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Abstract. We obtain infinitely many non-radial singular solutions of Lane-
Emden equation

∆u + up = 0 in RN\{0}, N ≥ 4

with
N + 1

N − 3
< p < pc(N − 1)

by constructing infinitely many radially symmetric regular solutions of equa-
tion on SN−1

∆SN−1w − 2

p− 1

[
N − 2− 2

p− 1

]
w + wp = 0.

1. Introduction

We consider positive solutions of Lane-Emden equation:

(P ) ∆u + up = 0 in RN , N ≥ 4

where

p >
N + 2
N − 2

.

Problem (P) arises both in physics and in geometry, and is a model semilinear
elliptic equation. It has attracted extensive studies in the past three decades. In
the subcritical case 1 < p < N+2

N−2 , a well-known result of Gidas and Spruck ([25])
says that (P) admits no nontrivial nonnegative solution. In the Sobolev critical
case p = N+2

N−2 , any positive solution of (P) can be written in the form (see [12]):

uε,ξ(x) = CN

( ε

ε2 + |x− ξ|2
)N−2

2
.

Therefore the structure of positive solutions in the critical or subcritical cases
are completely classified. A fundamental question is to classify positive solutions
in the supercritical case. This question remains largely open.

When p > N+2
N−2 , the structure of positive radial solutions of (P) has been studied

by Gui, Ni and Wang [26] and Wang [36]. They showed that for any a > 0,
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equation (P) admits a unique positive radial solution u = u(r) such that u(0) = a
and u(r) → 0 as r → +∞. The solution u satisfies u′(r) < 0 for all r > 0 and

lim
r→∞

r
2

p−1 u(r) =
[ 2
p− 1

(
N − 2− 2

p− 1

)] 1
p−1

(:= β
1

p−1 ).

Moreover, if N ≤ 10 or N ≥ 11 and
N + 2
N − 2

< p < pc(N),

then u(r)−β
1

p−1 r−
2

p−1 changes sign infinitely many times. If N ≥ 11 and p ≥ pc(N),
then u(r) < β

1
p−1 r−

2
p−1 for all r > 0 and the solutions are strictly ordered with

respect to the initial value a = u(0). Here pc(M) (M is an integer) is the Joseph-
Lundgren exponent [29]:

pc(M) :=
{ ∞, if 2 ≤ M ≤ 10,

P (M), if M ≥ 11,

where

P (M) =
(M − 2)2 − 4M + 8

√
M − 1

(M − 2)(M − 10)
.

When p is supercritical, it is still open if all positive solutions are radially sym-
metric around some point. The first result was due to Zou [38], who showed that
when p ∈ (N+2

N−2 , N+1
N−3 ) and u has the right decay u = O(|x|− 2

p−1 ), then all solutions
are radially symmetric. Guo [27] extended Zou’s result to p ≥ N+1

N−3 by assuming

lim|x|→+∞ |x|
2

p−1 u(x) = β
1

p−1 .

Recently, solutions of (P) up to pc(N) are classified by using the Morse index
theory. Farina [24] showed that if N+2

N−2 < p < pc(N) and u ∈ C2(RN ) is a positive
solution of (P ) that has finite Morse index, then u ≡ 0 in RN . (The condition that
u ∈ C2(RN ) can be weakened to be H1

loc ∩ Lp
loc. See Davila, Dupaigne and Farina

[17].)

On the other hand, supercritical problems in a bounded domain

(D) ∆u + up = 0, u > 0 in Ω, p >
N + 2
N − 2

, u = 0 on ∂Ω

have been studied by variational and perturbation methods. In case of pure non-
linearity u

N+2
N−2 , Coron [4] used a variational approach to prove that (D) is solvable

if Ω exhibits a small hole. Bahri and Coron [1] established that solvability holds
for p = N+2

N−2 whenever Ω has a non-trivial homology. On the other hand, examples
in [13, 23, 33] shows that when p ≥ N+2

N−2 (D) can still have a solution on some do-
mains whose topology is trivial. If p is supercritical but close to critical, bubbling
solutions are found, see [19, 20, 31, 32].

In the case of p being purely supercritical, there are very few existence results on
(D). Variational machinery no longer applies, due to a lack of Sobolev inequality. In
[22], del Pino and Wei extended Coron’s result to supercritical problems (modulo
some sequence of critical exponents) using perturbation methods. The role of the
second critical exponent p = N+1

N−3 , the Sobolev exponent in one dimension less,
is investigated in the paper by del Pino, Musso and Pacard [21] in which they
constructed solutions concentrating on a boundary geodesics for p = N+1

N−3 − ε with
ε → 0+. Under some symmetry assumptions, Wei and Yan [37] proved the existence
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of infinitely many positive solutions for some domains when p = N+m−2
N−m−2 ,m ≥ 1. We

should also mention that Davila, Del Pino and Musso [15] showed that in the case
of the exterior domains Ω = RN\D, and p > N+2

N−2 , problem (D) admits infinitely
many positive solutions. (See also [16].) We refer to the survey article [18] for more
references.

Now we turn to singular solutions to (P)

∆u + up = 0, u > 0, in RN\{0}. (1.1)

The singular solution in the subcritical or critical case has been completely classi-
fied. See Bidaut-Veron and Veron [6], Gidas and Spruck [25] and Korevaar-Mazzeo-
Pacard-Schoen [30]. When p > N+2

N−2 and p 6= N+1
N−3 , the only singular solution to

(1.1) known so far is the radial singular solution

U(x) := U(r) =
[ 2
p− 1

(
N − 2− 2

p− 1

)] 1
p−1 |x|− 2

p−1 . (1.2)

In [14], the authors showed that if Ω0 is a bounded domain containing 0; u is a
positive solution of (P) in Ω0\{0}; u has finite Morse index and N+2

N−2 < p < pc(N),
then x = 0 must be a removable singularity of u. They also showed that if Ω0 is
a bounded domain containing 0; u is a positive solution of (P) in RN\Ω0 that has
finite Morse index and N+2

N−2 < p < pc(N), then u must be a fast decay solution.
We still do not know more about the structure of positive solutions of (P) when
p ≥ pc(N).

Our motivation of studying (1.1) is to classify all possible singular solutions. This
is important for Liouville type theorems (Polacik, Quittner, Souplet [35]). The first
question is whether or not all singular solutions to (1.1) are radially symmetric.
The purpose of this paper is to construct infinitely many positive nonradial singular
solutions of (1.1) provided

N + 1
N − 3

< p < pc(N − 1).

This gives an negative answer to the above question. Note that pc(M) is a decreas-
ing function of M . Then pc(N) < pc(N − 1). This provides new information on
the case p ≥ pc(N). Note also that

(
M − 2− 4

p− 1

)2

− 8
(
M − 2− 2

p− 1

)
< 0, for M+2

M−2 < p < pc(M). (1.3)

Our main result can be stated as follows.

