THE LIN-NI’'S PROBLEM FOR MEAN CONVEX DOMAINS

OLIVIER DRUET, FREDERIC ROBERT, AND JUNCHENG WEI

ABSTRACT. We prove some refined asymptotic estimates for postive blowing

up solutions to Au+eu = n(n—2)u EES on §2, dyu = 0 on 99; Q2 being a smooth
bounded domain of R®, n > 3. In particular, we show that concentration can
occur only on boundary points with nonpositive mean curvature when n = 3 or
n > 7. As a direct consequence, we prove the validity of the Lin-Ni’s conjecture
in dimension n = 3 and n > 7 for mean convex domains and with bounded
energy. Recent examples by Wang-Wei-Yan [32] show that the bound on the
energy is a necessary condition.
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Let © be a smooth bounded domain of R”, n > 2. In [21], Lin, Ni and Takagi

got interest in solutions u € C?(Q2) to the elliptic problem

Au+eu=n(n—2)u?! inQ
u>0 in Q
Ou=0 on 0N
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where € > 0 is a parameter and ¢ > 2. Here and in the sequel, A := —div(V) is
the Laplace operator with minus-sign convention. This problem has its origins in
the analysis of the Gierer-Meinhardt model in mathematical biology: this model
is a system of nonlinear evolution equations of parabolic type, and the stationary
problem with infinite diffusion constant splits into two equations like (E,). We refer
to the surveys [24, 33] for the justifications of the model and its simplification.

Problem (E;) enjoys a variational structure, since its solutions are critical points

of the functional
1 1
u»—)—/ |Vu|2da:+f/u2da:——/ |u|? dz,
2 Ja 2 Jo qJo

a functional that is defined for all u € H?(Q) N L9(Q), where H7 () is the standard
Sobolev space of L?—functions with derivatives also in L? endowed with the norm
-]z + ||V - ||2. In particular, it follows from Sobolev’s embedding theorem that
HZ(Q) — L(Q) continuously in case 2 < g < 2* where 2% := % (we assume here
that n > 3): therefore the functional above is defined on HZ(Q2) when 2 < ¢ < 2*.

Moreover, the Sobolev embedding above is compact in case g < 2*.

The system (E,) enjoys at least a solution, namely the constant solution u =
1

(m> “"*. In a series of seminal works, Lin-Ni-Takagi [21] and Ni-Takagi [25,
26] got interest in the potential existence of nonconstant solutions to (E;). In
particular, it is showed in [25, 26] that for € large, solutions concentrate at boundary
points of maximum mean curvature. In the present article, we restrict our attention
to that case when € > 0 is small. In case 2 < ¢ < 2*, variational techniques and the
compactness of the embedding imply that for small positive €, the constant solution
is the sole solution to (Ey). This uniqueness result incited Lin and Ni to conjecture
the extension of this result to the critical case g = 2*:

Question (Lin-Ni [20]): Is the constant solution the only solution to (Fa+) when
€ >0 is small?

The mathematical difficulty of this question comes from the conformal invariance
of (E5+) and its associated unstability. Indeed, for g > 0 and zg € R™, define

n—2

m =
e =7 for all R™. 1.1
Uso,u() <N2 P $0|2) or all z € (1.1)

The scalar curvature equation for the pulled back of the spherical metric via the
stereographic projection (or direct computations) yields AU, , = n(n — 2)U§;,;1
in R”. Therefore, there is an abundance of solutions to Au = u? ~', some of them
being peaks blowing-up to infinity since lim,,_,q Uz, (20) = +00: in this sense, the
equation is unstable since it enjoys many solutions that are far from each other.
There are no such solutions in the subcritical case ¢ < 2* (see [5]). This conformal
dynamic transfers on the Lin-Ni’s problem and it follows from the famous Struwe
decomposition [30] that families of solutions (u¢)eso to (Ea+) with bounded energy
may develop some peaks like (1.1) when ¢ — 0: more precisely, there exists N € N
such that for any ¢ € {1,..., N}, there exists sequences (z;.)e € R, (ti,e)i € Rxo
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such that lim._,o ;. = 0 and, up to the extraction of a subfamily,

N
Ue = Z Usi s + Re (1.2)
i=1
where lim,_,o R, = 0 in H?(Q). This decomposition is refered to as the integral de-
composition. When there is at least one peak, then there are nonconstant solutions.
Conversely, in case there is no peak, elliptic estimates and simple integrations by
parts (see Section 2) yield the sole constant solution for small e.

In the radial case, that is when 2 is a ball and when wu is radially symmetrical,
Adimurthi-Yadava solved the problem in [2, 3]: when n = 3 or n > 7, the answer to
Lin-Ni’s question is positive, and it is negative for n € {4,5,6}. In the asymmetric
case, the complete answer is not known yet, but there are a few results. When
n = 3, it was proved independently by Zhu [35] and Wei-Xu [34] that the answer
to Lin-Ni’s question is positive when Q is convex. When n = 5, Rey-Wei [27]
constructed solutions to (Ea+) as a sum of peaks like (1.1) for e — 0. In the present
paper, we concentrate on the localization of the peaks in the general case.

Let (€o)aen € (0,1] be a sequence such that

lim e, =0.
a—r+00

We consider a sequence (uq4)aen € C2(Q) such that

Aug + €qtty =n(n —2)u2 "' in Q
Uq >0 in Q (1.3)
Oyug =0 on 00
We assume that there existe A > 0 such that
/ u? de < A (1.4)
Q

for all & € N.

Definition 1. We say that x € Q is a non-singular point of (uy) if there exists
6 >0 and C > 0 such that

luallro(Bs(@)ne) < C
for all @ € N. We say that x € Q is a singular point if it is not a non-singular

point.

The singular points are exactly the points where the peaks are located. In the
sequel, H(x) denotes the mean curvature at z € 99 of the oriented boundary 99.
With our sign convention, the mean curvature of the oriented boundary of the unit
ball is positive. We prove the following theorem:

Theorem 1. Let (ug)aeny € C2(Q) and € > 0 such that (1.3) and (1.4) hold. Let
S denote the (possibly empty) set of singular points for (uy). Assume that n = 3
orn >T7: then S is finite and

Sc{ze o H(z) <0}

As a consequence, we get the following;:
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Theorem 2. [Lin-Ni’s conjecture for mean convexr domains] Let Q0 be a smooth
bounded domain of R, n = 3 ormn > 7. Assume that H(x) > 0 for all z € 09Q.
Then for all € > 0, there existe €o(Q, A) > 0 such that for all € € (0,€(Q,A)) and
for any u € C%(Q), we have that

Au+eu=n(n—-2)u>"1 inQ

u>0 in Q o u= € =
8u=0 on 09 “=\nm—2) '
Jou¥ dz <A

The method we use to prove Theorem 1 relies on a sharp control of the solutions
to (1.3) in the spirit of Druet-Hebey-Robert [9], our first result being that (see
Proposition 5 and (7.3) in Section 7)

N
Uy < C (ua +) Umi,a,m,a> (1.5)

i=1
where 4, is the average of u, on  and the peaks are as in Struwe’s decomposition
(1.2). In particular, we pass from an integral description to a pointwise descrip-
tion. As in Druet [6] (see also Ghoussoub-Robert [12] and Druet-Hebey [8]), this
pointwise description allows us to determine exactly where two peaks may interact,
and to describe precisely the behavior of u,, there. The localization of the singular
points then follows from a succession of Pohozaev identities.

These results appeal some remarks. In dimension n = 3, our result must be com-
pared to Zhu’s result: in [35], no bound on the energy is assumed, but the convexity
is required; in our result, we require the bound on the energy, but a weak convexity
only is needed. The assumption on the energy (1.4) may seem technical for who is
familiar with the Yamabe equation: indeed, in general, see Druet [7], Li-Zhu [19],
Schoen [29] and Khuri-Marques-Schoen [18], any solution to the Yamabe equation
automatically satisfies a bound on the energy like (1.4). For the Lin-Ni’s problem,
this is not the case: recently, it was proved that solutions to (F2«) may accumulate
with infinite energy when the mean curvature is negative somewhere (see Wang-
Wei-Yan [31]) or when (2 is a ball (see Wang-Wei-Yan [32]), a domain with positive
mean curvature: therefore, the answer to Lin-Ni’s question is negative if one does
not impose the bound (1.4).

The influence of curvature is reminiscent in the asymptotic analysis of equations like
(1.3). For instance, in Druet [6, 7] and in Li-Zhu [19], it is proved that for Yamabe-
type equations, the peaks are located where the potential of the equation touches
the scalar curvature; we refer to Hebey-Robert-Wen [17] and Hebey-Robert [16]
for the corresponding localization for fourth-order problems. In Ghoussoub-Robert
[11, 12], that is for a singular Dirichlet-type problem, the peaks are located where
the mean curvature is nonnegative: in Theorem 1 above, that is for a Neumann
problem, we conversely prove that the peaks are located at points of nonpositive
mean curvature. For Neumann-type equations like (1.3), the role of the mean
curvature has been enlighted, among others, by Adimurthi-Mancini-Yadava [1],
Lin-Wang-Wei [22] and Gui-Lin [15].

The present paper is devoted to the asymptotic analysis of solutions (u4)s of (1.3)
satisfying (1.4) when n > 3. In Sections 2 to 7, we prove the pointwise control
(1.5). Section 8 is devoted to the convergence of the (uq)s’s at the scale where



LIN-NI'S PROBLEM 5

peaks interact. In Sections 9 and 10, we prove an asymptotic relation mixing the
heights of the peaks, the distance between peaks and the mean curvature. Finally,
we prove Theorems 1 and 2 in Section 11.

Notations: in the sequel, we define R” := {(z;,2z') € R"/2; < 0} and we assim-
ilate OR® = {(0,2')/2' € R*1} to R*~!. Given two sequences (a,), € R and
(ba)a € R, we say that a, =< b, when a — +o0 if a, = O(b,) and b, = O(ay)
when o — +o00. For U an open subset of R*, k € N, £ > 1, and p > 1, we define
HP(U) as the completion of C*°(T) for the norm 3%, || V[,

Acknowledgements: This work was initiated and partly carried out during the visits
of F.Robert in Hong-Kong. He expresses his thanks J.Wei for the invitations and his
gratitude for his friendly support in April 2010. F.Robert was partially supported
by the ANR grant ANR-08-BLAN-0335-01 and by a regional grant from Université
Nancy 1 and Région Lorraine. The research of J.Wei is partially supported by RGC
of HK and “Focused Research Scheme” of CUHK.

2. L°°—BOUNDED SOLUTIONS

Let © C R® be a smooth domain (see Definition 2 of Section 3 below), n > 3.
We consider a sequence (uq ),y Of positive solutions of

Augy + €qug = n(n — Z)ui*fl in

Uy >0 in Q (2.1)
Oyug =0 on 0N
We assume in the following that
/ u? de < A (2.2)
Q
for some A > 0. We claim that
uq = 0 weakly in H? (Q) as a = 400. (2.3)

We prove the claim. Indeed, after integrating (2.1) on €, it follows from Jensen’s
inequality that

2*—1
1 1 . €a [o Ua dz
il d < 251 gy = 2JQ T
(|ﬂ| /“ ) =t T am—2)q]

for all « € N. Then, we get that

n—2

w2 () a9

for all a € N, where, given @, := ﬁ fQ uq dr denote the average of ug on €.
Multiplying (2.1) by u, and integrating on Q, we get that (uq)s is bounded in
H%(Q). Therefore, up to a subsequence, (uq)a converges weakly. The convergence
(2.3) then follows from (2.4). This proves the claim.

We prove in this section the following:

Proposition 1. Assume that the sequence (uq), is uniformly bounded in L™ (12).
n—2

Then there exists ag > 0 such that u, = (m) * for all a > ay.
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Proof of Proposition 1: Assume that there exists M > 0 such that u, < M in Q
for all @ > 0. By standard elliptic theory (see Theorem 9.11 in [13] together with
Theorem 6 of Section 11), we deduce then thanks to (2.3) that u, — 0 in L (Q).
Multiplying equation (2.1) by uy — @q (G, is the average of u, defined above) and
integrating by parts, we then get that

/ |Vua|2 da:-}-ea/ (uq —ﬂa)2 dz
Q Q
=n(n — 2)/ w2 7 (ug — o) da
Q

= n(n - 2)/9 (2" = a2 ) (i — ) dr
=0 ((uall* +22) [ 0o o) o)
=0 (/Q (uq — aa)2 d:c) =0 (/Q |Vua|2 dx)

when o — 400 thanks to Poincaré’s inequality. This yields [, |Vug|? dz = 0 for

a large and thus u, is a constant for a > g for some ay > 0. The constant is
n—2

easily seen to be (m) * " thanks to equation (2.1). This ends the proof of
Proposition 1.

For the rest of the article, we assume that

i gl = +oo. (2.5)
Under this assumption, the sequence (u,) will develop some concentration points.
In sections 4 to 7, we provide sharp pointwise estimates on u, and thus describe
precisely how the sequence (uq) behaves in C' (). In section 8 to 10, we get
precise informations on the patterns of concentration points which can appear.
This permits to conclude the proof of the main theorems in section 11.

3. SMOOTH DOMAINS AND EXTENSIONS OF SOLUTIONS TO ELLIPTIC EQUATIONS
We first define smooth domains:

Definition 2. Let ) be an open subset of R™, n > 2. We say that ) is a smooth
domain if for all z € 00, there exists 6, > 0, there exists U, an open neighborhood
of x in R™, there exists ¢ : Bs,(0) = U, such that

(1) ¢ is a C* — diffeomorphism

(i1)  ¢0) ==

(ii1) (Bs, (0) N {z1 < 0}) = ¢(Bs,(0)) N
(iv)  @(Bs, (0) N {z1 = 0}) = ¢(B5,(0)) N X

The outward normal vector is then defined as follows:

Definition 3. Let Q be a smooth domain of R™. For any x € 0S), there ezists a
unique v(z) € R* such that v(z) € (T,00)L, ||v(z)|| = 1 and (81(0),v(z)) > 0 for
o as in Definition 2. This definition is independent of the choice of such a chart ¢
and the map x — v(z) is in C* (0N, R").
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Let © be a smooth bounded domain of R" as above. We consider the following
problem:
Au=f inQ
{ O,u=0 in 60

where u € C?(Q2) and f € C°()). Note that the solution u is defined up to the
addition of a constant and that it is necessary that [, fdz = 0 (this is a simple
integration by parts). It is useful to extend solutions to (3.1) to a neighborhood of
each point of 9f2. For this, a variational formulation of (3.1) is required: multiplying
(3.1) by ¥ € C*(Q) and integrating by parts leads us to the following definition:

(3.1)

Definition 4. We say that u € H](Q) is a weak solution to (3.1) with f € L*(Q)
if

/(Vu,Vw) dx = / fw dx for all p € C=(Q).
Q Q

In case u € C?(R), as easily checked, u is a weak solution to (3.1) iff it is a classical
solution to (3.1).

We let £ be the standard Euclidean metric on R™ and we set
7: R® - R”
(z1,2') = (=l 2")
Given a chart ¢ as in Definition 2, we define

~ ~ —1
o =@oTop .

Up to taking Uy, smaller, the map 7, fixes Uy, N Q and ranges in 2. We prove the
following useful extension lemma:

Lemma 1. Let xg € 002. There exist 0, > 0, U, and a chart ¢ as in Definition
2 such that the metric § := 75& = (pomo @ ')*¢ is in C%'(Us,) (that is Lipschitz
continuous), §jo = &, the Christoffel symbols of the metric g are in L>°(U,,) and
dpo is an orthogonal transformation. Letuw € H} (QNU,,) and f € LY (QNU,,) be
functions such that

/(Vu,Vzp) dr = / fidz for all v € C(QANUy,)- (3.2)
Q Q

For allv: QN U,, = R, we define

Azl = f in the distribution sense,
where Az 1= —divz (V).
Here, by ”distribution sense”, we mean that
/ (Vi Vib)y dvg = / Fib dvg for all § € C2(Usy),
Uy Uz,

where dvg is the Riemannian element of volume associated to § and (-,-); is the
scalar product on 1—forms.
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Proof of Lemma 1: Given a chart ¢ at xo defined on BSmo (0) as in Definition 2, we
define the map
{ @ : Bgmo (0) — R"
(z1,2") = zw(@(0,2") + ¢(0,2)
The inverse function theorem yields the existence of §,, > 0 and U,, C R™ open

such that ¢ : Bs, (0) — Uy, is a smooth diffeomorphism being a chart at zo as in
Definition 2. Moreover, the pull-back metric satisfies the following properties:

@O =1 ()1 =0Vi# 1.

In particular, up to a linear transformation on the {z; = 0} hyperplane, we can
assume that dyg is an orthogonal transformation. It is easily checked that ((¢ o
7)) = (¢*&€)ij o7 outside {z1 = 0} for all 4, j, and then we prologate (¢ o 7)*¢ as
a Lipschitz continuous function in U,,, and so is § := (¢ o @ 0 ¢~ 1)*£. In addition,
as easily checked, if ffj’s denote the Christoffel symbols for the metric §, we have
that f‘fj € L. Therefore, the coefficients of Aj are in L and the principal part
is Lipschitz continuous.

We fix ¢ € C2°(Us, ). For convenience, in the sequel, we define  := 7 |r, that is
m: R} - R*
(z1,2") — (—z1,2").
Clearly, 7 is a smooth diffeomorphism. As for 7, we define

— -1
Ty i =@QOMOY

that maps (locally) 0° to Q. With changes of variable, we get that

/ (Vai, Vip); dvg = / (Va, Vi + poms' 0 p)) de
U QNUs,

@0
and
[ fvan= [ swrvera
z0
It then follows from (3. 2) that Azd = f in Uy, in the distribution sense. This ends
the proof of Lemma 1.

In the particular case of smooth solutions, we have the following lemma:

Lemma 2. Let xg € 02. There exist 65, > 0, Uy, and a chart ¢ as in Definition
2 such that the metric §j := (o o 7 o o~ 1)*¢ is in COY(Uy,,) (that is Lipschitz
continuous), gio = &, the Christoffel symbols of the metric § are in L>(Us,,) and
dpo is an orthogonal transformation. We let u € C2(Q N Uy,,) and all f € CL(R)
be such that .
Au= f(u) inQNU,,

{ O,u=0 in 00 N Uy,
and we define

G:=uopoiop  inU,,.
Then, in addition to the regularity of §, we have that

i € C*(Uyy), o = u and Az = f(@) for all z € Uy,,

where Ag := —div; (V).
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4. EXHAUSTION OF THE CONCENTRATION POINTS

We prove in this section the following :

Proposition 2. Let (ug)acny € C2(Q) and A > 0 such that (1.3) and (1.4) hold
for all a € N. Then there exists N € N*, N sequences (xi7a)i:1,...,1v of points in Q
and N sequences li1,o > [2,a > -+ > lN,a Of positive real numbers such that, after
passing to a subsequence, the following assertions hold :

(i) For any 1 <i < N, z;,o — T; as @ — +00 for some z; € Q and p; o — 0 as
4@i.0:99) 4 06 g5 @ — +00 or T; o € 0N

a — +00. Moreover, either
(i) For any 1 <i<j <N,
|Ti,0 — "L'j,a|2 + Hi,o + Hj,a
Hi,allj,o Hij,a Mi,a
(i) For any 1 < i < N, we define
n=2 d(i,q,00)

Ujq = Nz’,i Ua (Tiya + Mo -) if alig_loo T = +o0,
i,

— 400 as @ = +0 .

and
n—2
o 1= ,ui,?ﬂa o (go’l(a:i,a) + Wi ) if 5,0 € 0N for all €N
where @, s the extension of ug around xo :=limy_, o ;o and ¢ are as in Lemma
2. Then
lim ”ﬁi,a — UO“C“(KOQ,-,Q) =0 (41)

a——+00
for all compact subsets K CC R™ \ S; if z;o € 00 and K CCR™ \ (S; Un~1(S;))
if 25,0 € OS2 where the function Uy is given by
Uo(@) i= (1+ o) #
and S; is defined by
SZ-::{ lim M,i<j§N} .
a——+00 Mio

In the definition of S;, we allow the limit to be +00 (and in fact, we discard these
points).
(iv) We have that

n—2 N =
R.? |u, —ZU,-,Q — 0 in L™ (Q) as a = 400
i=1
where
o . . _ 2 2
Ry (2) :=  min, \/|$z,a z|” + p
and
Uia(z) := H;;EUO (73j — mz’a) .
’ Mi,o

Proof of Proposition 2: For N > 1, we say that property Py holds if there exist N
sequences (;U,-,a)i:17___7N of points in Q and N sequences 1,4 > fi2.q > " * > UN.a
of positive real numbers such that, after passing to a subsequence, assertions (i)-
(ii)-(iii) of the claim hold for these sequences. We divide the proof of Proposition

2 in three steps.
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Step 2.1: We claim that there exists Ny,q; > 1 such that (Py) can not hold for
N > Nmaz-

Proof of Step 2.1: Let N > 1 be such that (Py) holds. Let (zia),_, 5 be N
sequences of points in M and 1,4 > p2,o > -+ > tN,o be N sequences of positive
real numbers such that the assertions (i)-(ii)-(iii) of Proposition 2 hold after passing
to a subsequence. Let R > 0 and set

Qi,a (R) = Bry, . (Ti,a) \ B, (®ja) -

RHMHi,a
i<j<N
It easily follows from (ii) that
Qia (RN (R)=10

for a large enough. Thus we can write that

N
/ug da:ZZ/ u? dx
Q i=1 Q,-,a(R)ﬁQ

for a large enough. It follows then from (iii) that
o* N *
/ u? dr > — U dz —n(R) +o(1)
Q 2 Jrn

where n(R) — 0 as R — +o00. Letting R — +00 and thanks to (2.2), we then get

that
2A

N< ——08—.
= Jon UG dx
This ends the proof of Step 2.1.

Step 2.2: We claim that P; holds.

Proof of Step 2.2. We let 2, € Q be such that

Uy (o) = MAX Ug (4.2)
Q
and we set -
Ug (Ta) = pa * (4.3)
Thanks to (2.5), we know that pu, — 0 as @ = +o0o0. We set
nq
Vo (2) == pud “uq (To + o) (4.4)
for z € Qq = {z € R" s.t. 24 + pox € Q}. It is clear that
Avg + €qpi2ve = n(n —2)v2 1 in Q,
with d,v, = 0 on 89, and
0 < vy <ve(0) =11in Q4
Step 2.2.1: we assume that
d(zq,00
lim 4@ _ (4.5)
a——+00 Mo

It follows from standard elliptic theory (see [13]) that, after passing to a subse-
quence,
vy = vin Cp, (R") as a = +o0o
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where v € C%(R™) is such that
Av =n(n—2)v¥ !
and
0<v<v0)=1.
By the classification result of Caffarelli-Gidas-Spruck [5], we then get that v = Uy.
This proves P in case (4.5). This ends Step 2.2.1.

Step 2.2.2: we assume that there exists p > 0 such that

Q
lim d(2q,09) _ p. (4.6)
a——+00 Mo
We let x¢ := limy_y4 oo o We then have 2y € Q2 and we choose ¢ and d,, > 0,
Uy, as in Lemma 2. Let § € (0,d,,). Denoting by i, € C?(U,,) the local extension

of uy on U,, with respect to ¢, we then have that

Ajiia + €aliq = @2 1 in Usy,. (4.7)
Since dipo is an orthogonal transformation, we have that
d(p(x),00) = (1 +o(1))]z: | (4.8)
!

for all z € By, (0)NR” , where lim; g o(1) = 0 uniformly locally. We let (z4,1,%",) €
{z1 <0} x R*~! be such that z, := p(z4,1,2,) for all @ € N. It follows from (4.6)
and (4.8) that
1- |.'17a’1| —
im 2 =
a—=+00 g

(4.9)
We define

n—2

Ua(2) = pa® Gia(p((0,24) + par)) for all z € By, (0).
It follows from (4.7) that

A, o + €apilto = n(n —2)52 ~' in By, (0), (4.10)

where §a (z) = (¢*9)((0,25) + pa®) = (¢! 0 ®)*)((0, 25, ) + pa®). Since 0 < Ty <
Da(pa,0) = 1 and (4.9) holds, it follows from standard elliptic theory (see Theorem
9.11 in [13]) that there exists V € C*(R") such that

lim @, =V in CL.(R™), (4.11)

a—+oo

where 0 <V < V(p,0) = 1. Passing to the limit @ — 400 in (4.10) and using that
dgo is an orthogonal transformation, we get that AV = n(n — 2)V?" ! weakly in
R*. Since V € C'(R"), one gets that V € C?(R") and it follows from Caffarelli-
Gidas-Spruck [5] that

n—2

V@) = (rregop)

for all z € R®. The Neumann boundary condition 8,u, = 0 rewrites 017, = 0 on
OR™ . Passing to the limit, one gets that 61V = 0 on OR™ , and therefore p = 0 and
V = Up. In particular, we have that

. Ta,1
lim
a—+—+00 Mo

=0.

