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1. Introduction

1.1 Consider a linear symmetric system of the form

∂tU +

n∑
j=1

Aj∂xjU + LU = 0,

where

• U = U(t, x) ∈ Rm, t ≥ 0, x ∈ Rn,

• Aj , L ∈ Rm×m with (Aj)T = Aj , LT = L, 1 ≤ j ≤ n,

• L ≥ 0. (kerL 6= 0) (No spectral gap!)

Q: Which kind of conditions can guarantee the time-decay of
solutions U(t) = etBU0?



1.2 Shizuta-Kawashima condition:

∀ 0 6= k = (k1, · · · , kn) ∈ Rn, every eigenvalue of
∑m
j=1 kjA

j

does not belong to kerL.

Theorem (Shizuta-Kawashima, ’85)

Under the SK condition,

|F{etBU0}| ≤ Ce
− λ|k|2
1+|k|2 t |Û0(k)|,

and

‖∇`etBU0‖ ≤ C(1 + t)−
n
2
( 1
p
− 1
2
)− `
2 (‖U0‖Lp +‖∇`U0‖), 1 ≤ p ≤ 2.

Remark: Under the SK condition, one has the normal energy
inequality of the form

‖U(t)‖2HN +

∫ t

0

‖{I− PL}U(s)‖2HN + ‖∇PLU(s)‖2HN−1ds ≤ C‖U0‖
2
HN .



1.3 Examples: the linearized versions of the following
nonlinear equations near constant states

I Euler-system with damping

∂tρ+∇ · v = 0,

∂tv + v · ∇v +
1

ρ
∇p(ρ) = −v .

I p-system with relaxation

∂tv − ∂xu = 0,

∂tu + ∂xp(v) =
1

ε
(f (v)− u).

I Jin-Xin model

∂tu + ∂xv = 0,

∂tv + a2∂xu =
1

ε
(f (u)− v).



1.4 Further progress (not-complete):

I Under the SK condition:
I Nonlinear stability of solutions for small HN initial

perturbation: Hanouzet-Natalini (’03), Yong (’04)

I Large-time behavior of solutions for the nonlinear system:
Bianchini-Hanouzet-Natalini (’06) (Use the Green’s
function)

I Under conditions where the SK condition is NOT
satisfied:
I Global nonlinear stability near constant states:

Beauchard-Zuazua (’10) (Use Kalman rank condition to
extend the SK condition)

I Global nonlinear stability near constant states (the
non-dissipative component is degenerate):
Mascia-Natalini (’10) (Use the entropy functional)



1.5 Recently, we have found a new dissipative feature of the
regularity-loss type which shows that

(i) if U0 ∈ HN with N properly large, it could occur that
there is some component Ui of the solution
U = (U1, · · · , Um) such that∫ t

0

∫
Rn
‖∇NUi(s)‖2ds =∞.

(ii) the semigroup etB has the bound of the form

|F{etBU0}| ≤ Ce−p(k)t |Û0|,

where the frequency function p(k) is positive and
smooth over k ∈ Rn with

p(k)→ 0 as |k | → 0, p(k)→ 0 as |k | → ∞.



1.6 Recall that under the SK condition,

p(k) =
λ|k |2

1 + |k |2 , p(k)→ λ > 0 as |k | → ∞.

The new dissipative feature with p(k)→ 0 as |k | → ∞ arises
from our study of the fluid or kinetic equations with the
self-consistent Lorentz force E + u ×B satisfying the Maxwell
system

∂tE −∇× B = −J,
∂tB +∇× E = 0,

∇ · E = ρ, ∇ · B = 0.

Examples:

I Euler-Maxwell system with relaxation (one-fluid or two-fluid)

I Vlasov-Maxwell-Boltzmann system (one-species or
two-species) (Boltzmann operator can be extent to the
general situation including the Landau operator)



2. Main results: the case of fluid plasma

2.1 Euler-Maxwell system with relaxation:

∂tn +∇ · (nu) = 0,

∂tu + u · ∇u +
1

n
∇p(n) = −(E + u × B)− νu,

∂tE −∇× B = nu,

∂tB +∇× E = 0,

∇ · E = nb − n, ∇ · B = 0.

Here, n = n(t, x) ≥ 0, u = u(t, x) ∈ R3, E = E(t, x) ∈ R3 and
B = B(t, x) ∈ R3, for t > 0, x ∈ R3, denote the electron
density, electron velocity, electric field and magnetic field,
respectively. Initial data is given as

[n, u, E,B]|t=0 = [n0, u0, E0, B0], x ∈ R3.



