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ABSTRACT. We obtain infinitely many non-radial singular solutions of Lane-
Emden equation
Au+uP =0 in RVN\{0}, N >4

with N1
J’_
<p<pe(N-—1
N3 <P <pel )
by constructing infinitely many radially symmetric regular solutions of equa-
tion on SN—1

2 2
A ,w—i[N—Q—iw P =0.
SN-1 1 o1 +w

1. INTRODUCTION

We consider positive solutions of Lane-Emden equation:

(P) Aut+u? =0 inRN, N >4
where
>N—|—2
P=N—o

Problem (P) arises both in physics and in geometry, and is a model semilinear
elliptic equation. It has attracted extensive studies in the past three decades. In
the subcritical case 1 < p < ¥+2, a well-known result of Gidas and Spruck ([25])
says that (P) admits no nontrivial nonnegative solution. In the Sobolev critical

case p = XE2, any positive solution of (P) can be written in the form (see [12]):

N-—2

€ 2
teelw) = CN(62 + |z — 5\2)
Therefore the structure of positive solutions in the critical or subcritical cases
are completely classified. A fundamental question is to classify positive solutions
in the supercritical case. This question remains largely open.
When p > %, the structure of positive radial solutions of (P) has been studied
by Gui, Ni and Wang [26] and Wang [36]. They showed that for any a > 0,
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equation (P) admits a unique positive radial solution v = u(r) such that u(0) = a
and u(r) — 0 as r — +oo. The solution u satisfies u'(r) < 0 for all » > 0 and

lim rp%lu(r) = [ 2 (N—Q— L)]ﬁ (:= 6ﬁ)

r—00 p—]_ p—].
Moreover, if N <10 or N > 11 and
N +2
N
N3 <P <pN),

then u(r)fﬁpljr_% changes sign infinitely many times. If N > 11 and p > p.(N),
then u(r) < ﬁﬁr_% for all » > 0 and the solutions are strictly ordered with
respect to the initial value a = «(0). Here p.(M) (M is an integer) is the Joseph-
Lundgren exponent [29]:

o0, if 2 < M < 10,
pe(M) = { P(M), it M > 11,

where
(M —2)? —4M + 8V/M —1
(M —2)(M — 10) '
When p is supercritical, it is still open if all positive solutions are radially sym-
metric around some point. The first result was due to Zou [38], who showed that

when p € ({2, %—fé) and u has the right decay u = O(|x|_ﬁ)7 then all solutions
N1

are radially symmetric. Guo [27] extended Zou’s result to p > N—Jj3 by assuming

P(M) =

. 2 1
lim | 400 [P Tu(z) = B7-T.

Recently, solutions of (P) up to p.(IN) are classified by using the Morse index
theory. Farina [24] showed that if £+2 < p < pc(N) and u € C*(RY) is a positive
solution of (P) that has finite Morse index, then u = 0 in R"V. (The condition that
u € C%(RY) can be weakened to be H} N LY . See Davila, Dupaigne and Farina

loc®
[17].)
On the other hand, supercritical problems in a bounded domain
N +2
(D) Au+u? =0,u>0 inQ,p>N7+2, u =0 on 0f)
have been studied by variational and perturbation methods. In case of pure non-

linearity u%, Coron [4] used a variational approach to prove that (D) is solvable
if Q exhibits a small hole. Bahri and Coron [1] established that solvability holds

for p = % whenever 2 has a non-trivial homology. On the other hand, examples
in [13, 23, 33] shows that when p > {£2 (D) can still have a solution on some do-

mains whose topology is trivial. If p is supercritical but close to critical, bubbling
solutions are found, see [19, 20, 31, 32].

In the case of p being purely supercritical, there are very few existence results on
(D). Variational machinery no longer applies, due to a lack of Sobolev inequality. In
[22], del Pino and Wei extended Coron’s result to supercritical problems (modulo
some sequence of critical exponents) using perturbation methods. The role of the
second critical exponent p = %—fé, the Sobolev exponent in one dimension less,
is investigated in the paper by del Pino, Musso and Pacard [21] in which they
constructed solutions concentrating on a boundary geodesics for p = %—E — € with
€ — 0+. Under some symmetry assumptions, Wei and Yan [37] proved the existence
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of infinitely many positive solutions for some domains when p = %J—F:Z:g ,m>1. We
should also mention that Davila, Del Pino and Musso [15] showed that in the case
of the exterior domains Q = RV\D, and p > %, problem (D) admits infinitely
many positive solutions. (See also [16].) We refer to the survey article [18] for more
references.