Taking %, := ¢(0,z.,), we can then perform the above analysis of Step 2.2.2 with
Zo € 00 instead of z,. This proves P; in case (4.6). This ends Step 2.2.2.
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Steps 2.2.1 and Step 2.2.2 prove that P; holds. Step 2.2 is proved.
Remark: For P;, we can be a little more precise and prove the following claim:
Zo € 00 for a € N large. (4.12)

We prove the claim by contradiction and assume that z, & € for a subsequence.
Define p,, := w:;l. Then p, < 0 for a large. Since (p4,0) is a maximum point of
U, we have that 0174(pa,0) = 0. Since 0;74(0) = 0 (Neumann boundary condi-
tion), it then follows from Rolle’s Theorem that there exists 7, € (0,1) such that
01104 (Tapa,0) = 0. Letting o — 400, we get that 81;Up(0) = 0: a contradiction.

This proves the claim.
__n be N sequences

Step 2.3: Assume that Py holds for some N > 1. Let (%.a),_, _

of points in Q and Hi,a > M2,q > -+ > UN,o be N sequences of positive real numbers
such that assertions (i)-(ii)-(iii) of the claim hold. We claim that if assertion (iv)
of Proposition 2 does not hold for this sequence of points, then Py 41 holds.

Proof of Step 2.3: We assume that (iv) does not hold for these sequences. In other
words assume that there exists eg > 0 such that

n—2 N
max <Ra2 Ug — Z Ui,a ) > e (4.13)
Q
i=1
for all a € N where
. 2 ;
Ra($)2 = 121;1N(|$i’a - ZUl + ,U/,ia)
and
Ui o(z) = /L;;%Uo (M) .
’ Mi,o
We let y, € Q be such that
n=2 N n—2 ol
max (RQQ ta — Y Uia ) =Ro(Ya) 7 |ta¥a) =D Uia (Ua) (4.14)
=1 i=1
and we set
1—n
Ug (Ya) = Va 2 . (4.15)
Step 2.3.1: We claim that
R, (g/,l)nT_2 Uio(Ua) >0asa— +ooforalll<i< N . (4.16)
Indeed, assume on the contrary that there exists 1 <7 < N such that
n—2
R, (ya) 2 Uz’,a (ya) > 1o (4'17)
for some 7y > 0. This means that
2 —z: |2
Ro (Ya) > g2 (1 + |Ya Qm'z,a' > ) (4.18)
i, o Hi o

Since R, (ya)2 < |Ya — z’,~,a|2 + u%’a, we get in particular that, up to a subsequence,

|ya - mi,a|
Hi,o

— Rasa— 4+ (4.19)
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for some R > 0. Coming back to (4.18), we can also write that

4

I > e~ (1+ R%)® +o(1) (4.20)

|-73j,a 2_ Yo +
ui,a M o

3

2
Hjo
2

forall 1 < j < N. These two equations permit to prove thanks to (ii) of Proposition
T2
2 (which holds by assumption) that m;i:y“l >ng > (1+ R*)+o0(1) foralli < j <
N. Thus
lim Yo The g,

a—+00 M,
and we use (iii) of Proposition 2 to get that
n=2
Iii,; [ua (Ya) = Uia (Ya)| = 0
as a — +00. Since Ry (Ya) = O (14i,o), We thus get that

n—=2
Ro (Ya) % |ua (Ya) = Uia (ya)| = 0
as a = +oo. Let 1 < j < N, j # i. We write now that

-1
2
2 i,0 a ~ Tja
R, (ya) Uj,a (ya)"_z =0 Hia (1 + M) = 0(1)
Hj,o 5 o
thanks to (4.19), (4.20) and assertion (ii) of Proposition 2. Thus we arrive to

n—2

R (ya) = -0

N
Ug (Ya) — Z Ui,a (Ya)

as a = 400 which contradicts (4.17) and thus proves (4.16). This ends Step 2.3.1.
Note that, coming back to (4.13), (4.14), (4.15) with (4.16), we get that

_2
Balya) 5 o5 | o1y . (4.21)
VC!
Step 2.3.2: We claim that
Ve 2 0asa— +00. (4.22)

We prove the claim. If R, (yo) = 0 as & — 400, then (4.22) follows from (4.21).
Assume now that R, (yq) > 2dp for some dy > 0. Using (4.14) and (4.16), we get
that
Ug <23 uq (Ya) +o(1)

in Bs,(ya) N Q for o large enough. If uy(ys) — +00 when a — +oc, then (4.22)
holds. If uq (yo) = O(1), we then get by standard elliptic theory (see [13] and
Lemma 2) and thanks to (2.3) that us (yo) — 0 as @ — +oo, which contradicts
(4.21) since Q is a bounded domain. This proves (4.22) and ends Step 2.3.2.

Note also that (4.16) directly implies that

2
[Pia =yal” | Pia oy s e (4.23)
Mi,aVo Vo

forall 1 <i< N. We set now

n—2

Wa(x) = va? Uy (Yo + Vak) (4.24)
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in Q4 :={z € R" s.t. yo + Vo € Q}. We then have that
Awy + eqviws = n(n — 2w 1 (4.25)
in Q, and 9, w, = 0 on 9Q,. We define

S:={ lim M, 1<i<Nst. |Zia—Yal =0 (vs) and ,ui,a=o(1/a)} .

a—+oo Vg
Let us fix K CC R” \ S a compact set. We note that, thanks to (4.16) and (4.14),
n—2
Ry (Yo + Vax)) =
—_— wq () <14 0(1 4.26
(Refer () <1+ 0(1) (4.26)

for all z € K N Qy, where lima_, o0 SUPgrq, 0(1) = 0. Let 2o € Br(0) N Q4 \
U,cs Br-1(z) for some R > 0 fixed.

Step 2.3.3: We claim that

Wa (20) =0 (1) . (4.27)
We prove the claim. Tt is clear from (4.26) if % # 0as a — +o0o. Assume

now that
Ro (Yo + VaZa)

Ry (Ya)
Up to a subsequence, we let 1 < ¢ < N be such that

—+0asa— +00. (4.28)

Ro (Yo + Vaza)2 = |Tia — Yo — Vaza|2 + p’z?,a .
We then write thanks to (4.28) that

lxi,a_ya_u&za|2+uz?a:O(|$i,a ) +o Nza

which implies that |2;,q — yo| = O (Vo) and that p; o = 0 (vy). This leads to
2

x- —
Tia ~ Yo —S0asa— +00,

Vo
which is absurd since, thanks to the definition of S and to the fact that d (z4,S) >

1
R’

_za

Ti,a — Ya

Zna  Ja >
Vo Fol Z 2R

for a large. Thus (4.27) is proved. This ends Step 2.3.3.

Thanks to (4.21), we easily get that 0 € Q, \ S.

Step 2.3.4: Assume first that

lim M — _l’_cxj‘
a—+o0o Vg
It follows from Step 2.3.3 that (wq), is bounded in L™ on all compact subsets of
R™ \ S. Then, by standard elliptic theory (see [13]), it follows from (4.25) that,

after passing to a subsequence,
wy — wo in CF (R™\ S)
where wq satisfies
Agwo = n(n — 2wy "
in R"\ S and wo (0) = 1. Noting that, since (u4) is uniformly bounded in H (2), we
have that wo € H7 . (R"), we easily get that wo is in fact a smooth solution of the
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above equation and that, by Caffarelli-Gidas-Spruck [5], wo(z) = AT U, (Az + z0)
for some X\ > 0 and some xg € R". If we set
Va
IN+1,0 ‘= Ya — 7330
and
MN+1,00 = A711/01 ;
it is easily checked that, up to reorder the concentration points such that the se-
quence of weights is non-increasing, assertions (i)-(ii)-(iii) of Proposition 2 hold for
the N + 1 sequences (Zi,a,fi,a);—y  y41- Here one must use in particular (4.23)
to get (ii). This ends Step 2.3.4.
Step 2.3.5: Assume now that
d Q
a—r—+00 Vg

One proceeds similarly, using the extension i, of u, as in Lemma 2 as was done for
Step 2.2.2. More precisely, let yo := limy 400 Yo € 0. We choose ¢ and 6y, > 0,
Uy, as in Lemma 2. Let § € (0,4,,). Denoting by 4, € C?(U,,) the local extension
of uy on Uy,, we then have that

Ajiig + €aliq = G2 L in Uy,. (4.29)

As in Step 2.2.2, we let yo = ¢©(ya,1,¥,) and we have
. Ya,1
lim —

a—-+oo Vg

=—p<0.

We define
Da(z) = V(:%Zﬁa(go((o,y;) + vqx)) for all z € By, (0).
It follows from (4.29) that
A, o + €aV2q = n(n — 2)@2 ! in By, (0), (4.30)
where Jo(z) = (¢*9)((0,44) + vaz) = ((¢7" 0 7)*€)((0,y5) + vaz). We define
I:= {ie{l,..,N}st. |Zia—Ya| =0 (va) and piq =0 (va)}

and

-1 A _ ! .
S :{ lm £ @ia) = (Oa) o I} .
a——+00 Va

We let K C R\ (S u 7r_1(‘§)) a compact set. Here, (4.27) rewrites 0 < 1, (z) <
C(K) for all z € K NR*. The symmetry of @, yields

0 < We(z) < C(K) for all z € K and all a > 0.

We are then in position to use elliptic theory to get the convergence of W, in
CL (R™\ <S U 77_1(6:))), and the proof goes as in Step 2.3.4. This ends Step 2.3.5.

Proposition 2 follows from Step 2.1 to Step 2.3. Indeed, Step 2.2 tells us that P
holds. Then we construct our sequences of points and weights thanks to Step 2.3.
Thanks to Step 2.1, we know that the process has to stop. When it stops, (i)-(iv)
of the claim holds for these points and weights. This proves Proposition 2.
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5. A FIRST UPPER-ESTIMATE

We consider in the following the concentration points (2 a, fti,a);<;<n iVen by
Proposition 2. We recall that they are ordered in such a way that

Hi,a 2 - 2 BN,

and we shall denote in the following o = 1, Let us fix some notations and make
some remarks before going on. We let

S::{ lim xi,a,lgigN} (5.1)

a—+00

where the limits do exist, up to a subsequence. For § > 0 small enough, we let

Na(0) = sup  uq. (5.2)
Qn{d(z,S)>26}

Thanks to Proposition 2 (iv) and to standard elliptic theory (see Theorem 9.11 of
[13]), we get that
Mo (8) > 0asa— +ooforalld>0. (5.3)

Note that, as a consequence of (iii) of Proposition 2, there exists C' > 0 such that
n=2 *
Cus® < / ui “Ldx
Q
while
21 5 =
/ uz, dr = €4 Q| g
Q

thanks to equation (2.1). This proves that

o’ = 0 (€qtia) = 0 () (5.4)
when a — +00. At last, we fix Ry > 0 such that
R
foranylgigN,|x|§70f0ra.11:13681~ (5.5)
where §; is as in Proposition 2, (iii). And we let
rq (z) = Ilnin |ia — 2| . (5.6)
=1,...

We prove in this section the following :

Proposition 3. There ezists C; > 0 and some sequence B, — 0 as a — 400 such
that

e (@) = tta] < Cipia® Ro (2) " + fatia (5.7)
for all z € Q and all a > 0.

Proof of Proposition 3: We divide the proof in two main steps. We start by proving
the following :

Step 3.1: We claim that for any 0 < v < %, there exists R, > 0, 6, > 0 and
Cy > 0 such that

n=2_
uq(z) < C, ('uaz ¢! 27)Ta(m)(2—n)(1—7) + 170 (8,) ra(w)(2—n)'y)

for all @ > 0 and all z € @\ UX, Br, ;... (Tia)-
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Proof of Step 3.1. We divide the proof in two parts, depending whether we work
in the interior of Q or near its boundary. Let 0 < v < % We define

&, (z,y) = —y|®P WV forall 2,y € R", x #y.

Step 3.1.1: We fix 2o € Q and we let g > 0 such that Bs,(x¢) CC Q. We claim
that there exists R, > 0 such that

tal2) < Oy (pa® T ra(@) O Ly (B)ra(@) ) (58)
for all a > 0 and all € Bs, (o) \ UL, Br,u: . (Ti,a)-

We prove the claim. We let

Py,a ( ) N Rl 27)Z¢ :L‘,a, +77a Z(I)l vy 'Z'zaa (5-9)
=1

where &, and ®,_, are as above and § > 0 will be chosen later on. We let
Ta € Bsy(20) \ Uiy Brys,. (i,a) be such that

Uy Uy (Ta)

sup (5.10)

By GoNUNLs Bru, . (zi.0) P Prvia (Ta)
In particular, z, € Q.

We claim that, up to choose § > 0 small enough and R > 0 large enough, we have
that

N
Ty €0 (U BRM,Q(HH,Q)> or 74 (y) >0 (5.11)
i=1
for a > 0 small. We prove (5.11) by contradiction. We assume on the contrary that
N
Ty &0 (U Bry, ., (xi,a)> and rq (24) <9 (5.12)
i=1

for all a > 0. Since z, € 2, we write then thanks to (5.12) and the second order
characterization of the supremum (5.10) that

Aug, (xa) S A(P%a (xa) )
Ug (Ta) — Pry,a (Ta)
Thanks to (2.1), we have that
Aug (24) 2% —2
— <L -2
Uy (ma) = n(n )U’a (xa)
which leads to (0.)
Apy o (2o 2* 2
— 22— < nn—-2)uy (s . 5.13
s 28 < nn D (52) (.13

Direct computations yield the existence of D, > 0 such that

(A) D' < |z — y|("72)(177) ®, (z,y) <D, forallz,y e R", z #y.
(5.14)

(B) Ay (z,y)

—2
F(z0) Zﬁ|$—y| —D,forallz,yeQ, x#y.
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Let us write now thanks (5.14) that

N
1 n=2(1-2 -
Apra(@a) > Dy'pa® TN o — 20l @y (0, 7a)

i=1

N
+D;—17na (6) Z |Zi,0 — $a|72 @1y (Tiya, Ta)
i=1

N
n=209_
_D’yNOtQ (1-27) Z (I>’Y (xi,aaxa)

i=1

N
=D1 10 () > ®1 4 (Tias Ta)
i=1

n—

2
2 (D;%«a (26)" % — NDi) Pl (q) (D=
1y

+ (D ? Ta (xa)72 - ND%—W) Na (8) T (ma)i(nim’y

We choose § > 0 such that
D;?67% > 2ND? and D;2 672 > 2ND} |
so that, using once again (5.14), the above becomes
1 _ n—=20_o (i _
Apya (Ta) > §D—y2ro¢ (Za) 2 Ha® ( 7)7'04 (Ta) (r=2)(1=7)
1__ _ —(n—
3 D127 (#0) ™ a (8) ra (3a) T

1
— D-
2N 7

v

N
—2 "2(1-2 Z

3’I"a (.’L'a) 2/La2 ( ") (b'y (:Ei,aywa)
i=1

N

1 _

+ﬁleyTa (Ta) ? Ta () Z P11 (Ti,ar Ta)
i=1

1 _ _
> ﬁ(max{D%Dl—'y}) 3Ta (Ta) 2@%6! (7o) -

Coming back to (5.13), we thus get that

)2*—2

To (%)’ Ua (Ta (max {D,,D;_,})~* .

> -
= 2n(n—2)N

Using point (iv) of Proposition 2, it is easily check that one can choose R > 0
large enough such that this is absurd. And with these choices of ¢ and R, (5.11) is
proved.

Assume that rq (o) > 0. Then we have that ug (z4) < 74 (0) so that, thanks to
(5.14), we get in this case that uq (o) = O (¢¥q,a (®a))-

Assume that z, € 0Bgy, , (%i,a) for some 1 <i < N. Then, up to increase a little
bit R so that R > 4Ry, R as in (5.5), we get thanks to (iii) of Proposition 2 that

Ug (Ta) = O (N:,;%)
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while, using (5.14),

Pv,a (Ta) > D 1 2 Ha-2) (Rﬂi,a)&_n)(l_w

so that, once again,
Ua (Ta) = O (¢y,a (Ta))
since i 0 < lo-
Thus we have proved so far that there exists C' > 0 such that

N
U (z) < Cpy,a(z) in Bs, (o) U Bryi o (Tia) -

i=1
It remains to use point (A) of (5.14) above to prove (5.8) and therefore Step 3.1.1.
Step 3.1.2: We fix g € 9f2. Then there exists g > 0 such that

wale) < C, (i ), y@em ) 4o (65,) ra(2)®™7) (5.15)

for all a > 0 and all z € (Bs, (z0) N Q) \ UN., Br, ;... (Tia)-

We prove the claim. Indeed, via the extension of Lemma 2, the proof goes roughly
as in Step 3.1. We only enlight here the main differences. As usual, since zo € 01,
we consider d5,, Uz, and a chart ¢ as in Lemma 2. We let 4, be the C?—extension
of ug on Uy,: it satisfies that

Agiig + €alig = n(n — 2)a2 ~t in U,,. (5.16)
Welet J:={i€{l,..,N}/limy 400 Zi,a = 2o} and we let g > 0 such that
Bs,(x0) C Uy, and |2;,4 — o] > 20 for all 4 € {1,..., N} \ J.
For all ¢ € J, we define
Fira 1= 75 (i) = o1 00" (@50),

where 7(z1,2') = (—xl, z') is the usual symmetry. We define

2
Oyalz) = (1-2v) Z (Tia, ) + By (Zi)a, )
ieJ
+1la (6) Z(‘I)l—v (Tiar @) + 1y (Fipa, 7))
iceJ
222(1-29)
tu Z(I) (Tiya, T) + Mo (0 Zq)lfywzon
ieJe icJe

where @, and ®;_, are as above and ¢ € (0,dp) will be chosen later on. For the
sake of clearness, we define

N
Wa,R = B50 (.’L'()) n Q \ (U BRHi,Q (-’Ei,a) U U BR;L.;-,Q (‘%i,a)) .

i=1 iceJ
We let z, € W, g be such that

Ug, _ Ug, (ma)
sup = .
z€EWa,r Pr,a  Pro (Ta)




20 OLIVIER DRUET, FREDERIC ROBERT, AND J.WEI

We claim that, up to choose § > 0 small enough and R > 0 large enough,

N
Ty €0 (U Bry,; . (%ia) U U Bry, . (i,a)) or ro (Ty) >0 (5.17)

i=1 i€J

for a > 0 small. We prove it by contradiction. We assume on the contrary that

N
To €0 (U Bru... (i) U BR,,,.,Q(:EI-,Q)) and 74 (24) < 6 (5.18)

i=1 icJ
for all @ > 0. First, it follows from the choice of dg and of 1, () that z, € Bs,(z4).
Therefore, if z, & 09, we write then thanks to (5.18) that

Agﬁa (xa) > Ag‘Pfy,a (ma) )

U (Ta) — Pya(®a)
Thanks to (5.16), we have that
which leads to
Agpy,a (Ta) < g (z )2*72
Pya(@a) — 7

Since the coefficients of Ay are in L* with a continuous principal part (the metric
g is Lipschitz continuous), direct computations yield the existence of D, > 0 such
that

(A) D' <o —y|" P&, (2,y) <D, forall z,y € R, z # .

(B") %}#ZDL7|x—y|_2—D7forallx,yEQ,w?éy-

And then the proof goes exactly as in Step 3.1.1, using the convergence of the
rescalings of @, proved in Proposition 2. In case z, € 0f2, we approximate it by

a sequence of points in {2 and also conclude. This proves that there exists C' > 0
such that

n—2
a(@) < Cpa® 27 Y (o = 2ial @O 4 o — Fi,0|W0)

icJ
/M (6) Z(|SE - :L'l-’a|(27n)’)‘ + |.'L' _ ﬁi7a|(27n)'y)
icd
232(1-2 R -
a7 07 Y o B 1 () S o O
i€Je ieJe

for all z € Wy r. As easily checked, there exists C' > 0 such that |z — &;4| >
Clz — ;4| for all € Bs,(z0) N Q. Therefore, we get that there exists C > 0 such
that (5.15) holds. This ends the proof of Step 3.1.2.

Since Q is compact, Step 3.1 is a consequence of Steps 3.1.1 and 3.1.2.

Step 3.2: We claim that there exists C' > 0 such that
n—2
ua(z) < C (uaTRa(x)Q‘" + aa)

for all x € Q and all a > 0.
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Proof of Step 3.2: We fix 0 < v < %H in the following. We let (z,) be a sequence
of points in  and we claim that

e (2a) < g + O (uf Ra (2) ") + 0(11a (5,) (5.19)

Note that this clearly implies the estimate of Step 3.2 if we are then able to prove
that nq (0y) = O (4q). Let us prove this last fact before proving (5.19). A direct
consequence of (5.19) and (5.4) is that

n—2

o (8,) = O (4a” ) +0 (5a) = O (@a) ,

thus proving the above assertion. We are left with the proof of (5.19).

Step 3.2.1: Assume first that Ry (2a) = O (pa). We use then (iv) of Proposition
2 to write that

n—2

R, (xa)T Uq ('Z'a) = ZRa (wa)nT_2 Ui,a (ma) + 0(1) .

We can thus write that

2

1-2 n—
Mo °Rg (ma) Ug (ma)

N
1-2 2-1 -2 2\!
0 (Z Pa * i R (za)" (M%,a + %0 — Zal )

Ro(z2)\ T
o () 7)
N n n
0 (Z ,ui_iufa_l> +0(1) = 0(1)

since ,uf,a + |Ti0 — :1:a|2 < R, (:zra)2 and piq < po for all 1 <4 < N. Thus the
estimate (5.19) clearly holds in this situation. This ends Step 3.2.1.

Step 3.2.2: Assume now that
Ry (o)
Ha

We use the Green representation formula, see Appendix A, and equation (2.1) to
write that

Ug (o) — Uo = /QG (Ta, ) (n(n — 2)ug(z)? ! — eaua(m)) dx

where G is the Green’s function for the Neumann problem. Since adding a constant
to G does not change the representation above and using the pointwise estimates
of Proposition 9, we get that

— 400 asa — +00. (5.20)

o (Ta) < o+ /Q (G (za,z) + m()) (n(n — Dua(z)? ! — eaua(x)) da

< ot n(n—2) / (G (@ar 2) + m())ua(2)® ' de

< G0+ C [ fou— o M ualaf o
Q

n

7z

)
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Using now Step 3.1, this leads to

Ug (Ta) < Ua+O (ﬂa (57)2*_1/ o — 2| "1y (z) T dm)
Q

+O< "+2(1 —27) e }|$a _:L_|27n T (x)*(n+2)(1*’)’) d.fL')
Ta(Z)>Rita

+0 </ |zo — a:|2_n ua(z)? 1 d:c) ,
{ra(z)<Rpa}

for some R >> 1. The first term can easily be estimated since 2 — (n + 2)y > 0.
We get that

67)2*_1 ‘/Q |.’L‘a _ w|2—n To (x)—(n+2)’Y der =0 (na (57)2*_1) — 0("7(1 (67))

thanks to (5.3). We estimate the second term:

/ |To — :c|2_" To
{ra(z)>Rpa}

< Z/ o — 2" | = s IO

{|zi,a —z|>Rpa }

-0 (Z U g — :vz',a|2_n>

i=1

—O( n—(+2)(-NR (4 )Q—n)

(m)—(n-i-?)(l—’Y) dx

sincen—(n+2) (1 —7v) < 0and |2;,q — To| > %Ra (o) foralargeforalll1 <i < N
thanks to (5.20). The last term is estimated thanks to (2.2), to (5.20) and to
Holder’s inequalities by

/ |20 — 2" " g (z)? ~dx
{ra(z)<pa}

=0 (ra (:z:a)zfn/ uq (z)? 1 dm)
{Ta(w)sﬂa}

n—2 x
=0 |ra (ma)2_n pa® (/ uoz(m)2 dx)
{ra(z)<pa}

=0 (,u:%zra (a:a)Q_") :

Combining all these estimates gives (5.19) in this second case. This ends Step 3.2.2.
As already said, this ends the proof of Step 3.2.

2* —1
oF

The proof of Proposition 3 is now straightforward, using once again the Green
representation formula. We write that, for any sequence (z,) of points in (2,

Ug (Ta) — Ua = n(n—2)/QG(xa,a:) Ug, (313)2*71 dx —ea/QG(xa,a:) Uq () dz .
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Let us write thanks to Appendix A, Step 3.2 and Giraud’s lemma that

/ ¢ (wOU .'I»') Ua (CL’) dz = O <:u’<:T_2 / |xa - $'|27" Ra(w)z_n d.’ll')
Q Q

+0 (ﬂa/ |Ta — a:|2_” dx)
Q

n—2

- 0 (,,LQTRQ (ma)2_") + 0 (@)

(here one needs to spearate the case n < 4, n =4 and n > 4) and that

/ G (T, 2) Ug (2)° "' dz = 0 (Ga) + O (M(ZT_QRQ (xa)2_") :
Q

Note that this last estimate has been proved in Step 3.2.2. Combining these equa-
tions, we get the existence of some C; > 0 and some sequence 3, as @ = +oo such
that (5.7) holds. This proves Proposition 3.

6. A SHARP UPPER-ESTIMATE

Let us fix some notations. We let in the following

. . 2
ria(x) == iér}lan |zia — x| and Ri,a(m)2 = iérjuan (|:c,~,a —z|” + uia) . (6.1)

Note that Ry o(z) = Rq(x) and r1 o(z) = ro(z).
Definition 5. For 1 <1i < N, we say that (Z;) holds if there exists C; > 0 and a

sequence B, as o — +0o0 such that

i—1 i—1 5
U (@) —Ta — Y Via(@)| < Ba | Ta+ Y Ujal@) | +Ci; 2 Ria (@)™ (6.2)
7j=1

Jj=1

for all z € Q and all o > 0. Here, V; o is as in Appendiz B.