Theorem 1.1. Assume that
N + 1
N − 3

< p < pc(N − 1) (1.4)

Then there exist infinitely many nonradial singular solutions to (1.1).

To explain our idea of construction, we perform a separation of variable: it is
easy to see that that any solution u(x) := u(r, ω) of (P) satisfies the equation

urr +
N − 1

r
ur +

1
r2

∆SN−1u + up = 0 (1.5)

where r = |x|. If
u(x) = r−

2
p−1 w(ω) (1.6)
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where w is a solution of the equation

∆SN−1w − βw + wp = 0, (1.7)

with

β =
2

p− 1
(N − 2− 2

p− 1
),

then u is a singular solution of (P). It is clear that

w(ω) ≡ β
1

p−1

is the constant solution of (1.7) and it provides a radial singular solution of (P) as
given in (1.2). For p < N+1

N−3 , Bidaut-Veron and Veron ([6]) proved that the only
solutions to (1.7) are constants. (See also Zou [38].) On the other hand, when
p = N+1

N−3 , problem (1.7) becomes Yamabe problem on SN−1 whose solutions are all
classified.

To construct positive non-radial singular solutions of (P), we need to find positive
non-constant solutions w(ω) of (1.7). In this paper, we will construct infinitely
many positive nonconstant radially symmetric solutions of (1.7), i.e., solutions that
only depend on the geodesic distance θ ∈ [0, π). In this case, (1.7) can be written
in a more convenient form (with x = cos θ), namely

{
(1− x2)−

N−3
2

(
(1− x2)

N−1
2 wx

)
x
− βw + wp = 0, w(x) > 0, −1 < x < 1

w′(1) exists.
(1.8)

If we only consider the simple case w(−x) = w(x) for x ∈ (0, 1), we see that
w′(0) = 0. Then w(x) := w(θ) with w(θ) = w(π − θ) for 0 < θ ≤ π/2 satisfies the
problem

{
1

sinN−2 θ
d
dθ

(
sinN−2 θ dw

dθ (θ)
)
− βw(θ) + wp(θ) = 0, w(θ) > 0, 0 < θ < π

2 ,

w′θ(0) exists, w′θ(
π
2 ) = 0.

(1.9)
Note that even though (1.9) is an ODE, it is still supercritical. Neither variational

methods nor sub-super solution method apply. Note also that the β here is fixed so
bifurcation argument does not work, either. A key observation is that besides the
obvious constant solution w = β

1
p−1 , there is another solution

w∗(θ) = Ap[sin θ]−
2

p−1 , θ ∈ (0,
π

2
], Ap−1

p =
2

p− 1

[
N − 3− 2

p− 1

]
(1.10)

which is a singular solution of (1.9) with two singularities at θ = 0 and θ = π. A
crucial fact is that because of the condition p < pc(N − 1), the singular solution to
(1.9) has Morse index ∞. We will construct the inner and outer solutions of (1.9)
and then glue them to be solutions of (1.9). Such arguments have been used in [11]
for the supercritical problem ∆u + λu + up = 0 in a unit ball in R3 with p > 5.

We should mention that recently Bidaut-Veron, Ponce and Veron [8] studied
solutions of (P) with boundary singularities. In particular, they obtained the exis-
tence of a singular solutions of the separated form (1.6), where w vanishes on the
equator, for N+1

N−1 < p < N+1
N−3 and nonexistence beyond. They also showed that

these solutions only depend on the incidence angle θ ∈ (0, π), satisfying the ODE
(1.8) and vanishing at π

2 , and are unique.
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Equation (1.9) has also been studied recently by many authors. Regarding β as
a parameter, it has been shown that there are more and more nonradial solutions
as β → +∞. We refer to Brezis-Peletier [9], Bandle-Wei [5] and the references
therein. Here in this paper, β is fixed and equals 2

p−1 (N − 2− 2
p−1 ).

The nonradial singular solutions to (P) may serve as good asymptotics for non-
radial entire solutions to (P). Thus we conjecture

Conjecture: For each of the nonradial singular solutions r−
2

p−1 w(θ) constructed
in Theorem 1.1 there exists an entire positive solution u to (P) such that

u− |x|− 2
p−1 w(θ) = o(|x|− 2

p−1 ), for |x| À 1. (1.11)

This paper is organized as follows: in Section 2, we study an intial value problem
and study the asymptotic behavior of the inner solution when the initial value tends
to infinity. In Section 3, we study the outer problem. Namely we solve the problem
(1.9) from θ = π

2 . The asymptotic behavior of the outer problem will be analyzed
near the origin. Finally in Section 4, we use asymptotics to match the inner and
outer solutions, thereby proving Theorem 1.1.

2. Inner solutions

In this section we study solutions w(θ) of (1.9) with w(0) = Q À 1 and analyze
their behaviors near θ = 0. This is the inner solution. Since Q À 1, we set
Q = ε−

2
p−1 (:= ε−α) with ε sufficiently small.

Rescaling as w(θ) = ε−αv( θ
ε ), we see that v(0) = 1 and v(r) (for r = θ

ε ) satisfies
the following equation

vrr + (N − 2)ε cot(εr)vr − βε2v + vp = 0, v(0) = 1. (2.1)

Observe that for ε > 0 sufficiently small,

cot(εr) =
cos(εr)
sin(εr)

=
1
εr
− 1

3
(εr) +

∞∑

k=1

`k(εr)2k+1.

Thus,

vrr+
N − 2

r
vr− (N − 2)

3
(ε2r)vr+

( ∞∑

k=1

(N−2)`kε2(k+1)r2k+1
)
vr−βε2v+vp = 0, v(0) = 1.

(2.2)
The first approximation to the solution of (2.2) is the radial solution v0(r) of the
problem

∆v + vp = 0 in RN−1, v(0) = 1. (2.3)

For p ≥ pc(N − 1), v0(r) is stable and the asymptotic expansion can be found in
[26]. For p < pc(N − 1), we can not find a reference for the asymptotic behavior of
v. We state the following result.

Lemma 2.1. For N+1
N−3 < p < pc(N − 1), there exist constants a0, b0 and R0 À 1

such that for r ≥ R0 the unique positive solution v0(r) of (2.3) satisfies

v0(r) = Apr
−α +

a0 cos(ω ln r) + b0 sin(ω ln r)

r
N−3

2

+ O(r−(N−3− 2
p−1 )), (2.4)
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where

Ap−1
p =

2
p− 1

[
N − 3− 2

p− 1

]
,

ω =
1
2

√
8
(
N − 3− 2

p− 1

)
−

(
N − 3− 4

p− 1

)2

. (2.5)

Proof. Note that

8
(
N − 3− 2

p− 1

)
−

(
N − 3− 4

p− 1

)2

> 0, for N+1
N−3 < p < pc(N − 1),

N − 3− 2
p− 1

>
N − 3

2
for p > N+1

N−3 .