Now we turn to singular solutions to (P)
Au+uP = 0,u >0, in RV\{0}. (1.1)

The singular solution in the subcritical or critical case has been completely classi-
fied. See Bidaut-Veron and Veron [6], Gidas and Spruck [25] and Korevaar-Mazzeo-
Pacard-Schoen [30]. When p > %fg and p # %—fé, the only singular solution to
(1.1) known so far is the radial singular solution

U@y:Uuoz[iz(N—z—pfﬂphxrfa (1.2)

p—1

In [14], the authors showed that if g is a bounded domain containing 0; u is a
positive solution of (P) in €\{0}; u has finite Morse index and {42 < p < p.(N),
then z = 0 must be a removable singularity of u. They also showed that if Qg is
a bounded domain containing 0; u is a positive solution of (P) in RV\§) that has
finite Morse index and % < p < pe(N), then u must be a fast decay solution.
We still do not know more about the structure of positive solutions of (P) when
P = pe(N).

Our motivation of studying (1.1) is to classify all possible singular solutions. This
is important for Liouville type theorems (Polacik, Quittner, Souplet [35]). The first
question is whether or not all singular solutions to (1.1) are radially symmetric.
The purpose of this paper is to construct infinitely many positive nonradial singular
solutions of (1.1) provided

N+1
N -3
This gives an negative answer to the above question. Note that p.(M) is a decreas-

ing function of M. Then p.(N) < p.(N — 1). This provides new information on
the case p > p.(N). Note also that

<p <pe(N—-1).

4 N2 2
(M—Q——J —8<M—2——1)<0, for M2 < < p(M).  (1.3)

Our main result can be stated as follows.

Theorem 1.1. Assume that
N+1
N -3

Then there exist infinitely many nonradial singular solutions to (1.1).

<p<pe(N-1) (1.4)

To explain our idea of construction, we perform a separation of variable: it is
easy to see that that any solution u(z) := u(r,w) of (P) satisfies the equation

N-1

1
Upp + ——— Uy + 2ASN—1U+UPZO (1.5)
T

r2
where r = |z|. If
u(z) =r" rTw(w) (1.6)
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where w is a solution of the equation

Agn—1w — pw + wP =0, (1.7)
with
2 2
= (N—-2—-—~2_
f= 2 (N-2- 2,
then w is a singular solution of (P). It is clear that
w(w) = ﬂﬁ

is the constant solution of (1.7) and it provides a radial singular solution of (P) as
given in (1.2). For p < {41, Bidaut-Veron and Veron ([6]) proved that the only
solutions to (1.7) are constants. (See also Zou [38].) On the other hand, when
p= %—fé, problem (1.7) becomes Yamabe problem on S¥~! whose solutions are all
classified.

To construct positive non-radial singular solutions of (P), we need to find positive
non-constant solutions w(w) of (1.7). In this paper, we will construct infinitely
many positive nonconstant radially symmetric solutions of (1.7), i.e., solutions that
only depend on the geodesic distance ¢ € [0, 7). In this case, (1.7) can be written

in a more convenient form (with x = cos ), namely

(1—a22) "2 ((1 —IQ)Nz_lwx) —pfw+wP =0, wx)>0, -l1<z<l
w'(1) exists. ‘
(1.8)
If we only consider the simple case w(—z) = w(z) for x € (0,1), we see that
w'(0) = 0. Then w(z) := w(f) with w(f) = w(m — 0) for 0 < § < 7/2 satisfies the
problem

md%(smmw 37(9)) — Bw(0) + wP(0) =0, w(®) >0, 0<0<Z,
wy(0) exists, wy(F) =
(1.9)
Note that even though (1.9) is an ODE, it is still supercritical. Neither variational
methods nor sub-super solution method apply. Note also that the 3 here is fized so
bifurcation argument does not work, either. A key observation is that besides the
obvious constant solution w = (3 Plj, there is another solution

wy () = Ap[sinﬂ]_p%l7 0 € (0, g], qu = p%l [N —-3- p%l (1.10)
which is a singular solution of (1.9) with two singularities at 6 =0 and § = 7. A
crucial fact is that because of the condition p < p.(N — 1), the singular solution to
(1.9) has Morse index co. We will construct the inner and outer solutions of (1.9)
and then glue them to be solutions of (1.9). Such arguments have been used in [11]
for the supercritical problem Au + Au + uP = 0 in a unit ball in R? with p > 5.