This section is devoted to the proof of the following :

Proposition 4. (Zy) holds.

Proof of Proposition 4: Thanks to Proposition 3, we know that (Z;) holds. The
aim of the rest of this section is to prove by induction on & that (Z,) holds for all
1 < k < N. In the following, we fix 1 < k < N — 1 and we assume that (Z,) holds.
The aim is to prove that (Z,1) holds. We proceed in several steps. Let us first set
up some notations. In the following, we fix

0<y< (6.3)

n+2°
We let, for any 1 < i < &,
n—2 n—2
Ui,a(2) := min {“3(1_27)‘1’7 (Ti,a, ) 5 AOMZQT(I_M)‘IH—W (Ib"i,a,ﬂ?)} (6.4)
for x € Q\ {z; o} where

1 (n—2)(1—
Ag : (4Ry)~(n~2(1=2m) (6.5)

"~ D,Di_,
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Here &, ®1_,, D, and D;_, are given by (5.14) and Ry is as in (5.5). With this
choice of Ag, we have with (5.14) that

_n=207_
Tin(z) = AONz’,a =0 27)4’1—7 (Ti,a, T)

n—2
if |20 — x| < 2Ropi,q. Similarly, ¥; ,(z) = ug(l_h)@v (

from z; . Note also that we have that
Ui a(z)
Uia (@) (Pi2ztl 4 o=

Wia [T o—]

%j,a, ) if  is far enough

ATt <

)<n—2)w <

for all z € Q\ {0} and all @ > 0 for some A; > 0 independent of a. We also
define

N
a(e) = max {ta; pa Y @1y (10,) (6.7)
=1
and
N
Ou () := Y ¥y (Tiaar ) (6.8)
1=Kk+1

We set, for 1 <1 <k,
Qio:={z€Qst. Tin(z) > T;4(z)forall 1 <j<ck}. (6.9)
We also fix A» > 0 that will be chosen later and we define v, by

n—2(1_2,y) "_2(1—2’7) \I’za
2 o— 2 . L] _1
2% AN Mo 5 AX SUD T (6.10)

where
2*—2
K
~ 2 _
Qi =82 € Qq st |Tia —2| |ua(z) —Gq — ZV-,Q(;U) > Ay p . (6.11)
7j=1

3

In the above definition, the suprema are by definition —oo if the set is empty.
Remark that, in all these notations, we did not show the dependence in v of the
various objects since + is fixed for all this section.

Step 4.1: We claim that v, o = O (ug,,) when a = +o00.
Proof of Step 4.1: This is clearly true if vy o = ftrt1,0 SiNCE Uri1,0 < Uk
Step 4.1.1: Let us assume that there exists o € ;4 for some 1 < i < & such
that -
U0 (10) = vnd "0, (z4)

which implies thanks to (5.14) that
V1_27 =0 (Rn—i-l,a (ﬂfa)z(liv) lI’,"a (JEQ)%) . (612)

K,a
Since (Z,) holds and z,, € Qi,a, we also have that

= * :u/2 |$z'a _$a|2
Ay <o(1) +o | |Tia —2al* Y Uja(@a)” 2| +0 | 2222 )
Rn,a (xa)

j=1
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Noting that

—2
|xi,a - xa| + Hi,a )
Mi,o |$i,a - ma|

|$i,a - ma|2 Ui,a (wa)2 2= (

and using (6.6), we get since o € Qo that

k—1
@ia = Tal” Y Uja (a)”
=1
—1 _ _
) NZ ('xiia ~%al | _ Mia )47 ’ (|»’Cj,a ~%al | Mja ) "
j=1 Mi,a |mi,a - xa' Hj,a |~Z'j,a - xa'
=0(1)
since v < % Thus the previous equation leads to
Rn,a (ma)2 = O(lf/n,a |wi,a - z'a') . (613)
If Ri,o (%a) = Ret1,a (o), then (6.12) and (6.13) together with (6.6) lead to
vhd = O (ko [via = al' 7 Wi (2)7?)
o ) 2y -1
= 0 by a " da it |wz,a xal Hia i, ( 2 i,a — La 2)
('uk”’a [, Tal Hi,o - |T5,0 — Zal Hisor  Hiyoo T |z, Zal

ol ut-ru=" (|$i,a — T + Hi,o )37_1
Pr,a Hi o i |xi,a — $a|

= O (i tia) =0 (1)
since v < % and ¢ < k so that ;o > pk,o- The estimate of Step 4.1 is thus proved
in this case. This ends Step 4.1.1.
Step 4.1.2: Assume now that Ru o (Za) < Ret1,a (o) so that Ry o (ma)2 =
|Zx,a — Ta|” + 42 4. Then (6.13) becomes
|Zk,0 — xa|2 + Ni,a = O(Nma |Ti,0 — xa|) . (6.14)

If ¢ = k, we then get that |2;o — Zo| = O (fi,a). Since Rot1,q (Ta) > Rea(za) >
Wi in this case, we can deduce from Proposition 2, (iii), that

2% —2

K
Zi0 — Tal® Ua () — i — Z Via(Za) =0
j=1

as a — 400, thus contradicting the fact that z, € Qi,a. If i < K, we write thanks
to (6.6) and to the fact that ¥; o (xo) > Uk,o (o) (since x4 € ;) that

Uﬁ (IL' ) |$n,a _$a| + Mk,a >
e “ ,uln,a |wn,a - xal

2 (T — Tal Wi il
=0 | Ui (®a)™2 ( : + : )
ui,a |xi,a - xa|
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which gives thanks to (6.14) that
(|xn,a - mal + ,u/n,a )27

HMr,a |$n,a - l'a|

2y
_2 Tiow — T .
= O |$i,a — .’Ea| Ui,a ('Z.Oc) n—2 <| 1,0 a| + Mi,a )
Mi,a |$i,a — wa'

0 (|wi,a — Ty N i >2'y—1 |
Mi,a |$i,a - wal

Since v < %, this leads clearly to

|Zi0 = Za| <Cand C' < |Zk,0 — Tal
Mi, o Pk,

c'< <C

for some C' > 0 independent of . This implies that g o = 0 (i) thanks to
Proposition 2, (ii). One then easily deduces from (6.6) that

n—2
‘I’ia(wa) (Nn a>2
————==0|— =o(1),
Uy (za) Hi,o e
which contradicts the fact that z, € ;. This ends Step 4.1.2, and therefore this
proves Step 4.1.
Step 4.2: We claim that there exists A3 > 0 such that

ua(z) < As (Zlﬁi,a(x)-l—y:,%; =2t a(@)Z =D
i=1

n

+max{ﬁa; uf(k%)} ra(:c)@_")'y) (6.15)

for all z € Q\ Uﬁim_l BRou;.o (Zi,0)-

Proof of Step 4.2: As in the proof of Step 3.1, the proof of Step 4.2 requires to
distinguish whether we consider points in the interior or on the boundary of (.
We only prove the estimate for interior points and we refer to Step 3.1.2 for the
extension of the proof to the boundary. We fix zyg € Q and §o > 0 such that
Bs,(zo) CC Q. We let 2, € Bs,(z0) \ Uﬁinﬂ BRoy; . (€i,a) be such that

Ug (Ta)
K n=2(1-2)
Z':l Vi (Ta) + Vgk,& Ou (o) + VYo (za)
! u (6.16)
— sup - o

= —— .
Bs, (“’/'0)\U11'v=n+1 BROM,Q (%i,a) 2?21 \I,z',a + Vn,%l S 27)9(1 + ¢a
and we assume by contradiction that
Ug (Tq)
K nT_2(1*2’Y)
Zz’:l lI’z’,oz (ma) + Vn,a ®a (ma) + wa (ma)
Thanks to the definition (6.7) of ¢, and to the fact that (Z,) holds, it is clear that

- +ooasa— +oo. (6.17)

To (o) 2> 0as a— +oo. (6.18)
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We claim that
|$i,a — T4
Hi,a
Assume on the contrary that there exists k + 1 < ¢ < N such that |z, — 2| =
O (pi,a)- Since |z;,o — o| > Rofti,e and by the definition (5.5) of Ry, we then get

thanks to Proposition 2, (iii), that uy (z4) = O (u:;%) But, thanks to (6.10) and
to (5.14), we also have that

n—2

s> +oasa—>+ooforall k+1<i<N. (6.19)

p-1,7 A-2) (2=n)(1-7)

1-2
Vh:,Qa ( 7)60 (wa) = ¥ Mn—‘,—l,a |$i7a - $|

n—2
D;l 3(1727) |1'z',a _ 1_|(2—n)(1—’y)

w () <(| - x|)<”‘2)“‘”> - o)
V'g(l—Zv)@a (Za) Wi,

thus contradicting (6.17). So we have proved that (6.19) holds. With the same
argument performed with ¥; ., we also know that, for any 1 <14 < &,

\%

A

so that

|$i,a - ma'

either |z;,o — zo| < Ropts,q OF — 400 as a = +00 . (6.20)

i,
In particular, we can write thanks to (6.16), to (6.19) and to (6.20) (which ensures
that the ¥; ,’s are smooth in a small neighbourhood of z,, see the remark following
(6.5)) that

; n52(12y)
Aug (za) & (Zi=1 Via +ves Oat wa)

2 5, (Ta)
Un (.’L’a) Z?:l lI’i,a +VK,204 (1 27)@‘1 +d}a
for o large. We write thanks to (2.1) that
Augy (z4)

Ua(-'L'a) S n(n B 2)ua (xa)2*_2

so that the above becomes

A (Z Tio+ves 00+ wa> (a)

i=1
< n(n - 2)Ua (-’L'a)y_z <Z \Ili,a + V:,%a(lii‘/)@a + ¢a> (.lea) .
i=1

Writing thanks to (A), (B) that
1
Mmoo
i, a D'y + le'y
for all 1 <4 < k, that

AO, (zo) > (%

|mi,a - xa|_2 - D'y - -Dl—'y) lI"i,oc (ma)

D;3rn+1,a (.20(1)_2 — NDA,> O (z4)
and that

Atg (Ta) > (%Dl_f’yra (xa)_2 - NDI—’Y) Yo (Ta) »
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we get that

0> Z (|$i,a - xa|72 —Cy = Chuq (wa)2*72) Uia (Ta)
=1
+ ('rn—i-l,a (xa)_2 - C’y - C’yua (xa)2*_2) V:,%az(l_?w@a (xa)
+ (Ta (ma)72 - C’Y - C’yua (Z_a)2*72) "pa (-'L'a)

where Cy > 0 is large enough and independent of @ and §. We let in the following
1 < i < k be such that z, € Q4. We can then deduce from (6.21) that

0> (|mi,a — a:a|_2 — kCy — kCyug (ma)Q*_Q) ¥ o (za)

(6.21)

n—

t (resra @) = €y = Cpia )" ) 0B 000 (@) (622)

+ (Ta (7o) — Cy — Cyuq (xa)2*_2) Yo (Ta)
Thanks to (6.7) and to (6.17), we know that

o = 0(Uq (Ta)) - (6.23)
We also know thanks to (6.17) that
Uja (o) = 0(uq (24)) (6.24)

for all 1 < j < & since
Uj,a (Il]'a) = O(\pi,a (.’L'a))
for all 1 < j < k. Note also that, thanks to (6.19), we have that
Rit1,0 (.170,)2 Uja (za) 2 50asa— +ooforall k+1 <j<N. (6.25)
Thus we can deduce from Proposition 2, (iv), together with (6.24) and (6.25) that

o*

R (20) g (20)* "2 > 0as a = 400 . (6.26)

Thanks to (6.18) and to this last equation, we can transform (6.22) into
0> (|xi,a — 24|77 — KC,y — KCyug (xa)Q*_Q) U o (2a)
* n=2(y_
+ (reria (@) 2 = Cy = Cota (@a)” %) v 00 () (620)

+ (1 +0(1))7a (Ta) > a (za)
Since (Z,;) holds, we get thanks to (6.23) and (6.24) that

Uy (:1704)2*72 =0 (ui’aRn,a (a:a)ﬂi) . (6.28)
We claim that we then have that
o (20)” 7 = O (12 o R0 (20) ") (6.29)

Indeed, if (6.29) does not hold, then Ryi1,4 (2a) = 0(Rk,a (o)) when a — +00
and then R, o (z,) = \/,ui,a + |zo — Zy,o|?, which contradicts (6.24) and (6.28).
This proves (6.29).

We claim that this implies that

Ryt1,0 (20)? Ua (:1:(,‘)2*_2 —0asa— +00. (6.30)



LIN-NI'S PROBLEM 29

Indeed, if not, (6.29) would imply that

Rit1,a (o) =0 (,un,a)

while (6.26) would imply that R, (o) = 0 (Rkt1,a (Zo)), which would in turn imply
that there exists 1 < j < k such that

|Zj,0 — xi,a|2 + u?,a =R, (.20(1)2 =0 (Rn+1,a (ma)2) —_— (pi,a)

which turns out to be absurd since f1,o > ftx,o. Thus (6.30) holds. Note that (6.29)
together with (6.23) also implies that

Rit1,0(xq) > 0as a = +o0 (6.31)
thanks to (5.4). Thanks to (6.30) and (6.31), we can transform (6.27) into

0> (|$i,a - xa|_2 - ’ic'y - ’ic"yua ('73'01)2 _2) ‘I’i,a (xa)

+ (14 0(1) resra (Ta) 2vad C0, (z0) + (1+0(1))ra (za) > o (za) -
(6.32)

If xo & Qm, we can transform this into

0o > (1 +0(1) = kCyAs — KC, |Ti 0 — $a|2) |Zia — Ta| Ui (2a)

n

—2/1 . _
+(1 4 0()reiria (@) e VO (20) + (14 0(1)) 0 (€a) > Y (2a)
thanks to (6.23) and (6.24). Up to taking Ay > 0 small enough, this leads to
n=2(y
Ta (xa)_2 Ya (Ta) = O (:“z',zi ¢ 27)) .

Thanks to (6.18), (6.7) and (5.14), this is clearly absurd. Thus we have that
Zq € ;4. Coming back to (6.32), we have that

U700, (20) = 0 ((Ua (#0)” 72 +1) at1,0 (82)” Tia (20)) -
Using (6.30) and (6.31), this leads to

n—2

2
K,Q

n—2

I/H,?I (1_2’”(")(1 (xa) = O(\I’z’,a (xa)) )

which clearly contradicts the definition (6.10) of v, o since z, € Qi,a. We have
thus proved that (6.17) leads to a contradiction. Using (5.14), this proves (6.15)
and permits to end the proof of Step 4.2.

Step 4.3: We claim that there exists A4 > 0 such that

n—2

ua(z) < Ay (Z Uio(z) + U + Vea RH+1,a(a:)2_"> (6.33)
i=1

for all z € Q and all a > 0.

Proof of Step 4.3: We let (z,) be a sequence of points in . We aim at proving
that

n—2

Uq (To) = O (Z Uia(®a) + Ga + Ve i RKH,Q(:UQ)Z_") . (6.34)

i=1
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Since (Z) holds, and distinguishing whether Ry o(zo) = 0(Rx+1,a(Za)) Or not, we
already know that (6.34) holds if

lLl:,%aRn—H,a (ma)27n = O(Ui,a (-'L'a))

for some 1 < i < k. Thus we can assume from now on that

i,

Rit1,0 (:L'oz)2 = O(Mi,allln,a) +o (l;n,a |xi,a - xa|2) (6.35)
for all 1 <i < k. This implies in particular that, for a large,

Ry (o) = Ret1,a (o) = 0(1) . (6.36)

Using Step 4.1 and (iv) of Proposition 2, we also get that (6.34) holds as soon as
Rit1,0 (o) = O (Vi,o). Thus we can assume from now on that

Rn—i—l,a (ma)

Vk,a

— +00 as a — 400 . (6.37)

We now use the Green representation formula to estimate uq (o). As in Step 3.2.2,
we write that

oy (70) < Ty + (1 — 2) /Q(G (s 7) + m(Q))te (2)° " dz

since u,, satisfies equation (2.1). This leads to
ey (50) — iy < Coml(n — 2) / oo — 2 " ua @) " dz.  (6.38)
Q

Noting that ri1,0(Za) X Ret1,a (o), we write thanks to (6.37) and to Step 4.1
that

|20 — 2> " ug (2)° " dz = O (V’“T“R”“"" (w"‘)2_n)

(6.39)
using Holder’s inequalities and (2.2), where Ry is as in Step 4.2. Noting that

~/{$€Q, Te41,a(2)<Rovx,a}

N

U BRopi o (Tia) C{T € Q, Tiy1,0 () < Rovkal,
i=Kk+1

we write now thanks to this last inclusion, to (6.39) and to (6.15) that

/ 1Ta — 7| " ug (2)? "t da
Q
=0 (Z/ |Zo — 277" W54 (m)T—1 dm)
=178

n+2
+0 | ve (1=27) |2a — 2> Fesia (x)_(”“)(l_'” dz
{z€Q, 7nt1,a(z)>Rove,a}

. nt2(q_
+0 (max{ﬁi 1 ( 27)}/ |2o — 2> " ro(z)~ ("2 dw)
Q

n—2

+0 (ua Retia (wa)z_") .
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Here all the integrals have a meaning since v < We write that

n+2

|xa _ $|2—n Trila (x)—(n+2)(1—'y) de

~/{wEQ, 7'&+1,cx(z)2”~.a}

N
2— — 2)(1—
<> 70 — 2"z —al "+ gz
i1 Ha€9, o a—el2v,a)
(Z Zaraniatl |$a—xia|2n>
i=k+1

=0 (V:,«_l(n—’_z)(l_’y)RN-‘rl,a (ma)Q_n>

since v < =5 and thanks to (6.37). We can also write since v < n—+2 that

/ (0 — 2P " 1 (@)= dg = O(1)
Q

and that
252 (1-27)

=0(q) +0 (,u?) = 0(lq)

thanks to (2.3) an ). Collecting these estimates, we arrive to

/|a:a 2 n 04(.7:)2*_1 dz

=0 (Z/Q T — 2> " W o (z)F da:)
i=1

+o(ta) + O (V;:,T;2Rn+1’a (wa)2_") .

!t g

Since vy < +2, we get that (see Step 13.2 in the proof of Proposition 13 in Appendix
B for the details)

/ (0 — 27" Ui (2)7 ™ do = O(Uia (20))
Q
for all 1 < i < k. Thus we have obtained that
/ 2o — 2| " Uq (:1:)2*_1 dx
Q

n—2

k
=0 (Z Ui,a (SL‘a)) +0(8q) + 0O (1/,.; 2 Riti,a (a;a)Q_") .
i=1
Coming back to (6.38) with this last estimate, we obtain that (6.34) holds. This
ends the proof of Step 4.3.

Step 4.4: We claim that there exists A5 > 0 such that for any sequence (zo) of
points in €2, we have that

Uq (ma) - ﬂa - i ‘/i,a (ma)

i=1

(6.40)

n—2

< Asve? Riiia (:ca)%" +0(tg) + o0 (Z Ui.a (ma)> .

i=1
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Proof of Step 4.4: Let (x,) be a sequence of points in €.
Step 4.4.1: Assume first that
Rit1.0 (o) = O (Vs,o) when @ = 400 and Ryy1.4 (%) = Ra (za) -

We can apply Proposition 2, (iv), to write that

T U (Ta) — Oa — Z Uia (Ta)

i=1

Rn+1,a (-'L'a)% = 0(1) .

This leads to

K N
U (xa) - ﬂa - Z Ui,a (xa) S Z Ui,a (xa) +o (Rn—i-l,a (xa)l_
=1 i=k+1
Noting that, for any kK + 1 < i < N,
n—2 2 2 1-%
Usi,a (-'L'a) = /li’fx (|-'L'i,a - $a| + /‘Li,a)

g 2

< i o Rii1a (%)
n=2 _

S Hnil,aRH-Fl,a (xa)z "
n—2 _

< Vﬁ,2a Rn—i—l,a (xa)2 "

thanks to (6.10), we then get that

K

Uq (To) — Bo — Z Us,a (%4)

i=1

Thanks to (6.41), we also know that

n—2

Rit1,a (o) "2 =0 (V,Q,TQRHH,Q (wa)2_") .

We then get that

Uy (To) — Uo — z Via (za)

i=1

i=1

(6.41)

n=2 _ _n
S NVH,?X Rn—i—l,a (ma)z " +o0 (Rn—i-l,a (xa)l 2) -

n-2 S
S CVﬁ,za Rn‘-{-l,a (ma)Q +Z |Uia‘1 (.’L’a) _‘/i,a(wa)l .
(6.42)

We are left with estimating |U; o (€)= Vi,a(2q)| when @ — +oo for all i € {1, ..., k}.
We use the estimates of Proposition 13 and we let i € {1,...,x}. We have that

n—

Uz',a (ma) - ‘/z',a(il?a) = O(Ui,a(-'l»'a)) -0 ( Mi, o )

p’zz,a + |.’L'a - $i7a|2

n—2
z; _n=2
_ : L] 2
= O | min Ros(g) 2" Hie
n—2 n=—2
2 _2
— 0| min M0 Ra(ma)n Vk,a
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Using (6.41) and Ry (z4) = Rit1,0(%a), we get that

n—2 n—2 n—2

. Hi,o 7 Vi,a 2 VN%!
Uia o _‘/iag;a — O min 5 , ) +
o (@) = Vialra) ( {(—> (=) }R())

n—2
Vn,?x
Uia (Ta) = Via(za) = O (—R 2) (6.43)

Kk+1, (ma)n_

Plugging (6.43) into (6.42) yields (6.40) up to take As large enough if (6.41) holds.
This ends Step 4.4.1.

Step 4.4.2: Assume now that
Rit1,0 (a) = O (Vo) Wwhen a = 400 and Ry (2o) < Ret1,0 () - (6.44)
Then there exists 1 < i < k such that
Tia — Tal® + 17 0 < Rutia (@a)? = 0 (12 )

thanks to Step 4.1. This implies that p;o = O (s,o) and that |z;q — 24| =
O (pr,a) when a — +o00. This also implies that Rey1,o (£a) > fi,o- Since we have
that fie,o < i,q, using Proposition 2, (ii) and (iii), we then obtain that

[ta (Ta) = Uia (za)| = O(Ui,a (xa))
and that
pio? = 0(Uia (za) - (6.45)

This leads in particular to

Ug (To) — U — i Uj,a (2a)| = 0(Uia (xa)) + O Z Ujo (Ta)

=t 1<j<h, j#i

Now, for any 1 < j < &, j # i, we have that

nT_zU. — Y 2 2 =3
i ja (Ta) = (Wialja) |Zj,0 — Tal + U a
230 = el | pya)
R R e =o(1) (6.46)
Hi,albj,o Hi,a

thanks to Proposition 2, (ii), since pi,q = O (ftr,o) and pg,o < fj,o. In particular,
(6.45) and (6.46) yield

Uja(za) = o(Ui,a(za)) (6.47)

when o — 400 for all 1 < j < k, j # i. Thus we arrive in this case to

Ug (To) — Uo — i Uja (2a)| = 0(Uia (za)) - (6.48)

j=1
To obtain (6.40), we need to remark that, thanks to Proposition 13 and (6.47), we
have that

Uja(Ta) = Via(Za) = O(Uja(2a)) = 0(Ui,a(ra)) (6.49)
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when oo = +oo for all 1 < j < &, j # i. Concerning U; o(z4), we refer again to
Proposition 13: if z; o is such that case (i) or (ii) holds, then U; o(24) — Vi,a(2a) =
o(Ui,a(24)) when a — 4o00. In case (iii) of Proposition 13, we get with (6.45) that

n—2

) I — Mi,a N : nT_z
Uz,a(fUQ) ‘/;,a(z'a) 0 (/J/?’a n d(xi,a,é)Q)?) + O(Uz’a(l'a)) + O(/J/z’a )

n—2

= opio® )+ 0(Uia(Ta)) = o(Uia(Ta))

when a — +o00. Therefore (6.49) holds for all j € {1,...,x}: associating this
equation with (6.48) yields (6.40) for any choice of A5 > 0 if (6.44) holds. This
ends Step 4.4.2.

