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Abstract. We prove some Liouville type results for finite Morse index solutions to the bihar-
monic problem ∆2u = uq, u > 0 in Rn where 1 < q <∞. For example, for n ≥ 5, we show that

there are no finite Morse index solutions with n+4
n−4

< q ≤
`
n−8
n

´−1

+
.

1. Introduction

Consider the following biharmonic equation

(1.1) ∆2u = uq, u > 0 in Rn

where n ≥ 5 and q > 1. Define

(1.2) Λu(φ) :=
∫

Rn
|∆φ|2dx− q

∫
Rn
uq−1φ2dx, ∀ φ ∈ H2(Rn).

The Morse index of a classical solution to (1.1), ind(u) is defined as the maximal dimension of
all subspaces of ERn := H2(Rn) such that Λu(φ) < 0 in ERn \ {0}. Similarly, we consider also
the solutions ∆2u = uq on a proper domain Ω 6= Rn, and define its Morse index with

Λu,Ω(φ) :=
∫

Ω
|∆φ|2dx− q

∫
Ω
uq−1φ2dx, ∀ φ ∈ EΩ := H2 ∩H1

0 (Ω).(1.3)

A solution u is said stable if Λu(φ) ≥ 0 for any test function φ ∈ EΩ. Clearly, u is stable if and
only if its Morse index is equal to zero.

In this paper, we prove the following classification results.

Theorem 1.1. Let n ≥ 5.
(i) For n+4

n−4 < q ≤
(
n−8
n

)−1

+
, any solution of (1.1) has infinite Morse index. In particular,

for n ≤ 8 and any 1 < q <∞, the equation (1.1) has no stable solution.
(ii) For n ≥ 9, there exists εn > 0 such that for any 1 < q < n

n−8 + εn, the equation (1.1)
has no stable solution.

In the second order case, the finite Morse index solutions to the corresponding nonlinear
problem

(1.4) ∆u+ |u|q−1u = 0 in Rn, q > 1

have been completely classified by Farina [4]. One main result of [4] is that nontrivial finite
Morse index solutions to (1.4) exist if and only if q ≥ pJL and n ≥ 11. Here pJL is the so-called
Joeseph-Lundgren exponent, see [8].

In the fourth order case, the nonexistence of positive solutions to (1.1) are showed if q < n+4
n−4 ,

and all entire solutions are classified if q = n+4
n−4 , see [12, 19]. More precisely, when q = n+4

n−4 and
n ≥ 5, any classical solution to (1.1) is in the form

ũ(x) =
cnλ

n−4
2

(1 + λ2|x− x0|2)
n−4

2

, with x0 ∈ Rn, λ > 0.
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It was proved by Rozenblum (see [11, 15]) that when n ≥ 5, the number of negative eigenvalues
with multiplicity for the operator (∆2 − V ) is bounded by

Cn

∫
Rn
|V (x)|

n
4 dx.

It is easy to check that ũ are finite Morse index solutions to (1.1) with the critical exponent.

So our results concern essentially the supercritical case, n ≥ 5 and q > n+4
n−4 . As far as we

know, there are no results on the classification of entire solutions to (1.1) with finite Morse index
and supercritical exponent q. Therefore Theorem 1.1 is a first step towards the understanding
of finite Morse index solutions of fourth order problems. We note that only recently the radially
symmetric solutions to (1.1) are completely classified in [5, 6, 9]. The radial solutions are shown
to be stable if and only if q ≥ p4

JL and n ≥ 13 where p4
JL stands for the corresponding Joseph-

Lundgren exponent (see [5, 6]). Theorem 1.1 classifies finite Morse index solutions in dimensions
n ≤ 8 and for some special cases with n ≥ 9, there is still a big gap to fill in towards a complete
classification.

Our proof borrows crucially an idea from Cowan-Esposito-Ghoussoub [2], who proved the
regularity of extremal solutions for fourth order problems in bounded domains. They made a
key observation by using a nice result of Souplet [18]. Here we also rely crucially on some results
of Souplet [18]. The key argument is to use two different test functions: the first one is u itself,
and the other one is v = −∆u. We believe that further exploration of this idea may help to give
the complete classification of stable solutions to (1.1).