We should mention that recently Bidaut-Veron, Ponce and Veron [8] studied
solutions of (P) with boundary singularities. In particular, they obtained the exis-
tence of a singular solutions of the separated form (1.6), where w vanishes on the

N+1 N41

equator, for 55 < p < T3 and nonexistence beyond. They also showed that

these solutions only depend on the incidence angle 6 € (0, ), satisfying the ODE
(1.8) and vanishing at 7, and are unique.
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Equation (1.9) has also been studied recently by many authors. Regarding (3 as
a parameter, it has been shown that there are more and more nonradial solutions
as f — +oo. We refer to Brezis-Peletier [9], Bandle-Wei [5] and the references
therein. Here in this paper, 0 is fixed and equals p—(N 2 — —)

The nonradial singular solutions to (P) may serve as good asymptotics for non-
radial entire solutions to (P). Thus we conjecture

Conjecture: For each of the nonradial singular solutions r_%w(H) constructed
i Theorem 1.1 there exists an entire positive solution u to (P) such that

u— |z 7 Tw(0) = of|z|"F1), for |z| > 1. (1.11)

This paper is organized as follows: in Section 2, we study an intial value problem
and study the asymptotic behavior of the inner solution when the initial value tends
to infinity. In Section 3, we study the outer problem. Namely we solve the problem
(1.9) from 6 = 5. The asymptotic behavior of the outer problem will be analyzed
near the origin. Finally in Section 4, we use asymptotics to match the inner and
outer solutions, thereby proving Theorem 1.1.

2. INNER SOLUTIONS

In this section we study solutions w(6) of (1.9) with w(0) = @ > 1 and analyze

their behaviors near & = 0. This is the inner solution. Since @ > 1, we set
2

Q = ¢ 71 (:= € *) with e sufficiently small.

Rescaling as w() = e~ *v(%), we see that v(0) = 1 and v(r) (for r = £) satisfies
the following equation

Vpr 4+ (N — 2)ecot(er)v, — Be*v +vP =0, v(0) = 1. (2.1)

Observe that for € > 0 sufficiently small,

cos(er) 1 1 2kt 1
t = =——-= + E 4 .
cot(er) sn(er) e 3(61") 2 k(er)

Thus,

vrr—f—N — 2vr— v - 2 e r)up+ (Z 2)ly, (k1) 2k+1)’l}r—,862’l}+1}p =0, v(0)=1.
r 3 —
(2.2)
The first approximation to the solution of (2.2) is the radial solution vg(r) of the
problem
Av+oP =0 inRNV-1 »(0)=1. (2.3)

For p > p.(N — 1), vo(r) is stable and the asymptotic expansion can be found in
[26]. For p < p.(N —1), we can not find a reference for the asymptotic behavior of
v. We state the following result.

Lemma 2.1. For %Jré < p < pe(N — 1), there exist constants ag,bg and Ry > 1

such that for r > Ry the unique positive solution vo(r) of (2.3) satisfies

1 bg si 1
vo(r) = Ao + ag cos(w nr)]j:sosln(w nr) —l—O(T*(N*?’*%)), (2.4)

rz
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where

2 4 N2
2 N-3 N

The existence and uniqueness of vy(r) can be found [26] and [28]. It is also
known ([26], [28]) that

: o B
TETOO rug(r) = A,.

To find the next order term, we use the Emden-Fowler transformation:
V(t) =r%(r)—A,, t=Inr.
It is easy to see that V(¢) satisfies the equation
Vie+(N-3-20)V;+2(N-3—-a)+g(V)=0, fort>T=InR, R>10, (2.6)
where
g(s) = (s + Ap)P — Ap — pAZ_ls.

By the standard argument of variation of constants we obtain the following integral
equation

1/ :
V(t) = e’'acoswt + bsinwt] + — / e? ) sinw(t — t)g(V(t'))dt,
wJr

where 0 = —3(N — 3 — 2a), w is given in (2.5). Note that g(s) = O(s?) for s

sufficiently small. R

Set V() = e 9tV (t). Then V(t) satisfies the integral equation

N . 1 [t / -

V(t) :== NV(t) = Csin(wt + D) + = / e 7V sinw(t —t gl V(' ))dt', (2.7)

To

where C' = va? +b%, sinD = &, cos D = %. We take ¢ in the range Ty <t < o0,
where Ty = In Ry is suitably large, and consider NV as a map from C [?0, 00) into
itself. We claim that, for each C > 0 and suitable Ty, the operator N'V maps the
set

B={VeCTy,): |lzlo= sup |V(t)]<2C, C >0}

To<t<oo
into itself, and is a contraction mapping on B. Indeed, if ||‘7||0 < 2C, then
lg(e”V(1)] = €*7*O(1)
and
[NV — Csin(wt + D)||o < C'e70

where C’ > 0 only depends on C, N, p. Note that o < 0 and etV ()0 is
sufficiently small for V' € B for Ty suitably large. Thus, if we choose Ty > 1
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suitably large, we see that |[N'V — Csin(wt + D)|lg < C. A similar calculation
shows that

INVL = NVallo < e ||V; — Vallo.