Step 4.4.3: From now on, we assume that

Rn+l,a (ma)

Vg,a

— 400 as a@ — +00 . (6.50)

As a preliminary remark, let us note that

Tn+1,a(a) = Rn+1,a($a) (651)

for large o’s (the argument goes by contradiction). We use Green’s representation
formula and (5.4) to write that

Ug (To) — Uo — iVi,a (Ta)

i=1

< n(n—-2)Cy / 2o —z|* "
Q

dz (6.52)

e (@) =Y Ui (@)*
=1

+ Co€a / |To — ;U|27" Uq (z) dz + 0 (Ug) -
Q

Let us write thanks to (6.33) that

K n—2
[ 0= e ) do < A Yl [ lma = ol (o — ol 4 4
=1

1—n

n=2 N 1-—
iy [ g =o' o+ AariE S0 [ Jaa = a7 (oa - ol + )
Q Q

i=Kk+1

B a2 1-3

=0 (Z pa (120 = 2ol +1,) ) + 0 (7)
i=1
n—2 N 9 N 1-%

+0 | Ve 2 Z (lwi,a — T4 +Nz',a)

i=Kk+1

o (Z Usa (a:a)> +0 () + 0 (ved Resra () ") -
=1

* da

n

* da
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Thus (6.52) becomes

K

U (Ty) — U — Z Via (za)

i=1

< n(n-2)Co / |20 — 2> ua (@)° 7N = Uia (@)* 7| da (6.53)
Q2 i=1
+0(ta) + 0 (Z Uia (%)) +o (V:%a Riti,0 (wa)%n) :
=1

Thanks to Proposition 2, (ii) and (iii), there exists a sequence L, — +00 as a —
400 such that, for any 1 <1 < &,

uy — Uj
2__ue —0asa— 400
Ui7a L (Qi,aﬁﬂ)
and
El<j<n i Uj,a
== —0asa— +x
Uiaa L (Qi,aﬁﬂ)
where

Qi,a = BLaHi,a (mi,a) \ U Bﬁui,a (wjﬂ)
i+1<j<N

and such that these sets are disjoint for « large enough. Then we can write that

K
/ 2o — 2|* 7" ug () 7' - ZU-,Q (x)* 7' dz
QnQi’a j=1

=0 / |20 — 2> Uy o(2)? ~L da
QﬂQi,a

= o(U,-,a (ma))
for all 1 <14 < k. We also remark that

/ (00 — 2> Usa(@)” " de = o(Usa (z4))
Q\Q;,a

for all 1 <4 < k. Thus, using (6.33), we transform (6.53) into

|z — x|2_" Rut1,a (x)_("+2) dz

Aﬁ{rn+1,a($)2”~'a}

+0 / |70 — 2> " ug(2)? T da
QO{T,H.LQ(w)(VN,a}

+0(lia) +0 (i: Ui,a (wa)> +o0 (V:,%ofRnﬁkl,a (wa)zfn) .

i=1

(6.54)
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Following the proof of Step 4.3, it remains to notice that

/ |To — m|2_n Riti,a (x)—(n+2) dx
QN {ret1,a(Z)>vn,a }

N e

2o —al* " (loia —of +4s) da

[NE]

<
i=Kk+1
Fix ¢ > k + 1. Assume first that

/;R(wi,a)n{z_zi,azl’ma}

lim 7|mi’a — Zal
a—+oo Mi,a

= 4-00.

Then, we get with changes of variables that

-1-2

2—n 2 2
/ o= o (i — 2 +42,) da
BR(wi,a)m{|w_wi,a|2”~,a}

< / |20 — 2" " |zi0 — 2| ") d
BR(mi,a)n{lz*zi,alz"w,a}
2—n
= |mz’,a — Ta Zinyf;%!/ |Z|727n Fia Lo Vra z dz
1<\z\<u'f:'a |$i,a - mal |-'L'z',oz - -'L'a|

= (|10 = va*v;2) = O (2 (1210 — 2al” + 12a)' 7 ?)
when a — +00. Assume now that
i, = Za| = O(pi,a) (6.55)
when a — +00. With the change of variables ¢ := ; o + li,o2, we get that
/ 20 =2l (lpa 2P +12,) o= O
Br(zs,0)0{|2—2i,a| 2V, }

when a — +o00. It follows from (6.55) that Rei1,0(2a) = O(ui,q«), and then, with
(6.50), we get that v, o = 0(u;,q) and then

_1—2
/ g0 =22 " (Jrsa — o +4da) do
BR(zi,cx)n{lzfzi,cxlzyﬁc,a}
. _ 1-2
= O(p’?,an’/n,?x) = 0 (Vn,?x (|mi7a - .'L'a|2 + :u/z?,a) 2) :
In all the cases, we have then proved that

1l—z
/ |To — a:|2_" (|m,-,a — .1:|2 + ,uf,a) * dz (6.56)
Br(zi,o)N{|2—2i,a|>Vk,a}

_ 1-z
=0 (132 (1910 — 20l + 120) %)

when a — +oo for all i > k + 1.
independently, using Holder’s inequality and (6.51), we have that

-2

/ |20 = 2" ua(2)? T dz = O(ve s Trsra(za)® ™) (6.57)
Qm{"'n+1,a(-’”)<”n,a}

when o — +o0.

Plugging (6.56) and (6.57) into (6.54), we get that (6.40) holds up to take A5 large
enough if (6.50) holds. This ends Step 4.4.3.



LIN-NI'S PROBLEM 37

Plugging together Steps 4.4.1 to 4.4.3, we get that (6.40) holds up to taking As
large enough. This ends the proof of Step 4.4.

Step 4.5: We claim that vy o = O (px+1,0) when a = +o00.

Proof of Step 4.5: We proceed by contradiction and thus assume that, up to a
subsequence, there exists 1 < ¢ < k and 2z, € (2,4 such that (see the definition
(6.10))

n—2

ved U0, (34) = Uy 0 (z4) - (6.58)
Since z,, € fl,-,a, we also have that
2% —2
|20 — Tal” [ua (Ta) = Ga — Z Via (za) > As. (6.59)

j=1
At last, since x4 € €2; o, we have that
U)o (Ta) < Vi (Ta) (6.60)
for all 1 < j < k. In particular, we can write thanks to (6.6) that
Zia = Tal* Uja (#0)” 7> < CAZ 2|33 0 — 20> Ui g (24) 7

|Zi0 — ol + i, )47
Hi,a |wi,a - ma'

S CA?(Q*—@ |37z',a _ $a|2 Ui,a (ma)Z*—2 (

4ry—2
< CA?(?*—2) <|mi,a - 1'04| + Mi,a ) v < CA%(z*_z)
- /J’iya |$i,a - xal -

for all 1 < j < & since v < . Applying (6.40) to the sequence (z,) and coming
back to (6.59), we thus obtain that

A < Ag*_Q |zi,0 — xa|2 V:%,aRHJrl,a (‘Ea)74 +o(1) .

This leads to

R,g-l,-l,a (xa)Q =0 (Vn,a |-77i,a - $a|) - (661)
Using (5.14), we can write thanks to (6.58) that
Vi =0 (ia () ™2 Riyra (wa)" ") (6.62)

which leads with (6.61) to
Ve, =0 (\Il,-,a (ava)ﬁ |Ti 0 — ma|1_7) .

It is easily checked thanks to (6.6) that this leads to |z; o — Zoa| = O (vk,a)- Since
Vg,a = O (pi,o) thanks to Step 4.1 and since ;4 — 2o # 0(fti,o) When a — 400,
this leads in turn to

fiw = O (m,a N y;a) = 0 (Vo) = O (ftn.a) -
Thanks to (6.62), we have obtained so far that |z; o — Zo| = O (l4,a), that p; o =
O (pr,o) and at last that p;q = O (Rxt1,a (o)) using again (6.62). Note that
since fiq X Wr,a, We have that p; o = O(pj,q) for j < k when o = +00. Using
Proposition 2, (i) and (iii), we then get that
2" 2

K
|Zi,0 — xa|2 Uy (To) — Ug — Z Via (®a) —0asa— +oo,
i=1
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thus contradicting (6.59) This ends the proof of Step 4.5.

Steps 4.4 and 4.5 give that, if (Z,;) holds for some 1 < Kk < N — 1, then (Zx41)
holds. Since we know that (Z;) holds thanks to Proposition 3, we have proved that
(Zn) holds and thus we have proved Proposition 4.

7. ASYMPTOTIC ESTIMATES IN C! (Q)

In this section, we prove the following:

Proposition 5. There exists a sequence B, as o — +0o0 such that

N N
U — aa - Z V;',a S ﬂa (ua + Z Ui,a) (71)
i=1 i=1

for all z € Q and all a > 0. In addition, there exists Ag > 0 such that

n=1
3

N a—
Viua(@)] < of@ia) + s D 2 (2 + |70 — o) (7.2)
i=1

for all x € Q and all o > 0.

Proof of Proposition 5: We first prove the pointwise estimate on u,. Then we will
prove the pointwise estimate in C* (£2).

Step 5.1: We claim that there exists a sequence 3, — 0 as a — +00 such that
(7.1) holds. In particular, there exists C' > 0 such that

n—2

N 2 2
_ :u’i,a
ue(z) < C | Ug + E (,U? +|$—$ia|2) (7.3)

i=1

for all z € Q and for all & € N.

Proof of Step 5.1: The proof of (7.1) goes as in Step 4.4. We omit the details. The
estimate (7.3) is a consequence of (7.1) and the inequality (11.33) of Proposition
13.

Step 5.2: We claim that (7.2) holds.

Proof of Step 5.2: Green’s representation formula yields
Ue(Z) — Uy = / G(z,") (ui**l - eaua) dy
Q
for all z € Q and all a € N. Differentiation with respect to x yields
/ V.G(z,-) (uf:_l — eaua) dy‘
Q
/Q|VwG(x, I (ui*_l + eaua) dy

Plugging (7.3) and the estimate of VG of in (11.5) of Proposition 9 yield (7.2):
we omit the details.

Vg (2)|

IA

IA

These two steps prove Proposition 5.
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8. CONVERGENCE TO SINGULAR HARMONIC FUNCTIONS

8.1. Convergence at general scale. We prove the following general convergence
result

Proposition 6. Let (uy)aen € C2(Q) such that (1.3) and (1.4) hold. Let (%1,4),-, (TN,0) €
Q and (p1,0); - (UN,0) € (0,400) such that (7.1) holds. Let (To)aen €  and
(Bha) aen, (Ta)aen € (0,+00) be sequences such that

(i) limg— oo Ta =0 and po = o(ry) when a — +00,

(1) 7o # Wi when a — +o00 for all i € {1,...,N} such that ;4 — x4 = O(ry)

when a — 400,
n—2
(iii) v 2ty = O(ua® ) when a — +oo,

() pio = O(pa) when a — +oo for all i € I where
I'={ie{l,..,N}/xi0a —xa = O(ra) and p; o = o(ry) when o — +o0},
(v) 2 i0 = O(pta (4 o + |Ta — Tia|?)) when a = 400 for all i € I°.
Then we distinguish two cases:

e Case 6.1: Assume that
d(zq,00)

lim ———= = 4.
a——+0o0 To
We define
n-2 Q— 1z,
Vo (Z) := L= un(za + roz) for al z € . (8.1)
fa® *
Then,
: — . _A.12—n 2 n s
alﬂloo vo(z) = K + ; Ailz — 6;] in Cj, (R* \ {0;/i € I}) (8.2)
K3
where
I''={i €I/ pi0 <X pa} (8.3)
and
9, = lim 222 "% forqllie I and N\ >0 for alli € I'. (8.4)
a——+00 Tq
And
n—2
K= lim T&_ b Y 7 lim Tallia i (8.5)
amvkoo i L askoo \ o (10 + [Ta — Tial?)
with ; > 1 for all i € I¢
e Case 6.2: Assume that
d N
lim d(za,00) =p € [0,400).
a——+00 Ta

Then there exists xo € 02 such that limy_, o o = xo. We take ¢, Uy, and the
extension iy as in Lemma 2. We define

n—2 -1 o1
Vo () 1= —2—5iq 0 (@™ (x0) + 7o) for all z € L4 (Um)r Ld (:ca) (8.6)
P @
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Then,
li B - K i _~i 2—n _ ~i 2—ny\ 1 (gn ~i ~i e
A 92(@) = K+ S M(lo— " +a=0 @) ™) i Clu(®\{Bs o6/ i € 1)

(8.7)
where K >0, I', \; are as above,

~ -1 . _ 1
b= lim P Fe) =97 (@a) o e

a——+00 Ta

and o : R* — R"™ is the orthogonal symmetry with respect to the hyperplane {x; =
p}, that is

o(z1,2") = (2p — z1,2") for all (z1,2') € R™. (8.8)

Proof of Proposition 6: As in the statement of the proposition, we distinguish two
cases.

Case 6.1: we assume that
lim d(zy,00)

a—+oo Ta

We let R > 0 so that, for @ € N large enough, it follows from (8.1) that v, ()
makes sense for all z € Br(0). We fix z € BR(O). It follows from (7.1) that

n 2V
va(z) = (14 0(1)) ( +Z o $a+Ta )> (8.10)
/ia /I’Ot
when a — 4+o00. We estimate the right-hand-side with Proposition 13. We have to
distinguish whether i € I or not

Step 6.1.1: Let i € I. We define

= +o00. (8.9)

bi,0 == o ~ Ta
Ta
for all &« € N. In particular, limy_,4o 6i,0 = 0; where 6; is defined in (8.4).
Therefore

n—2
r2_2Ui,a(ma + raw) _ p’i,ari ’
H;;Q Na(,uzz,a +[To — Tia + To|?)
272
Mi,o

pa((%2)" + fo = Bia )

. Hi,o 2 2 n
1 Pia — 0 1) (8.11
(a;rfw(ua) )Iw ;""" +o(1) (8.11)

for all z € Bg(0)\ {6;} when @ — +00. Note that these quantities are well-defined
due to point (iv) of the hypothesis of Proposition 6.

Step 6.1.2: Let ¢ € I° such that

lim [Fie =%l _
a——4o00 Ta
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Let ap € N be large enough such that |2; o — 24| > 2Rr, for all & > ag. Then

[|Za = Tija + Ta| = |Zia — Za|| < Talz] = O(ra) = 0(|2a — Z4,a])

when @ = +o0o and uniformly for all z € Bg(0). Therefore, we have that

n—2
22U o (T + 102) Wi,aT2 2
252 B (B2, + |Ta — Tia + Taz|?)
l’l’a l‘La /’Lz',a @ T, [e2

(1+0(1)) ( il ) 2 (8.12)

po (17 o + %0 — Tial?)
for all x € Br(0) and all e € N.
Step 6.1.3: Let ¢ € I such that
|, — Zo| = O(rq) when o — +00.

Since i ¢ I and points (ii) and (iv) of the hypothesis of Proposition 6 hold, we then
have that r, = o(u;,o) when a — +oo: in particular, |4 — %;,a| = 0(fti,o) When
a — +o00. We then get that

n—2
20U 0(To + Ta) _ WiaT2 :
M(:T_z l‘l’a (/J’zz,a + 0(:“3,(1))

n—2

(1+0(1)) (ua( MiaTg ) (8.13)

luzz,a + |Zi,a — Tal?)

for all z € Bg(0) and all @ € N.
Step 6.1.4: Let i € {1,..., N}. We claim that

n—2
T lia
——=— =o(1) (8.14)
Pa”
when a — +00. Indeed, it follows from Point (iii) of Proposition 2 that
n—2 * *
w2 <C u? ~tdr < C/ u? ~tde = Cea/ U dx = 0o(ty) (8.15)
' QNB,, , (%i,a) Q Q

when a — +oo. Therefore, (8.14) follows from point (iii) of the hypothesis of
Proposition 6.

Step 6.1.5: We let i € {1,..., N} such that the hypothesis of point (iii) of Propo-
sition 13 hold. Since 7" (o) ¢ Q, we have that |z — 7" (2ia)| > d(2q,090).
Moreover, since (8.9) holds, we have that

(w0 ax) iaTy N
N;i_Q Na(:ufzz,a + |$a +raZ — W‘Zl(xi’a)P)

n—2

(1+0(1)) ( HisaTa ) 2

Na(,uzg,a + |$a - W¥l($i,a)|2)
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Assume that ¢ € I: in this case, we have that p; o = O(pq) when o — +00. Since
in addition |zq — 7, (%4,4)| > d(24,0) and (8.9) holds, we have that

rg’szi,a (Ta + Tax)

lim o =0ifiel. (8.16)
a——+oo 5
P
Assume that ¢ ¢ I. Since |zq — 50| = O(|za — ng(xi,a)D when a — +00, we
have that
n—2
) o met \TY
fa” ta(Bi o + |Ta — Tial?)
when a — +00.
Plugging (8.11)-(8.17) into (8.10) and using Proposition 13, we get that
lim vy(z) = K+ Z |z — 6;)>™ (8.18)

a——+0o0
iel’

for all z € R* \ {6;/i € I}, where K, I', 8; and \; are as in (8.3), (8.4) and (8.5).

Moreover, as easily checked, this convergence is uniform on every compact subset
of R* \ {6;/i € I}.

Step 6.1.6: We claim that (8.2) holds. We prove the claim. It follows from
equation (1.3) that

2

Avy +1r2eqvy =n(n — 2) (l;—a) v2 7 in Bg(0) (8.19)
64

for all @ € N. Since p1o = 0(ry) when a — 400, it follows from (8.18) and standard

elliptic theory that (8.2) holds. This proves the claim.

This ends the proof of Proposition 6 in Case 6.2.

Case 6.2: We assume that
d(xq,00)

all)r—{-loo T =f
with p € [0,4+00). In particular, limy_, 40 Za = Zo € ON. We consider the domain
U,,, the extension § of the Euclidean metric £, the chart ¢ and the extension @,
defined in Lemma 2. Let R > 0 and let a > 0 large enough such that

Bg(0) C 13" (97 (Us,) = 97" (za))-

Let us define (z1,4,7)) := ¢ (z4) with 21 4 <0 and 2/, € R* 1. Therefore, as is
easily checked, we have that for any = € Bg(0),
-1 rel |10l
(10(90 (xa) +'ra$) €N & I S ’f'—
(o3
We consider the extension 4, of u, defined as in Lemma 2. In particular, the maps
Y, T, T, Ty, 7, refer to the point zo. Given ¢ € {1,...,N}, it follows from the
properties of the V; o’s (see Proposition 13) that

Via(m71(2)) = (1 + 0(1)Via(z) + Ou 2 ) (8.20)
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when a — 400 uniformly for z € Uy, (up to taking U,, a sufficiently small neigh-
borhood of zg in R™). Therefore, it follows from (7.1) that

N
tia(z) = (1+0(1)) <Ua +) Vz’,a(x))

when a — +o0o uniformly for z € U,, N . Consequently, using (8.20) and (8.14),
for x € Br(0), we have that

P 7 N n—2 !
Ta(@) = (1+0(1)) (“ o +Zr°‘ Via(e xi’_";’xaHT“m))) (8.21)
,U/a NOCZ

when a — 400 uniformly for z € Bg(0). Here again, we distinguish whether 7 € T
or not.

Step 6.2.1: we fix i € I°. Then there exists 7; > 1 such that

n—2

72V o (0((71 0, 7)) + 7o) fiiaT? =
a ) n,_; o = (140(1)7 i,al o
(ol | Tal?)

2
p’i,a + |‘ri,a -

(8.22)
for all z € Br(0) and all a € N. The proof goes as in Case 6.1 above and we omit
it.

Step 6.2.2: We fix ¢ € I. Mimicking what was done in Case 6.1.1, we define
~ -1 . — -1 ~
i o= £ @ia) Z07 () g

; = lim 0,a
Tq a——+00

)

for all 4 € I. Using that dyg is an orthogonal transformation and proceeding as in
Step 6.1.1, we get that

n—277. . "T_2 ~
1 Vi (p(@1.0,20) + o >>:( i (%) >|m_a,.|2n+o<1) 8.23)
,U/aT a——+4o0o /j/a

for all z € Bg(0)\ {6;} when a — +oo. Here again we omit the proof and we refer
to Step 6.1.1.

Step 6.2.3: We fix ¢ € I. In particular, limy 4 Zi,o = 9. We assume that
%o & 0N for all @ € N. We then have that

T372Ui,a(‘f7((ml,aa .Z':l) + 7)) _ Hi,aT / 2T4)
Py = = (P-

M(ITZ ,Uoz(l%?,a + le((T1,0, 7h) +TaT) — le(wi,a)P)

for all @ € N and all z € Bg(0). Here, note that since we work in a neighborhood

of z9, we use the maps ¢, 7 defined above. We define ((zs,0)1,2} ) := ¢~ (%i,a)
for all & € N. We have that

(21,0, Th) +7ax) = 1, (i) = [@((T1,0,Th) + Ta®) — @0 1 ((T1,0,Th) + Tabia)]
= (1+o0(1)|(%1,0,7}) + Tax — 7~ (wl,a,xa) - Taﬂ_l(éi,a)l

= (1+ o(1))rq (2"”’1—“ o) tz—71b;0)

CY

(8.25)
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independently, since dyg is an orthogonal transformation (this is due to the choice
made in Lemma 2), we have that

d(2q,09) = (1+ o(1))|z1,a| (8.26)

when a — +00. In particular,

Since 21,o < 0, plugging together (8.24), (8.25) and (8.26), we have that

ra*Uia(@((@1,0,7) + 7a2)) = < lim (M—a>;> lz—a(8:)*""+o(1) (8.27)

n-2 a—+00 \ gy

Mo
when o — +00 uniformly on compact subsets of R? \ {o(6;)}.

Step 6.2.4: Given i € I', we define

v (He)T if 25,0 ¢ 00 for all « € N
P SN0 \ e if 7;, € 00 for all a € N

It then follows from (8.21), (8.22), (8.23), (8.27), Step 6.1.4 and Proposition 13 that
lim ¥,(z) = K+ Z M|z = ;)2 + |z — 0 (8)]™™) (8.28)

a——+00
iel’

Nl =

uniformly for all 2 in compact subsets of R™ \ {8;,(6;)/ i € I'}, where K is defined
n (8.5). We define the metric g, := (¢*§) (¢~ (%o) +Toz) for z € r (o1 (Uy,) —
¢~ 1(z4)). With a change of variables, equation (1.3) rewrites

2
~ 2~ Boa ) ox g
Aj. Vo + €aTola = (r_> Uy,
a

weakly in Bg(0). It then follows from standard elliptic theory that (8.28) holds in
C} .. This proves (8.7), and this concludes the proof of Proposition 6 in Case 6.2.

loc*

Proposition 6 is a direct consequence of Cases 6.1 and 6.2.

8.2. Convergence at appropriate scale. We fix i € {1,..., N}. We define
Ji = {j #/ e = O(ftsa) When a — +o0}.

We define also

1 1
: 'i2a H i, 2 :
min {—1—“2 ,MiNje g, (—Zj’a (uia + |wj,a - :Ez',a|2)) } if Tia € oN
g~ ’
Si,a 1 1
. 2 . ; 2 .
mm{ “i; ,minje g, (Z:Z (15 o + 1,0 — -'L'i,a|2)) ,d(wi,a,89)} if x50 ¢ 0
Ua ’
(8.29)

Applying Proposition 6, we get the two following propositions:
Proposition 7. Leti € {1,...,N} and assume that
lim d(.’lﬁi,a, 89)

a——+00 Si,a

= 400.
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For z € s;’é(ﬂ — %), we define

sn—2
U’i:a(m) = znici2 ua(xi,a + Sz',ax)-
Mia
i,
We define
L:={je{l,...N}/zj0—2ia = O(si,a) and pjo = 0(S;,o) when a - +00}
and
9, ;= lim e The g0 e,
a——+00 Si,a

Then there exists v; € C*(R™ \ {0,/ j € I,}) such that
lim Vi,a = VU mn CfOC(R" \ {0]/] S I,}) (830)

a—+oo

In addition, there exists K >0 and A\j > 0 for all j € I} := {j € I;/ s, < fja}t
such that

vi(z) = K + Z Njlz —0;>™™ for all z € R" \ {0,/ j € I} (8.31)

JET
Moreover, there exists § > 0, there exists A, > 0 and 1; € C?(Bas(0)) harmonic
such that
Ai

vi(x) == 22 + i () for all x € Bys(0) \ {0} with 1;(0) > 0. (8.32)

Proposition 8. Leti € {1,..., N} and assume that
i,aty Q
lim 761(%’ o)

a—+o0o Si,a

=p € [0, +00).

In particular limg o 5,0 = o € O2. We let ¢ be a chart around xy as in Lemma
2. Forz € s;é(Q — %), we define

-2

Sia - _

Uia(z) = ~2iziia 0 9(p~! (Tia) + $i02)-

l‘i,i

We define
L:={je{l,..N}/2j0— Tia =0(si,a) and pjo = 0(si,a) when a — 400}
and ) )
f; := lim v (@ja) =@ (@ia) for all j € L. (8.33)
a——+0o0 Si,a

We define o(z1,3") := (2p — 21,2') for all (z1,2") € R*. Then there exists 0; €
C*(R™ \ {0;,0(6;)/ j € I,}) such that
lim @ = in Cf,.(R* \ {8;,0(8;)/ j € I.}). (8.34)

a——+00
In addition, there exists K >0 and X\; > 0 for all j € I} := {j € I;/ s, < pja}t
such that
bi(z) = K+3 N <|:1: G+ | — a(é,-)|2*") for all z € R"\{8;,0(0;)/ j € I}
JEI;
(8.35)
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Moreover, there exists § > 0, there exists X, > 0 and ; € C?(B25(0)) harmonic
such that

!

Bi(z) == mrﬁ +1)i(x) for all € Bys(0) \ {0} with 1);(0) > 0. (8.36)

Proof of Propositions 7 and 8: We apply Proposition 6.

Step 7.1: we claim that points (i) to (v) of Proposition 6 hold with
Mo i= Wio and 7o 1= 854 for all @ € N.

We prove the claim.