At the end, we show some classification results on the half space or compactness results for
finite Morse index solutions to ∆2u = λ(u+ 1)p on bounded domain (see section 3).
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ANR-08-BLAN-0335-01. We both thank the Department of mathematics, East China Normal
University for its kind hospitality. J.W. thanks Professor N. Ghoussoub for sharing his idea at a
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2. Proof of Theorem 1.1

We devide our proof into three steps.

• Step 1. Non existence of stable solution with 1 < q <
(
n−8
n

)−1

+
.

• Step 2. Non existence of finite Morse index solution with n+4
n−4 < q ≤

(
n−8
n

)−1

+
.

• Step 3. Non existence of stable solution with q slightly larger than n
n−8 with n ≥ 9.

Although Step 1 is almost a special case of Step 2, it is more easier to begin with the stable
solution situation, where we introduce the basic ideas and estimates.

2.1. Step 1. According to Theorem 3.1 of [19], v := −∆u > 0 in Rn since q > 1. Rewrite then
(1.1) as a system

(2.1) ∆u+ v = 0, ∆v + uq = 0, u > 0, v > 0 in Rn.

We recall several crucial estimates. First, following the idea in [13, 18], we have

Lemma 2.1. If there exists a stable positive solution to (1.1) or (2.1), there exists a bounded
stable positive solution u to (1.1) such that v = −∆u is also bounded in Rn.
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We can prove this lemma by contradiction and proceed exactly as for Theorem 4.3 in [13]
(see also Remark 1.1 in [18]). Indeed, if no bounded stable positive solution exists for (2.1), we
have the estimate u(x) ≤ Cn,qd(x, ∂Ω)−α for any stable solution ∆2u = uq in Ω 6= Rn, here Cn,q
depends only on n and q > 1. The main reason is that the scaling argument used in [13] does
not affect the stability of solutions. Therefore no stable entire solution to (1.1) could exist in
Rn, which contradicts the hypothesis.

Let α = 4
q−1 . By Lemma 2.4 of [18], for any solution of (2.1), there exists C > 0 such that

(2.2)
∫
BR

udx ≤ CRn−α,
∫
BR

uqdx ≤ CRn−qα, ∀ R > 0.

Here and in the following, BR stands for the ball of radius R centered at the origin. Another
important estimate is the following comparison between u and v (see Lemma 2.7 in [18]):

(2.3) As u is bounded, v2 ≥ 2
q + 1

uq+1 in Rn.

We need also the following identities:

Lemma 2.2. For any ξ, η ∈ C4(Rn), we have

∆ξ∆(ξη2)− [∆(ξη)]2 = −4(∇ξ · ∇η)2 − ξ2(∆η)2 + ξ∆ξ|∇η|2 − 4ξ∆η∇ξ · ∇η.

and

Lemma 2.3. For any ξ ∈ C4(Rn) and η ∈ C∞0 (Rn), there hold∫
Rn

(∆2ξ)ξη2dx =
∫

Rn
[∆(ξη)]2 dx+

∫
Rn

[
− 4(∇ξ · ∇η)2 + 2ξ∆ξ|∇η|2

]
dx

+
∫

Rn
ξ2
[
2∇(∆η) · ∇η + (∆η)2

]
dx,

(2.4)

(2.5)
∫

Rn
|∇ξ|2|∇η|2dx =

∫
Rn

[
ξ(−∆ξ)|∇η|2 +

1
2
ξ2∆(|∇η|2)

]
dx.

Proof. The proof of Lemma 2.2 is done by direct verification. The equality (2.5) follows from
1
2

∆(ξ2) = ξ∆ξ + |∇ξ|2.

On the other hand, a simple integration by parts yields

2
∫

Rn
ξ∇ξ · ∇η∆ηdx = −

∫
Rn
ξ2div (∆η∇η) dx

= −
∫

Rn
ξ2
[
(∆η)2 +∇η · ∇(∆η)

]
dx.