The existence and uniqueness of v0(r) can be found [26] and [28]. It is also
known ([26], [28]) that

lim
r→+∞

rαv0(r) = Ap.

To find the next order term, we use the Emden-Fowler transformation:

V (t) = rαv0(r)−Ap, t = ln r .

It is easy to see that V (t) satisfies the equation

Vtt +(N −3−2α)Vt +2(N −3−α)+ g(V ) = 0, for t ≥ T = ln R, R > 10, (2.6)

where
g(s) = (s + Ap)p −Ap

p − pAp−1
p s.

By the standard argument of variation of constants we obtain the following integral
equation

V (t) = eσt[a cosωt + b sin ωt] +
1
ω

∫ t

T

eσ(t−t′) sin ω(t− t′)g(V (t′))dt′,

where σ = − 1
2 (N − 3 − 2α), ω is given in (2.5). Note that g(s) = O(s2) for s

sufficiently small.
Set Ṽ (t) = e−σtV (t). Then Ṽ (t) satisfies the integral equation

Ṽ (t) := N Ṽ (t) = C sin(ωt + D) +
1
ω

∫ t

T0

e−σt′ sin ω(t− t′)g(eσt′ Ṽ (t′))dt′, (2.7)

where C =
√

a2 + b2, sin D = a
C , cos D = b

C . We take t in the range T0 ≤ t < ∞,
where T0 = ln R0 is suitably large, and consider N Ṽ as a map from C[T0,∞) into
itself. We claim that, for each C > 0 and suitable T0, the operator N Ṽ maps the
set

B = {Ṽ ∈ C[T0,∞) : ‖z‖0 = sup
T0<t<∞

|Ṽ (t)| ≤ 2C, C > 0}

into itself, and is a contraction mapping on B. Indeed, if ‖Ṽ ‖0 < 2C, then

|g(eσtṼ (t))| = e2σtO(1)

and
‖N Ṽ − C sin(ωt + D)‖0 ≤ C ′eσT0

where C ′ > 0 only depends on C, N , p. Note that σ < 0 and ‖eσtṼ (t)‖0 is
sufficiently small for Ṽ ∈ B for T0 suitably large. Thus, if we choose T0 > 1
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suitably large, we see that ‖N Ṽ − C sin(ωt + D)‖0 < C. A similar calculation
shows that

‖N Ṽ1 −N Ṽ2‖0 ≤ eσT0‖Ṽ1 − Ṽ2‖0.
Hence it is possible for each value of C to choose T0 so that N is a contraction
mapping of B to itself. Thus, we define Ṽ0 = C sin(ωt + D) and the iteration
Ṽn+1 = N Ṽn for n ≥ 0. The contraction mapping theorem then ensures that this
iteration converges to the unique solution Ṽ∗(t) of (2.7) in B. Note that

∣∣∣ 1
ω

∫ t

T0

e−σt′ sin ω(t− t′)g(eσt′ Ṽ∗(t′))dt′
∣∣∣ = O(eσt).

Then

V∗(t) = eσtṼ∗(t) = C0e
σt sin(ωt + D0) + O(e2σt) for t ∈ (T0,∞).

This implies that for r ∈ [R0,∞),

v0(r) = Apr
−α + r−

N−3
2 [a0 cos ω ln r + b0 sin ω ln r] + O(r−(N−3− 2

p−1 ))

and completes the proof of this lemma. ¤

Lemma 2.2. Let p satisfy the conditions of Lemma 2.1 and v1(r) be the unique
solution of the problem

{
v′′1 (r) + N−2

r v′1(r) + pvp−1
0 (r)v1(r)− (N−2)

3 rv′0(r)− βv0(r) = 0, r ∈ (0,∞),
v1(0) = 0, v′1(0) = 0.

(2.8)
Then for r ∈ [R0,∞),

v1(r) = Cpr
2−α + r2−N−3

2 (a1 cos(ω ln r) + b1 sin(ω ln r)) + o(r2−N−3
2 ), (2.9)

where Cp satisfies

[(2− α)(N − 1− α) + pAp−1
p ]Cp = Ap

[
β − 2(N − 2)

3(p− 1)

]
, (2.10)

(a1, b1) is the solution of
{

D1a1 + 4ωb1 = βa0 + (N−2)
3 b0ω − (N−2)(N−3)

6 a0 − p(p− 1)Ap−2
p Cpa0

−4ωa1 + D1b1 = βb0 − (N−2)
3 a0ω − (N−2)(N−3)

6 b0 − p(p− 1)Ap−2
p Cpb0,

where D1 = (N+1)(7−N)
4 − ω2 + pAp−1

p ; a0, b0 and ω are given in Lemma 2.1.

Proof. Let
v1(r) = Cpr

2−α + h(r)r2−N−3
2 + o(r2−N−3

2 )

where
h(r) = c1 cos(ω ln r) + c2 sin(ω ln r).

Using the expression of v0(r) in (2.4), (2.9) follows by direct calculations. Note
that

O(r−(N−3− 2
p−1 )) = o(r−

(N−3)
2 )

provided p > N+1
N−3 . ¤

Now we obtain the following proposition.
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Proposition 2.3. Let N+1
N−3 < p < pc(N − 1) and v(r) be a solution of (2.1). Then

for ε > 0 sufficiently small,

v(r) = v0(r) +
∞∑

k=1

ε2kvk(r).

Moreover, for r ∈ [R0,∞),

vk(r) =
k∑

j=1

dk
j r2j−α +

k∑

j=1

ek
j r2j−N−3

2 sin(ω ln r + Ek
j ) + o(r2k−N−3

2 ), (2.11)

where dk
j , ek

j , Ek
j (j = 1, 2, . . . , k) are constants. Moreover,

d1
1 = Cp, e1

1 =
√

a2
1 + b2

1, sin E1
1 =

a1

e1
1

, cosE1
1 =

b1

e1
1

where Cp, a1, b1 are given in Lemma 2.2.

Proof. Using the Taylor’s expansion of vp and the expressions of v0(r), v1(r), . . . , vk−1(r),
we can obtain this proposition by the induction argument and direct calculations.
Note that

O(r2−N−3
2 ) = o(r2−α).

¤
Now we obtain the following theorem.