Step 7.1.1 We claim that (i) holds.
We prove this claim via two claims. We first claim that

lim s;4=0. (8.37)

a—+oo

We prove the claim. Indeed, it follows from the estimate (8.15) and the definition
(8.29) of s;,4 that

n—2
_a _ Hia
i’ < :l’—a < Ceq = o(1) when a — +00.
[e3

This proves (8.37). This proves the claim.
We claim that

Wi, = 0(S;,q) when a — 4o00. (8.38)
We prove the claim by contradiction. Assume that s; o = O(pi,«) when a — +o0.
Since limg— 400 u;;d(a:i,a,aﬂ) = 400 if ;4 ¢ 0N (see Proposition 2), it then
follows from the definition of s; , that there exists j € J; such that

2 = O(pti,aftj,a) When @ — +00. (8.39)

o+ %0 — @i
In particular, pj o = O(i,q) when @ — +oo. Since j € J;, we then get that
Kj,a < Pio When o = +00. It then follows from (8.39) that z; o — 250 = O(pi,a)

when @ — +00. A contradiction with point (ii) of Proposition 2. This proves that
(8.38) holds. This proves the claim.

These two claims prove that (i) holds. This ends Step 7.1.1.

Step 7.1.2: Let k € {1,...,N}. We assume that =44 — Zi,a = O(Si,o) When
a — +oo. We claim that

Si,a # Wk, When a — +o00. (8.40)
We prove the claim by contradiction and we assume that

Si,a X Pk,o When a = 400. (8.41)
Since ;0 = 0(84,) When o = +00, we then get that p; o = o(p,q) when a — +00,
and therefore k € J;. It then follows from the definiiton of s; o that

20 < B2 im0 — oral®) = 0(4d ) + 0(s24)

k,a

when a — 400, and then s; o = o(t,o) when a — +00: a contradiction with
(8.41). Then (8.40) holds and the claim is proved. This ends Step 7.1.2.

Step 7.1.3: Point (iii) is a straightforward consequence of the definition (8.29) of

Si,a-



LIN-NI'S PROBLEM 47

Step 7.1.4: We let j € {1,..., N} be such that z; o — Zi,a = O(si,o) and pjq =
0(8i,o) when o = +00. We claim that

Wja = O(pia) when a — +o0. (8.42)
We prove the claim by contradiction and we assume that
Wi,o = 0(tj,o) Wwhen a — +o00. (8.43)
Therefore, j € J; and we have with (8.38) that
H', . P . .
szg,a < f(uj,a + |wi7a - -Tj,a|2) = o(:uj,a) + O(Sz%,a) = O(Szz,a)
jsx

when a — +00. A contradiction. Then (8.43) does not hold and (8.42) holds. This
proves the claim and ends Step 7.1.4.

Step 7.1.5: Let j € {1,..., N} be such that lim,_,; o @ = 400. We claim
that ’

2
2 s
5 natlio > = O(1) when a — +oo0. (8.44)
Wi (] 0 + |Tia — Tjal?)

We prove the claim. Assume first that p;,o = o(fti,n) when a@ — +oo: we then get

that
2 2
. Si,allj,a = 0 Hj,a . Sia _ 0(1)
/‘i,a(ﬂj’a + |$i,a - mj,u' ) Hi,o |-77i,a - wj,a|)

when a — +oo. This proves (8.44), and the claim is proved in this case.

Assume that p; o = O(ptj,o) when o - +00. Then j € J; and (8.44) follows from
the definition of s; 4.

In the two cases, we have proved (8.44). This proves the claim and ends Step 7.1.5.
Step 7.1.6: Let j € {1, ..., N} be such that z; o — 2,0 = O(8i,0) and s;,o = 0(l45,0)
when a — +00. We claim that
Szzal"’jva
I = 0(1) when a — +oo0. (8.45)
,u'i,a(p/j,a + |$i,a - xj,a|2)

We prove the claim. We first assume that p; o = 0(5,o) when @ = +o00. We then

get that
8% albj,a Bio  Sia
T 5 = O ==~ =o(l)
l‘l’iqa(p’j,a + |.'L'i7a - :Ejaa| ) Hi,o /J/j,a

when a@ — +00. Then (8.45) holds in this case. The case ptio = O(ftj,o) When
a — +oo is dealt as in Step 7.1.5. This proves (8.45) and then the claim. This
ends Step 7.1.6.

Step 7.1.7: point (v) is a consequence of Steps 7.1.5 and 7.1.6.

Therefore, points (i) to (v) of the hypothesis of Proposition 6 are satisfied with
Mo 1= fi,o and 74 1= S; 4. This ends Step 1.

Then we can apply Proposition 6 with rq = s; o and po = fiq-

Step 7.2: we assume that

lim A0 (8.46)

a——+00 Si,a
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It then follows from Proposition 6 that there exists v; as in Proposition 7 such that
(8.30) and (8.31) hold. Moreover, there exists (7;); such that

o2 £ 7
K = lim % + Z 7; lim . i,aj,a _ . (847)
a0 IJ,T FEI; a=too l"’i7a(ll’j,a + |mi7a - 'Z.jaa| )
i, i

Step 7.2.1: We claim that
K > 0 or 3j € Ij such that 6; # 0. (8.48)

We prove the claim. If K > 0, then (8.48) holds. We assume that K = 0. It then
follows from (8.47) that

N'z o ]
Si,a = O Z—laz and Sia =0 (Nz', (Nia + |-'L'i,a - "L'J',a|2)) for all j & I; (8.49)
’ag_ 7,

when @ — +00. The definition (8.29) of s; 4, (8.46) and (8.49) yield the existence
of j € I; N J; such that

o = 20 o+ [0 = 3ial?) (8:50)
for all @ € N. Since j € J;, we have that
ti,e = O(lj,o) when a = +oo0 and j # i. (8.51)
Moreover, since j € I;, we have that
Tja — Tia = O(8i,0) and pj .o = 0(Si,q) (8.52)
When a — +00. It then follows from (8.50), (8.51) and (8.52) that
Mio X pj,o and |24 — Tj | X 85,4 When a — +oo. (8.53)

In particular, j € I] and 6; # 0. This proves (8.48) when K = 0. This proves the
claim and ends Step 7.2.1.
We set 1
d:= 5min{|0j|/j € I; and 6; # 0}.
We define
bi(x) =K+ Y Az —6;"
jer!
for all z € Bys(0) where I;” := {j € I;/ 6; # 0}. Clearly ¢; is smooth and harmonic
on Bs(0). We define ] = ZjeI{\Ii,, Aj, so that one has that

vil(3) = mrﬁ + i() for all & € Bas(0) \ {0}

Note that A} > A; > 0.

Step 7.2.2: We claim that

V5 (0) > 0.
We prove the claim. Indeed, if K > 0, the claim is clear. If K = 0, it follows from
(8.48) that there exists j € I;”, and then 1);(0) > X;]6;|>~™ > 0. This proves the
claim.

Proposition 7 is a consequence of Steps 7.1 and 7.2.
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Step 7.3: we assume that
lim d(.’l]'z"a, 69)

a—4o0o Si,a

=p>0. (8.54)

In this case, the proof of Proposition 8 goes basically as the proof of Proposition 7.
We stress here on the differences.

It follows from Proposition 6 that there exists ¢; as in Proposition 8 such that (8.34)
and (8.35) holds. We define

1 ~ .
4= §m1n{|0]|/_7 € I; and 0; # 0}.
We define

i _— <o [ Mz —o(@)P ifo(f;) #0
Ji(w) ::K+]§,Aj(lw—9j|2 Ha—o@)F )+{0|$ - ifagé,;io

for all x € B2s(0) where I,” := {j € I,”/ 0; # 0} and X; > 0 is as in Step 7.2.1. In
particular, as in Step 7.2, we have that

N\ .
() = —|$|7:72 + ;i(x)
for all € Bs;(0).
We claim that
$;(0) > 0. (8.55)

We prove the claim. As in Step 7.2.2, (8.55) holds if K > 0. Assume that K = 0.
Arguing as in Step 7.2.1, we get that

{ either s; o = d(24,0,00) and z; o ¢ 00

or there exists j € I; N J; such that s7, = 2= (4 , + [2j,0 — 2ial*)
s Jya >

Step 7.3.1: we assume that
Si,a ‘= d(.Z'i,a, 89)

for all @ € N. In particular, it follows from (8.54) that that p = 1 > 0 and then
a(6;) = a(0) = (2p,0) # 0 and then ;(0) > Al|a(6;)]> ™ = Xi(2p)2 ™ > 0.

Step 7.3.2: we assume that there exists j € I; N J; such that

M"
zg,a =22 (ll’_?,a + |xj7a - mi,a|2)
Hj,a
for all & € N. Mimicking what was done in Step 7.2.2, we get again that ;(0) > 0.

In all the cases, we have proved that ¢;(0) > 0. This proves (8.55), and then ends
Step 7.3.

Proposition 8 is a consequence of Steps 7.1 and 7.3.
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9. ESTIMATES OF THE INTERIOR BLOW-UP RATES

This section is devoted to the analysis of the concentration at the points z; o
away from the boundary.

Theorem 3. Leti € {1,...,N}. We assume that
lim d(:ci,a,(')ﬂ)

a—+00 Hi,a

= +o0. (9.1

Then n > 4 (equation (9.1) does not hold in dimension n = 3). Concerning the
blow-up rate, there exists c; > 0 such that

. eas?,;Z )
agr—ir—loo li?;l =c; ifn>5, (9.2)
aEI—il}oo eas?,a In ” =c¢ ifn=4. (9.3)
and
Si,a = 0o(d(Z4,0,00)) (9.4)

when a — +00. Moreover, when n > 7, we have the following additional informa-
tion:
3
lui,a
1

Siq =0 when a — +00, (9.5)

i
U

and there exists j € {1,..., N} such that p; o = o(lj,o) when oo = +o0 and

1
Sia = (Z’%a(l@,a + |Ti,a — »’Ej,a|2))

2
7,

for all & € N.

Proof of Theorem 3:
For z € s;i(ﬂ — Zj), We define

n—2
Si,a
Ui,a(m) = a3 ua(xi,a + Si,ax)-
i o

3

Step 3.1: We claim that there exists 6 > 0 such that v; o is well defined on B;(0)
and such that there exists v; € C?(Bs(0) \ {0}) such that

. o 2
im0 = v in G (Bus(0)\ 0) 96)
where there exists \; > 0 and v; € C?(Bs5(0)) such that Ay; = 0 and
pV
vi(z) = mﬁ + 1i(z) for all z € Bys(0) \ {0} with ;(0) > 0. (9.7

We prove the claim. Indeed, since z;o & 01, it follows from the definition of s; 4
that
d(;vz-,a, BQ)
Si,a

for all € N. In particular, v; o is well defined on By /5(0).

>1 (9.8)
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Assume that limg_, 4o 220e® — 4oo: then (9.6) and (9.7) are direct conse-

quences of Proposition 7. .
Assume that limg,_ 4 oo W = p > 0: it follows from (9.8) that p > 1 and that
limg 400 4,0 = o € 0. Using that the chart ¢ around zg is such that dyy is an
orthogonal transformation and that 4, coincides with u, on Q, we get (9.6) and
(9.7) thanks to Proposition 8.

This proves the claim and therefore ends Step 3.1.
Taking 6 > 0 smaller if needed, for any j € {1,..., N}, we have that

Tja — Ti,a 7 0(Si,a) When a = +00 = |Tja — Tia| > 2084 for all a € N. (9.9)

Step 3.2: Let U be a smooth bounded domain of R", let 2o € R be a point and
let u € C2(U). We claim that

-2
/(w—xo)kakuAudm—}—nT/ uAudz (9.10)
U U

2 _
= / ((w—mo,u)|vu| —dyu ((x—wo)kaku+ o 2u>> do
oU 2 2

We prove the claim. Indeed, this is the celebrated Pohozaev identity [23]. We
sketch a proof here for convenience for the reader. We have that

-2
/ (x — x0)¥OpulAudr + nT/ uAu dx
U U

= / —0;0;u ((a: — z0) O + n- Zu) dx
U 2

— -2
= / 0;u0; ((x — 20)*0u + n 2u) dz —/ oyu ((:1: — 20)*Opu + o u) do
U 2 au 2

n —

1
= E/ |Vu|2d$+—/(x—mo)k6k|Vu|2da:—/ duu | (z — z0)FOpu +
2 Ju 2 Ju aU 2

2 -
= / Ok ((w - xo)k¥) dz —/ Ovu ((:c — 20)*0u + n 5 2u) do
U U
2 -
= / ((x — o, V) |V;1| —dyu ((:1: — 20)*Opu + n 5 2u)> do.
U

This proves (9.10), and therefore the claim. This ends Step 3.2.

As a consequence, differentiating (9.10) with respect to xg, we get that

2
/ OrulAudzx z/ (1/;;M — 6,,u6ku) do (9.11)
U aU 2

Taking u := u,, using equation (1.3) and integrating by parts, we get that

. Vug|? w2 equ?
€a [ uidz = / ((:L' — Zg,V) (l X+ 2 (9.12)
/U U 2 2% 2

-0y Uq ((m — 20)*Opuq + nT—2u0>) do

2
u) do
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where here and in the sequel, we define ¢, := n(n — 2). Taking ¢ € {1,..., N} such

that (9.1) holds, and 6 > 0 as in Step 3.1, we let U := By, , (%i,o) CC Q and
Zo 1= T o in (9.12). This yields

. \v/ 2 2% 2
6(1/ ui de = / ((.Z‘ _ xi,aﬂ/) (' ua| _ Cnu% + Caua)
Bss; o (Tiya) 8Bss; , (i a) 2 2 2

—0,uqy <(a: — mi,a)kakua + i ; 2ua>) do. (9.13)

We now estimate the LHS and the RHS separately.
Step 3.3: We claim that there exists ¢ > 0 such that
1 ifn>5
/ W= (et olide{ jyue jnZg  O19
Bss; o (Tia) Hio
when o = +o00.
We prove the claim. We assume here that n > 4. It follows from (7.1) and the
estimate (11.33) that
1
2 2 2
uyde > C U~ad.’12'=0/,t-a/ —————dz
/B5Si,a (-’Ei,a) B55i,a(wix‘¥) - “ Bg‘,i’a/“i’a(o) (]' + |Z|2)n_2

1 ifn>5
2 >
Chia - { In2e ifn =4 (9-15)

v

for all « € N.
We now deal with the upper estimate. With the upper bound (7.3), we get that

/ u2 dz (9.16)
Biss; o (ia)

N n—2
— Hi,a
<C udx+C / I dz
Bss; o (%isa) Z Bss; o (%i,a) :u?,a + |$ - :L'j,a|2

i=1

We deal with the different terms separately.
Step 3.3.1: We claim that

/ s, dz = O(y; ,) when n >4 (9.17)
Bss; o (Tiya)

when a — 4o00. We prove the claim. Indeed, with the definition (8.29) of s; , we
have that

n—4

n
2

/B ( )ﬂi do = O(sfata) = Oninta™") = o)
85,0 (Tiya

when o — +o0o since n > 4. This proves (9.17) and ends Step 3.3.1.
Step 3.3.2: We let j € {1, ..., N} such that

Hja = O(thi,a) (9.18)
when o« — 4+00. We claim that

n—2
IR 2 1 if n Z b)
de < Cu;,, - { Sia  ap . 9.19
/Bssm(zi)a) (N?,a + |z — $j,a|2) i,a In e ifn=4 ( )
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when a — +o00. We first assume that n > 5. Estimating roughly the integral, we
get with the change of variable = x; o + pj o2 and with (9.18) that

n—2 n—2
/ > Hj,o : dr < / > Hj,o - dr
BJSi,a (T4,a) luj,a + |$ - .ij’a| R™ uj,a + |$ - ZL'j,a|

dz
= 12 =02 ) =02
u],a /R" (1+|z|2)"*2 (M],a) (Mz,a)

when a — +oo since n > 5. This proves (9.19) when n > 5. When n = 4, we must
be a little more precise. Assume first that z; o — ;o = O(s;,q) When a — +oc.
Then we have that

2 n—2
/ 5 /‘I/j,a 5 dx S / 5 M.jaa 5 dm
B5Si,a (zi,a) :U/j,a + |'Z' - mj,al BRsi o (@j,a) lu’j,a + |$ - 'Tjaa|
dz
2 i,a
i, oo o)
" s, @ (L) o Y i

85 a k]

when a — +00. Assume now that si_’olt|a:i,a — Zj.a| = +00 when @ - +00. Then
for any « € Bss,; ,, (i), we have that | — x| > 85,0 and then

Hj ’ st u?
dm<0M=0<u2a)=0(um1 )
/B“i’a (@i,a) (N?’a + |£L' - xj,a|2> B Sg,a 7 /%,a

when a — +00. These estimates prove (9.19) in case n = 4. This ends Step 3.3.2.

Step 3.3.3: We let j € {1, ..., N} such that

Pia = 0(fhj,o) and x; o — Tj.q 7# 0(5i,a) (9.20)

when a — +00. We claim that when n > 4, we have that

n—2
Hi,a 5
dz = O(k; 9.21
/B<> (Nia o - wj,aP) (1i.a) (9.21)

when o — +00. We prove the claim. It follows from (9.20) and the definition (9.9)
of § that |2 — zja| > 20si,q for all & € N. In particular,

|Ti,0 — Tjal

T Ec Bési,a (xi,a) = |.’L' - z'j,a' 2 2

and therefore

n—2 n—2
/ . Hj,o _ dz=0 | sy | Hj,a _
Bsu; o (@i0) \ Mo + 1% = Tjal 1o+ |Tia — Tjal

(9.22)

when a — +00. Moreover, it follows from (9.20) that j € J;, and then

2 o< B2 e — 26l 9.23)

J,ao
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for all & € N. It then follows from (9.22), (9.23) and (8.38) that

n—2 n—2
Hj,a n Mi, o
de =0 | s;
~/Bssi)a (zi,a) (u?,a + |£L' - mjaa|2> v (8;‘-’@)
i n—4
=0 (l"’z?,a (S?’a) ) = O(/J"ia)

when a — +o0o since n > 4. This proves (9.21) and ends Step 3.3.3.
Step 3.3.4: We let j € {1,..., N} such that

Pi,a = 0(f1j,0) and o — Tja = 0(Si,a) (9.24)

when o« — 4+00. We claim that

M?,a + |'Z- - :Ej,a|2

n—2
/ ( Hj,a > dex = O(M%a) when n > 4 (9.25)
Bss; o (%i,a)

when a — +00. We prove the claim. As in Step 3.3, it follows from (9.24) that
J € Ji. In particular, using the definition (8.29) of s; , and the second assertion of
(9.24), we get that

2 < Mi,o

,a —

s (uia + %0 — $j7a|2) < Mialtja + O(Szg,a)

7,

when a — 400, and then s%a = O(Wi,altj,a) when o = +00. Consequently, we get

that
i n—2 57 M%
), — %, — 1l
/ o etep) =0l =055
Bss; o (i,a) \Mja T 1T~ Tja Fja Hj o
pia)E7
=O<(ﬂ> u?,a>=0(uf,a)
Hj,a

when o — +o00 since n > 4. This proves (9.25) and ends Step 3.3.4.

Plugging together (9.17), (9.19), (9.21) and (9.25) into (9.16) and combining this
with (9.15), we get (9.14). This proves the claim and ends Step 3.3.

We define

Vg |? w2 equ?
Aig: = / ((x_xi,aay) (' —cn%+ &
8Bss; , (Tia) 2 2 2
k n—2
—Oyta | (& — 24,0) " Okua + —g Ua do. (9.26)
for all € N.
Step 3.4: Assume that n > 3. We claim that
— 2)2wn_1 X1 ia )"
Ajo = <(” Feno1 b0 +o(1)> . (Z_) (9.27)

when o = +o00. Here, w,_1 denotes the volume of the unit (n — 1)—sphere of R™.
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We prove the claim. With the change of variable z = z; o + s;,o2 and using the
definition of v; o, we get that

-2 2 o*x ‘
_ Hi,a " |vvi,a|2 Mi,a Uiz,a 6031{0{”2
Ao = (H= (2,w) 20D ¢, (Hia) Ty fofiafa
Si,a 336(0) 2 si,a 2 2
n—2
—6,,1],"(1 (;ckakvi,a + Tvi’a>) do

for all @ € N. Since v;,o — v; in C7,
limit, we get that

_ 21;,-)) do + o(1)>

when a — +0o. We let € € (0,4) and we apply the Pohozaev identity (9.10) to v;
on Bs(0) \ B.(0) with zo = 0. Since Av; = 0, we get that the map

.2 _
€ ((z,u) (M> — 0yu; (mkakvi + i 211,-)) do
8B.(0) 2

is constant on (0, §]. With the explicit expression (9.7) of v;, we have the asymptotic
expansion

(z7 V) <M) _ au'Ui (mkakvi + n— 21)5) — (TL — 2)2)‘2¢i(0) |$|1—n + O(|.’L’|27n)

(B25(0) \ {0}) when a — +o00, passing to the

—0yv; (wkakvi + 2

2 2 2

when |z| — 0. Consequently, we get that

2 2 2

e—0

and then

|2 — — D2\,
/ ((Z,I/) <_|sz| ) — 0yv; (wkakvi +Z 21}i)) do = (n—2) )\’wz(o)wnfl.
8B5(0) 2 2 2

Plugging this equality in (9.28) yields (9.27). This ends Step 3.4.
Step 3.5: We claim that there exists ¢; > 0 such that

n—2
. asi,a
lim 7
a—+400 ui o
>

=c¢;ifn>5and lim e,s87,1n =g¢; if n = 4. (9.29)
a—+oo ’

Hi, o
Indeed, plugging (9.14) and (9.27) into (9.13) yields
-9 2 \abs . n—2
(c+0(1))€au?a — ((TL ) Wn lAzd)Z(O) +O(1)> . (M_,a)
’ 2 Si,a
when @ — +oo when n > 5. Since ¢, A}, 1;(0) > 0, we get that

eas?,;z _ (n—2)wp_1 X1 (0)
a—4oo /1,.”24 - 2c

> 0.

This proves the claim when n > 5. The proof is similar when n = 4.

12 B IV
lim ((z,,,) (M) o (wk P 2vi>) o — (1= DNt (O)wns
8B.(0)

7
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Step 3.6: we claim that

1

Hiva
Sia =0 . when n > 7. (9.30)

—n—2
U

when o — +00. We prove the claim by contradiction. Indeed, if (9.30) does not
hold, it follows from the definition (8.29) of s; o that

1

2
_ Mia
Sia = 1
e

Uq

2

when a — +o00. Plugging this identity into (9.29) yields

n—6

€a X ft; o Ua
when a — +o0o. With (2.4), we then get that
n—6 n—6
1=0 <,uz; €’ ) ,
a contradiction since n > 7. Then (9.30) holds and the claim is proved. This ends
Step 3.6.
Step 3.7: Assume that n > 3. We claim that
lim d(:cz-,a, 69)

a——+00 Si,a

= +00. (9.31)

We prove the claim. We argue by contradiction and we assume that
lim d(.’Ez’,a, BQ)

a——+00 Si,a

It follows from the definition (8.29) of s; o that p > 1 > 0. We adopt the notations
of Proposition 8. We let jo € I] such that

Bj0,1 = min{f;,}. (9.32)
JEI;

=p>0.

Here, 6;, denotes the first coordinate of 6;.
Step 3.7.1: We claim that there exists ¢y > 0 such that
d(mjo,a,aﬂ) Z €0Si,a (933)

for all & € N. We prove the claim by contradiction and we assume that d(z,,q,082) =
0(8i,o) when o = +00. In particular, via the chart ¢, we get that

(™ (®jo.0) (e @ia) _

lim ! =0and lim —p<0.
a—+o00 Si,a a—++400 Si,a
Coming back to the definition (8.33) of 8;,, we get that
—1(,.. — L,
b0 = lim (™ (@jo,a) = ¢~ (Tia)1 —p>0.
a—+oo Siﬂl

A contradiction since 6, 1 < ;1 = 0. This proves (9.33) and ends Step 3.7.1.
Step 3.7.2: We let §p > 0 such that

do < %) and gj # éjo = |5J —é]-0| > 24g.
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Taking the Pohozaev identity (9.12) with U := Bss, , (%jy,a) CC Q and differenti-
ating with respect to xg, we get that

2 2* 2
/ (Vk (|Vua| u* + eaua) - ayuaé?kua)) do=0 (9.34)
0Bsgs; o (jg,a) 2 2 2

for all « € N and all ¥ € {1,...,n}. With the change of variable z = z; o + ;a2
and using the function v; o, we get that

V ia2 e ZU?; € Szavza
/ o [Voial® (u_> Yia \ Cfiatia ) 50 5ua) ) do=0
0Bs, (Fjg ) 2 Siw/) 2 2

(9.35)
for all @ — 0. Letting a — 0, we get with (9.6) that
2
/ ) (uk Vel _ 6,,v,~8k1),-)> do =0 (9.36)
B3, (B54) 2
for all k € N. Tt follows from (8.35) that
vil®) = K+ XN(lz =6, + |z —o(6)"
jel
AL
2,J0 L.
|SU - 0]’0 |n—2 - wz’JO (x)
where X; ;> 0 and
bijo (@) 1= K + Njglz — 0 (050) " + Y Aillz — 67" + |z — a(6;)"

JjeL”
where I,” := {j € I\/0; # 6;,} Arguing as in Step 3.4, we get that (9.36) holds on
balls with arbitrary small positive radius and then we get that
i jo (05,) = 0.
Taking k = 1, we get that

(5, — 9(850))1 ( j)l (0jo — 0 (91))1>
Y + Aj + =0. 9.37
#1600+ 22 0 =67 * 16— 0@ (3:57)

Recall that if §; = (0,1, ]) then o(6;) = (2p — 6;,1,0;). In particular, since
T; o € Q, we have that 6; € {z; < p} and then for all j € I;”, we have that
0jo1 < 65,1 < (0(65))1- (9.38)

In addition, we have that

(00 — 0(00)1 = 2(8j0,1 — p) = —2(|0jo,1] + p) <O. (9.39)
Plugging (9.38) and (9.39) into (9.37) yields a contradiction. This proves that (9.31)
holds. This ends Step 3.7.
Step 3.8: We assume that n > 3. We claim that

Tja — Tia = 0(8i,4) when a = +oo for all j € I. (9.40)

We prove the claim. Since (9.31) holds, we define v; o, and v; as in Proposition 7.
In particular, we have that

viz) =K+ Y Az —6;F "

JeI;
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forall z € R \ {6,/ j € I,}. We fix k € {1,...,n} and we let jo € I} such that
0jo.k =min{b;/j € I}.
We let ;" := {j € I}/ 0; # 6, }. Therefore, there exists A ; > 0 such that

!