Hence it is possible for each value of C' to choose Ty so that N is a contraction
mapping of B to itself. Thus, we define Vy = C'sin(wt + D) and the iteration
Vn+1 = NV, for n > 0. The contraction mapping theorem then ensures that this
iteration converges to the unique solution V,(t) of (2.7) in B. Note that

L[t -
‘—/ e 7t sinw(t —t)g(e? Vo(t'))dt'| = O(e”").
w

To
Then
Vi(t) = eV, (t) = Coe? sin(wt + Do) + O(e*??) for t € (Tp, 00).
This implies that for r € [Rp, o0),
vo(r) = Apr~* + T [ap coswInr + by sinwInr] + O(r_(N_?’_%))

and completes the proof of this lemma. O

Lemma 2.2. Let p satisfy the conditions of Lemma 2.1 and v1(r) be the unique
solution of the problem

{ vg/((gg + ;V% ((]7)”)—5-01)1}8—1(7‘)@1 (r) — DD (1) — Bug(r) = 0, 7 € (0,00),

(2.8)
Then for r € [Ry, o),

N-3 9 _N-3

v1(r) = Cpr*™* + 12772 (aj cos(wlnr) + by sin(winr)) + o(r?= "= ), (2.9)

where C, satisfies
2(N — 2)}

(2= @) (N = 1= a)+pAs~|C, = A4, |6~ 3p-1)

(2.10)

(a1,b1) is the solution of

Diay + 4wby = Bag + (N3,_2) bow — (N_2)6(N_3) ap — p(p — 1) AP 2Cpag
—dway + D1by = by — %aow - Wbo —p(p — 1) AL=2Cybo,

where Dy = W —w? +pA§*1,' ag, by and w are given in Lemma 2.1.

Proof. Let
—3 N-—-3

v (r) = Cpr%o‘ + h(r)rQ*NT + o(rsz)
where
h(r) = ¢1 cos(wlnr) + cosin(wlnr).

Using the expression of vg(r) in (2.4), (2.9) follows by direct calculations. Note
that

0(7"7(1\#37%)) = o(r_w)
N+1

provided p > 5. O
Now we obtain the following proposition.



8 E.N. DANCER, ZONGMING GUO, AND JUNCHENG WEI

Proposition 2.3. Let 81 < p < p.(N —1) and v(r) be a solution of (2.1). Then
for e > 0 sufficiently small,

Moreover, for r € [Ry, 00),

de 2= °‘+Z€k 2= sm(wlnr—kEk)-i-O( 2 ;3)» (2.11)

where dj,e],E’C (j =1,2,...,k) are constants. Moreover,

a b
1 1 2 2w il 1 1 1
dy =Cp, ey =1/aj +b7f, sinE] = T cos B} = o1

1 1

where Cy,a1,b1 are given in Lemma 2.2.

Proof. Using the Taylor’s expansion of vP and the expressions of vy (r), v1(r), . .., vk—1(r),
we can obtain this proposition by the induction argument and direct calculations.
Note that

N-3

=) =o(r*™?).

o(r*~
O
Now we obtain the following theorem.

Theorem 2.4. Let N'H < p < p(N—1) and w™(0) be an inner solution of (1.9)
with we(0) = e~ . Then for any sufficiently small € > 0 and 0 > Rge but 0 is also
sufficiently small,

co k
inn A C —7 | —
w"(9) = —65 + 8@_”2 +Y N dret g

k=2 j=1

No3_, {ao cos(wln 2) + by sin(wln 2) N a1 cos(wn ¢) + by sin(wn ¢)

+e 2 ~3
0= 0
)]

3 0
+Z(Ze 2k—1) 21— sm(wlnf—FEk)—Fo(
Proof. This is a direcct consequence of Proposition 2.3 by setting r» = 6/e. O
We now obtain the following lemmas similar to Lemma 2.4 and Lemma 3.3 of
[11] respectively which will be useful in the following proofs.

N32

Lemma 2.5. Let N+1 <p <pe(N—1) and

v(Q,6) = Quo(Q"7 6).
Then for Q%H > Ro, and forn =0,1,2, v(Q,0) satisfies

o am A
() 75r0(Q0) = - (52)
- o 6”9 _N=3 (V=3 gy p—1
+8Q"{09 T Q 1 sin (wln(Q 2 9)—|—D)}

)

+Q n—[25(N-3—a)— 1]0( (N—-3— a))
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Lot 0" —ad,
(i) 0" (vp(Q,0)) = W(W)
o+t N-3 (p-1(N-3) p1
R - G—F—-1D g ==
+3Q"69 {09 Q sin (w In(Q = 0) + D) }

+Q7n7[p; (N—3—a)— 1]0( (N—2— a))

b
D= tan*l(a—‘(’)), C = /a3 + b2

Proof. These estimates are obtained by the expansion of vy(r) given above and
some calculations. (]