(2.6)

By Lemma 2.2,∫
Rn

(∆2ξ)ξη2dx =
∫

Rn
∆ξ∆

(
ξη2
)
dx

=
∫

Rn
[∆(ξη)]2 dx− 4

∫
Rn

(∇ξ · ∇η)2dx−
∫

Rn

[
ξ2(∆η)2 + ξ∆ξ|∇η|2

]
dx

− 4
∫

Rn
ξ∇ξ · ∇η∆ηdx

The equality (2.4) is straightforward using (2.6). �

From (2.4) and (1.1), we have∫
Rn

[∆(uη)]2dx−
∫

Rn
uq−1(uη)2dx

= 4
∫

Rn
(∇u∇η)2dx− 2

∫
Rn
u∆u|∇η|2dx−

∫
Rn
u2
[
2∇(∆η) · ∇η + (∆η)2

]
dx.
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In the following, we denote C, C ′ as various generic positive constants which are independent
of u. Use stability condition Λu(φ) ≥ 0 with φ = uη, we obtain the following estimate.∫

Rn

[
(∆(uη))2 + uq+1η2

]
dx

≤ C
∫

Rn

[
|∇u|2|∇η|2 + u|∆u||∇η|2 + u2|∇ (∆η) · ∇η|+ u2(∆η)2

]
dx.

(2.7)

Moreover, as

∆(uη) = −vη + 2∇u · ∇η + u∆η,

by (2.7) and Young’s inequality (recalling that v = −∆u > 0 in Rn),∫
Rn

[
v2η2 + uq+1η2

]
dx ≤ C

∫
Rn

[
uv|∇η|2 + |∇u|2|∇η|2 + u2|∇ (∆η) · ∇η|+ u2(∆η)2

]
dx.

Applying (2.5) with ξ = u, we obtain∫
Rn

[
(v2η2 + uq+1η2

]
dx

≤ C
∫

Rn
uv|∇η|2dx+ C

∫
Rn
u2
[
|∇(∆η) · ∇η|+

∣∣∆ (|∇η|2)∣∣+ (∆η)2
]
dx.

(2.8)

Take η = ϕm with m > 2, it follows that∫
Rn
uv|∇η|2dx = m2

∫
Rn
uvϕ2(m−1)|∇ϕ|2dx

≤ 1
2C

∫
Rn

(vϕm)2dx+ C

∫
Rn
u2ϕ2(m−2)|∇ϕ|4dx.

Now let us choose ϕ a cut-off function verifying 0 ≤ ϕ ≤ 1, ϕ = 1 for |x| < R and ϕ = 0 for
|x| > 2R. Substituting the above inequality into (2.8), we arrive at

(2.9)
∫

Rn
(vϕm)2dx+

∫
Rn
uq+1ϕ2mdx ≤ CR−4

∫
Rn
u2ϕ2(m−2)dx.

We claim:

(2.10)
∫
BR

u2dx ≤ CRn−2α, ∀ R > 0.

When q > 2, the above estimate follows from Hölder’s inequality using (2.2) while for q = 2, it
is just the second estimate in (2.2). If q ∈ (1, 2), fix m > 2

q−1 , by Hölder’s inequality and (2.9),
we obtain ∫

Rn
u2ϕ2(m−2)dx ≤

(∫
Rn
uqϕ

2m− 4
q−1dx

)q−1(∫
Rn
uq+1ϕ2mdx

)2−q

≤ C
(∫

B2R

uqdx

)q−1(
R−4

∫
Rn
u2ϕ2(m−2)dx

)2−q
,

hence ∫
Rn
u2ϕ2(m−2)dx ≤ CR−

4(2−q)
q−1

∫
B2R

uqdx.

Using (2.2),∫
BR

u2dx ≤
∫

Rn
u2ϕ2(m−2)dx ≤ CR−

4(2−q)
q−1

∫
B2R

uqdx ≤ C ′Rn−qαR−
4(2−q)
q−1 = C ′Rn−2α,

so the claim (2.10) is proved. Combining (2.9) and (2.10),

(2.11)
∫

Rn

(
v2 + uq+1

)
ϕ2mdx ≤ CRn−4−2α.
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Next we make use of the stability condition again, but this time with the test function φ = vη.
By equations (2.1), we have

(2.12) ∆2v = −∆(uq) = quq−1v − q(q − 1)uq−2|∇u|2.