A
. — 2,70 L.
Ul(x) |.'L' _ 0j0|n_2 + /valaJO (.’L’)

where
Yigo(@) := K+ Y Ajlz — 0,7
JjeL”
Taking § < min{|0;|/0; # 8, }, we use the identity (9.34) as in Step 3.7. Performing
the change of variable x = x; o + 5i,o%, We get again that

aklpiajo (91'0) =0.
With the explicit expression of 1; j,, this yields
) 3, 0 =0k _
; ”» ! |0.7 - 0]0'”
j€EI;
Since (8; — 8;,)r > 0 for all j € I,” by definition, we get that 8, = 0;,x for all
J € I,”, and therefore for all j € I!. In particular, 6 = 0, for all k£ € N, and

therefore §; = 6; = 0 for all j € I]. Coming back to the definition (8.33) of 6;, we
get that (9.40) holds. This ends the proof of the claim and of Step 3.8.

Step 3.9: Assume that n > 7. We claim that there exists jo € J; such that
1

Hi, o 2
Sia = ( (uia + |0 — .'L'j’a|2)) and ;o = o(ftj,a) (9.41)

JYa
when a — 4+00. We prove the claim. Indeed, it follows from the definition (8.29)
of s;, and (9.30) of Step 3.6 and (9.31) of Step 3.7 that there exists j € J; such
that

sia = (B2 + 010 = 210)) (9.42)
7,

for all @ € N (up to a subsequence, of course). Since j € J;, we have that p; o =
O(j,o) when a — +oo. Assume that p; o < pjo when oo = +oo: then it follows
from (9.42) that 24 — ;o = O(Si,o) When o = +00, and then j € I]. It then
follows from (9.40) of Step 3.8 that we have that z; 4 — 2j0 = 0(s;,o). Coming
back to (9.42), we get that s; o X f1;,o When o — +00: a contradiction with (8.38).
Therefore (9.41) holds, and the claim is proved. This ends Step 3.9.

Step 3.10: We assume that n = 3. Tt follows from (9.27) and (9.13) that

/ u? dx < Hia (9.43)
Bss; o (Tiya)

Si,a

when a — +o00. It follows from (7.1) that
2

N
/ Zdr = (1+0(1) / o+ 3 Vial) | do
Bss; o (@i,a) Bss; o (i,a) j=1

X

N
$300a + Y M /B )(M?,a + |z —zj0l’) " da
j=1

855 0 (Tia
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when a — +00. We distinguish three cases to get a contradiction.
Step 3.10.1: we assume that

/ ul dx < s} i), (9.44)
Bss; o (Tia)

when & — +o00. It then follows from (9.43) that €,s} ,u2 < fi,o When o = +o0.

Moreover, since 8; 4 < ,uz{{fﬂ;l by the definition (8.29), we get that @2 = o(ui,q)

when a — +o00. This is a contradiction with (8.15). Then (9.44) does not hold.

Step 3.10.2: we assume that there exists j € {1,..., N} such that s; o, = O(|2;,a —
zjq|) and

/ ui dr < ,uj,a/ (p?,a + |z — a;j’a|2)*1 dzr (9.45)
Bss; o (%i,a) 555 o (%i,a)

when o — +00. Here again, since |z — 24| X |2 o — Zj,o| for all x € By, , (i,q),
it follows from (9.45) and (9.43) that

. 3
€allj,aSiq _ Mia

12+ [Tia — Tjal® * Sia

(9.46)

when a@ — +o0. In particular, since s; o = O(|Zs,0 — Zj,o|), we get that p; o =
o(ftj,o) when a = +o00, and then j € J;. Therefore, we have that
o < L2 ot i = 2ial?)

7,
for all @ € N, and it then follows from (9.46) that 1 = O(eqas,) = o(1). A
contradiction. Therefore, (9.45) does not hold.
Step 3.10.3: we assume that there exists j € {1,..., N} such that |z;, — z;q| =
0(8i,) and

/ u?x dz =< uj,a/ (uia +|z— .Tj’a|2)_1 dz (9.47)
B&si’a (wi,a)

Bss; o (Tia

when o — +00. A change of variable then yields

2 - . 3 2 2 2\—1
[ et [ G stalel?)
Bss; , (Tia) Bs (%)
s 1,0

when a — 4o00. Therefore,
2 9., o3 e 12
/ U AT X 1,087 o MaX{fLj 05 Si0}
Bss; o (%i,a)

when a = +o00. It then follows from (9.43) that

ea:u]',asg,a = MYi,a ma’x{,uj,a; si,a}2 (948)

when a — +o00. In particular, we have that p; o = 0(ftj,«), and then j € J;.
Therefore, we have that

2, < l’j’f’“(u;a + [Tin — 250l?) < fiattia +0(s2a)

Jia

and then s; o = O(\/Fi,aliG,a) = 0(4j,c) When o = +o0o. Then (9.48) becomes
€aSi o X Mialtj,e When a — 400, a contradiction since s7 , = O(fi,aftj,o) When

a — +00. Therefore, (9.47) does not hold.
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In all the situations, we have proved a contradiction. Therefore the hypothesis (9.1)
of Theorem 3 does not hold in dimension n = 3. This ends Step 3.10.

Step 3.10: Theorem 3 is a direct consequence of Steps 3.5, 3.6, 3.7, 3.8 and 3.10.
This ends the proof of Theorem 3.

In the sequel, we need to translate slightly the boundary concentration points: we
fix § € R*! and for all i € {1,...,N} such that z;, € 09, we define ;o :=
07 (@i,0) + pi,ab) € 00 for all @ € N. The parameter 6 is chosen such that there
exists g > 0 such that
|féi,a - -'Z'j,a| Z €oMi,o (949)
for all 4,5 € {1,..., N} distincts such that &; o, %, € 0Q and all @ € N. We define
Si,a @8 ;o With replacing x; o by #;q: as easily checked, for any ¢ € {1,...,N}
such that z;, € 00, we have that 3; o < s;, when o = +o0o. From now on, we
replace z; o by Z; . As easily checked, the convergence Propositions 7 and 8 and
the estimates (7.2) and (7.3) continue to hold with this new choice of points (with
7; > 0 only in the propositions). Note that the convergence (4.1) of the @;, in
Proposition 2 is changed as follows:
lim ||@i,q — Uo(- + 0)”01(K0S_2i,a) =0. (9.50)

a—+oo

10. ESTIMATES OF THE BOUNDARY BLOW-UP RATES

In this section, we deal with the case when the concentration point is on the
boundary.

Theorem 4. Assume thatn > 3. Leti € {1,...,N}. We assume that

Tj o € O (10.1)
for all « € N. We assume that for all j € {1,..., N} \ {i}, we have that
Tja €00 = T4 — Tio # 0(5i,4) when o = +00 (10.2)
when o — +00. Then there exists ¢; > 0 such that
limg 400 ”;—E: = —clH(xo ifn >4,
1mhéﬂm;%i;:;f¢;@@ ifn =3, (10.3)

Where xg := limg—s 100 Zi,o and H(zq) denotes the mean curvature of 0Q at xo. In
particular, H(xq) < 0.

Proof of Theorem 4: As for Theorem 3, the proof relies on a Pohozaev identity.
Here, we have to consider the boundary of €. For any a € N, we define

Ug := Bész',a (Wﬁl(xi,a)) (10-4)
Step 4.1: we apply the Pohozaev identity (9.12) on ¢(Uy) N2 = (U, NR™) with
Zo = Zj,q. Lhis yields
%/ @m:/ F, do (10.5)
o(UaNR™) 9p(UaNR2)

= / F,do + / F,do
©((8U4)NR™) P(UaNOR™)
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where for convenience, we have defined

Vg |? ul equ’ n—2
F, = ('—ﬂfi,a,ll) <| 2a| - 6"2_(i + a2 a) =0y Uq (( - mi,a)kakua + 9 ua)

forall a € N.
Step 4.2: We deal with the LHS of (10.5). We claim that

2 o _ [ o(pia) ifn>4
/w(Ume o = { O(pie) ifn=3 (10.6)

when a — +o0o. Indeed, the proof goes exactly as in the proof of (9.14) of Step 3.3
of the proof of Theorem 3.

Step 4.3: We deal with the first term of the RHS of (10.5). When n > 3, we claim
that there exists ¢; > 0 such that

n—2
/ Fodz = (“—“> (ci + o(1)) (10.7)
p((8U4)NR™) Si,a

when a@ — +o0.

We prove the claim. The proof proceeds basically as in the proof of (9.27) of Step 3.4
of the proof of Theorem 3. Since z; o € 0Q, we have that limy_, 4 Zi,a = To € 0.
We take a domain U,,, a chart ¢ and the extension § of the metric and @, of u,
as in Lemma 2. Therefore, there exists =, € R*"' such that z;, = ¢(0,] ,) for
all @ € N with limg—, o 2}, = 0. We define ¥; o as in Proposition 8, that is

n—2

S
26 ((0, 25 ) + Si,a) (10.8)

ﬁi,a(:c) =

t -~
2]

i,

for all a € N and for all & € s; (¢ ' (Us,) — (0,2} ,)). Recall that it follows from
Proposition 8 that there exists #; € C?(Ba5(0) \ {0}) such that

lim @6 = 3; in Cpy(R™ \ {0} (10.9)

a——+0o0
In addition, there exists ¢; € C2(Bs(0)) harmonic such that
!
0i(x) == m)\ﬁ + ¢ (z) for all z € Bs(0) \ {0} with ;(0) > 0. (10.10)

We define the metric o (2) := (¢*9)((0,; ,) + 8i,a) for all z. With the change of
variable z = ¢((0,z} ,) + si,o2), we get that

[ No'

/ F,dx
©((0Bss; o (971 (2i,a)))NRT)

n—2 ~ 2 2 ~o* 2 ~2
Hi,o |V’Ui,a|ga Hi,a Ui,a easi,avi,a
={— (2,V)go | =2 —Cn | =) S0+ —5——
Si, 8B (0)NR™ 2 Sia) 2 2

-2
—Byﬁi,a (;L'kak’ﬁi,a + nTﬁi’a>) do,
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Passing to the limit & — 400 and using (10.9), we get that

/ F,dzx
©((8Bss; , (9=1(2i,a)))NRT)

) n—2 L2 _
= (M—’a> / ((2’7'/) (M> — Oyu; (z'kakvi + 1z 2'Ui>) do + o(1)
Si,a 8B;(0)NR™ 2
pia " 1 |Vv; |2 A n—2
=== —/ (z,v) — Oy | T Opv; + v; | | do+o(1)
Si,a 2 8B;5(0) 2

when a — +oo. Similarly to what was done in the proof of (9.27) of Step 3.4 in
the proof of Theorem 3, and using (10.10), we get that

o= () (D00 )

Si,a 4

/ga((aBs_ei’a(‘P_l($i,a)))mR1)

This proves (10.7) and ends Step 4.3.
We define

L:={je{l,.,N}/zj0— Tia = O(li,o) when a — +00}.
Given R > 0 and a € N, we define

Dia = ¢ (BRN,.@(«,ol(xi,a)) \ U Brte (0 M @na)) 0 w) . (101)
keL

Step 4.4: Assume that n > 4. We claim that

2 2* 2

lim lim “i/ (x — Ti0,v) (M—cnui—f-%) do=0

R—+4o00 a—+00 ’ W(UQHBRZ)\DR,Q 2 2% 2
(10.12)

We prove the claim. Indeed, it follows from (7.2) that
2 2* 2 N n—2
‘ Vual” eyl con2 40y Hio __ (10.13)
2 2 =1 (6t 1o —50l?)

for all x € 2 and all « € N.
Step 4.4.1: We claim that
(@ = 20, (@))] < Cla - 250 (10.14)

for all @ € N and all z € QN OU,,. We prove the claim. Indeed, for € R” small
enough, we get via the chart ¢ that

(- = Zia,v) 0 0((0,274) + ) (10.15)
= (p((0,2,0) + @) = 9(0,2} 1), v 0 9((0, 77 o) + )

1
= (@010,00) + 3001012 + Ol 0 ((0.5,0) +))
1
2
Inequality (10.14) is a straightforward consequence of (10.15). This proves (10.14)
and ends Step 4.4.1.

) (d%(o,w;,a>(x,x),v 0 sD(O,wé,a)) +0(Jz[*).
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As a consequence of (10.13) and (10.14), we have that

2 2* 2
/ (2= 2poyw) (ol Ma y Catia) gl (40 6
@(UaNBR™\Dp, o) ’ 2 2 2
< C/ |z — 20?0 do
P(UaNOR™\Dp, o)

+C i/ |z — zial?07 s
-1
io JeWanorm\Dro) (2, + & — Tj0l?)"

for all @ € N and all R > 0. We are going to estimate these terms separately.
Step 4.4.2: We claim that

/ |7 — @5 o|*a2 do = o(pi o) when a — 400 (10.17)
©(UaNOR™\DR,a)

We prove the claim. Indeed, using the definition (8.29) of s; o, we get that

n4l1 n—=5

o — @50 do < Cs7Ea% = O(ui 2 i)

/ga(UaﬁaRﬁ\’DR,a)
n=2
when a — +oo0. Moreover, since y; > = 0(ua), we get that the above expression
n—3
is o(pi,alia >
Step 4.4.2.

Step 4.4.3: We claim that

) = o(tti,) When o = +o00 since n > 3. This proves (10.17) and ends

2, n—2

lim  lim p;i/ @ = @il i —do=0ifn >4
R—+ocoa—+oo0" @(UaNOR™\Dpg.o) (/J’z?,a + |z' _ $i,a|2)

(10.18)

We prove the claim. Recall that for convenience, we let R*~! := OR™ . Noting that

@(Ua NoR~ \DR,G) C Rn71 \ (BRui,a (wi,a) \ UkELBR_lw,a (wk,a)) )
we get with the change of variables x = z; o + ;o2 that

|z — @0’ iy
)n—l

/sa(UanBRt)\DR,a (12, + |z = 02
|z|2 dz

< Cﬂi,a/ =t -

R7=1\(Br(0)\UrezBr—1(0x.a)) 1+ |z|2)n—1

where 0, = ,u;’é(a:k,a — Z;q) for all @« € N and all k¥ € L. Letting 0y :=
limgy 4 oo Ok,a, We get that

. _1 |$ - mi,a|2p’zg2
hmsuppi’a 5 ——1
a—+oo ¢(UaNOR™\ DR o) (pi,a + |z — zi0[?)

2
<C |z| dz

R7=1\(Br(0)\Urez Bp-1(0x)) (1 + |z]2)n—1

for all R > 0. Then, letting R — 400 and using that n > 4, we get (10.18). This
ends Step 4.4.3.
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Step 4.4.4: Let j € {1,..., N} such that
Tj.a — Ti,a 7 0(Si,a) When a — +00.
Then

e T T . ;
| R :{ o(pie) ifn>4 (10.19)

~/<p(UaﬂaR71)\'DR,Q (uia + |z — mj’a|2)n71 O(pie) ifn=3

when @ — +o0o0. We prove the claim. Taking § > 0 smaller if necessary, we have
that

|Zj,0 = Tijal > 208i0 (10.20)

for all @ € N. In particular, for all € Dg o C p(Uy NR™), we have that

|z — 2j,a| > 08ia-
Therefore, we have that
/ |z — zi0l?) s o= O ( st >
n—1 n—1

P(UaNOR™\Dr.0) (15 o + |2 = @j,al?) (43 6 + 1750 = Tial?)

(10.21)

for all a € N. We distinguish two cases:

Case 4.4.4.1: assume that p; o = 0o(fti,o) when @ — +o00. Then it follows from
(10.20) and (10.21) that

/ |$ - xz’,a|2/J/;‘:a2
An—1
©(UsNOR™\Dg, ) (pia + |z — wj,a|2)”

S,TL+1/J/T-L72 l,l/ n—3
-0 (%) =0 ((S’—a) Hi,a) = o(Hia)
io ha

when a — +oo. This proves (10.19) in Case 4.4.4.1.

Case 4.4.4.2: assume that p; o = O(lj,o) when @ = +00. Then, we have that
J € J; and it follows from the definition (8.29) of s; o that
Szz,a < m—’a(/‘ia + [Ti0 — xj,a|2)

J’a

for all @ € N. Plugging this inequality in (10.21), we get that

T —Tio|P 0, n—1
/ | z,a| Hja _ do =0 n,lizéia (10.22)
@(UsNOR™\DR,q) (/lia + |.CL' — :Ej,a|2) Sia Mja
n—3 .
= Hia [ i ) _ [ olpia) ifn>4
=0 (#j,a (Si,a) Nz,a) = { O(pia) ifn=3 (10.23)

when a — +o00. This proves (10.19) in Case 4.4.4.2.
We have proved (10.19) in all cases. This ends Step 4.4.4.

Step 4.4.5: Let j € {1,..., N} such that
Tjo € Q and ;4 — Ti 0 = 0(si,n) when a = +oo0. (10.24)

Then we claim that
Wja = 0(thi,o) when a — +o00.
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We prove the claim by contradiction and we assume that p; o = O(uj,o) when
a — +o00. Then j € J; and it follows from the definition (8.29) of s;  that
,ui,a ‘
Szg,a < M—(M?,a + |wi,a - l’j,a'Z)

J’a

for all & = +o0o. It then follows from (10.24) that s7, = O(ti,attja) = O3 4)
when a — +oo. It then follows from (10.24) that ;o — ja = 0(ija) when
a — +o0. Since z; o € 00, we then get that d(x,q,00) = o(ttj,o) when o — +o0,
and then z; o, € 0Q (see (i) of Proposition 2): a contradiction with our assumption
(10.24). This proves the claim.

Step 4.4.6: Let j € {1,..., N} such that
Zj o € 00 and ;4 — 5,0 = 0(8i,o) When a — +o00. (10.25)

We claim that

150"

)n—l

) |-'E — Ti,a
lim “i/ 2 :
a0 @(UaNOR® \ D o (uj,a + |z — zj,0]?

do =0 when n > 3. (10.26)

We prove the claim. Since limy 10 Zj,0 = To, We write ;4 = @(2j,a,1,7} ,) for
all & € N. Here again, since dpg is an orthogonal transformation (see Lemma 2, we
get that

d(2j,0,00) = (1 + o(1))|zj,a,1]
when a — +o00. For simplicity, we let d; o := d(2;,q,00) for all @« € N. With the
change of variables © = ¢(2), we get that
WO
)n—l

|z — zi o

/w(Uanale\DR,a) (13, + & — 2j,0l?

n—2
Fja

< C/ — dz
ORZ (,U,?,a + |(0,Z) - (xj,a,lax, )|2)

Ja

n—2 n—2
<O A< O
owr (&, + |2P) Za

for all & € N. Since ;o & 0, we apply (9.2) and (9.4) and we get that

. 2. n—2 n—2 n—2

|.’L' - wz,al :u/j,a p’j,a 'l'l'j,a

n 2 9 n—1 do =0 dn—l =0 Sn—l
$(UaNR™\Dra) (4 o + |2 — 2j.0(?) i T

—2
13, 23
(n—Jl’)a('n.—ll) = O([l/]-,of) = O(Nj,a) = O(Ni,a)
n—2
Fja

when a — +o00, where we have used Step 4.4.5. This proves (10.17) and ends Step
4.4.6.

Step 4.4.7: Plugging (10.17), (10.18), (10.19) and (10.26) into (10.16), we get
(10.12). This ends Step 4.4.
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Step 4.5: We claim that there exists ¢ > 0 such that

Vug|? uz* €q 2
1. 1 .,1 . | a _ o d
R—1>IJIrloo arpoo Hire /qo(UanaM)nDR « (5= F4007) ( 2 "o i 2 ’

— H(.’L’o)/ |."L'|2 |VU0|§ UO d§
2’n/ OR™ 2

i o VU2 ’
_Molgj / <| 0|§ _ n(n _ 2) UO ) d£ when n Z 47 (1027)
2 oRn 2 2%

where 6 is as in (9.50). We prove the claim. We assume that n > 4. As a preliminary
remark, using the definition (10.11) of Dg , and (9.4), note that

Uy NOR? )N Dgo = Dg,o NN
for all « € N. We define
fi,0(@) = 1,2 a0 9((0,2} ) + i)

for all © € p1; (07" (Usy) — ¢~ (2ia)) NR™. It follows from Theorem 4.1 modified
by (9.50) that

lim @6 =Us(-+0) in C,, (R® \ {6x/k € L}). (10.28)

a——+00

where Up(z) := (1 + |z|>)1~2 for all z € R" and § € R*!. With the change of
variable x = ((0, 7} ,) + fti,02), we get that

|Vua|2 uz* €qU>
. a) g
R (o s o
~9*

|Vai,a|3 Ui o ea:u/zza’az?a
= Wi, / G (z) — 2 da _ & =4 — 2 B2 ) do
" JBR(0)nOR"\Urer Baot(Bha)) 2 s 2 :

where g, (2) := (p*€)((0, 2} ,) + pi,a) is the pull-back of £ by the chart ¢ and o,
is the surface area associated to the metric go and

(p((0, 75 o) + pi,az) — (0,75 ), v 0 (0,25 o) + Hi,a2))
1 o
With (10.15), (10.28), using that ¢*£(0) = £ and that n > 4, we get that

Go(z) :=

|Vug|? u? equl

— — — 9>
Rl—lg—loo agr-ir-loo Hia /DR A0 (@ = Zia,v) ( 2 n(n—2) 2% + —0(90&9)

_ ~(0up(0),v(@0)) iy (WUl +0) UG @+0))
= Rortos Jpy, 2 o 2 T
_ [ OO0, g gy (IVUo@(w) _cnUo*m)) i
oR" 2 2 2%
_ [ ZOueOurtan)) (IVUoIE U > ”
oR™ 2 2
- Oup(0)v(r0) g /GRH <|W;’o|§ U ) i (10.30)
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where in these computations, we have defined
DR = BR(O) n 6]1{2 \ UkELBR—l (Hk))

We let A(p,0,1z) be the right-hand-side of this expression. Since Uy is radially
symmetrical, we get that

2n 2 2%

_(6/9190(0)31/('7:0))01991/ (|VU0|2 _cnUO*> d§
OR™

2 2 2%

Since dpg is an orthogonal transformation, the first and second fundamental formes
of 00 at x in the chart ¢ are respectiveley Iy = d; and Iy = —(Orip(0), v(x0)).
Therefore the mean curvature of 0Q at xq is H(xo) = Y, IIx; and then

—0up(0) 4 ;[ |IVU[E Us
/BRE — 7T 5 o d¢

:H(mo)/ P |VU0|§_CUO* "
2n Jopn 2 "o '

Combining (10.29) and (10.31) yields (10.27). This ends Step 4.6.

Step 4.6: we claim that

2 o*
Jowe 1212 (5% — en'fi) de >0

and fakg (\V[210|5 —cp Ug(i*) d¢=0

We prove the claim and assume that n > 4. Using the explicit expression of Uy, we
get that

VU 2 * _ 2 e e} 2 _ n
[ b WOl U8 g = wn2(n=2) / =D 4
AR™ 2 2% 2 o (1+4+r2)n

_ wna(n—2)’ l/l (r2 — 1)rm dr+/°° Mdr]

2 1 +r2)n 1 +r2)m

T W e B
- Vo i, ﬁd]
— Wn—2(n — 2)2 ! (1- 7'2)(7'"_4 —rn)
B 2 /0 (]_ + 7-2)n

Similarly, we prove that the second integral in (10.31) vanishes. The claim is
proved. This ends Step 4.6.

Step 4.7: Assume that n > 4. Plugging together (10.12), (10.27) and (10.31), we
get that there exists d; > 0 such that

when n > 4. (10.31)

dr > 0.

) 1 s |Vug|? B ﬁ €ati?, .
agrfm Bi o /(p(UmaRD(:c Tia, V) ( 5 Cn o + — do = d;H (o)
(10.32)
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Plugging (10.6), (10.7) and (10.32) into (10.5), we get that

(L> (ci +0(1)) + (diH (o) +0(1))tix = 0

Si,a

when a — +00, and then there exists ¢ > 0 such that
lim ’—72 = —ciH (xo). (10.33)

In particular, H(xzo) < 0. This ends the proof of Theorem 4 when n > 4. We are
now left with the case n = 3.

Step 4.8: We assume that n = 3. We define @; , as above. We let (24)q € R" be
such that

all}I—iI-loo |2a| = +o00.