Theorem 2.4. Let N+1
N−3 < p < pc(N −1) and winn

ε (θ) be an inner solution of (1.9)
with wε(0) = ε−α. Then for any sufficiently small ε > 0 and θ > R0ε but θ is also
sufficiently small,

winn
ε (θ) =

Ap

θα
+

Cp

θα−2
+

∞∑

k=2

k∑

j=1

dk
j ε2(k−j)θ2j−α

+ε
N−3

2 −α
[a0 cos(ω ln θ

ε ) + b0 sin(ω ln θ
ε )

θ
N−3

2

+
a1 cos(ω ln θ

ε ) + b1 sin(ω ln θ
ε )

θ
N−3

2 −2

+
∞∑

k=2

( k∑

j=1

ek
j ε2(k−j)θ2j−N−3

2 sin(ω ln
θ

ε
+ Ek

j ) + o(θ2k−N−3
2 )

)]
.

Proof. This is a direcct consequence of Proposition 2.3 by setting r = θ/ε. ¤
We now obtain the following lemmas similar to Lemma 2.4 and Lemma 3.3 of

[11] respectively which will be useful in the following proofs.

Lemma 2.5. Let N+1
N−3 < p < pc(N − 1) and

v(Q, θ) = Qv0(Q
p−1
2 θ).

Then for Q
p−1
2 θ ≥ R0, and for n = 0, 1, 2, v(Q, θ) satisfies

(i)
∂n

∂Qn
(v(Q, θ)) =

∂n

∂Qn

(Ap

θα

)

+
∂n

∂Qn

{
Cθ−

N−3
2 Q−(

(p−1)(N−3)
4 −1) sin

(
ω ln(Q

p−1
2 θ) + D

)}

+Q−n−[ p−1
2 (N−3−α)−1]O(θ−(N−3−α)),
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(ii)
∂n

∂Qn
(v′θ(Q, θ)) =

∂n

∂Qn

(−αAp

θα+1

)

+
∂n+1

∂Qn∂θ

{
Cθ−

N−3
2 Q−(

(p−1)(N−3)
4 −1) sin

(
ω ln(Q

p−1
2 θ) + D

)}

+Q−n−[ p−1
2 (N−3−α)−1]O(θ−(N−2−α)),

where

D = tan−1(
b0

a0
), C =

√
a2
0 + b2

0.

Proof. These estimates are obtained by the expansion of v0(r) given above and
some calculations. ¤

Lemma 2.6. In the region θ = |O(Q
σ

(2−σ)α )|, the solution w(Q, θ) of (1.9) with
w(Q, 0) = Q, w′θ(Q, 0) = 0 satisfies

(i)
∣∣∣ ∂w
∂Q (Q, θ)− ∂v

∂Q (Q, θ)
∣∣∣ = Q− (p−1)(N−3)

4 |o(θ−N−3
2 )|;

(ii)
∣∣∣∂w′θ

∂Q (Q, θ)− ∂v′θ
∂Q (Q, θ)

∣∣∣ = Q− (p−1)(N−3)
4 |o(θ−N−1

2 )|;
(iii)

∣∣∣ ∂2w
∂Q2 (Q, θ)− ∂2v

∂Q2 (Q, θ)
∣∣∣ = Q−(

(p−1)(N−3)
4 +1)|o(θ−N−3

2 )|;
(iv)

∣∣∣∂2w′θ
∂Q2 (Q, θ)− ∂2v′θ

∂Q2 (Q, θ)
∣∣∣ = Q−(

(p−1)(N−3)
4 +1)|o(θ−N−1

2 )|.

Proof. This lemma can be obtained from Lemma 2.5 and Theorem 2.4. Note that

ε = Q−
1
α ,

−σ

α
=

(p− 1)(N − 3)
4

− 1.

Moreover,

Q
p−1
2 θ = |O(Q

p−1
2−σ )| > R0

provided Q suitably large. ¤
Now we can summarize the inner solution obtained in Theorem 2.4 in the form

of parameter Q:

Theorem 2.7. Let N+1
N−3 < p < pc(N −1) and winn

Q (θ) be an inner solution of (1.9)
with wQ(0) = Q. Then for any sufficiently large Q > 0 and θ = |O(Q

σ
(2−σ)α )|,

winn
Q (θ)

=
Ap

θα
+

Cp

θα−2
+

∞∑

k=2

k∑

j=1

dk
j Q−(p−1)(k−j)θ2j−α

+Q
σ
α

[a0 cos
(
ω ln(Q

p−1
2 θ)

)
+ b0 sin

(
ω ln(Q

p−1
2 θ)

)

θ
N−3

2

+
a1 cos

(
ω ln(Q

p−1
2 θ)

)
+ b1 sin

(
ω ln(Q

p−1
2 θ)

)

θ
N−3

2 −2

+
∞∑

k=2

( k∑

j=1

ek
j Q−(p−1)(k−j)θ2j−N−3

2 sin
(
ω ln(Q

p−1
2 θ) + Ek

j

)
+ o(θ2k−N−3

2 )
)]

.
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3. outer solutions

In this section we study the asymptotic behaviors of solutions w(θ) of (1.9) far
from θ = 0.

Let w∗(θ) be the singular solution given in (1.10). We first obtain the following
lemma.

Lemma 3.1. Equation

1
sinN−2 θ

d

dθ

(
sinN−2 θ

dφ

dθ
(θ)

)
− βφ(θ) + pwp−1

∗ (θ)φ(θ) = 0, 0 < θ <
π

2
, (3.1)

admits two fundamental solutions φ1(θ) and φ2(θ). Moreover, any solution φ(θ) of
(3.1) can be written in the form

φ(θ) = c1φ1(θ) + c2φ2(θ), where c1 and c2 are constants,

which satisfies that as θ → 0,

φ(θ) = θ−
N−3

2

[
c1 cos(ω ln

θ

2
) + c2 sin(ω ln

θ

2
)
]

+ O(θ2−N−3
2 ). (3.2)

Proof. Let φ̃(θ) = [sin θ]αφ(θ). We see that φ̃(θ) satisfies the equation

sin2 θφ̃′′(θ) + (N − 2− 2α) sin θ cos θφ̃′(θ) + (p− 1)Ap−1
p φ̃(θ) = 0. (3.3)

Under the Emden-Fowler transformations:

ψ(t) = φ̃(θ), t = ln tan
θ

2
,

we obtain that for t ∈ (−∞, 0),

ψ′′(t) +
(
N − 3− 2α

)(
1− 2e2t

1 + e2t

)
ψ′(t) + 2

(
N − 3− α

)
ψ(t) = 0. (3.4)

Note that

sin θ =
2et

1 + e2t
, cos θ =

1− e2t

1 + e2t
= 1− 2e2t

1 + e2t
.