3

where

Lemma 2.6. In the region § = |O(Q7<zfn)a)|, the solution w(Q,8) of (1.9) with
w(Q,0) = Q, wy(Q,0) =0 satisfies

w ) _(=D(N=3) N-3
(i) |35(@, >—8Qe\— o0 );
w v _w =1
(ii) | 5@, —”QM—Q o0~ ")
(=1 (N-=3) 1)(N 3) _
(iii) |38 (@,0) — 5535(Q.0)| = @~ (=)

Wy vy (P=1)(N=3) 1)(N 3)
(iv) | Qﬁ)—ZQz (Q.0)] = @ o= )|,

Proof. This lemma can be obtained from Lemma 2.5 and Theorem 2.4. Note that
_ ~1)(N —
GZQ_é7 702—(1) I 3)—1.
o 4
Moreover,
—1 p=1
Q7 0=10(Q>~)|> Ro

provided @ suitably large. O
Now we can summarize the inner solution obtained in Theorem 2.4 in the form
of parameter Q:

Theorem 2.7. Let 841 < p < p.(N —1) and wg™(0) be an inner solution of (1.9)
with wg(0) = Q. Then for any sufficiently large Q > 0 and 0 = |O(Q<2*U0Ja ),

we"™(0)
o k
Ap G k)~ (p—1)(k—j) g2j—a
:97+0a_2+zzde (p=1)(k=3) 923

k=2j=1

[ao cos ( ) + bo sin (w ln(sz;lﬂ))
(in(

) + by sin (w ln(Q%H))

N 3 _

+§:(Z kQ (P=1)(k=3) g2i= =52 gipy (whl(QpTile)_FE]]?)+0(92k7¥))]

k=2 j=1
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3. OUTER SOLUTIONS

In this section we study the asymptotic behaviors of solutions w(f) of (1.9) far
from 6 = 0.

Let w,(6) be the singular solution given in (1.10). We first obtain the following
lemma.

Lemma 3.1. Equation

1 d

sin™ 20 df

admits two fundamental solutions ¢1(0) and ¢2(0). Moreover, any solution ¢(0) of
(3.1) can be written in the form

(sinN_2 9 %(9)) — B(O) + puPH(0)6(0) =0, 0<6< g (3.1)

@(0) = c161(0) + cad2(0), where ¢1 and co are constants,
which satisfies that as 0 — 0,

o(0) = o=z [cl cos(wln g) + cosin(wln g)} + O<92—¥)_ (3.2)
Proof. Let ¢(#) = [sin0]*¢(0). We see that ¢(f) satisfies the equation

sin” 04" () + (N — 2 — 2a) sinf cos 06 (0) + (p — 1) AL $(6) = 0. (3.3)

Under the Emden-Fowler transformations:

U(1)=5(0), 1=lntan,

we obtain that for t € (—o0,0),

2¢%t
G () + <N —3- 2a) (1 - m)zp'(t) + 2(N —3— a)w(t) —0. (3.4
Note that
i 2¢t 1—e% 2¢%t
Sln@zm, Cosazm: —m

We can obtain solutions of (3.4) by shooting backwards under the conditions
¥(0) = a, ¥'(0) = 0. The standard ODE arguments imply that (3.4) admits
two fundamental solutions 11,12 € C?(—00,0) such that any solution 1 (¢) of (3.4)
satisfies

Y(t) = i1 (t) + Larha(t)

where £ and {5 are two constants. Now we show that as t — —oo,
w(t) = et [63 coswt + £4 sin wt] + O(e(a+2)t)

where o = 7% + a.
We see that the characteristic equation of (3.4) admits a pair roots Ay = o + iw,
Ao = 0 —iw as t — —oo since

(N—-3-2a)>—8(N—-3—a)<0 for I <p<p.(N-1).

By the standard argument of variation of constants we obtain the following integral
equation

t
0(t) = ety coswt + tasinwt] + = [ 7 sina(t — £)j(w)(¢)de
w Jr
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where T' € (—00,0) with sufficiently large |T'|, j(¢)(t') = —(N —3—2a) fj:;;, ' ().
Setting ¢ (t) = e~74(t), we see
t

U (t) = [03 coswt + Ly sinwt] + % /T sinw(t — ')j () (¢)dt, (3.5)
where
~ 2@2t/ N ~
JE)E) = =NV =3 = 2a) 755 (0v(t) + ¥(1)).