Multiplying (2.12) by vη2, similarly as for (2.7), by (2.4) and (2.5),

0 ≤
∫

Rn

[
(∆(vη))2 − quq−1(vη)2

]
dx

≤ − q(q − 1)
∫

Rn
uq−2|∇u|2vη2dx+ C

∫
Rn
v|∆v||∇η|2dx

+ C

∫
Rn
v2
[
|∇(∆η) · ∇η|+

∣∣∆ (|∇η|2)∣∣+ |∆η|2
]
dx

≤ − q(q − 1)
∫

Rn
uq−2|∇u|2vη2dx

+ C

∫
Rn
vuq|∇η|2dx+ C

∫
Rn
v2
[
|∇(∆η) · ∇η|+

∣∣∆ (|∇η|2)∣∣+ |∆η|2
]
dx.

Hence ∫
Rn
uq−2|∇u|2vη2dx

≤ C
∫

Rn
vuq|∇η|2dx+ C

∫
Rn
v2
[
|∇(∆η) · ∇η|+

∣∣∆ (|∇η|2)∣∣+ |∆η|2
]
dx.

(2.13)

Furthermore, for any C1 function H, integration by parts yields

(2.14)
∫

Rn
H(u)(−∆u)η2dx =

∫
Rn
H ′(u)|∇u|2η2dx+

∫
Rn
H(u)∇u · ∇(η2)dx.

Following an idea of Cowan-Espositon-Ghoussoub [2], set H(u) = u
3q−1

2 , then∫
Rn
u

3q−1
2 vη2dx ≤

∫
Rn
u

3q−3
2 |∇u|2η2dx+ C

∫
Rn
u

3q+1
2

∣∣∆(η2)
∣∣ dx.

Recall that v ≥ Cu
q+1
2 , we conclude, using (2.13) and (2.14),∫

Rn
u2qη2dx ≤ C

∫
Rn
u

3q−1
2 vη2dx

≤ C
∫

Rn
u

3q−3
2 |∇u|2η2dx+ C

∫
Rn
u

3q+1
2

∣∣∆(η2)
∣∣ dx

≤ C
∫

Rn
uq−2|∇u|2vη2dx+ C

∫
Rn
vuq

∣∣∆(η2)
∣∣ dx

≤ C
∫

Rn
vuq
(
|∇η|2 +

∣∣∆(η2)
∣∣ )dx

+ C

∫
Rn
v2
[
|∇(∆η) · ∇η|+

∣∣∆ (|∇η|2)∣∣+ |∆η|2
]
dx.

(2.15)

As before, let η = ϕm with large m. Similarly to the derivation of inequality (2.9), we get
from (2.15) and (2.11),

(2.16)
∫

Rn
(uqϕm)2dx ≤ CR−4

∫
B2R\BR

v2dx ≤ CRn−8−2α.

If 1 < q <
(
n−8
n

)−1

+
, n− 8− 2α > 0. So when u is stable, letting R→∞, we deduce u ≡ 0 in

Rn by (2.16). This proves the nonexistence of stable solution to (1.1) for 1 < q <
(
n−8
n

)−1

+
.
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2.2. Step 2. Here we show the nonexistence of finite Morse index solutions with n+4
n−4 < q ≤(

n−8
n

)−1

+
. Our proof is based on the nonexistence of fast decay solutions with supercritical

exponent.

Proposition 2.4. Let n ≥ 5, q > n+4
n−4 and α = 4

q−1 . Then the system (2.1) has no classical
solution verifying

u(x) = o
(
|x|−α

)
, v(x) = o

(
|x|−2−α) as |x| → ∞.(2.17)

Proof. Suppose that such a solution u exists. Let w be the Emden-Fowler transformation of u,
i.e. w(t, σ) = rαu(rσ) for any t = ln r ∈ R and σ ∈ Sn−1, direct calculation yields

r2+α∆u = wtt + (n− 2− 2α)wt − α(n− 2− α)w + ∆Sn−1w

where ∆Sn−1 denotes the Laplace-Beltrami operator on the standard unit sphere Sn−1. Applying
again this formula,

wq = r4+αuq = r4+α∆2u = wtttt +K3wttt +K2wtt +K1wt +K0w

+ ∆2
Sn−1w + 2∆Sn−1wtt +K5∆Sn−1wt +K6∆Sn−1w

(2.18)

where Ki are constants depending on α and n, for example

K5 = K3 = (2n− 8− 4α), K6 = −
[
(α+ 2)(n− 4− α) + α(n− 2− α)

]
.

In particular, we have (see [6] for Ki, 0 ≤ i ≤ 4)

K1 < 0, K3 = K5 > 0, ∀ n ≥ 5, q >
n+ 4
n− 4

.