We can obtain solutions of (3.4) by shooting backwards under the conditions
ψ(0) = a, ψ′(0) = 0. The standard ODE arguments imply that (3.4) admits
two fundamental solutions ψ1, ψ2 ∈ C2(−∞, 0) such that any solution ψ(t) of (3.4)
satisfies

ψ(t) = `1ψ1(t) + `2ψ2(t)

where `1 and `2 are two constants. Now we show that as t → −∞,

ψ(t) = eσt[`3 cosωt + `4 sinωt] + O(e(σ+2)t)

where σ = −N−3
2 + α.

We see that the characteristic equation of (3.4) admits a pair roots λ1 = σ + iω,
λ2 = σ − iω as t → −∞ since

(N − 3− 2α)2 − 8(N − 3− α) < 0 for N+1
N−3 < p < pc(N − 1).

By the standard argument of variation of constants we obtain the following integral
equation

ψ(t) = eσt[`3 cos ωt + `4 sin ωt] +
1
ω

∫ t

T

eσ(t−t′) sin ω(t− t′)j(ψ)(t′)dt′,
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where T ∈ (−∞, 0) with sufficiently large |T |, j(ψ)(t′) = −(N−3−2α) 2e2t′

1+e2t′ ψ
′(t′).

Setting ψ̂(t) = e−σtψ(t), we see

ψ̂(t) = [`3 cosωt + `4 sinωt] +
1
ω

∫ t

T

sin ω(t− t′)j(ψ̂)(t′)dt′, (3.5)

where

j(ψ̂)(t′) = −(N − 3− 2α)
2e2t′

1 + e2t′ (σψ̂(t′) + ψ̂′(t′)).

It follows from (3.5) that

‖ψ̂ − [`3 cos ωt + `4 sin ωt]‖0 ≤ τ(|σ|‖ψ̂‖0 + ‖ψ̂′‖0), (3.6)

where 0 < τ := τ(T ) → 0 as T → −∞ and ‖ρ‖0 = sup−∞<t<T |ρ(t)|.
On the other hand, we see that z(t) := ψ′(t) satisfies the equation

z′′(t) + (N − 3− 2α)z′(t) + 2(N − 3− α)z(t) + h(t, ψ(t), ψ′(t)) = 0

where

h(t, ψ(t), ψ′(t)) = (N − 3− 2α)2
2e2t

(1 + e2t)

(
1− 2e2t

(1 + e2t)

)
ψ′(t)

−2(N − 3− 2α)
2e2t

(1 + e2t)2
ψ′(t) + 2(N − 3− α)(N − 3− 2α)

2e2t

(1 + e2t)
ψ(t).

Thus,

e−σtψ′(t) = [`5 cos ωt + `6 sin ωt] +
1
ω

∫ t

T

sinω(t− t′)h(t′, ψ̂(t′), ψ̂′(t′))dt′, (3.7)

where
`5 = `3σ + `4ω, `6 = `4σ − ω`3

and

h(t, ψ̂(t), ψ̂′(t)) = (N − 3− 2α)2
2e2t

(1 + e2t)

(
1− 2e2t

(1 + e2t)

)
(σψ̂(t) + ψ̂′(t))

−2(N − 3− 2α)
2e2t

(1 + e2t)2
(σψ̂(t) + ψ̂′(t))

+2(N − 3− α)(N − 3− 2α)
2e2t

(1 + e2t)
ψ̂(t).

It follows from (3.7) that

‖e−σtψ′(t)− [`5 cosωt + `6 sin ωt]‖0 ≤ τ(|σ|‖ψ̂‖0 + ‖ψ̂′‖0), (3.8)

where τ is as in (3.6). Since ψ̂′(t) = e−σtψ′(t) − σψ̂(t), it follows from (3.6) and
(3.8) that by choosing |T | suitably large,

‖ψ̂‖0 ≤ C, ‖ψ̂′‖0 ≤ C (3.9)

where C = C(p,N, T, `3, `4). Both (3.9) and (3.5) imply that as t → −∞,

ψ̂(t) = [`3 cos ωt + `4 sin ωt] + O(e2t). (3.10)

Therefore, as t → −∞,

ψ(t) = eσt[`3 cos ωt + `4 sin ωt] + O(e(σ+2)t). (3.11)
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This implies that as θ → 0+,

φ(θ) = [sin θ]−α
(

tan
θ

2

)σ[
`3 cos(ω ln

θ

2
)+`4 sin(ω ln

θ

2
)
]
+O

(
[sin θ]−α

(
tan

θ

2

)σ+2)
.

(3.12)
Then the Taylor’s expansions of sin θ and tan θ

2 imply that (3.2) holds. This com-
pletes the proof. ¤

Remark 3.2. For any δ > 0 sufficiently small, if c1 and c2 in (3.2) satisfy that
c1 = c̃1δ, c2 = c̃2δ, where c̃1 and c̃2 are constants, then as θ → 0+,

φ(θ) := φδ(θ) = δθ−
N−3

2

[
c̃1 cos(ω ln

θ

2
) + c̃2 sin(ω ln

θ

2
)
]

+ O(δ)θ2−N−3
2 . (3.13)

Indeed, if `3 = ˜̀
3δ, `4 = ˜̀

4δ, where ˜̀
3 and ˜̀

4 are constants, we see from (3.8) that

|σ|‖ψ̂‖0 + ‖ψ̂′‖0 ≤ Cδ

where C := C(p,N, T, ˜̀
3, ˜̀

4) > 0 is independent of δ. Hence

ψ(t) := ψδ(t) = eσtδ[˜̀3 cosωt + ˜̀
4 sin ωt] + O(δ)e(σ+2)t.

For any δ > 0 sufficiently small, if w ∈ C2(0, π
2 ) is a solution of (1.9) and

w(θ) = w∗(θ) + δφδ(θ) + δ2ψδ(θ),

where
φδ(θ) = c̃1δφ1(θ) + c̃2δφ2(θ)

is a solution of (3.1) with
c1 = c̃1δ, c2 = c̃2δ,

then ψδ(θ) satisfies the problem




1
sinN−2 θ

d
dθ

(
sinN−2 θ dψ

dθ (θ)
)
− βψ(θ) + pwp−1

∗ ψ(θ)

+δ−2
[
(w∗ + δφδ + δ2ψ)p − wp

∗ − pwp−1
∗ δφδ − δ2pwp−1

∗ ψ
]

= 0, 0 < θ < π/2,

ψ′(π
2 ) = −(c̃1φ

′
1(

π
2 ) + c̃2φ

′
2(

π
2 )).

(3.14)

Lemma 3.3. For any δ > 0 sufficiently small and each fixed pair (c̃1, c̃2), (3.14)
admits solutions ψδ ∈ C2(0, π/2).

