e−R(z)(1+δ)

)
.

If we define

Ψ(|zk − zl|) :=

∫

R2

|∇ ×B|(|x− zk|)[(−∆ + 1)B](|x− zl|) dx,

then using (1.2), the first equation in (1.5), |(−∆ + 1)B| ≤ e−mλr and Lemma
13 of [13], we have our result (specializing to just a two vortex configuration
case).

Now we prove Theorem 3.1 (d). This is proven already for λ > 1/2 in
Lemma 3 of [13], however, there is a slight modification in it, and therefore,
we give the main ideas of how to reprove it here.

Proof of Theorem 3.1 (d). It is straight forward to check that the decom-
position of Lzχ is

Lzχ = Lj + L
1/2
(j) + V(j) (A.4)

with
Lj := E ′′(gχ(j)

u(nj)(x− zj)),

L
1/2
(j) is a first order differential operator at gχ(j)

u(nj)(x− zj) given by

L
1/2
(j) (gχ(j)

u(nj)(x−zj))

(
ξ
B

)
=

( −2i
[
Θ(j)

]
A
· ∇ξ +

[
Θ(j)

]
ψ
∇ · B[

Θ(j)

]
ψ
∇ξ

)
(A.5)

and
Θj(x) := vzχ − gχ(j)

u(nj)(x− zj) (A.6)

with χ(j) := χ +
∑

k 6=j θ(· − zk) and V(j), Θ(j) are multiplication operators
satisfying

‖V(j)‖∞, ‖Θ(j)‖∞ ≤
∑

k 6=j

e−min(1,mλ)|x−zk|. (A.7)
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You can see that (A.4) is the correctly modified decomposition of Lzχ = F ′(vzχ)
by looking at (3.13). For example, for the decomposition of the covariant
Laplacian ∆Azχ , we write Azχ = C + D where C = A(nj)(x− zj) +∇χ(j) and

D = Azχ − (A(nj)(x− zj) +∇χ(j)) and note

∆C+D = ∆C︸︷︷︸
L(j)

− 2iD · ∇︸ ︷︷ ︸
L

1/2
(j)

−i [(∇ ·D)− 2iC ·D − i‖D‖2]︸ ︷︷ ︸
V(j)

.

The rest of the proof of Theorem 3.1 (d) then follows in a similar manner
as that of the proof of Lemma 3 of [13] using a the IMS formula from [6] (note
this formula still holds for operators of the form L = ∆ + ∇ + V for V a
multiplication operator). Note also that with the modified decomposition in
(A.4), the rest of the proof of Lemma 3 in [13] and the estimate in (3.6) still

holds due to the fact that L
1/2
(j) in (A.5) has the form Θ(j)∇ and Θ(j) decays

like (A.7).
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