Set

E(w) =
∫

Sn−1

(
wq+1

q + 1
− K0

2
w2 − K2

2
w2
t −K3wttwt +

w2
tt

2
− wtttwt

)
dσ

+
∫

Sn−1

(
K6

2
|∇Sn−1w|2 + |∇Sn−1wt|2 −

1
2
|∆Sn−1w|2

)
dσ.

Multiplying the equation (2.18) with wt, we get (as K1 > 0, K3 = K5 < 0)
d
dt
E(w)(t) =

∫
Sn−1

(
K1w

2
t −K5 |∇Sn−1wt|2 −K3w

2
tt

)
dσ ≤ 0.

By the decay conditions (2.17),

−∆u = v, −∆v = uq = o
(
|x|−4−α) as |x| → ∞.

The standard ellptic estimates imply then

lim
|x|→+∞

|x|k+α|∇ku(x)| = 0, for 1 ≤ k ≤ 4 so that lim
t→∞
‖w(t, ·)‖C3(Sn−1) = 0.(2.19)

Therefore limt→∞E(w) = 0. We have also limt→−∞E(w) = 0 because u is regular at the origin.
Finally we conclude ∫

R

∫
Sn−1

(
K1w

2
t −K5 |∇Sn−1wt|2 −K3w

2
tt

)
dσdt = 0.

So wt ≡ 0, hence w ≡ 0 as limt→−∞w = 0, but this contradicts the positivity of u. �

Back to Theorem 1.1. Suppose that u is a solution of (1.1) with finite Morse index less than
` ∈ N∗. Considering the family of solutions verifying ind(u) ≤ `, with similar argument as for
Lemma 2.1, we may assume again u is bounded (see Corollary 3.2). As u is stable outside a
large ball BR0 (see for example [4]), all the calculations in Step 1 still hold true by using cut-off
functions ϕ with support in Rn \BR0 , and we replace just the estimate (2.10) by∫

BR(y)
u2dx ≤ CRn−2α, ∀ R > 0 and BR(y) ⊂ Rn \BR0 .
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There hold then the following estimates similar to (2.11) and (2.16).

(2.20)
∫
BR(y)

v2dx ≤ CRn−4−2α,

∫
BR(y)

u2qdx ≤ CRn−8−2α, for all BR(y) ⊂ Rn \BR0 .

Applying now the Sobolev embedding of H2,

‖v‖2Lp∗ (BR) ≤ C
(
‖∆v‖2L2(BR) +R−4‖v‖2L2(BR)

)
, where p∗ =

2n
n− 4

.

Combining with (2.20), for any R > 0 and BR(y) ⊂ Rn \BR0 ,

‖v‖2Lp∗ (BR(y)) ≤ CR
n−8−2α.(2.21)

As q is supercritical, we have n− 4− 2α < 0. With the covering argument, it is not difficult
to see that ∫

Rn
v2dx+

∫
Rn
v

2n
n−4dx <∞.(2.22)

Now we are ready to prove the decay of u and v. Instead to use the Harnack argument in
[16] (see [4]), let us recall a special case of Theorem 4.4 in [10]: For any p ∈ [2,∞), there exists
ε(p) > 0 such that if ∆w + ρw = 0 in B1 with ‖ρ‖

L
n
2 (B1)

≤ ε(p), we have

(2.23) ‖w‖Lp(B 1
2

) ≤ C‖w‖L2(B1) ≤ C ′‖w‖Lp∗ (B1)

where the constants C, C ′ depend only on p and n.

Let x0 ∈ Rn with |x0| > 2R0 and R = |x0|
4 , consider the function w(y) = v(x0 +Ry). Then w

satisfies ∆w + ρw = 0 where

ρ(y) = R2u
q

v
(x0 +Ry).

Using (2.3), 0 < ρ(y) ≤ CR2u
q−1
2 (x0 +Ry) ≤ C ′R2v

q−1
q+1 (x0 +Ry). As n+4

n−4 < q ≤
(
n−8
n

)−1

+
,

r =
q − 1
q + 1

× n

2
∈ (2, p∗].

By (2.22) and Hölder’s inequality, ∫
Rn
vrdx <∞.