Proof. We set the initial value conditions on ψ of (3.14) at θ = π/2: ψ(π/2) = 1
provided

ψ′(
π

2
) = −(c̃1φ

′
1(

π

2
) + c̃2φ

′
2(

π

2
)) = 0;

ψ(π/2) = 0 provided

ψ′(
π

2
) = −(c̃1φ

′
1(

π

2
) + c̃2φ

′
2(

π

2
)) 6= 0.

Then, the standard shooting argument in ODE implies that (3.14) admits a unique
nontrivial solution ψδ in C2(0, π/2). Note that there is no singularity of (3.14) for
θ ∈ (0, π/2). Note also that ψδ depends on c̃1 and c̃2. ¤

Now we obtain the following proposition.
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Proposition 3.4. For any δ > 0 sufficiently small and ψδ being given in Lemma
3.3, then for θ = |O(δ

2
(2−σ) )|,

ψδ(θ) = θ−
N−3

2

[
d̃1 cos(ω ln

θ

2
) + d̃2 sin(ω ln

θ

2
)
]

+ O(θ2−N−3
2 ), (3.15)

where d̃1 and d̃2 are constants depending on c̃1 and c̃2 but independent of δ.

Proof. Setting ψδ(θ) = [sin θ]−αψ̃δ(θ), we see that ψ̃δ(θ) satisfies the problem
{

sin2 θψ̃′′(θ) + (N − 3− 2α) cos θ sin θψ̃′(θ) + 2(N − 3− α)ψ̃(θ) + G(ψ̃(θ)) = 0,

ψ̃′(π
2 ) = ψ′δ(

π
2 ),

(3.16)
where

G(ψ̃(θ)) = [sin θ]2+αδ−2
[
w∗(θ) + δφδ(θ) + δ2[sin θ]−αψ̃(θ)

]p

−wp
∗ − pwp−1

∗ δφδ(θ)− δ2pwp−1
∗ [sin θ]−αψ̃(θ).

Under the Emden-Fowler transformations:

z(t) = ψ̃(θ), t = ln tan
θ

2
we obtain

z′′(t) + (N − 3− 2α)
(
1− 2e2t

1 + e2t

)
z′(t) + 2(N − 3− α)z(t) + G(z(t)) = 0. (3.17)

By the standard argument of variation of constants and Lemma 3.1, if

φ̃1(t) = [sin θ]αφ1(θ), φ̃2(t) = [sin θ]αφ2(θ),

then we obtain the following integral equation for T ∈ (−∞, 0) and |T | suitably
large,

z(t) = ϑ1φ̃1(t) + ϑ2φ̃2(t) +
∫ t

T

−φ̃1(t)φ̃2(t′) + φ̃2(t)φ̃1(t′)
φ̃1(t′)φ̃′2(t′)− φ̃′1(t′)φ̃2(t′)

dt′

= eσt[ϑ1 cosωt + ϑ2 sin ωt] + O(e(σ+2)t)

+
1
ω

∫ t

T

eσ(t−t′) sin ω(t− t′) + O(e2t′)
1 + O(e2t′)

G(z(t′))dt′

= eσt[ϑ1 cosωt + ϑ2 sin ωt] + O(e(σ+2)t)

+
p(p− 1)

2ω

∫ t

T

eσt sin ω(t− t′)
[
eσt′δ2

]
[ρ(t′)]2dt′

+
1
ω

∫ t

T

eσt sin ω(t− t′)O
([

eσt′δ2
]2

[ρ(t′)]3
)
dt′

+
1
ω

∫ t

T

eσt sin ω(t− t′)O(e2t′)
[
eσt′δ2

]
[ρ(t′)]2dt′

+
1
ω

∫ t

T

eσt sin ω(t− t′)O(e2t′)O
([

eσt′δ2
]2

[ρ(t′)]3
)
dt′

where
ρ(t′) = c̃1 cos ωt′ + c̃2 sin ωt′ + e−σt′z(t′).
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Setting ẑ(t) = e−σtz(t), arguments similar to those in the proof of Lemma 3.1 imply
that there exists C := C(N, p, T ) > 0 but independent of δ such that

‖ẑ − [ϑ1 cosωt + ϑ2 sinωt]‖0 ≤ C (3.18)

provided that for t ∈ [2T, 10T ],

δ2 = |O(e(2−σ)t)|. (3.19)

Therefore,

z(t) = eσt[ϑ1 cosωt + ϑ2 sin ωt] + O(e(σ+2)t) (3.20)

provided that (3.19) holds. Therefore,

ψδ(θ) = [sin θ]−α
(

tan
θ

2

)σ[
ϑ1 cosω ln

θ

2
+ϑ2 sin ω ln

θ

2

]
+O

(
[sin θ]−α

(
tan

θ

2

)σ+2)

(3.21)
provided

θ = |O(δ
2

2−σ )|. (3.22)

Taylor’s expansions of sin θ and tan θ
2 imply that (3.15) holds provided that (3.22)

holds. This completes the proof of this proposition. ¤
Now we are in the position to obtain the following theorem.

Theorem 3.5. For any δ > 0 sufficiently small, problem (1.9) admits outer solu-
tions wout

δ ∈ C2(0, π/2) satisfying

wout
δ (θ) = w∗(θ) + δφδ(θ) + δ2ψδ(θ), θ ∈ (0,

π

2
), w′δ(

π

2
) = 0. (3.23)

Moreover,

wout
δ (θ) =

Ap

θα
+

Ap

3(p− 1)
1

θα−2
+ δ2

[ϑ3 cos(ω ln θ
2 ) + ϑ4 sin(ω ln θ

2 )

θ
N−3

2

+ O
( 1

θ
N−3

2 −2

)]

(3.24)
provided

θ = |O(δ
2

2−σ )|, (3.25)

where ϑ3 and ϑ4 are constants which are independent of δ.

Proof. This theorem can be obtained from the expression of w(θ), (3.21) and the
Taylor’s expansions of sin θ and tan θ

2 . Note that for δ > 0 sufficiently small and
θ = |O(δ

2
2−σ )|,

O(θ4−α) = o(δ2θ2−N−3
2 ).

¤

Remark 3.6. From (3.19) we see that δ2 = |O(θ2−σ)|. Thus wout
δ can also be

expressed by

wout
δ (θ) =

Ap

θα
+

Ap

3(p− 1)
1

θα−2
+δ2

[ϑ3 cos(ω ln θ
2 ) + ϑ4 sin(ω ln θ

2 )

θ
N−3

2

+δ2O
(
θσ−N−3

2

)]
.

(3.26)
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4. Infinitely many solutions of (1.9) and Proof of Theorem 1.1

In this section we will construct infinitely many regular solutions for (1.9) by
combining the inner and outer solutions.