It follows from (3.5) that
1) — [t coswt + Lysinwt]|lo < (ol o + 1¥]lo), (3.6)

where 0 < 7:=7(T) — 0 as T — —oo and ||pllo = SUp_,ocrer [p(E)].
On the other hand, we see that z(t) := 1’(t) satisfies the equation

2'(t) + (N —3—2a)2'(t) + 2(N — 3 — a)z(t) + h(t,(t),¢'(t)) =0

where
, B 9 262t 262t ,
(e 90, 9'(0) = (N =3 =200 7 (1= 7oy )/ 0)
262t , 2€2t
—2(N -3-— 2a)7(1 n 62t)21/J t)+2(N-3—a)(N-3-— 204)7(1 i 62t)1/1(t).

Thus,
t

e~ 7’ (t) = [¢5 coswt + L sinwt] + i/ sinw(t — Yt OE), ' ')dt',  (3.7)
T

where
Us = l30 + lyw, Llg=L40 — wls
and

(0.0 (0) = (¥ =3 = 20)* o (1= ot ) (000) + /1)

T (0 + /(1)

262t
(14 €2)

—2(N — 3 —2a)

+2(N =3 —a)(N — 3 —20a) O(t).
It follows from (3.7) that
lle™ "4/ (t) — [bs coswt + L sinwt] o < T(|o[|&l]o + 14" ]lo), (3.8)

where 7 is as in (3.6). Since ¢/(t) = e~7")'(t) — o4)(t), it follows from (3.6) and
(3.8) that by choosing |T| suitably large,

l¥llo <C, ¢'o<C (3.9)
where C' = C(p, N, T,{3,¢4). Both (3.9) and (3.5) imply that as t — —o0,
P(t) = [lz coswt + €y sinwt] + O(e?). (3.10)

Therefore, as t — —o0,

W(t) = e7t[l3 cos wt + £y sinwt] + O(el7+2)), (3.11)



12 E.N. DANCER, ZONGMING GUO, AND JUNCHENG WEI
This implies that as § — 07T,

¢(0) = [sin@] ™« (tan g)a {63 cos(w In g)+€4 sin(w In g)} —|—O([Sin 0]« (tan Q) U+2) .

2
(3.12)
Then the Taylor’s expansions of sinf and tang imply that (3.2) holds. This com-
pletes the proof. O

Remark 3.2. For any 6 > 0 sufficiently small, if ¢; and ¢ in (3.2) satisfy that
c1 = 10, ¢y = G906, where & and ¢, are constants, then as § — 07,

N-3 N-3

d(0) == ¢s(0) =00~ = |é1 cos(w lng) + éo sin(w lng)} +0(8)6* "= . (3.13)

Indeed, if ¢5 = 035, L4 = 048, where /3 and /4 are constants, we see from (3.8) that
o140 + 14 llo < C&
where C := C(p, N, T, 173, €~4) > 0 is independent of §. Hence
B(t) = Ps(t) = e7'0[l3 coswt + Ly sinwt] + O(8)e7T2)E,

For any § > 0 sufficiently small, if w € C2(0, 5) is a solution of (1.9) and

w(0) = w.(0) + d¢5(0) + 6%45(0),
where
¢5(0) = ¢1661(0) + C202(0)
is a solution of (3.1) with
c1 = ¢10, Co = C90,

then 15(0) satisfies the problem

gy (5720 55(0)) — Bu(0) + put ()
+572[(w. + 805 + 020)? — wh — pub~ 60y — SPpul '] =0, 0< <7/
V(5) = —(C101(5) + C205(5))-
(3.14)

Lemma 3.3. For any 0 > 0 sufficiently small and each fixed pair (¢1,¢é2), (3.14)
admits solutions 15 € C*(0,7/2).

Proof. We set the initial value conditions on ¢ of (3.14) at = 7/2: ¢¥(n/2) =1
provided

W(G) = ~@d(5) +adh(3)) =0
Y(w/2) = 0 provided
V(G) = @6 (5) +adh(3)) 0.

Then, the standard shooting argument in ODE implies that (3.14) admits a unique

nontrivial solution 15 in C?(0,7/2). Note that there is no singularity of (3.14) for

6 € (0,7/2). Note also that 15 depends on ¢; and és. O
Now we obtain the following proposition.
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Proposition 3.4. For any § > 0 sufficiently small and 15 being given in Lemma
2
3.3, then for 6 = |O(§@= )],

N

N-3 [~ 0 ~ 0 _3
Ys(0) =0~ "2 |d;cos(wln 5) + dg sin(wIn 5)] +0(0*72), (3.15)

where di and dy are constants depending on ¢, and ¢éo but independent of 6.
Proof. Setting ¢5(6) = [sin 8]~ *1s(6), we see that t)5(6) satisfies the problem

{ s~in2 04" (0) + (N — 3 — 2a) cos 0sin 09/ () + 2(N — 3 — a)9(0) + G(¢(6)) = 0,
V'(3) =v5(3),