Therefore∫
B1

|ρ|
n
2 dx ≤ C

∫
B1

Rnvr(x0 +Ry)dy = C

∫
BR(x0)

vrdx→ 0, as |x0| → ∞.

From (2.23) and (2.21), we derive that for any p ≥ 2,

‖v‖Lp(BR(x0)) = o
(
R
n−8−2α

2
− n
p∗

+n
p

)
= o

(
R
−2−α+n

p

)
as |x0| → ∞.(2.24)

Using classical elliptic estimates (see Theorem 8.17 of [7]), there exists C > 0 such that

(2.25) sup
BR

2
(x0)

v ≤ C
[
R−

n
2 ‖v‖L2(BR(x0)) +R‖∆v‖Ln(BR(x0))

]
.

It is clear that q̃ = 2nq
q+1 ≥ 2 and |∆v|n = unq ≤ Cveq. Thanks to (2.24), when |x0| → ∞,

R‖∆v‖Ln(BR(x0)) ≤ CR‖v‖
eq
n

Leq(BR(x0))
= o

(
R

1+
“
−2−α+neq

” eq
n

)
= o

(
R−2−α) .

Substituting the above estimate into (2.25), applying (2.24) with p = 2, we conclude then

v(x) = o
(
|x|−2−α) as |x| → ∞.

We get also u(x) = o (|x|−α) at infinity by (2.3), hence the decay estimate (2.17) holds, we reach
then a contradiction seeing Proposition 2.4.
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2.3. Step 3. Here we will prove that no stable solution exists for exponent q slightly higher
than n

n−8 if n ≥ 9. The main idea is a blow up argument.

Suppose that the claim (ii) of Theorem 1.1 does not hold, there exist then a sequence δj > 0,
δj → 0 and a sequence of stable solutions uj to (1.1) with qj = n

n−8 + δj . Lemma 2.1 permits to
assume that uj and vj = −∆uj are bounded in Rn. Choose λj > 0 such that

1
‖vj‖∞

= λ
4

qj−1
+2

j .

Let ũj(x) = λ
4

qj−1

j uj(λjx), so ∆2ũj = ũ
qj
j , ṽj := −∆ũj satisfies ‖ṽj‖∞ = 1. Up to a translation,

we assume also ṽj(0) ∈ (1
2 , 1]. Using (2.3) to ũj , we have also ‖ũj‖∞ ≤ C.

By standard elliptic theory, there is a subsequence still denoted by ũj which tends to a

bounded nonnegative function u∗ in Ckloc(Rn) for any k ∈ N, so ∆2u∗ = u
n
n−8
∗ in Rn. As uj are

stable, it is easy to see that u∗ is stable (taking the limit in (1.2) with ũj and qj). Finally, since
−∆u∗ ≥ 0 in Rn and −∆u∗(0) = lim ṽj(0) > 0, u∗ is nontrivial, hence positive in Rn. This is
impossible by the previous step, the claim (ii) is then proved. �

3. Somme applications

As we have mentioned yet, the nonexistence result of entire stable solution yields immediately
(with blow-up and scaling argument as in [13, 18])

Corollary 3.1. Assume that Ω is a proper subdomain of Rn and u is a classical, positive and
stable solution of ∆2u = uq in Ω where 1 < q <∞ if n ≤ 8; or 1 < q < n

n−8 + εn if n ≥ 9 with
εn in Theorem 1.1. Then

u(x) ≤ Cn,qd(x, ∂Ω)−α, |∆u(x)| ≤ Cn,qd(x, ∂Ω)−α−2, α =
4

q − 1
where the constant C depends only on q and n.

More generally, we have the similar result for solutions with bounded Morse index.

Corollary 3.2. Assume that Ω is a proper subdomain of Rn and u is a classical, positive and
stable solution of ∆2u = uq in Ω where 1 < q <

(
n−8
n

)−1

+
and the Morse index of u ≤ ` ∈ N.

Then
u(x) ≤ Cn,q,`d(x, ∂Ω)−α, |∆u(x)| ≤ Cn,q,`d(x, ∂Ω)−α−2, α =

4
q − 1

.

Here the constant C depends on q, n and `.

Consider now

(3.1)

 ∆2u = uq in Rn
+ = R+ × Rn−1, n ≥ 2

u > 0,−∆u > 0 in Rn
+

u = −∆u = 0 on {0} × Rn−1.