Now we construct a solution of problem{
1

sinN−2 θ
d
dθ

(
sinN−2 θ dw

dθ (θ)
)
− βw(θ) + wp(θ) = 0, w(θ) > 0, 0 < θ < π

2 ,

w(0) = Q (:= ε−α), w′θ(
π
2 ) = 0

(4.1)
by using the expressions in Theorems 2.7 and 3.5. The variables Q and δ are then
chosen to ensure that, at a fixed θ = Θ chosen to satisfy

Θ = O(Q
σ

(2−σ)α )

winn
Q (Θ) = wout

δ (Θ) (4.2)

[winn
Q (θ)− wout

δ (θ)]′θ
∣∣∣
θ=Θ

= 0. (4.3)

These will be done by arguments similar to those in the proof of Lemma 6.1 of [11].
From the choice of Q and δ we deduce the existence of a C2 function w(θ) defined
by w(θ) = winn

Q (θ) for θ ≤ Θ and by w(θ) = wout
δ (θ) for θ ≥ Θ. Thus w(θ) satisfies

(4.1).
We first observe that

Ap

3(p− 1)
= Cp (4.4)

where Cp is given in Theorem 2.4. Note that

(2− α)(N − 1− α) + pAp−1
p

=
2(p− 2)
p− 1

(2(p− 2)
p− 1

+ N − 3
)

+
2p

p− 1

(
N − 3− 2

p− 1

)

=
4(p2 − 5p + 4)

(p− 1)2
+ 4(N − 3)

= 4
(
N − 2− 3

p− 1

)
.

β − 2(N − 2)
3(p− 1)

=
4

3(p− 1)

(
N − 2− 3

p− 1

)
.

It follows from (2.10) that (4.4) holds.
Define Q∗ and δ2

∗ by

ω ln Q
p−1
2∗ + D = ω ln 2−1 + φ + 2mπ, (4.5)

δ2
∗ =

√
a2
0 + b2

0

ϑ2
3 + ϑ2

4

Q
σ
α∗ , (4.6)

where φ given by

φ = tan−1(
ϑ4

ϑ3
)

and m À 1 is a large positive integer. The integer m is chosen such that the results
in Section 2 and Section 3 hold.

Note that
O(δ

2
2−σ∗ ) = O(Q

σ
α(2−σ)
∗ ),
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a0 cos
(
ω ln(Q

p−1
2 θ)

)
+b0 sin

(
ω ln(Q

p−1
2 θ

)
=

√
a2
0 + b2

0 sin
(
ω ln θ+ω ln Q

p−1
2 +D

)
,

(4.7)

ϑ3 cos(ω ln
θ

2
) + ϑ4 sin(ω ln

θ

2
) =

√
ϑ2

3 + ϑ2
4 sin

(
ω ln θ + ω ln 2−1 + φ

)
. (4.8)

Then we claim that the values of Q and δ2 required to satisfy the matching condi-
tions (4.2)-(4.3) may be obtained as small perturbations of the values of Q∗ and δ2

∗
given in (4.5) and (4.6), i.e.,

Q = Q∗
(
1 + O

(
Q

2σ
(2−σ)α
∗

))
, (4.9)

δ2 = δ2
∗
(
1 + O

(
Q

2σ
(2−σ)α
∗

))
. (4.10)

To show this we define the function F(Q, δ) by

FT (Q, δ2) =
(
Θ

N−3
2 (winn

Q (Θ)− wout
δ (Θ)), [θ

N−3
2 (winn

Q (θ)− wout
δ (θ))]′θ

∣∣∣
θ=Θ

)
.

(We treat δ2 as a new variable.) Taking Q = Q∗ and δ2 = δ2
∗ we find a bound for

F(Q∗, δ2
∗) by making use of the behavior of winn

Q (θ) determined by Theorem 2.7,
and the behavior of wout

δ (θ) given in Theorem 3.5. Accordingly we find for some
M > 1 suitably large,∣∣∣Θ−N−3

2 F(Q∗, δ2
∗)

∣∣∣ ≤ Mδ4
∗Θ

σ−N−3
2 + small terms. (4.11)

We now seek values of Q and δ2 which are small perturbations of Q∗ and δ2
∗ and

for which F(Q, δ2) = 0. As in [11], we need to evaluate the Jacobian of F at (Q∗, δ2
∗).

We can obtain the following estimates from Lemmas 2.5, 2.6 and Theorems 2.7, 3.5:

∂F(Q, δ2)
∂(Q, δ2)

=


 C

(
σ
α sin τ + ω(p−1)

2 cos τ
)
Q

σ
α−1
∗ , −E sin τ

C
(

σ
α cos τ − ω(p−1)

2 sin τ
)
Q

σ
α−1
∗ , −E cos τ




+small order terms,

where
C =

√
a2
0 + b2

0, E =
√

ϑ2
3 + ϑ2

4,

τ = ω lnΘ + ω ln Q
p−1
2∗ + D = ω lnΘ + ω ln 2−1 + φ + 2mπ.

Note that
σ

α
− 1 = − (N − 3)(p− 1)

4
.

To simplify this expression we define the function G(x, y) by

G(x, y) = F(Q∗ + xQ
1− σ

α∗ , δ2
∗ + y).

Using the bounds for F given in (4.11) and (3.26) and the results in Lemmas 2.5,
2.6, we express G(x, y) in the form

G(x, y)

= C +


 C

(
σ
α sin τ + ω(p−1)

2 cos τ
)
, −E sin τ

C
(

σ
α cos τ − ω(p−1)

2 sin τ
)
, −E cos τ

+ small terms




(
x
y

)

+E(x2(δ2
∗)
−1 + y2Θσ),
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where C is a constant vector independent of (x, y) which is bounded above by
Mδ4

∗Θ
σ. Also |E| is bounded independently of x, y, Q and δ. Thus,

G(x, y) = C + L

(
x
y

)
+ T(x, y),

where L is a linear operator which, from a direct calculation, is seen to be invertible.
If we define the operator J mapping R2 into itself by

J(x, y) = −(L−1C + L−1T(x, y)),

then, provided that Q∗ is suitably large, a direct calculation shows that J maps the
set B into itself, where B is the ball

B =
{

(x, y) : (x2 + y2)1/2 ≤ 4δ4
∗Θ

σM

(p− 1)ωE
√

a2
0 + b2

0

}
.

We may therefore apply the Brouwer Fixed Point Theorem to conclude that J has
a fixed point in B. This point (x, y) satisfies both G(x, y) = 0 and

(x2 + y2)1/2 ≤ Aδ4
∗Θ

σ,

where A is a constant independent of δ∗, Q∗ and Θ. By substituting for Q and δ,
and then taking Θ to have the upper limiting value of Q

σ
(2−σ)α
∗ , we obtain (4.9) and

(4.10).
We have shown that (4.2)-(4.3) has a solution for each fixed m large. This yields

a solution of (1.9). This also gives the proof of Theorem 1.1. Hence we have

Theorem 4.1. For m À 1 large and Q and δ given in (4.9) and (4.10), problem
(4.1) admits a C2 solution wQ,δ(θ). Moreover, there is Θ = |O(Q

σ
(2−σ)α )| such that

winn
Q (Θ) = wout

δ (Θ),

(winn
Q )′θ(Θ) = (wout

δ )′θ(Θ).