Then, we have that

2a] < 6222 = |24 " %ii; o (2a) = O(1) when o — +00 (10.34)
T,
and
|za] =0 (Sz—’a) = 11)111 |2a|™ 2ii,0(24) = 1 when @ = +00. (10.35)

We prove the claim. As in Case 6.2 of the proof of Theorem 6, we have that

N
ia(z) = (1+o(1)) <u + zv-,acc))

for all z € Bs,(zo) and all a € N for §y > 0 small enough. Therefore, we have that

n—2
2

(2l iia(za) = (1+0(1) (J2al" 22 Ea

N n—=2
+ Z 12a|" 1.2 Via(p(e ™ (#ia) + Nz’,aza))>
=1

for all « € N. It follows from Theorem 3 that there is no blowup point in the
interior when n = 3: therefore, (10.2) rewrites

|30 — Tj,a| > 20854 for all j #i and all @ € N. (10.36)

We fix j # i. Similar to what was done in Step 6.1.2 of the proof of Theorem 6, we
have that

n—2

2 ) 2
2ol 2 Vialp(o™ @) + i02a))| < € (et
! Hi,a(uj,a + |wi7a - xjval )

for all & € N (we have used that |z4| < 5#,-_,(181',04)- Therefore, if p;o = O(1j,a)
when o — 400, it follows from the definition of s; o that the right-hand-side is
bounded. If pj o = O(ui,a), using (10.36), we get that the right-hand-side is also
bounded.
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In the case j =i, it follows from Case (i) of Proposition 13 that

n—2
(1 + (1)) o] st 2
(,U/%,a + |,uz',aza|2)

n—=2 _
12a]" 21 2 Via(0(o™ (i) + Hiaza))

= 140(1)
when a — +00 since limgy—, 4 oo [20] = +00.

n—2 _n-2
Finally, noting in addition that |2q|" 2p; 2 @a = 0(32;2/11.’042 o) = O(1) by
definition of s; , we get that (10.34) holds. With a little more careful analysis, we
get (10.35). This ends Step 4.8.

Step 4.9: We still assume that n = 3 and we let (24)o € R™ be such that
limy 400 |2a| = +00. Then, we claim that

—of % i =1y, —n—
|2q| = o( i,a) = a£r£w|za| |Viia(2a)lg. =1 — 2, (10.37)
where go(2) == (¢*§)(0(¢™" (i) + Hi,a®))-

We prove the claim by contradiction and assume that there exists (z4)q as above
and g > 0 such that

12a]" " |Vits,a(2a)lge = (0 = 2)] > € (10.38)
for all @ € N. We define 74 = |2z,| and wy(z) = r7 24, 4(rez) for z # 0:
this is well defined and it follows from Step 4.8 that lim,_, 100 wo(z) = |z|>~7

in C2.(R™ \ {0}). Moreover, Ay wq + €a(ftial?al)?Wa = cnlzal2w2 ~! where
gl (z) = r2ga(ro), and therefore, it follows from standard elliptic theory that w,
converges in C} (R™\ {0}). Computing Vwq (r;'2,) and passing to the limit when

a — oo contradicts (10.38). This ends Step 4.9.

The rough estimate (7.3) and computations similar to the case n > 4 yield

2 2
u €4l
(T — Tia,v) (cn—o‘ - = O‘)

o B) dz = O(pi,a)

/wBssi,a(w—l(m,a))man

when a — +o00. Similarly, we have that

|z — ;I:i,o(|2|VuOt|2 dz =0 (ui,a In si’a)

i,

‘/‘P(Bési’a(ﬂo_l(wi,a))naﬂ
when a — +00. Therefore, we have that

/ (® — 4,0, V) Fo(x) dx (10.39)
@(Bss; o (971 (xi,a))NOQ

4 ©(Bse; o (#7 (21,2))N0Q

Si,a
xkxl|Vua|2dm+o(ui,a1n & )

when a — 400 and n = 3.
Step 4.10: Assume that n = 3. We claim that

kol 2
li fw(Bm,a(@‘l(wi,a))ﬁBQm z'|Vua|* do 2m
m -

Si,a
a—+00 ; 2
Mi,o In lia 3

skt (10.40)

We prove the claim. We let (04)q € (0,4+00) be such that lim,_, 4, d, = 0 and
limy— 400 pi’,iéasi,a = +00. The sequence (d4) will be chosen later. With a change
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of variables and noting that the element of volume satisfies dvy, = (1 + o(1))do,
we have that

k.l 2 ko lios. |2
2z |\ Vug|* de = ui,a/ 272" |Vii,al,, dog,
Bsgas; o (0)NOR™

Fi,a

1+ o(l))wk;vl|Vﬂi,a|3a do + O(pi,a)

/@(Bsasi,a(ﬂﬂ_l(wi,a))nag

= Mi,a /
Bsos, . ()NOR™\BR(0)

B o

kgt

1+ 0(1))|$|2(T1)

= pia | (ol [Vl Vg +O1:.)
Bis,s; ., (0)NOR™\Bg(0)
Hi,a
when a — +oo for R > 0 arbitrary large. With (10.37), we then get that there
exists eg such that limg 4 eg = 0 and

/ ¥z | Vu,|? dz
?(Bsgs; o (971(2i,0))NO0

xkg! OaSia
= W, n—22/ ———dv, + (o(1) + €g (u~, ln—’)
i a( ) Biuey (0)NBR™\ B (0) |x|2("—1) ( ( ) ) i,0 Lo
— 2)2w,_s 8k 00 Si 0aSi
— (n ) Wn—2 fi.a In aSi,a +o (,U/z',a In asz,a) (1041)
n M’i,a iia

We now estimate the complementing term. It follows from (10.37) and the local
convergence of @;,, that there exists C' > 0 such that |V, |y, (#) < Clz|*~™ for
allz € B -15,. (0). Therefore, we have that

/ ¥ 3! | Vu,|* do
©(Bss; o (971 (2i,a))NOQNBs g s; , (07 H(@i,a))

Chii / 221+ 22) " de
B,-1,,. O\B,-i, . (0)

IA

-1
i,

< Clieln 51 (10.42)

We now choose (d4)4 such that

. 1 )
lim §, =0, lim m:—}—ooa.nd 1n—=o(1nsl’a>

a—+—+00 a——+0o0 Mi,o 5(1 Mi.o

when a — +00. Clearly, this choice is possible: combining (10.41) and (10.42)
yields (10.40). This ends Step 4.10.
Step 4.11: Assume that n = 3. We claim that there exists ¢; > 0 such that
lim 1 = —c¢;H(xo)
a—+00 Sia In % B g 0/

1,0

We prove the claim. Putting (10.40) into (10.39) and arguing as in Step 4.5 yields
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/ (¢~ i) Fa(e) da
‘P(Bési’a(ﬁa_l(wi,a))nag
6 0 i, Mo
__T Ek( k0 (0), V(xO))Ni,a In Sia +o0 (,ui,a In Si, )
6 Mi,a i
H . .
=T (mo)ui,a In 22 4, (Mi,aln Sz’a)
6 IU“L',CL’ iaa
When a — +o0o. Plugging this asymptotic behavior into (10.5) and using (10.6)
and (10.7) yields the existence of ¢; > 0 such that

ci(H(z0) + 0(1))81.0 In Z“ +1=0

i,

when a — +00. This yields the desired result and this ends Step 4.11. Theorem 4
is proved for n = 3.

11. PROOF OF THEOREMS 1 AND 2

Let (ua)aen € C%(Q) be as in the statement of Theorem 1. We let
S:= {agrfoom,-,a/z € {1, ...,N}}.

Step 1: We claim that

$=8
where S is as in Definition 1. We prove the claim. Let 29 € S and let i € {1,..., N}
such that limg_, 4o 5,0 = Zo. In particular, we have that limg_ 40 Ua(Zia) =
+o0: then x¢ is a singular point, and then x¢ € S. This proves that Scs.

Let 2o € 8¢: then there exists § > 0 such that |z —xio| > 20 foralli e {1,...,N}.
In particular, it follows from (7.3) that there exists C' > 0 such that uq(z) < C for
all x € Bs(zo) N, and then xy is not a singular point, that is ¢ S. This proves
that S¢ C S°.

These two assertions prove that §=8 , and the claim is proved. This ends Step 1.
Step 2: Let o € S. Assume that n > 7. We claim that

there exists (%;,q)aen € 00 such that lim z; 4 = xo.
a——+00
We prove the claim by contradiction and assume that for all ¢ € {1,..., N} such
that limg—s 4 oo 4,0 = Zo, then x; o € Q. We let ¢ € {1,..., N} such that
Wio = max{pja/j € {l,..,N} such that lim =z, =z0}.
[e4

—+o0

It then follows from Theorem 3 that
€asio < py" (11.1)

when a — +oo and there exists j € {1,...,N} such that p;o = o(uja) when

a — +oo and i
sg,a = ﬂ(u?,a + |$i,a - 'Z'j,a|2)

J’a

for all « € N.

Assume that limy— 400 Zj,o = Zo. Then it follows from the definition of y; , that
Wio > [0 & contradiction with p; o = 0o(pt),o) when o — +o0.
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Assume that limy_, 4 Zj,o 7 Zo. Then z; o — 2,0 7 0 and we have that

2 Mi,o

s; X
i,
' Hj,a

when a — +o0o. Plugging this estimate in (11.1), we get with (8.15) that

n—6 n—2 n—2

€a X o Bja = O(Mj,?) = o(€q)
when a — +00. A contradiction since n > 7.
This proves the claim, and this ends Step 2.
Step 3: Let o € S. Assume that n = 3 or n > 7. We claim that

zo € 00 and that H(zo) < 0.

We prove the claim. We let i € {1, ..., N} be such that
Si,0 = min{s; o/ ;o € 02 and ali)r—{-loc Tjo =0}

This minimum is well-defined: this follows from Theorem 3 for n = 3 and from
Step 2 when n > 7. In particular, z;, € 092 and zg € 0Q. We claim that for all

Je{L, ., N}\ {i}
Tjo €0 = Tjq— Tiq # 0(sia) when a — +oo (11.2)

We prove the claim by contradiction and we assume that there exists j € {1,..., N }\
{i} such that limy_,4 o0 Tj,0 = %o, Ti,a — Tja = 0(Si,e) and x4 € 0N for all o € N.

We claim that p;o = o(ftj,) when @ — +o0o. We argue by contradiction and
assume that pjo = O(fti,o) When a@ — +oo: then ¢ € J; and it follows from the
definition (8.29) of s, that

Hj,a

o <22 (o + |70 = 250l)
)

for all @ € N. Since |z;,0 — 2j,0| = 0(8i,a) and pi,q = 0(8i,o) When o — +00, we get
that s;,o = 0(84s,0) When a — +o00: a contradiction since s;,4 < §j,o for all & € N.
This proves that p; o = o(ptj,o) when o = +00.

In particular, we have that j € J;, and then

i
Sta < (0 + |Tia = 25.0]7)
Hj,ox

for all & € N. Since z; o — Zj,0 = 0(Si,a) and p; o = 0(ij,») when @ — +o0, we
then get that s;0 = o(itj,o) and then ;4 — ;4 = 0(itj,o) when a — +00. A
contradiction with (9.49). This proves that (11.2) holds.

Therefore, we can apply Theorem 4 to 4, and we get that H(zg) < 0 when n =3
or n > 7. This proves the claim, and therefore this ends Step 3.

Theorem 1 is a consequence of Step 3.

Theorem 2 is a consequence of Theorem 1 and Proposition 1.
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APPENDIX A: CONSTRUCTION AND ESTIMATES ON THE GREEN’S FUNCTION

This appendix is devoted to a construction and to pointwise properties of the
Green’s functions of the Laplacian with Neumann boundary condition on a smooth
bounded domain of R™. These proof are essentially self-contained and require only
standard elliptic theory.

Let © be a smooth bounded domain of R™ (see Definition 2 in Section 3). We
consider the following problem:
Au=f inQ
O,u=0 in 00
where u € C?(Q2) and f € C°(Q2). Note that the solution u is defined up to the
addition of a constant and that it is necessary that [, fdz = 0 (this is a simple

integration by parts). Our objective here is to study the existence and the properties
of the Green kernel associated to (11.3).

Definition 6. We say that a function G : Qx Q\ {(z,z)/z € Q} - R is a Green’s
function for (11.3) if for any z € Q, noting G, := G(z,-), we have that

(i) G, € L'(),

(”) fQ Gydy =0,

(iii) for all p € C%(Q) such that 8,0 = 0 on 09, we have that

plx) —p= /QGzAcpdy-

(11.3)

Condition (ii) here is required for convenience in order to get uniqueness, symmetry
and regularity for the Green’s function. Note that if G is a Green’s function and
if ¢: Q — R is any function, the function (z,y) — G(z,y) + c¢(z) satisfies (i) and
(iii). The first result concerns the existence of the Green’s function:

Theorem 5. Let Q be a smooth bounded domain of R". Then there exists a unique
Green’s function G for (11.3). Moreover, G is symmetric and extends continuously
to A x Q\ {(z,z)/ z € Q} and for any z € Q, we have that G, € C>*(Q\ {z}) and

satisfies
AG, = _ﬁ in Q\ {z}
0,G, =0 in ON.
In addition, for all x € Q and for all ¢ € C%(Q) we have that

o) — § = / Golrpdy + / Godypdy.
Q o0

A standard and useful estimate for Green’s function is the following uniform point-
wise upper bound:
Proposition 9. Let G be the Green’s function for (11.3). Then there exist C(Q) >
0 and m(2) > 0 depending only on ) such that
1
m|x—y|2_"—m(ﬂ) <G(z,y) <CO|z—y[> " for all z,y € Q, x £ y. (11.4)
Concerning the derivatives, we get that

|VyGe ()| < Cla —y|' ™™ for all z,y € A, z # y. (11.5)
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Estimate (11.4) was proved by Rey-Wei [27] with a different method. We also
refer to Faddeev [10] for very nice estimates in the two-dimensional case.

Notations: in the sequel, C(a,b,...) denotes a constant that depends only on (,
a, b... We will often keep the same notation for different constants in a formula,
and even in the same line.

We will intensively use the following existence and regularity for solutions to the
Neumann problem (this is in Agmon-Douglis-Nirenberg [4]):

Theorem 6. Let Q be a smooth bounded domain of R and let f € LP(Q), p > 1
be such that [, f dz = 0. Then there exists u € HY(Q) which is a weak solution to

Au=f inQ
ou=0 1in0Q
The function u is unique up to the addition of a constant. Moreover, there exists
C(p) > 0 such that
llu —allgz@) < CW)Iflp-

If f € C%*(Q), a € (0,1), then u € C**(Q) is a strong solution and there exists
C(a) > 0 such that

lu = @llome oy < C@|fllgona)

A.1. Construction of the Green’s function and proof of the upper bound.
This section is devoted to the proof of Theorem 5.

A.1.1. Construction of G. _
We define k;, := —y5—. We fix z € Q and we take u, € C*(Q) that will be
chosen later, and we define

Hy, :=ky| - —2> " + u,.

In particular, H, € LP(Q) for all p € (1,-25). We let u € C*(Q) be a function.
Standard computations (see [13] or [28]) y1e1d

/HwAudyzu(w)—l—/uAuwdy—l—/ (-0,uH, + ud, H,) do. (11.6)
Q Q 80

We let n € C*°(R) be such that n(t) = 0if t <1/3 and n(t) = 1if t > 2/3. We

define
|$ 2—n
(dm@Q bl =]
Q)

for all y € Q. Clearly, v, € C*°(Q) and v, (y) = kn|z — y[>~" for all y € Q close
to 8Q. Tt follows from Theorem 6 that there exists u!, € C?*(Q) for all a € (0,1)
unique such that

Aul, = Avy — Ay,  in Q

Oyuy =0 in 00

ul, =0
We now define u, := ul, — v, € C»*(Q) and ¢, := Av, € R so that

Au, = —cy in Q
yuy = —0,(ky| - —z|> ™) in OQ
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Therefore, 8, H, = 0 on 90 and (11.6) rewrites
/ H,Audy = u(x) —cz/ udy — o, ,uH, do
Q Q a0

for all u € C%(Q). Taking u = 1 yields ¢, = \512_|= and then, we have that

/ H,Audy = u(z) — 4 — OyuH, do
Q 80

for all u € C%(Q). Finally, we define G, := H, — H, and we have that:

/ G Audy = u(z) —u — O,uGy do
Q Foro)

for all u € C%(Q). Therefore G is a Green’s function for (11.3). In addition,

G, € C**(Q\ {z}) N LP(N) for all a € (0,1) and p € (1, %) )
Taking u € C>°(Q\ {z}) above, and the definition of G, we get that

{ AG, =4 mQ)\{z}

0,G, =0 in O1. (11.7)
A.1.2. Uniform LP—bound.

Lemma 3. Fiz x € Q and assume that there exist H € L'(Q) such that
/ HAudy = u(z) —u
Q

for all u € C?(Q) such that O,u = 0 on Q. Then H € LP(Q) for all p € (1, %)
and there exists C(p) > 0 independent of x such that

|1H —H||, < C(2,p) (11.8)
for all x € 2.

Proof. For p as above, we define ¢ := ﬁ > 5. We fix ¢ € O (). It follows from

Theorem 6 that there exists u € C?(f2) such that
Au=1—1 inQ
Ou=0 in 09
=0

It follows from the properties of H that
[ =mpdy= [ B@-D)dy= o).

It follows from Sobolev’s embedding that Hj(Q) is continuously embedded in
L>(Q): therefore, using the control of the HJ —norm of Theorem 6 yields

/Q(H — H)pdy| < lullos < C@)llullag < C' @Y = Dlls < C" (@Y,

for all ¢y € C°(Q). It then follows from duality that H — H € LP(Q) and that
(11.8) holds. O

A.1.3. Uniqueness.
We prove the following uniqueness result:
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Lemma 4. Fiz x € Q and assume that there exist G1,G2 € L'(Q) such that
/ GiAudy = u(z) — @
Q

for all i € {1,2} and for all u € C*(Q) such that &,u = 0 on Q. Then there ewists
¢ € R such that G; — G2 = ¢ a.e on Q.

Proof. We define g := G1 — G2. We have that

/gAudy =0
Q

for all u € C?(Q) such that 8,u = 0 on Q. We fix ¢ € C°(Q). It follows from
Theorem 6 that there exists u € C?(Q) such that Au =1 —1) in Q, 8,u = 0 on 9N
and @ = 0 . Therefore, we get that

/Q(g—é)wdy=/99(¢—¢)dy=/QgAudy=0-

for all p € C°(Q2). Moreover, it follows from Lemma 3 that g € LP(2) for some
p > 1, and then we get that ¢ — g = 0 a.e, and then Gy = G2 + g. a

As an immediate corollary, we get that the function G constructed above is the
unique Green’s function for (11.3).

A.1.4. Pointwise control.
We let G be the Green’s function for (11.3). The objective here is to prove that
there exists C(Q2) > 0 such that

Ga(y)| < C(Q)|z —y~" (11.9)
for all z,y € Q, z # y.

Proof. The proof of (11.9) goes through six steps.
Step 1: We fix K C Q a compact set. We claim that there exists C(K) > 0 such
that
G2 ()| < C(K)| -y~
forallz € K and all y € Q, y # x.

We prove _the claim. We use the notations u,,ul,v, above. As easily checked,
vy € C?(Q) and |Jvg]|c2 < Cd(x,00Q)~™ < Cd(K,00)™™ < C(K). Therefore, it
follows from Theorem 6 that ||ul || < C(K), and then |H,(y)| < C(K)|z —y|>~™

for all y € Q, y # z. Since G, = H, — H, and (11.8) holds, the claim follows.
Step 2: We fix § > 0. We claim that there exists C(§) > 0 such that

Galloz(onz. (5 < C) (11.10)
for all z,y € Q such that |z —y| > 6.

We prove the claim. It follows from (11.7) and standard elliptic theory (see for
instance [4]) that for any p > 1, there exists C(d, p) > 0 such that |G ||c2(o\ 5, (5)) <
C(6) + C(9)l|GzllLr(q)- Step 2 is then a consequence of (11.8).

We are now interested in the neighborhood of 9. We fix o € 90 and we choose
a chart ¢ as in Lemma 1. For simplicity, we assume that ¢ : Bs(0) — R™ and that
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¢(0) = zo and we define V := ¢(B;(0)). We fix z € V N Q2 and we let G, be the
extension G 1= G 0, = Gy 0 p o & o 1: we have that

G, :V\{z,2*} o Rwitha* ;=7 (z) =por Loy '(z) € .
Moreover, since G is C?%@ outside = and 7 is Lipschitz continuous, we have that
Gy € H{,,.(V\ {z,2*}) for all ¢ > 1; in addition, it follows from (11.8) that

G, € LP(V) for all p € (1, #) and that there exists C(p) > 0 independent of z
such that

1Gellp < C(p).
Step 3: We claim that
= 1
NGy =0y + 0z — ﬁ in D'(V). (11.11)

We prove the claim. We let ¢ € C°(V) be a smooth function. Separating V' N Q
and V' N Q° and using a change of variable, we get that

/éwqupduﬁ:/ GeA (Y +yom,') dy.
Vv vVnQ

Noting that 8, (¢ 4+ ¢ o m;') = 00n 9 (we have used that v((0,2")) = dp(0,.+)(€1))
and using the definition of the Green’s function G, we get that

/V GoBgdv; = $(@)+vomy (x) (6 +wor,?) dy

19 Jvna
- ¢<w)+w<w*)—ﬁ /V W du;.

This proves (11.11) and ends the claim.

Step 4: We fix z € V. We claim that there exists ', : V' \ {z} — R such that the
following properties hold:

AT, =6, in D'(V),
IT.(y)| <Clz—yl|>~™ forally eV \{z}, (11.12)

T, eC'(V\{z})

We prove the claim. We define r(y) = /g (2)(y — 2)i(y — 2)7 for all y € V.
As easily checked, r27" € C°(V \ {z}): we define f := Ajr> ™ on V \ {z}. It
follows from the properties of § that f € LyS.(V \ {z}). Moreover, straightforward
computations yield the existence of C' > 0 such that

If()| < Clz—y/* "forally € V\{z}. (11.13)
Computing Azr?~™ in the distribution sense yields
Ayr*™" = f+ K5, in D'(V),

where K, := (n—2) fBBl(O) (v(®),¥)5(=)T(y)*~™ dvg(z) > 0. Moreover, lim,_,,, K, =
K,y > 0.

We define h such that

Agh:f inV
h=0 on OV



78 OLIVIER DRUET, FREDERIC ROBERT, AND J.WEI

It follows from (11.13) and elliptic theory that h is well defined and that h € HZ ;(V)
forall p € (1, %) and h € C-Y (V' \ {z}). Moreover, there exists C > 0 such that

loc
[Pllag < C(p) for all p € (1, %) : (11.14)

We claim that for any a € (n — 3,n — 2), there exists C(a) > 0 such that
|h(y)| < Cla)ly — 2|

for all y € V'\ {z}.

We prove the claim. We let € > 0 be a small parameter and we define

he(y) := e*h(z + ey) and fc(y) := 1 (2 + ey)
for all y € B5(0) \ By2(0). We then have that

Ag.he = f. in By(0)\ By (0), (11.15)
where g. = g(e-). Since a@ > n — 3, we have with (11.13) that
|fey)| < Cex~ =D py|i=n < 2n7lC (11.16)
for all y € By(0) \ By/(0). We fix p:= 15 € (1, %) and ¢ := 2. A change of
variable, Sobolev’s embedding theorem and (11.14) yield
hell La(Bao)\B1 2 (0)) < Cllbllg < CllAllag < C (11.17)

for all € > 0 small. It then follows from (11.15), (11.16) and (11.17) that there
exists C' > 0 such that

|he(y)| < C for all y € R® such that |y| = 1.

Therefore, coming back to h, we get that |h(y)| < Cly — 2|7 for all |y — z|] = e.
Since € can be chosen arbitrary small and h is bounded outside y, the claim is
proved.

We now set I'; := 2= (r> " —h). It follows from the above estimates that T

z

satisfies (11.12). This ends Step 4.
We define pu,, := G, — T, —T,.. It follows from Steps 2 and 3 above that

1
Ajpg = 0] in D'(V). (11.18)

Moreover, we have that p, € H{ (V \ {z,z*}) for all ¢ > 1 and that
ll1llp < C(p) for all p € (1, %) : (11.19)

Step 5: We claim that for all V! C V, there exists C(V') > 0 such that
lpzllLoe vy < C(V'), (11.20)
where C'(V') is independent of z.

We prove the claim. Since x € 2 NV, we have that § = £ in a neighborhood of z,
and then § is hypoelliptic around z: therefore, it follows from (11.18) that u, is C*°
around z. Similarly, around z* € VNQ°, §j = (p o & 0 ¢ 1)*¢ is also hypoelliptic,
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and therefore, u, is C* around z*. It then follows that u, € H{ (V) for ¢ > 1 and
(11.18) rewrites

/ (Vitg, Vi) dvg = —i/ Y dvg for all p € C(V).
% 1 Jv

Therefore, it follows from Theorem 8.17 of [13] that u, € Li°.(V) and that there
exists C(V,V',p) > 0 such that

lpallpeeqvy < CV, V', p) (1 + llpellLeqv))
for all p > 1. Taking p € (1, ﬁ) and using (11.19), we get (11.20) and the claim
is proved.