The following result is due to Dancer (Theorem 2 in [3], see also Theorem 10 in [17]).

Lemma 3.3. Suppose that u is a classical solution of (3.1) such that u and −∆u are bounded
in Rn

+, then ∂x1u > 0 and −∂x1∆u > 0 in Rn
+.

Therefore, under the condition of this lemma, w(y) = limx1→∞ u(x1, y) exists for all y ∈ Rn−1

and ∆2w = wp in Rn−1. It is not difficult to see that if w is unstable, then ind(u) is infinite; in
other words, if u is of finite Morse index, then w must be stable. This enable us the following
classification result.

Theorem 3.4. Let u be a classical solution of (3.1) with n ≥ 2.

(i) The Morse index of u is ∞, 1 < q ≤
(
n−8
n

)−1

+
, q 6= n+4

n−4 .
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(ii) Assume moreover u and −∆u are bounded. Then ind(u) = ∞, when q > 1 and n ≤ 9;
or 1 < q < n−1

n−9 + εn−1 and n ≥ 10. Here εk > 0 are given by Theorem 1.1.

Proof. We prove readily (ii) by the discussion under Lemma 3.3 and Theorem 1.1. For proving
(i), we use a doubling argument which is a consequence of Lemma 5.1 in [13] (with Σ = D = Rn

+

and Γ = ∅).

Lemma 3.5. Let Q : Rn
+ → (0,∞) be continuous and fix a real k > 0. If y ∈ Rn

+ verifies
Q(y) > 2k, then there exists x ∈ Rn

+ such that
• Q(x) > 2k, Q(x) ≥ Q(y)
• Q(z) ≤ 2Q(x), for all z ∈ Rn

+ ∩BkQ−1(x)(x).

Define

α =
4

q − 1
, β = α+ 2 =

2(q + 1)
q − 1

and Q(x) = Qu(x) := |u(x)|
1
α + |∆u(x)|

1
β + 1.(3.2)

Suppose that there is a positive solution u to (3.1) verifying supRn+ Qu =∞ and ind(u) <∞.

Applying Lemma 3.5, for any k ∈ N∗, we get ak ∈ Rn
+ such that

Q(ak) > 2k, Q(z) ≤ 2Q(ak), ∀ z ∈ Rn
+ ∩BkQ−1(ak)(ak).

Denote Mk = Q(ak) and consider

wk = M−αk u

(
ak +

y

Mk

)
, ∀ y ∈ Ωk = Bk ∩ {y1 ≥ −γk} where γk = ak,1Mk.(3.3)

We have ∆2wk = wqk in Ωk, wk(y) = ∆wk(y) = 0 on {x1 = −γk} ∩ ∂Ωk, supΩk
Qwk ≤ 4 and

Qwk(0)→ 2. Up to a subsequence, we can suppose that limk→∞ γk = γ ∈ R+ ∪ {∞} exists.

Case 1: γ =∞. Remark that ak,1 = dist(ak, ∂Rn
+), hence Mk dist(ak, ∂Rn

+)→∞. By standard
elliptic theory, taking the limit of wk (up to a subsequence), we obtain a solution

∆2w = wq in Rn, Qw(0) = 2.(3.4)

As ind(wk) = ind(u), we have ind(w) ≤ ind(u) <∞, and Qw(0) = 2 implies that w is nontrivial.
So we get a solution to (1.1) with finite Morse index, this is impossible seeing the assumption
on q and Theorem 1.1.

Case 2: γ ∈ [0,∞). Let w̃k = wk(y + γke1), we get a family of bounded solutions for ∆2ϕ = ϕq

in Ω̃k := Ωk + γke1 which tends to the half space Rn
+. Fix R = γ + 1, using classical estimates

due to Agmon-Douglis-Nirenberg in [1] successively for −∆w̃k and w̃k on B2R,+ := Rn
+ ∩ B2R,

we get
‖w̃k‖W 4,p(BR,+) ≤ Cn,p,R‖w̃k‖Lp(B2R,+) ≤ C.