As a consequence, Problem (1.9) admits infinitely many nonconstant positive
radially symmetric solutions.

References

[1] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev
exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988),
255–294.

[2] H. Brezis, Elliptic equations with limiting Sobolev exponent-The impact of Topology, Pro-
ceedings 50th Anniv. Courant Inst.,Comm. Pure Appl. Math. 39 (1986).

[3] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical
Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437–47.

[4] J.M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris, 299,
Series I (1984), 209–212.

[5] C. Bandle and J. Wei, Non-radial clustered spike solutions for semilinear elliptic problems
on Sn, J. Anal. Math. 102(2007), 181-208.

[6] M.F. Bidaut-Veron and L. Veron, Nonlinear elliptic equations on compact Riemannian man-
ifolds and asymptotics of Emden equations, Invent. Math. 106(1991), 489-539.

[7] M. F. Bidaut-Veron, A. Ponce and L. Veron, Boundary singularities of positive solutions of
some nonlinear elliptic equations. C.R. Math. Acad. Sci. Paris 334(2007), no.2, 83-88.

[8] M. F. Bidaut-Veron, A. Ponce and L. Veron, Isolated boundary singularities of semilinear
elliptic equations, Cal. Var. PDE 40(2011), 183-233.

[9] H. Brezis and L. A. Peletier, Elliptic equations with critical exponent on spherical caps of
S3, J’Analyse Math. 98(2006), 279-316.



18 E.N. DANCER, ZONGMING GUO, AND JUNCHENG WEI

[10] H. Brezis and Y.Y. Li, Some nonlinear elliptic equations have only constant solutions, J.
Partial Differential Equations 19(2006), no.3, 208-217.

[11] C. Budd and J. Norbury, Semilinear elliptic equations and supercritical growth, J. Differ-
ential Equations 68 (1987), 169-197.

[12] L.A. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear
elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297.

[13] E.N. Dancer, A note on an equation with critical exponent, Bull london Math Soc
20(1988),600-602.

[14] E.N. Dancer, Y.H. Du and Z.M. Guo, Finite Morse index solutions of an elliptic equation
with supercritical exponent, J. Differential Equations 250 (2011), 3281-3310.

[15] J. Davila, M. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equations in
exterior domains, Comm. Part. Diff. Eqns. 32(2007), 1225-1243.

[16] J. Davila, M. del Pino, M. Musso and J. Wei, Fast and slow decay solutions of supercritical
problems in exterior domains, Cal. Var. PDE 32(2008), no.4, 765-786.

[17] J. Davila, L. Dupaigne and A. Farina, Partial regularity of finite Morse index solutions to
the Lane-Emden equation, J. Funct. Anal. 261(2011), 218-232.

[18] M. del Pino, Supercritical elliptic problems from a perturbation point of view, Disc. Cont.
Dyn. Systems-A 21(2008), 69-89.

[19] M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-
Coron’s problem. Calc. Var. Partial Differential Equations 16 (2003), 113–145.

[20] M. del Pino, P. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical
elliptic problems in domains with symmetries. Bull. London Math. Soc. 35(2003), 513–521.

[21] M. del Pino, M. Musso and F. Pacard, Bubbling along boundary geodesics near the second
critical exponents, J. Eur. Math. Soc., to appear.

[22] M. del Pino and J. Wei, Supercritical elliptic problems in domains with small holes, Ann.
Inst. H. Poincar Anal. Non Linaire 24 (2007), 507–520.

[23] W.Y. Ding, Positive solutions of ∆u+u(n+2)/(n−2) = 0 on contractible domains. J. Partial
Differential Equations 2 (1989), 83–88.

[24] A. Farina, On the classification of solutions of Lane-Emden equation on unbounded domains
in RN , J. Math. Pures Appl. 87 (2007), 537-561.

[25] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic
equations, Comm. Pure Appl. Math. 24 (1981), 525-598.

[26] C. Gui, W.M. Ni and X.F. Wang, On the stability and instability of positive steady states
of a semilinear heat equation in Rn, Comm. Pure Appl. Math. 45 (1992), 1153-1181.

[27] Z.M. Guo, On the symmetry of positive solutions of the Lane-Emden equation with super-
critical exponent, Adv. Differential Equations 7 (2002), 641-666.

[28] R.A. Johnson, X.B. Pan and Y.F. Yi, Positive solutions of super-critical elliptic equations
and asymptotics, Comm. Partial Differential Equations 18 (1993), 977-1019.

[29] D.D Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,
Arch. Rational Mech. Anal. 49 (1973), 241-269.

[30] N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen, Refined asmptotics for constant scalar
curvature metrics with isolated singularities. Invent. Math. 135(1999), no.2, 233-272.

[31] A. Micheletti, A. Pistoia, On the effect of the domain geometry on the existence of sign
changing solutions to elliptic problems with critical and supercritical growth. Nonlinearity
17 (2004), no. 3, 851–866

[32] R. Molle, D. Passaseo, Positive solutions of slightly supercritical elliptic equations in sym-
metric domains. Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 5, 639–656.

[33] D. Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity,
Differential and Integral Equations 8, no. 3 (1995), 577–586.

[34] D. Passaseo, Nontrivial solutions of elliptic equations with supercritical exponent in con-
tractible domains, Duke Mathematical Journal 92, no. 2 (1998), 429–457.

[35] P. Polacik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear
problems via Liouville-type theorems. Part I: Elliptic systems, Duke Math. J. 139(2007),
555-579.

[36] X.F. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math.
Soc. 337 (1993), 549-590.

[37] J. Wei and S. Yan, Infinitely many positive solutions for an elliptic problem with critical or
super-critical growth, J. Math. Pures Appl., to appear.



SINGULAR SOLUTIONS TO LANE-EMDEN EQUATION 19

[38] H.H. Zou, Symmetry of positive solutions of ∆u + up = 0 in Rn, J. Differential Equations
120 (1995), 46-88.

School of Mathematics and Statistics, The University of Sydney, Sydney, 2006, Aus-
tralia

E-mail address: normd@maths.usyd.edu.au

Department of Mathematics, Henan Normal University, Xinxiang, 453007, China
E-mail address: gzm@htu.cn

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong
Kong

E-mail address: wei@math.cuhk.edu.hk