Step 6: We are now in position to conclude. It follows from the definition of u,
from (11.20) and from (11.12) that there exists C(V') > 0 such that

Go()| <O+ Clz—y " + |z* —y|*"
for all z,y € V' such that x # y. As easily checked, one has that |2* —y| > ¢|z —y|
for all z,y € V' N Q, and therefore
|Gz (y)| < Cla —y[> " (11.21)

for all z,y € V' N Q such that  # y. Recall that V' is a small neighborhood of
zo € 0N. Combining (11.21) with Step 1, we get that there exists () > 0 such
that (11.21) holds for all z,y € Q distinct such that |z — y| < §(Q). For points
x,y such that |z — y| > §(2), this is Step 2. This ends the proof of the pointwise
estimate (11.9). O

A.1.4. Eztension to the boundary and regularity with respect to the two variables.
We are now in position to extend the Green’s function to the boundary.

Proposition 10. The Green’s function extends continuously to Q x Q\{(z,z)/z €
O} - R

Proof. As above, we denote G the Green’s function for (11.3). We fix z € 9 and
y € O\ {z} and we define

Galy) = lim G(zsy) for ally € Q\ {},

where (z;); € Q is any sequence such that lim;, ., z; = .

We claim that this definition makes sense. It follows from (11.10) that for all § > 0,
we have that

Gz lle2@\8s5(x)) < C(0)
for all i. Let (i') be a subsequence of i: it then follows from Ascoli’s theorem that
there exists G’ € C*(Q2\ {z}) and a subsequence i” of i’ such that

lim G, = G'in CL.(Q\ {z}).

1—~+o00

Moreover, It follows from (11.9) that |G'(y)| < Clz —y|*> ™ for all y # x. We choose
u € C*(Q) such that d,u = 0 on 9Q. We then have that [, G,,Audy = u(z;) —a
for all i. Letting ¢ — 400 yields

/ G'Audy = u(z) — G,
Q
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and then it follows from Lemma 4 that G' does not depend of the choice of the
sequence (x;) converging to z. We then let G, := G’ and the definition above
makes sense.

We claim that G € C°(Q x Q\ {(z,z)/z € Q}). We only sketch the proof since
it is similar to the proof of the extension to the boundary. We fix z € Q and
we let (x;); be such that lim; , . z; = z. Arguing as above, we get that any
subsequence of (G,) admits another subsequence that converges to some function
G” in CL.(Q\{z}). We choose u € C?(Q) such that 8,u vanishes on 90 and we get
that [, Gy, Audy = u(x;) —a for all i. With the pointwise bound (11.9), we pass to
the limit and get that [, G” Audy = u(z) — @: it then follows from Lemma 4 that
G’ = G, and then (G,,) converges uniformly to G, outside z. The continuity of
G outside the diagonal follows immediately. a

It is essential to assume that G satisfies point (ii) of the definition: indeed, for any
¢ : Q = R, the function (z,y) — G(z,y) + c(x) satisfies (i) and (iii), but it is not
continous outside the diagonal if ¢ is not continuous.

A.1.5. Symmetry.

Proposition 11. Let G be the Green’s function for (11.3). Then G(z,y) = G(y,x)
forallz,y e A xQ, x #y.

Proof. Let f € C°(2) be a smooth compactly supported function. We define
F(z) = / Gy, )(f — F)(y) dy for all = € 1.
Q

It follows from (11.9) and Proposition 10 above that F' € C°(Q). We fix g € C° ()
and we let ¢,1 € C%(Q) be such that

Ap=f—f inQ AYp=g—g inQ
O =0 in 90 and o =0 in 90
=0 Y=0

It follows from Fubini’s theorem (which is valid here since G € L'(Q x Q) due to
(11.9) and Proposition 10) that

/Q(F—F’)gdm = /Fg gdm—/FAzpd:U
L= 00 ([ 6toav@ ) = [ oy
/QsoAzbdyz/Qcp(g—g)dyZ/Qgsody,

and therefore [(F — F — ¢)gdz = 0 for all g € C(Q). Since F,p € C°(9),
we then get that F(z) = p(z) + F for all z € Q. We now fix z € Q. Using the
definition of the Green’s function and the definition of F', we then get that

| cwot-nwds = [ Gas-Hodr g [ ( [ ¢ dx) (f-D) dy,

and then, setting

H,(y) = G(y,2) — G(z,y) - ﬁ / Gy, z)dz
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for all y € 2\ {z}, we get that
0= [ HaAs -y = [ (o~ H)fdy
Q Q
for all f € C°(Q). Therefore, H, = H,, which rewrites
1
Gly.) = Glay) = g [ (60.2) = Gl 2) de + (o),

for all z # y, where h(z) := \(12_| JoG(z,x)dz — |Ql—2‘ Jaxq G(s,t)dsdt for all z € Q.
Exchanging z,y yields h(z) + h(y) = 0 for all  # y, and then h = 0 since h is
continuous. Therefore, we get that

Gly,2) — G(z,y) = Kll—' / (Gy,2) - Glz,2)) dz = Gy — Gy (11.22)

for all z # y. The normalization (i) in the definition of the Green’s function then
yields Proposition 11. |

If one does not impose the normalization (ii), we have already remarked that we
just get G' : (z,y) — G(z,y)+c(z) where G is the Green’s function as defined in the
definition and ¢ is any function. We then get that G'(z,y) — G'(y,z) = ¢(z) — c(y)
for all z # y, which is not vanishing when ¢ is nonconstant.

These different lemmae and estimates prove Theorem 5.

A.2. Asymptotic analysis

This section is devoted to the proof of general asymptotic estimates for the Green’s
function. As a byproduct, we will get the control (11.5) of the derivatives of Propo-
sition 9. The following proposition is the main result of this section:

Proposition 12. Let G be the Green’s function for (11.3). Let (z4)o € Q and let
(ra)a € (0,+00) be such that limg_, 4o re = 0.

Assume that
i d(zy,00)
lim 22—~

a—+oo Ta

Then for all z,y € R*, x # y, we have that

= +4o0.

lim r72G(zo + 1o, To +Tay) = knlz —y[> ™
a—+oo

Moreover, for fized x € R™, this convergence holds uniformly in C7 _(R™ \ {z}).

Assume that
lim d(zq,00)
a——+oo Ta

=p>0.

Then limy_, 100 To = xo € ON. We choose a chart ¢ at xo as in Lemma 1 and we
let (z4,1,2.) = ¢~ (za). Then for all z,y € R* N {z1 <0}, z # y, we have that

lim 757G (p((0,24)+7a), 9((0,24)+7ay) = kn (lz —y*7" + |77 (z) —y[*™"),

a——+00

where =1 (z1,2') = (—21,2'). Moreover, for fived x € R, this convergence holds
uniformly in C? (R™ \ {z}).
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Proof of Proposition 12:
Step 1: We first assume that

lim Uza, O _ +00. (11.23)

a—+00 Ta

We define
éa(xa y) = Tg_2G($a + T, To + Tay)
for all « € N and all 7,y € Q4 =1, (Q —1,), z # y. We fix z € R*. Tt follows
from Theorem 5 that Go € C?(Qq X Qo \ {(z,2)/ z € Q4 }) and that
A(Ga)s = —% in O, \ {z} (11.24)

for a € N large enough. Moreover, it follows from (11.4) that there exists C > 0
such that

(Ga)z(y)| < Cly — x>~ (11.25)
for all « € Nand all y € Q4 \ {z}. It then follows from (11.23), (11.24), (11.25) and
standard elliptic theory that, up to a subsequence, there exists G, € C*(R" \ {z})
such that

lim (Ga)e = Gy in C2 (R \ {z}). (11.26)

a—+0oo
with
G )| < Cly — 22" (11.27)
for all y € R \ {z}. We consider f € C°(R™) and we define fo(y) := f(r;'(y —
Ty — Tox)): it follows from (11.23) that f, € C*(Q) for @ € N large enough.
Applying Green’s representation formula yields

fa(ma + Taw) - f_a = /QG(JZ'Q + rqx, z)Afa(z) dz.

With a change of variable, this equality rewrites

f@)= | Ga(z,y)Af(y) dy + fa
for a € N large enough. With (11.25), (11.26) and the definition of f,, we get that
flz) = = ézAfdya

and then
A(Gy = kn| - =22 ™) = 0 in D'(R™).

The ellipticity of the Laplacian, (11.27) and Liouville’s Theorem yield
Go(y) = knly — z[>~" for all y # .

This ends Step 1.

Step 2:
d(zy,00
lim 7( ,00)

a—+0o0 Ta

=p2>0.
We take ¢ as in the statement of the Proposition and we define

Gal(z,y) =1y *G(p((0,27,) +7a2), 9((0,25) +ray)
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forall z,y € R", z # y with a € N large enough. We fix x € R” and we symmetrize
G as usual: . y

Ga($7 y) = Ga(.’L‘, ﬁ-(y))
for all y € R” close enough to 0 and where, as above, 7 : R* — R” . For simplicity,
we assume that 2 € R” (only the notation has to be change in case 2 € R%?). As
in the first case, we get that there exists C' > 0 such that

|Galz,y)| <C(ly =2 "+ Jy — 7" (@)]"™")

for all y # =, 7(z) and there exists G, € C2(R" \ {z,7 1(z)}) such that
lim (Ga)e = Gy in C2,(R™ \ {z, 7~ (z)}).

a——+00
Moreover, letting L = dipg be the differential of ¢ at 0, arguing again as in the first
case, we have that

AL"EGZ‘ = 5,” + 57r—1(w) in D'(Rﬁ)

Therefore, with a change of variable, we get that

Aﬁ(éw o L_l) = (SL(w) + 5Lo7r—1(w) in D’(Rﬁ),
and then

A (Goo L™ = hu (IL@) =P~ + Lo~ @) ~ 7)) = 0 in D'(®"),

Arguing as above, we get that G,oL™' =k, (|L(z) —y|> ™ + |Lon~'(z) — y[>~"),
and then R
Go=kn (| ="+ | -7 (2)?™")
since L is an orthogonal transformation. This ends Step 2.
Proposition 12 is a direct consequence of Steps 1 and 2.

We now prove Proposition 9:

Corollary 1. Let G be the Green’s function for (11.3). Then there C,M > 0 such

that . o
s M<Gay) < ———
Ol — g2 (09) < oy
and
V,Glz,y)| < ———
forallz,y € Q, z #y.

Proof of the corollary: We claim that there exists m € R such that
G(z,y) > —mforall z,y € Q, z #v. (11.28)

We argue by contradiction and we assume that there exists (24)a, (Ya)a € 2 such
that
lim G(zq,Ya) = —00. (11.29)

a——+oo
Assume that limg_, 1 oo [yo — To| = 0. We then define r, := |y, — 24| and we apply
Proposition 12:
d(za,

o9) — 400, we have that

If llma_)+oo p

—z
Yo — 2a|" 2G (T, ya) = rV 3G (ma,wa + rayaia) =k, +o(1)

|ya _xal
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when o — +o00. This contradicts (11.29).
If d(zq,00) = O(ry) when a — 400, we get also a contradiction.

This proves that limy 400 |Zo — Yo| # 0. Therefore, with (11.4), we get that
G(za,ya) = O(1) when a — +o0o: this contradicts (11.29). Therefore, there exists
m such that (11.28) holds.

We define M :=m + 1. With (11.4), there exists also C > 0 such that |G(z,y)| <
Clz —y[?> ™ for all z # y. We claim that there exists ¢ > 0 such that

G(@,9) + M > cla -y (11.30)
for all z # y. Here again, we argue by contradiction and we assume that there
exists (Zo)as (Ya)a € © such that

lim |24 — Yo" 2(G(Ta,ya) + M) = 0. (11.31)

a——+00

Since G + M > 1, it follows from (11.31) that limy oo |Zo — Ya| = 0. Therefore,
as above, we get that the limit of the left-hand-side in (11.31) is positive: a contra-
diction. This proves that (11.30) holds. In particular, this proves the first part of
the corollary.

Concerning the estimate of the gradient, we argue by contradiction and we use
again Proposition 12. We just sketch the proof. Assume by contradiction that
there exists (Z4)a, (Ya)a € Q such that

m |yo — 2a|" " VyG(Ta,Ya)| = +00.

a——+00

It follows from (11.10) that limy—, oo |Ya —Za| = 0. We set 74 1= |yo —Zo|. Assume
that r4 = o(d(z4,00)) when a — +o00. It then follows from Proposition 12 that

. _ 1

lim |ya - maln llvyG(waayaﬂ = 5

a——+0oo Wn—1

which contradicts the hypothesis. The proof goes the same way when d(z,,0Q) =
O(ry) when a = +00. This ends the proof of the gradient estimate.

APPENDIX B: PROJECTION OF THE TEST FUNCTIONS

Proposition 13. Let (z4) be a sequence of points in Q and let (uq) be a sequence
of positive real numbers such that po, — 0 as a = +00. We set

Ual@) = o (| =zl + 1)
There exists V, € C1(Q) which satisfies

AVy = U2 —c, | [LU2 " Ydz  inQ
auva =0 on 0N

-3

(11.32)

such that the following asymptotics hold for any sequence of points (y,) in Q :
(i) If o € 0N, then
Va (ga) = (14 0(1))Ua (92) + O (pa” ) -
(%) If d (x4,00) 4 0, then

U (9a) = (1+ 0(1)Us (o) + O (e ) -
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(#i) If d (x4, 00) = 0 but w — 400 as a = +00, then

Va (ga) = (1+0(1)) Ua (a) + U (o) + O (a” )
where

- n=2 _ N 1-%
Ua(z) = pa” (Ni"' |$_7r<pl(-77a)| ) ’

with my, ;= pomo @1 where ¢ is a chart at xo := lim,_s 4o T as in Lemma 2.

In addition, we have that
Uy — Uy =0(Uy) + O(u?) in cases (i) and (i)
Ve = Ual < € (gsatiamr)

In any case, there exists C > 0 such that
1
C

+o(Uy) + O(u,:%) in case ().

Uy < Vo < CU, . (11.33)

Proof of Proposition 13: We let V, € C?(2) be as in (11.32). Indeed, V, is defined
up to the addition of a constant: therefore, V,, will be determined later on. Let
(Ya)a € Q: Green’s representation formula yields

Valwa) = Ve = [ Gluary) (cnvz”l—cnmw / Uz*l) dy
Q Q

for all @« € N where G is the Green’s function for (11.3) with vanishing average.
With the explicit expression of U,, we get that

n—2

Va(ya) _V_a:Cn/ G (Ya,y)UZ " dy + O(pa® ) (11.34)
Q

for all @ € N. The estimate of V,(y») goes through five steps.

Step 13.1. We first assume that limy 400 [Ya — Za| # 0. It then follows from
(11.34), the pointwise estimates (11.4) on the Green’s function and the explicit
expression of U, that

Va@a) = Vot (Glyara) +o(1)) /Q U2 L de

— (/ G(ya,m)dac)/cnUf:_1 dz
Q Q

when o — +00. It then follows from this estimate that

J— n—2
Va(¥a) = Va + O(pa® )
when a — 400 and that there exists K > 0 independent of (y,). such that

2

Va(ya) > Ta - KNa%
for all @ € N.
Step 13.2. We claim that

G(Ya,y)UZ "L dy
o0 o0 o o @ {o @)
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We prove the claim. We let Ry > 0 such that Q C Bg,(z4) for all o € N. It follows
from the explicit expression of U, and of (11.4) that

<C |ya_m|2—n Ho
Bro (2a)\BRua (va) (12 + |z — 242
(11.36)

/ G(Ya,y)UZ L dy
N\ Brpa (za)

for all @ € N. We define
1
D, := {x eER"/ |z —ya| > 5 w2+ 2o —ya|2} for all @ € N.

We split the RHS of (11.36) in two terms. On the one hand, we have that

nt2
2—n /"Laz dz
n+2
(K3 + o — zal?)
nt2

|ya _$|

w/Daﬁ(BRO (ma)\BRua (mcx))

C 2
S n—2 / fra EFY) dx
(U3 + [Ta —yal?) = JRMBrua(za) (U3 + [z — 2al?) =
1
< C’Ua(ya)/ —— = dx (11.37)
RM\E(0) (1+ |2f2) 7
for all & € N. On the other hand, as easily checked, there exists ¢y > 0 such that
Z ¢ D, = |-T - -'L'a|2 +/1’i > € (|ya - -'L'a|2 +/‘i)

for all a € N. Consequently, we have that

nT—}—2
/ o —al s
D50(Bro(2a)\Bruq (za) (12 + |z — z4]?) 2
n42
Cua® .
fa = | Wa—z* "dy

(B2 + 7o —yal?) > /D:

2

7’
< CUp(yo) 5——2—— = 0o(Uy(ya 11.38
< (y)ug+|:ca—ya|2 (Ua(ya)) (11.38)

if po = o(|Ta — ya|) when a — +oo0. In case |y, — Zo| = O(la) when a — 400, it
is easily checked that for R large enough, D¢ N (Bgy(z4) \ Bru. (o)) = 0 for all
a € N. Therefore (11.38) always holds.

Plugging (11.37) and (11.38) into (11.36) yields (11.35). This ends Step 13.2.
It follows from (11.34) and (11.35) that

Va () = Va + en / CWary)U2 " dy + (0(1) + er)Ua(ya)  (11.39)
QI’TBR”OL (wa)

if imy 400 [¥ya — Ta| = 0 when a — +00 where limpg_, 4 o €g = 0.
Step 13.3. Assume that

00
lim |yq — 24| =0and lim d2a,00) _ (11.40)

a—+oo a—+00 Mo

)"T“

dz
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We claim that

_ o [ (1+0(1)Ua(ya) if 1My sy o0 d(Ta,0R) 7 0
Valt) = Va +{ (14 0(1))(Ua(ya) + Ualya))  if lima;m d(Ta,80) = 0
(11.41)

when o — +00.

The proof of (11.41) goes through several steps. First note that due to (11.40), we
have that Q N Bgy, (£a) = Bry. (za) for a € N large enough. Therefore, with a
change of variable, (11.39) rewrites

Va(ya) = V_a
) ([ 2+ e = 20P) 7 Glyassa + pad)enV3 o
Bgr(0)
+(o(1) + €r) Ua(ya) (11.42)

for all R >> 1 and a@ — +o00. We distinguish two cases:
Case 13.3.1: We assume that
|Yo — ZTa| = O(po) when o — +00. (11.43)

Then we claim that (11.41) holds. We prove the claim. We define 6, := p; ' (yq —
Zq) for all o € N, and we let 0 := lim,— 100 04. Let K be a compact subset of
R™ \ {0 }: it follows from Proposition 12 that

N2_2G(yaa$a + pa) = (kn + 0(1))|z — 0a|2_n

when a — 400 uniformly for all z € K. Moreover, the LHS is uniformly bounded
from above by the RHS on bounded domains of R® when a — +o0. It then follows
from Lebesgue’s theorem that (11.42) rewrites

- n—2

Valya) = Va+Ua(ya) (/B o (L +100l?) ™ kncaly ~H(@)|2 — o> " dz + 0(1) + az)
R

= Va + Ua(ya) (UO(HOO)_I / knAUo(.'L')|IL' - 000|2—n dr + 0(1) + €R>
Br(0)

= vcx + Ua(ya) (1 + 0(1) + ER)

since A(k,|- |>~™) = dp in the distribution sense. Letting R — +ococ and a@ — 400
yields
Va(ya) = Vo + Ua(ya)(1 + o(1))

when o = +00. As easily checked, this estimate yields (11.41) in Case 13.3.1.
Case 13.3.2: We assume that
hm |ya - .Z'a|
a—+00 Mo
We claim that (11.41) holds. We prove the claim. We define r,, := |y, — zo| = 0o(1)
when a@ — +00. Given z € Bg(0), we define

= +o00.

Aa(@) = (1% + |Ya — Tal?) * GYasTa + ftaT)
for all @ € N.
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Case 13.3.2.1: We assume in addition that
d(zq,00)

lim —————= = 4o0.
a——+0o0 Ta

We claim that in this case, we have that
lim Ay(z) =k, (11.44)

a——+0o0

uniformly when a — +00. We prove the claim. Indeed, letting 6, := 7' (Yo — 7o)
and using that G is symmetric, we have that

Aa(2) = (1 + 0(1))r" 2G (20 + raﬂ:—w,xa +raba)

for all & € N uniformly for z in any fixed compact of R”. Then (11.44) follows from
Proposition 12.
Case 13.3.2.2: We assume here that

Q

a——+00 Ta

In this case, U, is well defined. We claim that in this case, we have that

Ao (@) = (kn + o(1)) (1 + Z:g:;) (11.45)

uniformly for z in any fixed compact of R® when a — +00. We prove the claim.
We denote ¢ a chart as in Lemma 2 and we define (z1,4,2,) = ¢ '(z4) and
(1,0, Y5) := ¢ (ya) for all @ € N. Defining

[
Xo = (“—’“,O) +o0(1) and Y, := (yl_a Yo — T xa) :
Ta Ta Ta
using Proposition 12 and the symmetry of G, we get that
Ao() = (1+0(1))rg *G(za + pa,ya) + 0(1)
= (1+oW)ri 2G(p((0,23) + raXa), 9((0,2y,) +14Ya)) + o(1)

= k, (|Xa S A A W—I(Xa)|2’") +o(1)
! —1 !
" (1 . ‘ ((yl,a,ya) 7 <w1,a,a:a))

To To

HL) +o(1) (11.46)

since dipg is an orthogonal transformation. independently, using again that dyg is
orthogonal, we have that

M = N§+|ya—ﬂ—;1(ma)|2 -3
Ua(ya) /Jlg + |ya — $a|2
(CP_I (Ya) = 7T—1((p—1($a))>

Ta

2—n
= (1+0(1)

when o — +00. Plugging this estimate into (11.46) yields (11.45). This proves the
claim.

Since
* — 2 — n
/ enU2 L dz :/ AUp dz = _/ 8,Uo dz = (")+11;
Br(0) Br(0) 8Bg(0) (14 R?)"/



LIN-NI'S PROBLEM 89

for all R > 0, it follows from (11.42), Cases 13.3.2.1 and 13.3.2.2 that

1+ 0(1)Us(ya) if ro, = o(d(z4,00)) when a — 400

Va(ya) = 7a+{ (1 +0(1)(Ua(ya) + Ua(ys))  if d(za,d0) = O(re) when a — +00

These estimates and a careful evaluation of the quotient Uy (ya) 'Ua(ya) yields
(11.41) in Case 13.3.2. This ends Case 13.3.2.

Step 13.4. We assume that

all)l_l"_loo |Yo — Zo| =0 and z, € OQ. (11.47)
We claim that
Va(ya) = Vo + Ua(ya) (1 + 0(1)) (11.48)
when a — +00. We choose a chart ¢ as in Lemma 2. In this case, (11.39) rewrites
Va(ya) = voz
+Ua(ya) (/ en(140(1))Ta dw)
Br(0)NR™
+(0(1) + €r)Ua(Ya) (11.49)

for all R >> 1 and a — 400, where
n—2 *
Ta(z) := (Ni + Yo — $a|2) : G(ya,tp((o,x;) + Nax))Ug _1(33)-
Here again, we have to distinguish two cases.

Case 13.4.1: Assume that y, — o = O(pe) when a@ — +oo. We define 6, :=
pot (Yo — zq) for all & € N. Using Proposition 12, we get as in Step 13.3.2.1 that
for all z € BR(0) NR” \ {0},

lim 2 G (Ya, 9((0,24) + pa)) = kn (|2 = oo’ + |z — 771 (6)*7")

a——+00

and this convergence holds uniformly with respect to . Plugging this limit into
(11.49) yields

Va(ya) = vcoz

+Uo(Ya) ((1 + 10003 /

Bgr(0)NR™

kn (|2 = 0oo>™™ + |z — 771 (000) P ") AUs () dm)

+ (er +0(1)) Ua(ya)

when a — +00. With a change of variable and using that Uy is radially symmetrical,
we get that

/ b (|2 — 0o + | — 11 (800)[>™) AU (z) da
Br(0)NR™
=/ on| — B |27 AU () d

Br(0)

for all R > 0. The, arguing as in Step 13.3.2.2, we get that (11.48) holds in Case
13.4.1.
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Case 13.4.2: Assume that lim,—, {00 g5 |ya —Za| = +00. Using again Proposition
12 and arguing as in Step 13.3.2.1, we get that (we omit the details)
n=2
lim (ui + |ya - $a|2) 2 G(ya,go((o,:lf:l) + pa)) = 2k,
a——+00

uniformly for all x € Bgr(0). Plugging this limit into (11.49) yields

Va(a) = Vo +Un(ya) / 2 AUp(z) dz + ex + o(1)
BR(O)ORZ

= Vo+Usa(ya) / knAU(z) dz + €r + 0(1)
Br(0)

when o — +00. We then get that (11.48) holds in Case 13.4.2.

Step 13.5. We are now in position to prove Proposition 13. We let K > 0 be as
in Step 1 and we let V,, be the unique solution to (11.32) such that

Vo i= (K + 1)pa®

for all @ € N. Clearly points (i), (ii) and (iii) of Proposition 13 hold. Moreover, we
Vo (ya)
Ua(ya)

immediately get with the estimates above that limg, 1o
number. This proves Proposition 13.

is a positive real
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