2.2 Consider the linearized homogeneous system for
U = [ρ, u, E,B]:

∂tρ+∇ · u = 0,

∂tu + γ∇ρ+ E + u = 0,

∂tE −∇× B − u = 0,

∂tB +∇× E = 0,

∇ · E = −ρ, ∇ · B = 0, t > 0, x ∈ R3,

with given initial data

U|t=0 = U0 := [ρ0, u0, E0, B0], x ∈ R3,

satisfying the compatible condition

∇ · E0 = −ρ0, ∇ · B0 = 0.



2.3 Estimate on the modulus of Û(t, k):

Theorem (D., arXiv ’10)

Let U(t, x), t > 0, x ∈ R3 be a well-defined solution to the above

linearized system. There is a time-frequency Lyapunov functional

E(Û(t, k)) with

E(Û) ∼ |Û|2 := |ρ̂|2 + |û|2 + |Ê|2 + |B̂|2

satisfying that there is λ > 0 such that the Lyapunov inequality

d

dt
E(Û(t, k)) +

λ|k |2

(1 + |k |2)2E(Û(t, k)) ≤ 0

holds true for any t > 0 and k ∈ R3.

Proof: Use the energy estimate in the Fourier space. Try to
add some L2 interactive functional into the natually existing
one so as to capture the dissipation of all the other
degenerate components.



2.4 Lp-Lq time-decay estimate on etB:

Theorem (D., arXiv ’10)

Let 1 ≤ p, r ≤ 2 ≤ q ≤ ∞, ` ≥ 0 and let m ≥ 0 be an integer.

Then,

‖∇metBU0‖Lq ≤ C(1 + t)−
3
2
( 1
p
− 1
q
)−m

2 ‖U0‖Lp

+ C(1 + t)−
`
2 ‖∇m+[`+3(

1
r
− 1
q
)]+U0‖Lr

for any t ≥ 0, where C = C(p, q, r, `,m), and

[`+ 3(
1

r
−

1

q
)]+ =


[`+ 3(1r −

1
q )]− + 1 when r 6= 2 or q 6= 2

or ` is not an integer,

` when r = q = 2

and ` is an integer,

Remark: Time-decay over the high-frequency domain is
gained by putting some extra regularity on initial data.



2.5 Green’s function: For t ≥ 0 and k ∈ R3 with |k | 6= 0,
define the decomposition

ρ̂(t, k)

û(t, k)

Ê(t, k)

B̂(t, k)

 =


ρ̂(t, k)

û‖(t, k)

Ê‖(t, k)

0

+


0

û⊥(t, k)

Ê⊥(t, k)

B̂⊥(t, k)

 ,
where û‖, û⊥ are defined by

û‖ = k̃ k̃ · û, û⊥ = −k̃ × (k̃ × û) = (I3 − k̃ ⊗ k̃)û,

Define

UI = F−1
 ρ̂(t, k)

û‖(t, k)

Ê‖(t, k)

 , UII = F−1
 û⊥(t, k)

Ê⊥(t, k)

B̂⊥(t, k)

 .
Then,

U = UI + UII .



Theorem (D., ’10)

UI , UII satisfies
∂2t U

I − γ∆UI + UI + ∂tU
I = 0,

∂tU
II +

 I3 I3 0

−I3 0 −∇×
0 ∇× 0

UII = 0.

Furthermore, FUI = GI7×7(t, k)FUI0 with

GI7×7 = e−
t
2 cos(

√
3/4 + γ|k |2t)

1

03
03


+e−

t
2

sin(
√

3/4 + γ|k |2t)√
3/4 + γ|k |2

 1/2 −ik 0

−iγk −1/2I3 −I3
0 I3 1/2I3

 .



To solve UII , consider the characteristic equation

F (χ) := χ3 + χ2 + (1 + |k |2)χ+ |k |2 = 0.

Lemma
Let |k | 6= 0. The equation F (χ) = 0, χ ∈ C, has a real root

σ = σ(|k |) ∈ (−1, 0) and two conjugate complex roots

χ± = β ± iω with β = β(|k |) ∈ (−1/2, 0) and

ω = ω(|k |) ∈ (
√

6/3,∞) satisfying

β = −
σ + 1

2
, ω =

1

2

√
3σ2 + 2σ + 3 + 4|k |2.

σ, β, ω are smooth over |k | > 0, and σ(|k |) is strictly decreasing

in |k | > 0 with

lim
|k|→0

σ(|k |) = 0, lim
|k|→∞

σ(|k |) = −1.