Choosing p > n, ‖w̃k‖C3(BR,+) ≤ C by Sobolev embedding. As Q ewk(0) = 1 and Q ewk(γke1)→ 2,

and γk < R (for k large enough), there holds 1 ≤ Cγk for large k, so γ > 0. As Q ewk ≤ 4 in Ω̃k,
passing the limit to a subsequence, we get a solution w on the half space with Navier’s boundary
condition. Moreover, we have Qw ≤ 4, Qw(γe1) = 2 and ind(w) ≤ ind(u). This contradicts (ii)
by the assumption on q, so we are done. �

Finally, Consider the bounded domain situation with polynomial growth:

(Pλ)
{

∆2u = λ(u+ 1)q in a bounded smooth domain Ω ⊂ Rn, n ≥ 1
u = ∆u = 0 on ∂Ω.

It is well known that there exists a critical value λ∗ > 0 depending on q > 1 and Ω such that

• If λ ∈ (0, λ∗), (Pλ) has a minimal and classical solution which is stable;
• If λ = λ∗, a unique weak solution, called the extremal solution u∗ exists for (Pλ∗);

9



• No weak solution of (Pλ) exists whenever λ > λ∗.

Our objectif is to prove some compactness result for finite Morse index solutions.

Theorem 3.6. Assume that 1 < q ≤
(
n−8
n

)−1

+
, q 6= n+4

n−4 . Let uk be a sequence of classical
solutions of (Pλk) such that λk → µ > 0 and the Morse index of uk is uniformly bounded, then
‖uk‖∞ ≤ C <∞.

Proof. The proof is similar to that for Theorem 3.4. Suppose the contrary: There exists λk > 0,
uk solutions of (Pλk) such that λk → µ > 0, ind(uk) ≤ ` <∞ and ‖uk‖∞ →∞. Define α, β and
Qu(x) as in (3.2). By assumption, there exists ak ∈ Ω such that Mk = max

Ω
Quk = Quk(ak)→∞.

Denote

wk = M−αk uk

(
ak +

y

Mk

)
, ∀ y ∈ Ωk = Mk(Ω− ak).

Clearly,

∆2wk(y) = λk
[
wk +M−αk

]q in Ωk; wk = −∆wk = 0 on ∂Ωk.(3.5)

We have wk > 0, −∆wk > 0 in Ωk and max
Ωk

Qwk = Qwk(0)→ 2. Let σk = dist(xk, ∂Ω), we have

two differents situations: Up to a subsequence, either σkMk →∞ or σkMk → γ ∈ R+.

In the first case, we obtain a nonnegative function w to ∆2w = µwq in Rn satisfying ind(w) ≤
` <∞ and Qw(0) = 2, hence an entire positive solution with finite Morse index to (1.1), which
contradicts Theorem 1.1 seeing the hypothesis on q. Assume now σkMk → γ ∈ R+. Using
orthogonal transformation, we obtain w̃k defined on domains Ω̃k tending to Rn

+. Furthermore,
as in [14], we can transform locally the domain Ω̃k to B2R,+ and consider (3.5) as a second order
elliptic system with Dirichlet boundary conditions on ∂Rn

+ ∩ B2R,+ (see proof of Theorem 1 in
[14]). By classical estimates in [1], we obtain again γ > 0. Taking the limit, there is a solution
to (3.1) with ind(w) ≤ ` and maxQw = 2. We reach a contradiction with Theorem 3.4 (ii). �

Remark 3.7. We wonder if the results of Theorem 3.4 (i) holds true for q = n+4
n−4 . In general,

the condition µ > 0 in Theorem 3.6 seems to be necessary. For q ≤ n+4
n−4 , a moutain pass solution

uλ to (Pλ) exists always for any λ ∈ (0, λ∗) and limλ→0 ‖uλ‖∞ = ∞, but we wonder if the
compactness result holds true when λk → 0, for general supercritical exponent q.

In the same spirit of Theorem 3.6, we can prove

Theorem 3.8. There exists ε̃n > 0 such that the extremal solution u∗, the unique solution of
(Pλ∗) is bounded provided that

n ≤ 8, q > 1 or n ≥ 9, 1 < q <
n

n− 8
+ ε̃n.

Here we need just to consider stable solutions uλ to (Pλ) since u∗ = limλ→λ∗ uλ, so the
conclusion comes from (ii) of Theorem 1.1 or (ii) of Theorem 3.4. The case 1 < q <

(
n−8
n

)−1

+

was proved in [2] by different approach.
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