(3.16)
where

G((6)) = [sin 0]+2572 [w. (6) + 565(6) + 8°[sin 6] 3(0)]"
—wP — pwP~15¢ps(0) — 6*pwP ! [sin 0]70‘1/;(9).
Under the Emden-Fowler transformations:

2(t) =), t= lntang

we obtain
2t

Z'(t) + (N — 3 — 2a) (1 - )z’(t) +2(N — 3 —a)z(t) + G(2(t)) = 0. (3.17)

1+ e2t

By the standard argument of variation of constants and Lemma 3.1, if

G1(t) = [sin0]%¢1(0),  da(t) = [sin ]2 (),

then we obtain the following integral equation for T' € (—o0,0) and |T| suitably
large,

R 06 + B0
1) = O1i(t) + Vada(t) + | L) T PPN ) 4y
{0 = N+ + [ SO D0
= eat[ﬁl coswt + ¥ sinwt] + O(e(a+2)t)
1 _/sinw(t_t/)_|_0(e2t’)
_ o ) , )
+w/Te t—t o) G(z(t"))dt
= e7'[V9; coswt + ¥ sin wit] + O(e(a+2)t)
plp—1) [* . . T o
S ettt =) e 8 (e P
' ;72
s /T 7t sinw(t = )0 (|67 [p(t)) )t
+% /Tt oot sinw(t,t/)0(62t’)[eat’52] [p(t/)]th’
t
i [ et - )0 0([eo )l ar
where

p(t') = & coswt’ + & sinwt’ + e~ 2(t).
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Setting 2(t) = e~ 9t2(t), arguments similar to those in the proof of Lemma 3.1 imply
that there exists C' := C(N,p,T) > 0 but independent of § such that

|2 — [V1 coswt + Yasinwt]|lo < C (3.18)
provided that for ¢ € [2T, 1077,
52 = |0(e®=90. (3.19)
Therefore,
2(t) = e[V coswt + Vg sinwt] + O(el7 D)) (3.20)
provided that (3.19) holds. Therefore,

RPN 0\ 0 . 0 o O\o+2
¥s(0) = [sin 6] (tan 5) [191 coswln§—|—192 sinwIn 5] +O([sm9] (tan 5) )
(3.21)
provided
0 =|0(577)]. (3.22)

Taylor’s expansions of sin# and tan% imply that (3.15) holds provided that (3.22)
holds. This completes the proof of this proposition. O
Now we are in the position to obtain the following theorem.

Theorem 3.5. For any 6 > 0 sufficiently small, problem (1.9) admits outer solu-
tions w" € C*(0,7/2) satisfying

w"(0) = w.(0) + 565(0) + 6%b5(6), 6 € (0, g), wg(g) =0. (3.23)
Moreover,
, A A 1 V3 cos(wln &) + 9, sin(wlin &) 1
out 9 — p /4 52 2 i 2 i
( ) 90‘ +3(p_1)9a—2+ 91\1;5 +O(0N2—3_2>:|
(3.24)
provided
0 =|0(077)], (3.25)

where 93 and ¥4 are constants which are independent of 6.

Proof. This theorem can be obtained from the expression of w(#), (3.21) and the
Taylor’s expansions of sin 6 and tan g. Note that for § > 0 sufficiently small and
6 =10(677)],

N-3

2).

O(0*~%) = o(6%62~
O

Remark 3.6. From (3.19) we see that 62 = |O(6?77)|. Thus w§"® can also be
expressed by

AP
= o—a—‘,-

A, 1 52 [193 cos(w In g);i;%; sin(w In g) +520<9"_ N2_3)} .

out 0
wg™ (0) 3(p—1) 622 05

(3.26)
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4. INFINITELY MANY SOLUTIONS OF (1.9) AND PROOF OF THEOREM 1.1

In this section we will construct infinitely many regular solutions for (1.9) by
combining the inner and outer solutions.
Now we construct a solution of problem

{ md%(smfm 9%(9)) — Buw(0) +wP(0) =0, w(d) >0, 0<0<Z,
w(0) =Q (=€), wy(5)=0

(4.1)
by using the expressions in Theorems 2.7 and 3.5. The variables () and ¢ are then
chosen to ensure that, at a fixed § = © chosen to satisfy

0 =0(QT =)
wE"(©) = ws™(O) (4.2)
[ (0) = w3 (O)]5|,_, =0 (4.3)

These will be done by arguments similar to those in the proof of Lemma 6.1 of [11].
From the choice of @ and § we deduce the existence of a C? function w(f) defined
by w(f) = wg(9) for § < © and by w(f) = w§*(¢) for & > ©. Thus w(0) satisfies
(4.1).
We first observe that A
—L—==C 4.4
where C), is given in Theorem 2.4. Note that
2-a)(N-1-a)+pAr~!
_2(p-2) (2(17 -2
p—1 \ p—1
4(p* —5p+4)