Lemma (cont.)

Mover, the following asymptotic behaviors hold true:

σ(|k |) = −O(1)|k |2,

β(|k |) = −
1

2
+O(1)|k |2, ω(|k |) =

√
3

2
+O(1)|k |

whenever |k | ≤ 1 is small, and

σ(|k |) = −1 +O(1)|k |−2,
β(|k |) = −O(1)|k |−2, ω(|k |) = O(1)|k |

whenever |k | ≥ 1 is large. Here and in the sequel O(1) denotes a

generic strictly positive constant.



Theorem (cont.)

Let M = FUII . Then,

M1(t, k) = −
c1(k)

1 + σ
eσt

−
c2(k)

(1 + β)2 + ω2
eβt [(1 + β) cosωt + ω sinωt]

−
c3(k)

(1 + β)2 + ω2
eβt [(1 + β) sinωt − ω cosωt] ,

M2(t, k) = c1(k)eσt + eβt [c2(k) cosωt + c3(k) sinωt],

M3(t, k) = −ik ×
c1(k)

σ
eσt

−ik ×
c2(k)

β2 + ω2
eβt [β cosωt + ω sinωt]

−ik ×
c3(k)

β2 + ω2
eβt [β sinωt − ω cosωt] ,

where ci(k), i = 1, 2, 3, are determined by initial data M(0, k).



2.6 Asymptotic stability of the nonlinear Cauchy problem:

Theorem (D., arXiv ’10)

Let N ≥ 4. There are δ0 > 0, C0 such that if

‖[n0 − 1, u0, E0, B0]‖N ≤ δ0,

then, the nonlinear Cauchy problem admits a unique global

solution with

[n − 1, u, E,B] ∈ C([0,∞);HN(R3)) ∩ Lip([0,∞);HN−1(R3))

and

sup
t≥0
‖[n(t)− 1, u(t), E(t), B(t)]‖N ≤ C0‖[n0 − 1, u0, E0, B0]‖N .



Theorem (cont.)

Moreover, there are δ1 > 0, C1 such that if

‖[n0 − 1, u0, E0, B0]‖13 + ‖[u0, E0, B0]‖L1 ≤ δ1,

then the solution [n(t, x), u(t, x), E(t, x), B(t, x)] satisfies that

for any t ≥ 0,

‖n(t)− 1‖Lq ≤ C1(1 + t)−
11
4 ,

‖[u(t), E(t)]‖Lq ≤ C1(1 + t)−2+
3
2q ,

‖B(t)‖Lq ≤ C1(1 + t)−
3
2
+ 3
2q ,

with 2 ≤ q ≤ ∞.



2.7 The two-fluid Euler-Maxwell system with relaxation:

∂tn± +∇ · (n±u±) = 0,

∂tu± + u± · ∇u± +
1

n±
∇p±(n±) = ∓(E + u± × B)− ν±u±,

∂tE −∇× B = −(n+u+ − n−u−),

∂tB +∇× E = 0,

∇ · E = n− − n+, ∇ · B = 0.

Q: Is there any dissipative property similar as in the case of
the one-fluid EM system?

A: Yes! Two-fluid EM system can be written as the coupling
system of the one-fluid EM system and the Euler system
without forces.



In fact, suppose ν± = ν > 0. Then, the linearized two-fluid
EM system near (n± = 1, u± = 0, E = B = 0) for

[n±, u±, E,B]

= the one-fluid EM system for [ρ− := n+−n−
2 , v− := u+−u−

2 , E,B]

satisfying 
∂tρ− +∇ · v− = 0,

∂tv− +∇ρ− = −E − νv−,
∂tE −∇× B = −2v−,

∂tB +∇× E = 0,

∇ · E = −2ρ−, ∇ · B = 0.

+the Euler system without forces for [ρ+ := n++n−
2 , v+ := u++u−

2 ]

satisfying {
∂tρ+ +∇ · v+ = 0,

∂tv+ +∇ρ+ = −νv+.



2.8 Final remark: The linearized Euler-Maxwell system with
relaxation is a typical example for the following general
system

∂tU +

n∑
j=1

Aj∂xjU + LU = 0,

with

• U = U(t, x) ∈ Rm, t ≥ 0, x ∈ Rn,

• Aj ∈ Rm×m with (Aj)T = Aj , 1 ≤ j ≤ n,

• L ∈ Rm×m with L1 := L+LT

2 ≥ 0. (kerL 6= 0)

On-going work with Kawashima-Ueda: Notice that L need
not be symmetric and hence could have a non-zero
skew-symmetric part. We have found some algebraic
condition similar to SK condition under which the solution
has the regularity-loss property.



3. Main results: the case of kinetic plasma

3.1 Vlasov-Maxwell-Boltzmann system:

∂t f+ + ξ · ∇x f+ + (E + ξ × B) · ∇ξf+ = Q(f+, f+) +Q(f+, f−),

∂t f− + ξ · ∇x f− − (E + ξ × B) · ∇ξf− = Q(f−, f+) +Q(f−, f−).

It is coupled with the Maxwell system

∂tE −∇x × B = −
∫
R3
ξ(f+ − f−)dξ,

∂tB +∇x × E = 0,

∇x · E =

∫
R3

(f+ − f−)dξ, ∇x · B = 0.

The initial data in this system is given as

f±(0, x, ξ) = f0,±(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x).



3.2 Known results on the asymptotic stability of
near-equilibrium solutions to the two-species VMB system

I x ∈ T3
I Global existence: Guo (’03) (Energy method)
I Large-time behavior of solutions: Strain-Guo (’06&’08)

(Time-velocity splitting)

I x ∈ R3
I Global existence: Strain (’06) (Use two-species’

cancelation property to control E)
I Large-time behavior of solutions: Duan-Strain (’10)

(Contruct time-frequency functionals + bootstrap to the
nonlinear equation)

Remark: For the case of one-species VMB system, D. (’10)
also obtained the global existence. When there is no
cancelation, more delicate Lyapunov functionals are desgined
to control the dissipation of the electromagnetic field.



3.3 Define the perturbation u as

u =
f −M

M1/2
, u = [u+, u−], f = [f+, f−].

The linearized homogeneous system takes the form of

∂tu + ξ · ∇xu − E · ξM1/2[1,−1] = Lu,

∂tE −∇x × B = −〈[ξ,−ξ]M1/2, {I− P}u〉,
∂tB +∇x × E = 0,

∇x · E = 〈M1/2, u+ − u−〉, ∇x · B = 0,

[u, E,B]|t=0 = [u0, E0, B0],

Theorem (D.-Strain, ’10)

There is a time-frequency functional E(t, k) such that

E(t, k) ∼ ‖û‖2
L2ξ

+ |Ê|2 + |B̂|2,

and

∂tE(t, k) +
λ|k |2

(1 + |k |2)2E(t, k) ≤ 0, ∀ t ≥ 0, k ∈ R3.



Remark: The above time-frequency Lyapunov inequality
implies the Lp-Lq time-decay property of the solution
semigroup similar to the EM system.

3.4 Key idea in the proof: One can use the energy estimate
in the Fourier space and construct some L2 functionals so as
to capture the dissipation of all the degenerate components
in the solution.

Lemma
There is an interactive time-frequency functional Eint(t, k) such

that

|Eint(t, k)| ≤ C(‖û‖2
L2ξ

+ |Ê|2 + |B̂|2),

and

∂tEint(t, k) + λ‖ν1/2{I− P}û‖2
L2ξ

+
λ|k |2

1 + |k |2 ‖Pû‖
2
L2ξ

+ λ|k · Ê|2

+
λ|k |2

(1 + |k |2)2 (|Ê|2 + |B̂|2) ≤ 0.



3.5 Time-decay of the nonlinear VMB system: Define the
instant full energy functional EN,m(t) and the instant
high-order energy functional EhN,m(t), respectively, as

EN,m(t) ∼
∑

|α|+|β|≤N

‖ν
m
2 ∂αβ u(t)‖2 +

∑
|α|≤N

‖∂α[E(t), B(t)]‖2,

EhN,m(t) ∼
∑

1≤|α|≤N

‖ν
m
2 ∂αu(t)‖2 +

∑
|α|+|β|≤N

‖ν
m
2 ∂αβ {I− P}u(t)‖2

+
∑

1≤|α|≤N

‖∂α[E(t), B(t)]‖2,

and we define the dissipation rate DN,m(t) as

DN,m(t) =
∑

1≤|α|≤N

‖ν
m+1
2 ∂αu(t)‖2 +

∑
|α|+|β|≤N

‖ν
m+1
2 ∂αβ {I− P}u(t)‖2

+
∑

1≤|α|+|β|≤N−1

‖∂α[E(t), B(t)]‖2 + ‖E(t)‖2,

for integers N and m. For brevity, we write EN(t) = EN,0(t),
EhN(t) = EhN,0(t) and DN(t) = DN,0(t) when m = 0.