ZW-HL(N—Z%)

3
—4(N-2- ﬁ)'
2(N — 2) 4 3
- - N-o2- 2.
7361 31 )
It follows from (2.10) that (4.4) holds.
Define Q, and 62 by

+N—3)+p—(N—3—L)

p—1
win@,> +D=wln2" + ¢+ 2mn, (4.5)

2 2
2 ag +bj <
=4/ Qs 4.
0% V93 + 9% (4.6)

9
)
3
and m > 1 is a large positive integer. The integer m is chosen such that the results
in Section 2 and Section 3 hold.

Note that

where ¢ given by
¢ = tan"!(

0(77) = 0(QT*7),
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ag cos (w ln(QPTAG))—i—bO sin (w ln(Qp%lﬁ) = /a2 + b sin (w Inf+wln Qprl—i—D),
(4.7)

0 . 0 . _
Y3 cos(w In 5) + 94 sin(wIn 5) = /9% + 97 sin (w Inf+wn2=! + d)) (4.8)

Then we claim that the values of Q and §? required to satisfy the matching condi-
tions (4.2)-(4.3) may be obtained as small perturbations of the values of Q. and §2
given in (4.5) and (4.6), i.e

Q=0.(1+0 Q= =), (4.9)

(
_62(1+O< = "”)) (4.10)

To show this we define the function F(Q, §) by
N-3 . —
BT (Q.6%) = (07 (w(©) — u(0)), 0" (wi(®) — wi @), ).

(We treat 62 as a new variable.) Taking @ = Q. and 62 = §2 we find a bound for

F(Q.,d?) by making use of the behavior of w™(0) determined by Theorem 2.7,
and the behavior of wg"* () given in Theorem 3.5. Accordingly we find for some
M > 1 suitably large,

T F(Q.,0%)| < Mé?

+ small terms. (4.11)

We now seek values of @ and §2 which are small perturbations of @, and 62 and
for which F(Q, §?) = 0. As in [11], we need to evaluate the Jacobian of F at (Q., 62).
We can obtain the following estimates from Lemmas 2.5, 2.6 and Theorems 2.7, 3.5:

o
21 .
cosT)Qg T, —FEsinT

sinT + Lp{l)

Q0% | ©
2Q.0%) | ¢

+small order terms,

COST —

219 2Ja

wp=1) a1 .
=5—sinT)Qg , —FEcosT

where
C= a3+b2, E = /93 + 93,
T—wln@eran* +D—w1n@+w1112 Ly o+ 2mr.
Note that
o _W=3p-1
a 4 '

To simplify this expression we define the function G(z,y) by

G(z,y) = F(Q. + Q. *,5% + ).

Using the bounds for F given in (4.11) and (3.26) and the results in Lemmas 2.5,
2.6, we express G(z,y) in the form

G(z,y)
C %sinT—i—@com— , —FEsint

=C+ w(p-1)
2

+ small terms ( :; )

C(ZcosT — sint), —FEcosT

E(?(57)7" +4°07),
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where C is a constant vector independent of (z,y) which is bounded above by
M§*0°. Also |E| is bounded independently of x, y, Q and §. Thus,

G(z,y)=C+L ( z ) + T(z,y),
where L is a linear operator which, from a direct calculation, is seen to be invertible.
If we define the operator J mapping R? into itself by

J(J}, y) = _(L_lc + L_lT(xv y))a

then, provided that @), is suitably large, a direct calculation shows that J maps the
set B into itself, where B is the ball

45407 M
B={(@y): @+ < b

(p — DwE\/a2 + b?
We may therefore apply the Brouwer Fixed Point Theorem to conclude that J has
a fixed point in B. This point (z,y) satisfies both G(z,y) = 0 and

($2+y2)1/2 SA(Si@U,
where A is a constant independent of ., Q. and ©. By substituting for @ and 4§,

and then taking © to have the upper limiting value of Q*~”*, we obtain (4.9) and
(4.10).

We have shown that (4.2)-(4.3) has a solution for each fixed m large. This yields
a solution of (1.9). This also gives the proof of Theorem 1.1. Hence we have

Theorem 4.1. For m > 1 large and Q and § given in (4.9) and (4.10), problem
(4.1) admits a C? solution wg s5(0). Moreover, there is © = |O(Q @=aa)| such that

W' (©) = w(©),
(w")5(©) = (w5 )p(®).

As a consequence, Problem (1.9) admits infinitely many nonconstant positive
radially symmetric solutions.
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