Theorem (D.-Strain, ’10)

Under some smallness conditions,

d

dt
EN,m(t) + λDN,m(t) ≤ 0,

d

dt
EhN(t) + λDN(t) ≤ C‖∇xPu(t)‖2.

Moreover, define εj,m = Ej,m(0) + ‖u0‖2Z1 + ‖[E0, B0]‖2L1 . Then,

under some smallness conditions,

EN,m(t) ≤ CεN+2,m(1 + t)−
3
2 ,

EhN(t) ≤ CεN+5,1(1 + t)−
5
2 .

Finally, for 1 ≤ r ≤ 2,

‖u(t)‖Zr + ‖B(t)‖Lrx ≤ C(1 + t)−
3
2
+ 3
2r ,

‖{I− P}u(t)‖Zr + ‖〈[1,−1]M1/2, u(t)〉‖Lrx + ‖E(t)‖Lrx ≤ C(1 + t)−
3
2
+ 1
2r .



3.6 One-species VMB:

∂t f + ξ · ∇x f + (E + ξ × B) · ∇ξf = Q(f , f ),

∂tE −∇x × B = −
∫
R3
ξf dξ,

∂tB +∇x × E = 0,

∇ · E =

∫
R3
f dξ − nb, ∇x · B = 0.

The key difference of one-species case with two-species lies
in the fact that the coupling term in the source of the
Maxwell system

−
∫
R3
ξf (t, x, ξ)dξ

corresponds to the momentum component of the
macroscopic part of the solution which is degenerate with
respect to the linearized operator L.



Theorem (D., ’10)

Let N ≥ 4. Define

EN(U(t)) ∼ ‖u(t)‖2HNx,ξ + ‖[E(t), B(t)]‖2HN ,

DN(U(t)) = ‖ν1/2{I− P}u(t)‖2HNx,ξ + ‖ν1/2∇xu(t)‖2
L2ξ(H

N−1
x )

+‖∇xE(t)‖2HN−2 + ‖∇2xB(t)‖2HN−3 .

Suppose f0 = M + M1/2u0 ≥ 0. There indeed exists EN(U(t))
such that if initial data U0 = [u0, E0, B0] satisfies the compatible
condition at t = 0 and EN(U0) is sufficiently small, then the
nonlinear Cauchy problem admits a global solution U = [u, E,B]
satisfying

f (t, x, ξ) = M + M1/2u(t, x, ξ) ≥ 0,

[u(t), E(t), B(t)] ∈ C([0,∞);HNx,ξ ×HN ×HN),

and

EN(U(t)) + λ

∫ t

0

DN(U(s))ds ≤ EN(U0), ∀ t ≥ 0.



3.7 A summary for the dissipation property of kinetic plasma
model:

E(t, k) ∼ D(t, k) = ‖u(t)‖
L2
≤

BE ‖û‖2
L2
ξ

‖ν1/2{I− P}û‖2
L2
ξ

+
|k|2
1+|k|2

|[â, b̂, ĉ]|2
C(1 + t)

− 34 ‖u0‖Z1∩L2

1-s VPB ‖û‖2
L2
ξ

+
|â|2
|k|2

‖ν1/2{I− P}û‖2
L2
ξ

+
|k|2
1+|k|2

|[â, b̂, ĉ]|2 + |â|2
C(1 + t)

− 14 ‖u0‖Z1∩L2

1-s VMB ‖û‖2
L2
ξ

+ |[Ê, B̂]|2

‖ν1/2{I− P}û‖
L2
ξ

+
|k|2
1+|k|2

|[â, b̂, ĉ]|2 + |k · Ê|2

+
|k|2

(1+|k|2)2
|Ê|2 + |k|4

(1+|k|2)3
|B̂|2

C(1 + t)
− 38

×(‖U0‖Z1 + ‖∇xU0‖Z2 )

2-s VMB ‖û‖2
L2
ξ

+ |[Ê, B̂]|2

‖ν1/2{I− P}û‖
L2
ξ

+
|k|2
1+|k|2

|[â±, b̂, ĉ]|2 + |k · Ê|2

+
|k|2

(1+|k|2)2
(|Ê|2 + |B̂|2)

C(1 + t)
− 34

×(‖U0‖Z1 + ‖∇
2
xU0‖Z2 )

Table: Dissipative and time-decay properties of different models

Remark: The developed approach here is also applicable to
other situations such as the Landau operator and the
relativistic model.



3.8 Open problem: Green’s function of the VMB system.



Thanks for your attention!
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